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A Proofs of main results

To ease the technical presentation, we introduce some necessary notation. Recall that A∗ = U∗D∗,

B∗ = V∗D∗, A = UD, and B = VD. Denote by ∆̂ = Ĉ − C∗, ∆̂
d

= D̂ −D∗, ∆̂
a

= Â −A∗,

and ∆̂
b

= B̂ − B∗ the different estimation errors, and FS(M̂) = |{(i, j) : sgn(m̂ij) 6= sgn(m∗ij)}|
the total number of falsely discovered signs of an estimator M̂ = (m̂ij) for matrix M∗ = (m∗ij). For

D = diag(d1, . . . , dm) ∈ Rm×m, we define D− as a diagonal matrix with rank(D−) = rank(D) and

jth diagonal entry d−j = d−1j 1{dj > 0}, and define D∗− based on D∗ similarly. For any matrices M1

and M2, denote by 〈M1,M2〉 = tr(MT
1 M2). Hereafter we use c to denote a generic positive constant

whose value may vary from line to line.

A.1 Proof of Theorem 1

We prove the bounds in (11)–(13) separately. Recall that s = ‖C∗‖0 and define a space

C0 = {M ∈ Rp×q : mij = 0 for (i, j) 6= S},

where S stands for the support of C∗. We also denote by C⊥0 the orthogonal complement of C0.

Part 1: Proof of bound (11). The proof is composed of two steps. We first derive the deterministic

error bound (11) under the assumption that

‖n−1XTE‖∞ ≤ λ0/2 (A.1)

holds almost surely in the first step and then verify that condition (A.1) holds with high probability in

the second step.

Step 1. Since the objective function is convex, the global optimality of C̃ implies

(2n)−1‖Y −XC̃‖2F + λ0‖C̃‖1 ≤ (2n)−1‖Y −XC∗‖2F + λ0‖C∗‖1.

1



Then letting ∆̃ ≡ C̃−C∗, we see that

(2n)−1‖X∆̃‖2F ≤ 〈n−1XTE, ∆̃〉+ λ0(‖C∗‖1 − ‖∆̃ + C∗‖1). (A.2)

By Hölder’s inequality and the assumed condition (A.1), it holds that

〈n−1XTE, ∆̃〉 ≤ ‖n−1XTE‖∞‖∆̃‖1 ≤ 2−1λ0‖∆̃‖1. (A.3)

By the triangle inequality, we have

λ0(‖C∗‖1 − ‖∆̃ + C∗‖1) ≤ λ0‖∆̃‖1. (A.4)

Therefore, (A.2) together with Lemma 4 in Section B.2 and (A.3)–(A.4) entails that

2c2‖∆̃‖2F ≤ 2n−1‖X∆̃‖2F ≤ 6λ0‖∆̃‖1. (A.5)

Meanwhile, since n−1‖X∆̃‖2F is nonnegative (A.2) is also bounded from below as

0 ≤ 〈n−1XTE, ∆̃〉+ λ0(‖C∗‖1 − ‖∆̃ + C∗‖1). (A.6)

Note that C∗C⊥0
= 0 in our model. Hence it follows from the triangle inequality and decomposability of

the nuclear norm that

λ0(‖C∗‖1 − ‖∆̃ + C∗‖1) = λ0(‖C∗C0 + C∗C⊥0
‖1 − ‖∆̃C0 + ∆̃C⊥0

+ C∗C0 + C∗C⊥0
‖1)

≤ λ0(‖C∗C0‖1 + ‖C∗C⊥0 ‖1 − ‖C
∗
C0 + ∆̃C⊥0

‖1 + ‖C∗C⊥0 + ∆̃C0‖1)

= λ0(‖∆̃C0‖1 − ‖∆̃C⊥0 ‖1). (A.7)

Thus by (A.3) and (A.7), we can bound (A.6) from above as

0 ≤ 2−1λ0‖∆̃‖1 + λ0(‖∆̃C0‖1 − ‖∆̃C⊥0 ‖1)

≤ 2−1λ0(‖∆̃C0‖1 + ‖∆̃C⊥0 ‖1) + λ0(‖∆̃C0‖1 − ‖∆̃C⊥0 ‖1)

= 2−1λ0(3‖∆̃C0‖1 − ‖∆̃C⊥0 ‖1),

which can be equivalently rewritten as

λ0‖∆̃C⊥0 ‖1 ≤ 3λ0‖∆̃C0‖1. (A.8)

We are now ready to derive the error bound. For a generic positive constant c, (A.5) is bounded from
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above by the decomposability of the `1-norm and (A.8) as

c‖∆̃‖2F ≤ λ0‖∆̃‖1 = λ0‖∆̃C0‖1 + λ0‖∆̃C⊥0 ‖1 ≤ 4λ0‖∆̃C0‖1. (A.9)

Using the subspace compatibility conditions (see the proof of Theorem 1 of [53]), we can show that

‖∆̃C0‖1 ≤ s1/2‖∆̃C0‖F ≤ s1/2‖∆̃‖F .

