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This Supplementary Material contains a bootstrap estimator for the distribution of TDNN,

an application of TDNN in heterogeneous treatment effect estimation and inference, some

additional simulation results, and the proofs of all main results and key lemmas, as well as

some additional technical details.

A Bootstrap estimator for distribution of TDNN

We now provide an alternative bootstrap method for directly estimating the distribution

of the TDNN estimator. Denote by P∗ the distribution of a bootstrap sample (Z∗1, · · · ,Z∗n)

with replacement conditional on the original n observations (Z1, · · · ,Zn). Let us define

θ∗ = E
[
Φ∗(x; Z∗1, · · · ,Z∗s2))

∣∣Z1, · · · ,Zn

]
, where the expectation is taken with respect to the

resampling distribution P∗. Recall that {(X(1), Y(1)), · · · , (X(n), Y(n))} is the ascendingly

ordered sample by the distance of Xi to the given point x. Using the result in Biau et al.

(2010), we can show that

θ∗ =
n∑
i=1

{
w∗1

[(
1− i− 1

n

)s1
−
(

1− i

n

)s1]
+ w∗2

[(
1− i− 1

n

)s2
−
(

1− i

n

)s2]}
Y(i). (A.1)

The theorem below shows that the conditional distribution of the bootstrapped TDNN

estimator is asymptotically equivalent to the distribution of the TDNN estimator.

1



Theorem 7. Assume that all the conditions of Theorem 6 are satisfied. Then we have that

as n→∞,

sup
u∈R

∣∣∣P∗{(s2/n)−1/2[D∗n(s1, s2)(x)− θ∗] ≤ u
}

− P
{

(s2/n)−1/2[Dn(s1, s2)(x)− µ(x)− Λ] ≤ u
}∣∣∣ = op(1).

(A.2)

Theorem 7 lays the theoretical foundation for directly estimating the distribution of the

TDNN estimator with the bootstrap. The Glivenko–Cantelli theorem implies that the em-

pirical distribution of i.i.d. observations converges uniformly to the underlying true distri-

bution almost surely as the number of observations grows to infinity. Therefore, practically,

we can generate B i.i.d. bootstrap samples {(Z∗b,1, · · · ,Z∗b,n)}1≤b≤B from (Z1, · · · ,Zn) with

replacement for a relatively large value of B. Then we can approximate the distribution

P{Dn(s1, s2)(x) − µ(x) − Λ ≤ u} using B−1
∑B

b=1 1{D
(b)
n (s1, s2)(x) − θ∗ ≤ u} with 1{·}

representing the indicator function, which is the empirical distribution of D∗n(s1, s2)(x)

based on the B bootstrap samples. As a consequence, any quantile of the distribution of

Dn(s1, s2)(x)−µ(x)−Λ can be approximated by that of the empirical bootstrap distribution

B−1
∑B

b=1 1{D∗n(s1, s2)(x)− θ∗ ≤ u}. Accordingly, for each given α ∈ (0, 1), the two-sided

(1− α)-level confidence interval for the mean regression function µ(x) can be constructed

as [Dn(s1, s2)(x)− (ξ̂1−α/2− θ∗), Dn(s1, s2)(x)− (ξ̂α/2− θ∗)] , where ξ̂α/2 and ξ̂1−α/2 denote

the αth and (1 − α)th sample quantiles of the bootstrap samples {D(b)
n (s1, s2)(x)}1≤b≤B,

respectively.

B Application to heterogeneous treatment effect esti-

mation and inference

As an application, we discuss in this section how to exploit the suggested TDNN method to

estimate and infer the treatment effects in the potential outcomes model framework (Rubin,

2



1974; Imbens and Rubin, 2015). The problems of treatment effect estimation and inference

have broad applications in a wide variety of scientific areas, ranging from economics to

medical studies. In particular, the estimation and inference of the heterogeneous treatment

effect (HTE) which focuses on the unit level effect by considering the treatment effect

conditional on the pre-treatment covariates have received rapidly growing attention in

recent years because of their ability to provide information that the average treatment

effect (ATE) cannot provide. For some recent developments, see, e.g., Crump et al. (2008);

Lee (2009); Wager and Athey (2018); Wager et al. (2014); Shalit et al. (2017); Hahn et al.