Therefore, with c changed appropriately (A.9) can be further bounded as

‖∆̃‖2F ≤ cs1/2λ0‖∆̃‖F .

This consequently yields the desired error bound

‖∆̃‖F ≤ cs1/2λ0,

which completes the first step of the proof.

Step 2. Let xi and ej denote the ith and jth columns of X ∈ Rn×p and E ∈ Rn×q, respectively. Since

‖XTE‖∞ = max1≤i≤p max1≤j≤q |xTi ej |, using Bonferroni’s inequality and the Gaussianity of ej we

deduce

P
(
n−1‖XTE‖∞ ≥ λ0

)
≤

p∑
i=1

q∑
j=1

P
(
n−1|xTi ej | ≥ λ0

)
≤ 2

p∑
i=1

q∑
j=1

exp

(
− n2λ20

2E|xTi ej |2

)
. (A.10)

Since ej is distributed as N
(

0, σ2j In

)
, it holds that

E|xTi ej |2 = σ2jx
T
i xi ≤ σ2maxn. (A.11)

By the assumption λ20 = c20σ
2
maxn

−1 log(pq) and (A.10)–(A.11), the upper bound on the probability in

(A.10) can be further bounded from above by

2pq exp
{
−(c20/2) log(pq)

}
= 2(pq)1−c

2
0/2,

which concludes the proof for bound (11).

Part 2: Proofs of bounds (12) and (13). Both inequalities (12) and (13) are direct consequences of

Lemma 3 in Section B.1 and bound (11). This completes the proof of Theorem 1.
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A.2 Proof of Theorem 2

Recall that we solve SOFAR in a local neighborhoodPn of the initial solution C̃. It follows that ‖∆̂‖F ≤
‖Ĉ − C̃‖F + ‖C̃ − C∗‖F ≤ 3Rn ≤ cs1/2λmax, where Pn is defined in (14), Rn is as in Theorem 1,

and c is some generic positive constant. Thus by Lemma 3, we have

‖∆̂
a
‖F + ‖∆̂

b
‖F + ‖∆̂

d
‖F ≤ cηn‖∆̂‖F (A.12)

≤ cs1/2λmaxηn, (A.13)

where ηn = 1 + δ−1/2
(∑r

j=1(d
∗
1/d
∗
j )

2
)1/2. Note that under Conditions 1 and 2, Lemma 4 and Lemma

1 in Section A.3 entail that

‖∆̂‖2F ≤ cn−1‖X∆̂‖2F ≤ cλmax

(
‖∆̂

d
‖1 + ‖∆̂

a
‖1 + ‖∆̂

b
‖1
)
. (A.14)

Furthermore, it follows from the Cauchy–Schwarz inequality and (A.12) that

‖∆̂
a
‖1 + ‖∆̂

d
‖1 + ‖∆̂

b
‖1

≤ max{‖∆̂
d
‖0, ‖∆̂

a
‖0, ‖∆̂

b
‖0}1/2

(
‖∆̂

a
‖F + ‖∆̂

d
‖F + ‖∆̂

b
‖F
)

≤ cηn{‖∆̂
d
‖0 + ‖∆̂

a
‖0 + ‖∆̂

b
‖0}1/2‖∆̂‖F . (A.15)

Combining (A.15) and (A.14) leads to

‖∆̂‖F ≤ cλmaxηn{‖∆̂
d
‖0 + ‖∆̂

a
‖0 + ‖∆̂

b
‖0}1/2. (A.16)

We next provide an upper bound for ‖∆̂
d
‖0 +‖∆̂

a
‖0 +‖∆̂

b
‖0. Since (D̂, Â, B̂) and (D∗,A∗,B∗)

are elements in D ×A× B by Condition 1, we have

FS(D̂)1/2τ ≤ ‖∆̂
d
‖F , FS(Â)1/2τ ≤ ‖∆̂

a
‖F , and FS(B̂)1/2τ ≤ ‖∆̂

b
‖F . (A.17)

By the definition of FS(Â), it holds that ‖∆̂
a
‖0 ≤ sa + FS(Â). Similar inequalities hold for ‖∆̂

b
‖0

and ‖∆̂
d
‖0. Therefore, it follows from (A.17) and (A.12) that

‖∆̂
d
‖0 + ‖∆̂

a
‖0 + ‖∆̂

b
‖0 ≤ r + sa + sb + FS(D̂) + FS(Â) + FS(B̂)

≤ r + sa + sb + τ−2
(
‖∆̂

a
‖F + ‖∆̂

b
‖F + ‖∆̂

d
‖F
)2

≤ r + sa + sb + c(ηn/τ)2‖∆̂‖2F . (A.18)

Plugging (A.18) into (A.16) yields

‖∆̂‖F ≤ cλmaxηn

(
r + sa + sb + c(ηn/τ)2‖∆̂‖2F

)1/2
.
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Thus solving for ‖∆̂‖F gives

‖∆̂‖F ≤
c(r + sa + sb)

1/2λmaxηn

{1− cλ2max(η2n/τ)2}1/2
, (A.19)

which together with Theorem 1 results in the first inequality in Theorem 2.

Plugging (A.19) into (A.12), we deduce

‖∆̂
a
‖F + ‖∆̂

b
‖F + ‖∆̂

d
‖F ≤

c(r + sa + sb)
1/2λmaxη

2
n

{1− cλ2max(η2n/τ)2}1/2
,

which along with (A.13) entails the second inequality in Theorem 2. Note that plugging (A.19) into

(A.18) and combining terms yield

‖∆̂
d
‖0 + ‖∆̂

a
‖0 + ‖∆̂

b
‖0 ≤ (r + sa + sb)

[
1 +

cλ2max(η2n/τ)2

1− cλ2max(η2n/τ)2

]
= (r + sa + sb)[1 + o(1)],

which gives the third inequality in Theorem 2.

We now plug the above inequality and (A.19) into (A.15). Then it holds that

‖∆̂
a
‖1 + ‖∆̂

d
‖1 + ‖∆̂

b
‖1 ≤

c(r + sa + sb)λmaxη
2
n

1− cλ2max(η2n/τ)2
, (A.20)

which yileds the fourth inequality in Theorem 2. Finally, it follows from Lemma 1 and (A.20) that

n−1‖X∆̂‖2F ≤
c(r + sa + sb)λ

2
maxη

2
n

1− cλ2max(η2n/τ)2
,

which establishes the fifth inequality in the theorem and concludes the proof of Theorem 2.

A.3 Lemma 1 and its proof

Lemma 1. Under the conditions of Theorem 2, with at least probability as specified in (15) we have

n−1‖X∆̂‖2F ≤ cλmax

(
‖∆̂

d
‖1 + ‖∆̂

a
‖1 + ‖∆̂

b
‖1
)
,

where c is some positive constant.

Proof of Lemma 1. Denote by E2 the event on which inequalities (A.25)–(A.27) hold. Then by

Lemma 2 in Section A.4, we see that event E2 holds with probability bound as specified in (15). We

will prove Lemma 1 by conditioning on event E2. Since the SOAR estimator is the minimizer in the

5



neighborhood Pn defined in (14), it holds that

(2n)−1‖Y −XÛD̂V̂T ‖2F + λd‖D̂‖1 + λaρa(Â) + λbρb(B̂)

≤ (2n)−1‖Y −XU∗D∗(V∗)T ‖2F + λd‖D∗‖1 + λaρa(A∗) + λbρb(B
∗).

Let ∆̂ = Ĉ−C∗. Rearranging terms in the above inequality leads to

(2n)−1‖X∆̂‖2F ≤ 〈n−1XTE, ∆̂〉

+ λd

(
‖D∗‖1 − ‖D̂‖1

)
+ λa

(
ρa(A

∗)− ρa(Â)
)

+ λb

(
ρb(B

∗)− ρb(B̂)
)
. (A.21)

By the definition of D−, the estimation error can be decomposed as

∆̂ ≡ ÛD̂V̂T −U∗D∗V∗T = ÂD̂−B̂T −A∗D∗−B∗T

= ∆̂
a
(B̂D̂−)T −U∗∆̂

d
(B̂D̂−)T + U∗(∆̂

b
)T .

The above decomposition together with Hölder’s inequality entails that the following inequality

〈n−1XTE, ∆̂〉

= 〈n−1XTEB̂D̂−, ∆̂
a
〉 − 〈n−1U∗TXTEB̂D̂−, ∆̂

d
〉+ 〈n−1U∗TXTE, ∆̂

bT
〉

≤ ‖n−1XTEB̂D̂−‖∞‖∆̂
a
‖1 + ‖n−1U∗TXTEB̂D̂−‖∞‖∆̂

d
‖1 + ‖n−1U∗TXTE‖∞‖∆̂

b
‖1

≤ λa‖∆̂
a
‖1 + λd‖∆̂

d
‖1 + λb‖∆̂

b
‖1 (A.22)

holds on event E2.