(2020); Powers et al. (2017); Zaidi and Mukherjee (2018).

Among the existing literature, the causal k-NN (Hitsch and Misra (2018)) is most closely

related to our approach. This method estimates the treatment effect function by taking

the difference of two separate k-NN regression function estimates for the treatment group

and control group, respectively. The tuning parameter of neighborhood size k was chosen

by minimizing the squared difference between the estimated treatment effect function and

the propensity score weighted response. However, there lacks theoretical justification for

the causal k-NN estimator.

Let YT=1 ∈ R and YT=0 ∈ R represent the potential outcomes for the treatment and

control groups, respectively, where T denotes the treatment indicator with T = 1 repre-

senting treated and T = 0 being untreated. Then the observed scalar response can be

written as

Y = T YT=1 + (1− T )YT=0.

Denote by X ∈ Rd the random feature vector for an individual. We consider the randomized

experiment setting which amounts to the choice of constant treatment propensity P(T =

1|X, YT=1, YT=0) = 1/2. Here, 1/2 can be replaced with any other constant in (0, 1). Given

a fixed feature vector x ∈ Rd, the heterogeneous treatment effect (HTE) of treatment T on
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response Y is defined as

τ(x) = E [YT=1 − YT=0|X = x]. (A.3)

Since the setting of randomized experiments entails the unconfoundedness given by

(YT=0, YT=1) ⊥⊥ T | X, our goal of HTE estimation and inference for (A.3) reduces to

the problem of nonparametric regression applied separately to the treatment and control

groups, giving rise to

τ(x) = E[YT=1|X = x]− E[YT=0|X = x]

= E[Y |X = x, T = 1]− E[Y |X = x, T = 0]. (A.4)

Specifically, let us consider the nonparametric regression model for the treatment group

YT=1 = µ(X) + ε,

where µ(X) = E[YT=1|X] denotes the true mean regression function and the model error ε

with zero mean and finite variance is independent of d-dimensional random feature vector

X. Similarly, we can introduce the corresponding nonparametric regression model for the

control group; see Section 3.2 for more detailed technical descriptions. We will separately

apply TDNN to the control and treatment groups and then combine the resulting estimators

together using (A.4) to estimate the heterogeneous treatment effect.

To formally present the asymptotic theory, let us first introduce some necessary nota-

tion. Denote by n1 and n0 the sizes of the i.i.d. samples from the treatment and control

groups, respectively. The assumption of completely randomized experiments entails that

n0/n1
p−→ 1 as n → ∞ and the two samples for the treatment and control groups are

independent of each other. Let x ∈ supp(X1) ∩ supp(X0) be a fixed feature vector, where

supp(X1) and supp(X0) stand for the supports of the corresponding feature distributions

for the treatment and control groups, respectively. Similarly, denote by µ1(·) and µ0(·)

the true mean regression functions corresponding to responses YT=1 and YT=0, respectively,
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and ε1 and ε0 the model errors, with the subscript indicating the treatment and control

groups, respectively. Then we can construct two individual two-scale DNN estimators

D
(1)
n1 (s

(1)
1 , s

(1)
2 )(x) and D

(0)
n0 (s

(0)
1 , s

(0)
2 )(x) separately based on the treatment and control sam-

ples with pairs of subsampling scales (s
(1)
1 , s

(1)
2 ) and (s

(0)
1 , s

(0)
2 ), respectively.

In view of (A.4), the population version of the heterogeneous treatment effect at the

fixed vector x is given by

τ(x) = µ1(x)− µ0(x). (A.5)

We estimate τ(x) using the following TDNN heterogeneous treatment effect estimator

τ̂(x) = D(1)
n1

(s
(1)
1 , s

(1)
2 )(x)−D(0)

n0
(s

(0)
1 , s

(0)
2 )(x). (A.6)

The theorem below characterizes the asymptotic distribution of the TDNN HTE estimator

τ̂(x).