By the triangle inequality for the `1-norm and Condition 4, we deduce

λd

(
‖D∗‖1 − ‖D̂‖1

)
+ λa

(
ρa(A

∗)− ρa(Â)
)

+ λb

(
ρb(B

∗)− ρb(B̂)
)

≤ λd‖∆̂
d
‖1 + λa‖∆̂

a
‖1 + λb‖∆̂

b
‖1. (A.23)

Thus plugging (A.22) and (A.23) into (A.21) yields

(cn)−1‖X∆̂‖2F ≤ λd‖∆̂
d
‖1 + λa‖∆̂

a
‖1 + λb‖∆̂

b
‖1

≤ λmax

(
‖∆̂

d
‖1 + ‖∆̂

a
‖1 + ‖∆̂

b
‖1
)

(A.24)

with λmax = max(λd, λa, λb), which completes the proof of Lemma 1.
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A.4 Lemma 2 and its proof

Lemma 2. Under the conditions of Theorem 2, with at least probability as specified in (15) the following

inequalities hold

sup
(B,D)∈Pn

‖n−1U∗TXTEBD−‖∞ ≤ λd, (A.25)

sup
(B,D)∈Pn

‖n−1XTEBD−‖∞ ≤ λa, (A.26)

sup
(B,D)∈Pn

‖n−1U∗TXTE‖∞ ≤ λb. (A.27)

Proof of Lemma 2. Recall that P̃n = {C : ‖C − C̃‖F ≤ 2Rn}, where C̃ is the initial Lasso

estimator and Rn = c(n−1s log(pq))1/2 is as defined in Theorem 1. It follows from Theorem 1 that

the true regression coefficient matrix C∗ falls in the neighborhood P̃n with probability at least 1 −
2(pq)1−c

2
0/2, where c0 >

√
2 is some constant given in Theorem 1. Note that the neighborhood P̃n

shrinks asymptotically as n→∞ sinceR2
n = O(nα+β/2+γ−1) and α+β/2+γ < α+β+γ < 1 holds

under our assumptions. In order to deal with the nonconvexity of the objective function, we exploit the

framework of convexity-assisted nonconvex optimization (CANO) and solve the SOFAR optimization

problem in the shrinking local region Pn = P̃n ∩ (C × D ×A× B) as defined in (14).

Observe that for any C ∈ P̃n, by the triangle inequality it holds that

‖C−C∗‖F ≤ ‖C− C̃‖F + ‖C̃−C∗‖F ≤ 3Rn;

that is, with probability at least 1− 2(pq)1−c
2
0/2, P̃n ⊂ {C : ‖C−C∗‖F ≤ 3Rn}. Further, by Lemma

3 we have {C : ‖C−C∗‖F ≤ 3Rn} ⊂ E1, where

E1 = {C ≡ AD−B : ‖D−D∗‖F ≤ 3Rn,

‖A−A∗‖F + ‖B−B∗‖F ≤ 3cηnRn} (A.28)

with c > 0 some constant. Combining the above results yields that with probability at least 1 −
2(pq)1−c

2
0/2, Pn ⊂ P̃n ⊂ E1, which entails

P
(
Pn 6⊂ E1

)
≤ 2(pq)1−c

2
0/2. (A.29)

We next establish that (A.25)–(A.27) hold with asymptotic probability one. Note that it follows from
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the definition of conditional probability and (A.29) that

P
(

sup
C∈Pn

‖n−1U∗XTEBD−‖∞ > λd

)
≤ P

(
sup

C∈Pn

‖n−1U∗XTEBD−‖∞ > λd

∣∣∣Pn ⊂ E1)+ P
(
Pn 6⊂ E1

)
≤ P

(
sup
C∈E1

‖n−1U∗XTEBD−‖∞ > λd) + 2(pq)1−c
2
0/2.

Thus to prove (A.25), we only need to show that

sup
C∈E1

‖n−1U∗XTEBD−‖∞ ≤ λd (A.30)

holds with asymptotic probability one. Similarly, to show (A.26) and (A.27) we only need to prove that

sup
C∈E1

‖n−1XTEBD−‖∞ ≤ λa, (A.31)

sup
C∈E1

‖n−1U∗TXTE‖∞ ≤ λb (A.32)

hold with asymptotic probability one. We next proceed to prove (A.30)–(A.32) hold with asymptotic

probability one.

Denote by xi and ej the ith and jth columns of X ∈ Rn×p and E ∈ Rn×q, respectively. Let x∗i and

e∗j be the ith and jth columns of X∗ ≡ XU∗ ∈ Rn×q and E∗ ≡ EV∗ ∈ Rn×q, respectively. It is seen

that the last q − r columns of X∗ and E∗ are all zero. First, we show that (A.30) holds with significant

probability. The decomposition

BD− = V∗ + ∆bD− + V∗D∗∆d−

and the triangle inequality lead to

‖n−1X∗TEBD−‖∞ ≤ ‖n−1X∗TE∗‖∞ + ‖n−1X∗TE∆bD−‖∞ + ‖n−1X∗TE∗D∗∆d−‖∞,

where ∆d− = D− −D∗− = diag{d−1j − (d∗j )
−1}. Thus it holds that

P

(
sup
C∈E1

‖n−1X∗TEBD−‖∞ ≥ λd
)
≤ P

(
‖n−1X∗TE∗‖∞ ≥ λd/3

)
+ P

(
sup
C∈E1

‖n−1X∗TE∆bD−‖∞ ≥ λd/3
)

+ P

(
sup
C∈E1

‖n−1X∗TE∗D∗∆d−)‖∞ ≥ λd/3
)
.

(A.33)

Let us consider the first term on the right hand side of (A.33). Since E ∼ N(0, In⊗Σ) by Condition

3, the jth column vector of E∗, e∗j = Ev∗j with v∗j the jth column vector of V∗, is distributed as
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N
(

0,v∗Tj Σv∗j In

)
. Furthermore, note that ‖X∗TE∗‖∞ = max1≤i≤q max1≤j≤q |x∗Ti e∗j | and

E|x∗Ti e∗j |2 = v∗Tj Σv∗jx
∗T
i x∗i ≤ αmaxu

∗T
i XTXu∗i ≤ αmaxc3n ≤ cn, (A.34)

where αmax denotes the maximum eigenvalue of Σ and the second inequality follows from Condition 2

and the fact that u∗i = 0 for i = r + 1, · · · , q. Therefore, it follows from Bonferroni’s inequality, the

Gaussianity of e∗j , and (A.34) that for λ2d = c21n
−1 log(pr),

P
(
n−1‖X∗TE∗‖∞ ≥ λd/3

)
≤

r∑
i=1

r∑
j=1

P
(
n−1|x∗Ti e∗j | ≥ λd/3

)
≤ 2

r∑
i=1

r∑
j=1

exp

(
−

n2λ2d/9

2E|x∗Ti e∗j |2

)

≤ 2r2 exp

(
−n

2c21n
−1 log(pr)

18cn

)
= 2r2(pr)−c

2
1/c. (A.35)

We now consider the second term on the right hand side of (A.33). Some algebra gives

‖n−1X∗TE∆bD−‖∞ = ‖n−1(Iq ⊗X∗TE) vec(∆bD−)‖∞

≤ max
1≤i≤r

q∑
j=1

|n−1x∗Ti ej |‖ vec(∆bD−)‖∞

≤ q max
1≤i≤r

max
1≤j≤q

|n−1x∗Ti ej |‖(D− ⊗ Iq) vec(∆b)‖∞

≤ q‖D−‖∞ max
1≤i≤r

max
1≤j≤q

|n−1x∗Ti ej |‖ vec(∆b)‖∞.

Since we solve SOFAR in the local neighborhoodPn defined in (14), by Condition 1 we have ‖D−‖∞ ≤
τ−1 for any C ≡ AD−B ∈ Pn. Thus by (A.28), the second term in the upper bound of (A.33) can be

bounded as

sup
C∈E1

‖n−1X∗TE∆bD−‖∞ ≤ (q/τ) max
1≤i≤r

max
1≤j≤q

|n−1x∗Ti ej | sup
E1
‖ vec(∆b)‖∞

≤ (q/τ) max
1≤i≤r

max
1≤j≤q

|n−1x∗Ti ej | sup
E1
‖∆b‖F

≤ 3c(q/τ)ηnRn max
1≤i≤r

max
1≤j≤q

|n−1x∗Ti ej |. (A.36)

Similarly to (A.34), we can show that

E|x∗Ti ej |2 ≤ σ2j c3n ≤ σ2maxc3n ≤ cn. (A.37)

Therefore, in view of (A.36), (A.37), R2
n = O(sn−1 log(pq)), and p ≥ q, the same inequality as (A.35)
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results in

P

(
sup
E1
‖n−1X∗TE∆bD−‖∞ ≥ λd/3

)
= P

(
3c(q/τ)ηnRn max

1≤i≤r
max
1≤j≤q

|n−1x∗Ti ej | ≥ λd/3
)

≤ 2
r∑
i=1

q∑
j=1

exp

(
−

n2λ2d
81c(q/τ)2η2nR

2
nE|x∗Ti ej |2

)

= 2qr exp

(
− c21n

c(q/τ)2η2ns

)
, (A.38)

where c is some positive constant.