Theorem 8. Assume that Conditions 1–3 with the subscripts attached hold for both treat-

ment and control groups. Further assume that s
(i)
2 → ∞, s

(i)
2 = o(n), and there exist

some constants 0 < c1 < c2 < 1 such that c1 ≤ s
(i)
1 /s

(i)
2 ≤ c2 for i = 0, 1. Then for any

fixed x ∈ supp(X1) ∩ supp(X0) ⊂ Rd, it holds that for some positive sequence σn of order

{(s(1)
2 + s

(0)
2 )/n}1/2,

[D
(1)
n1 (s

(1)
1 , s

(1)
2 )(x)−D(0)

n0 (s
(0)
1 , s

(0)
2 )(x)]− τ(x)− Λ

σn

D−→ N(0, 1) (A.7)

as n → ∞, where Λ = O{(s(1)
1 )−4/d + (s

(1)
2 )−4/d + (s

(0)
1 )−4/d + (s

(0)
2 )−4/d} for d ≥ 2 and

Λ = O{(s(1)
1 )−3 + (s

(1)
2 )−3 + (s

(0)
1 )−3 + (s

(0)
2 )−3} for d = 1.

As explained before, the sequence σn in Theorem 8 above is a generic notation rep-

resenting the asymptotic standard deviation of the TDNN heterogeneous treatment effect

estimator. We see that the subsampling scales need to satisfy that s
(i)
2 →∞ and s

(i)
2 = o(n)
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for i = 0, 1. The asymptotic bias of the TDNN estimator τ̂(x) is only of the second or-

der O{(s(1)
1 )−4/d + (s

(1)
2 )−4/d + (s

(0)
1 )−4/d + (s

(0)
2 )−4/d} for d ≥ 2 and O{(s(1)

1 )−3 + (s
(1)
2 )−3 +

(s
(0)
1 )−3 + (s

(0)
2 )−3} for d = 1. The asymptotic variance identified in Theorems 3 and 8 de-

pends generally on the underlying distributions and the fixed vector x, whose complicated

form calls for a need to develop practical approaches to the estimation of the asymptotic

variance for the TDNN estimator.

For the practical implementation of TDNN for the HTE inference, we advocate the

use of the L-statistic representation. Since the single-scale DNN estimator is an L-statistic

as shown in Lemma 1, the two-scale DNN estimator, which is a linear combination of a

pair of single-scale DNN estimators, is still an L-statistic. We thus can construct a pair of

two-scale DNN estimators separately based on the treatment and control subsamples and

then take a difference. As suggested by Theorems 6 and 7, we can further bootstrap such

difference by resampling within each group to provide tight heterogeneous treatment effect

inference. Therefore, the two-scale procedure of TDNN coupled with the bootstrap enjoys

both theoretical justifications and computational scalability.

C Additional simulation results

C.1 Comparison with k-NN

We repeat the same simulation study as in Section 5.1 of the main text using the k-NN

estimator by varying the neighborhood size k from 1 to 200. The performance of the k-NN

estimator is shown in Figure 2. From Figure 2, we see that the finite-sample bias of k-NN

tends to increase with the neighborhood size k, which is sensible since moving further away

from the fixed test point incurs naturally inflated bias. The MSE plot in Figure 2 shows a

similar U-shaped pattern of the bias-variance tradeoff. In contrast, the minimum value of
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the MSE attained by k-NN is 0.1273, which is outperformed by both the single-scale DNN

and TDNN.

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30 35 40 45 50 55 60
Neighborhood size k

B
ia

s 
of

 K
N

N

KNN minimum = 0.1273

0.4

0.8

1.2

0 50 100 150 200
Neighborhood size k

M
ea

n 
sq

ua
re

d 
er

ro
r 

(M
S

E
)

Figure 2: The bias and MSE results for k-NN in Section 5.1.

Fixed Test Point Random Test Points

Method MSE Bias2 Variance MSE Bias2 Variance

DNN 0.0402 0.0038 0.0270 0.1337 0.0815 0.0404

k-NN 0.0488 0.0024 0.0470 0.1826 0.1305 0.0499

TDNN 0.0259 0.0005 0.0252 0.1284 0.0388 0.0649

Table 4: A modified version of the comparison of DNN, k-NN, and TDNN in simulation

setting 1 as described in Section 5.2, but with the random feature vector X drawn from

U([0, 1]3) instead of N(0, I3).