It remains to investigate the third term on the right hand side of (A.33). Since D∗∆d− is a diagonal

matrix whose (k, k)th entry is given by (d∗k − dk)/dk with rank(D∗∆d−) ≤ r, the last q − r columns

of both X∗ and E∗ are zero, and D ∈ D, we have

sup
C∈E1

‖n−1X∗TE∗D∗∆d−‖∞ ≤ max
1≤i≤r

max
1≤j≤r

|n−1x∗Ti e∗j | sup
E
‖D∗∆d−‖∞

≤ τ−1 max
1≤i≤r

max
1≤j≤r

|n−1x∗Ti e∗j | max
1≤k≤r

|d∗k − dk|

≤ τ−1 max
1≤i≤r

max
1≤j≤r

|n−1x∗Ti e∗j |‖∆d‖F

≤ 3(Rn/τ) max
1≤i≤r

max
1≤j≤r

|n−1x∗Ti e∗j |. (A.39)

Then by (A.34) and (A.39), the same inequality yields

P
(

sup ‖n−1X∗TE∗D∗∆d−‖∞ ≥ λd/3
)
≤ P

(
3(Rn/τ) max

1≤i≤r
max
1≤j≤r

|n−1x∗Ti e∗j | ≥ λd/3
)

≤ 2

r∑
i=1

r∑
j=1

exp

(
−

n2λ2d
81c(Rn/τ)2E|x∗Ti e∗j |2

)

≤ 2r2 exp

(
− c21n

2n−1 log(pr)

csn−1 log(pq)τ−2n

)
≤ 2r2 exp

(
−c

2
1τ

2n

cs

)
. (A.40)

Therefore, combining (A.35), (A.38), and (A.40) with (A.33) gives the probability bound

P

(
sup
C∈E1

‖n−1X∗TEBD−‖∞ ≥ λd
)

≤ 2r2(pr)−c
2
1/c + 2rq exp

(
− c21n

c(q/τ)2η2ns

)
+ 2r2 exp

(
−c

2
1τ

2n

cs

)
. (A.41)

We next prove that (A.31) holds with high probability. The arguments are similar to those for proving

(A.30) except that X∗ is replaced with X in the proof of (A.25). More specifically, note that we have

10



the following decomposition of probability bound

P

(
sup
E1
‖n−1XTEBD−‖∞ ≥ λa

)
≤ P

(
‖n−1XTE∗‖∞ ≥ λa/3

)
(A.42)

+ P

(
sup
E1
‖n−1XTE∆bD−‖∞ ≥ λa/3

)
+ P

(
sup
E1
‖n−1XTE∗D∗∆d−)‖∞ ≥ λa/3

)
.

Thus, it suffices to bound the probabilities on the right hand side of (A.42). Let us consider the first

term. Observe that

E|xTi e∗j |2 ≤ αmaxx
T
i xi = αmaxn ≤ cn,

where c is some positive constant. Thus, setting λ2a = c21n
−1 log(pr) and noting that E∗ has only r

nonzero columns lead to the bound

P
(
n−1‖XTE∗‖∞ ≥ λa/3

)
≤ 2

p∑
i=1

r∑
j=1

exp

(
− n2λ2a

8E|xTi e∗j |2

)

≤ 2pr exp

(
−c

2
1n

2n−1 log(pr)

cn

)
≤ 2(pr)1−c

2
1/c. (A.43)

We next consider the second probability bound on the right hand side of (A.42). Since

E|xTi ej |2 ≤ σ2maxx
T
i xi = σ2maxn ≤ cn,

by replacing max1≤i≤r in (A.36) and (A.38) with max1≤i≤p we deduce

P

(
sup
C∈E1

‖n−1XTE∆bD−‖∞ ≥ λa/3
)
≤ 2pr exp

(
− c21n

c(q/τ)2η2ns

)
. (A.44)

It remains to study the third probability bound on the right hand side of (A.42). Similarly, replacing

max1≤i≤r in (A.39) and (A.40) with max1≤i≤p yields

P

(
sup
C∈E1

‖n−1XTE∗D∗∆d−‖∞ ≥ λa/3
)
≤ 2pr exp

(
−c

2
1τ

2n

cs

)
. (A.45)

Thus combining (A.43)–(A.45), we can bound (A.42) as

P

(
sup
C∈E1

‖n−1XTEBD−‖∞ ≥ λa
)

≤ 2(pr)1−c
2
1/c + 2pr exp

(
− c21n

c(q/τ)2η2ns

)
+ 2pr exp

(
−c

2
1τ

2n

cs

)
. (A.46)

Finally, we show that condition (A.32) holds with large probability. Choosing λ2b = c21n
−1 log(pr)
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results in

P
(
n−1‖X∗TE‖∞ ≥ λb

)
≤ 2

r∑
i=1

q∑
j=1

exp

(
−

n2λ2b
2E|x∗Ti ej |2

)

≤ 2qr exp

(
−c

2
1n

2n−1 log(pr)

cn

)
≤ 2qr(pr)−c

2
1/c. (A.47)

Consequently, for the given set of regularization parameters (λd, λa, λb) it follows from (A.41), (A.46),

and (A.47) that conditions (A.30)–(A.32) hold simultaneously with probability at least

1−
{

2(pr)1−c
2
1/c + 2pr exp

(
− c21n

c(q/τ)2η2ns

)}
,

where we have used the facts of c21 > c and p ≥ q ≥ 1. Moreover, to check that the probability bound

converges to one, since c21 > c it is sufficient to show that

2pr exp

(
− c21n

c(q/τ)2η2ns

)

converges to zero. This follows immediately from the assumptions of log p = O(nα), q = O(nβ/2),

s = O(nγ), and ηn/τ = o(n(1−α−β−γ)/2), which concludes the proof of Lemma 2.

A.5 Proof of Theorem 3

Recall that the theoretical results for the SOFAR estimator established in the paper hold simultaneously

over the set of all local minimizers in a neighborhood of the initial Lasso estimator. Thus we aim to

establish the convergence of the SOFAR algorithm when supplied the initial Lasso estimator. Note

that the equivalent form of the SOFAR problem (21) with the slack variables A and B can be solved

using the augmented Lagrangian form with sufficiently large penalty parameter µ > 0. From now on,

we fix parameter µ and the set of Lagrangian multipliers Γ, and thus work with the objective function

Lµ(Θ,Ω; Γ).

By the nature of the block coordinate descent algorithm applied to (U,V,D,A,B), the sequence

(Lµ(·)) of values of the objective functionLµ(Θ,Ω; Γ) is decreasing. Clearly the functionLµ(Θ,Ω; Γ)

is bounded from below. Thus the sequence (Lµ(·)) converges. Since the rank parameter m is fixed in

the SOFAR algorithm, we assume for simplicity that the diagonal matrix Dk of singular values has all

the diagonal entries bounded away from zero, since otherwise we can solve the SOFAR problem with a

smaller rank m.

By assumption, we have

∞∑
k=1

[∆Lµ(Uk)]1/2 <∞,
∞∑
k=1

[∆Lµ(Vk)]1/2 <∞, and
∞∑
k=1

[∆Lµ(Dk)]1/2 <∞,

12



where ∆Lµ(·) stands for the decrease in Lµ(·) by a block update. Note that the U-space with constraint

UTU = Im is a Stiefel manifold which is compact and smooth; see, e.g., [47] for a brief review of

the geometry of Stiefel manifold. Since the D-sequence is always positive definite by assumption, the

objective function along the U-block with all the other four blocks fixed is convex and has positive cur-

vature bounded away from zero along any direction in the U-space. By definition, Uk is the minimizer

of such a restricted objective function, which entails that the gradient of this function at Uk on the Stiefel

manifold vanishes. Thus it follows easily from the mean value theorem and the fact of positive curvature

that ∆Lµ(Uk) is bounded from below by some positive constant δ times d2g(U
k,Uk−1), where dg(·, ·)

denotes the distance function on the Stiefel manifold. Then it holds that

∞∑
k=1

dg(U
k,Uk−1) ≤ δ−1/2

∞∑
k=1

[∆Lµ(Uk)]1/2 <∞,

which along with the triangle inequality entails that (Uk) is a Cauchy sequence on the Stiefel manifold.

Therefore, the sequence (Uk) converges to a limit point U∗ on the Stiefel manifold which is a local

solution along the U-block. Similarly, we can show that the sequence (Vk) also converges to a limit

point V∗ on the Stiefel manifold that is a local solution along the V-block.

Recall that the diagonal matrix Dk of singular values is assumed to have all the diagonal entries

bounded away from zero. Since we have shown that the sequences (Uk) and (Vk) converge to limit

points U∗ and V∗ on the Stiefel manifolds, respectively, it follows from the fact that both U∗ and V∗

have full column rank m that as k becomes large, the objective function along the D-block with all

the other four blocks fixed is convex and has positive curvature bounded away from zero. Thus an

application of similar arguments as above yields that the sequence (Dk) also converges to a limit point

D∗.

With the established convergence results of the sequences (Uk), (Vk), and (Dk), the convergence

of the sequences (Ak) and (Bk) follows easily from the convergence property of the block coordinate

descent algorithm applied to separable convex problems [61], by noting that the objective function with

U, V, and D replaced by their limit points is jointly convex in A and B since the penalty functions

ρa(·) and ρb(·) are assumed to be convex. This completes the proof of Theorem 3.

B Additional technical details

B.1 Lemma 3 and its proof

Lemma 3. Under Condition 5, we have for any matrix C = UDVT and C∗ = U∗D∗V∗T with

‖C−C∗‖2 ≤ d∗1 that

‖D−D∗‖F ≤ ‖C−C∗‖F ,

‖A−A∗‖F + ‖B−B∗‖F ≤ cηn‖C−C∗‖F ,
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where ηn = 1 + δ−1/2
(∑r

j=1(d
∗
1/d
∗
j )

2
)1/2 and c > 0 is some constant.

Proof of Lemma 3. It is well known that the inequality

‖D−D∗‖F ≤ ‖C−C∗‖F

holds; see, for example, [51]. It remains to show the second desired inequality. Recall that A∗ = U∗D∗.

By the decomposition

C−C∗ = (A−A∗)VT + A∗(V −V∗)T

and the unitary property of the Frobenius norm, we have

‖A−A∗‖F ≤ ‖C−C∗‖F + ‖D∗(V −V∗)T ‖F . (A.48)

Let us examine the second term on the right hand side of (A.48). To do so, we apply Theorem 3 of [65]

to V −V∗ columnwise to avoid the identifiability issue. When r = 1 or 2, it holds that

‖v1 − v∗1‖2 ≤
cd∗1‖C−C∗‖F
δ1/2(d∗1)

2
, ‖vr − v∗r‖2 ≤

cd∗1‖C−C∗‖F
δ1/2(d∗r)

2
. (A.49)

When r ≥ 3, in addition to (A.49) we have for j = 2, . . . , r − 1,

‖vj − v∗j‖2 ≤
c(2d∗1 + ‖C−C∗‖2)‖C−C∗‖F

min(d∗2j−1 − d∗2j , d∗2j − d∗2j+1)
,

where c > 0 is some constant. Since Condition 5 gives d∗2j−1 − d∗2j ≥ δ1/2(d∗j−1)
2 ≥ δ1/2(d∗j )

2, it

follows from the assumption ‖C−C∗‖2 ≤ d∗1 that the above inequality can be further bounded as

‖vj − v∗j‖2 ≤
c(2d∗1 + ‖C−C∗‖2)‖C−C∗‖F

min(d∗2j−1 − d∗2j , d∗2j − d∗2j+1)
≤ cd∗1‖C−C∗‖F

δ1/2(d∗j )
2

.

Thus these inequalities entail that

‖D∗(V −V∗)T ‖2F =

r∑
j=1

d∗2j ‖vj − v∗j‖22 ≤ (c/δ)‖C−C∗‖2F
r∑
j=1

(d∗1/d
∗
j )

2. (A.50)

Consequently, combining (A.48) and (A.50) leads to the bound

‖A−A∗‖F ≤ ‖C−C∗‖F + (c/δ1/2)‖C−C∗‖F


r∑
j=1

(d∗1/d
∗
j )

2


1/2

.

On the other hand, the bound for ‖B−B∗‖F can be obtained by the decomposition C−C∗ = U(B−
B∗)T + (U −U∗)B∗T and similar arguments. Therefore, adding both bounds together and enlarging
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the positive constant c conclude the proof of Lemma 3.

B.2 Lemma 4 and its proof

Lemma 4. Under Conditions 1 and 2, it holds for any C ∈ C that

n−1‖X(C−C∗)‖2F ≥ c2‖C−C∗‖2F .

Proof of Lemma 4. Denote by ∆ = C−C∗, W = Iq ⊗X, and δ = vec(∆), where Iq is the q × q
identity matrix. It follows from the triangle inequality and Condition 1 that

‖δ‖0 = ‖ vec(C)− vec(C∗)‖0 ≤ ‖ vec(C)‖0 + ‖ vec(C∗)‖0

< κc2/2 + κc2/2 = κc2 .

Note that the singular values of W are the same as those of the original design matrix X with the

multiplicity of each singular value multiplied by q. This entails that the robust spark of W is equal to

that of X, which is κc2 for a given positive constant c2. Thus by the definition of the robust spark, we

obtain

n−1‖X∆‖2F = n−1‖Wδ‖22 = n−1‖Wsupp(δ)δsupp(δ)‖22 ≥ c2‖δ‖22 = c2‖∆‖2F ,

where the subscript supp(δ) denotes the restriction of the matrix to the corresponding columns or that

of the vector to the corresponding components. This completes the proof of Lemma 4.
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