C.2 Simulation setting 1 with uniform design

We repeat simulation setting 1 as described in Section 5.2, but now with random feature

vector X ∼ U([0, 1]p) as opposed to the Gaussian design used in the original model setting.
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All the parameter settings stay the same as in Section 5.2. From the results in Table 4, we

can see that TDNN improve substantially over both DNN and k-NN. Moreover, compared

to the results in Table 1 under the Gaussian design, the average MSEs for random test

points under the uniform design are now much smaller and closer to the MSE for the fixed

test point.

C.3 Simulation setting 3 for HTE estimation and inference

The first two simulation examples in Section 5.2 demonstrate the estimation accuracy

of TDNN for general nonparametric regression and the third one will focus on the het-

erogeneous treatment effect (HTE) estimation and inference with the confidence interval

coverage. We use a modified version of the second simulation setting for causal inference

in Wager and Athey (2018).

Setting 3. Assume that the treatment propensity e(x) = 0.5, the main effect m(x) = 1
8
(x1−

1) for the control group, and the treatment effect τ(x) = ς(x1)ς(x2)ς(x3) with ς(x) = 1+{1+

exp(−20(x− 1
3
))}−1 for the treatment group, where x = (x1, · · · , xp)T . Further assume that

the feature vector X ∼ U([0, 1]p) and the regression error ε ∼ N(0, 1) independent of X for

both groups. We increase the ambient dimensionality p along the sequence {3, 5, 10, 15, 20}.

As with simulation setting 2, we evaluate the performance of the three nonparametric

learning and inference methods at a fixed test point chosen as x1 = 0.2, x2 = 0.4, x3 = 0.6,

and xj = 0.5 for j > 3 as well as for a set of 100 test points randomly drawn from the

hypercube [0, 1]p. For the TDNN estimator, the ratio c = s2/s1 is chosen from the sequence

{2, 4, 6, 8, 10, 15, 20, 25, 30} for random test points and we fix c = 2 for the fixed test point

for simplicity. The subsampling scale s1 is chosen from the interval [ssign, 2ssign] for each

given c, where ssign is given by the sign-change tuning process introduced at the beginning

of Section 5. We apply the TDNN estimator to the treatment group and control group
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Fixed Test Point Random Test Points

Method p MSE Bias2 Variance Coverage Width MSE Bias2 Variance Coverage Width

DNN 3 0.1511 0.0414 0.0977 0.816 1.1541 0.3152 0.1580 0.1066 0.6727 1.2215

k-NN 3 0.1269 0.0517 0.0756 0.856 1.0702 0.3916 0.3130 0.0733 0.5340 1.0511

TDNN 3 0.0899 0.0145 0.0836 0.948 1.1236 0.3022 0.0672 0.1670 0.8196 1.5124

DNN 5 0.1706 0.0430 0.0967 0.801 1.1551 0.3204 0.1612 0.1061 0.6707 1.2188

k-NN 5 0.1320 0.0560 0.0752 0.852 1.0676 0.4013 0.3208 0.0731 0.5262 1.0499

TDNN 5 0.1008 0.0168 0.0833 0.915 1.1209 0.3063 0.0704 0.1668 0.8162 1.5112

DNN 10 0.1600 0.0364 0.0987 0.833 1.1647 0.3337 0.1718 0.1083 0.6635 1.2305

k-NN 10 0.1302 0.0489 0.0780 0.869 1.0866 0.4154 0.3325 0.0750 0.5251 1.0627

TDNN 10 0.1014 0.0113 0.0852 0.934 1.1318 0.3174 0.0764 0.1722 0.8143 1.5336

DNN 15 0.1687 0.0313 0.1019 0.825 1.1808 0.3428 0.1782 0.1093 0.6608 1.2361

k-NN 15 0.1287 0.0500 0.0782 0.872 1.0868 0.4291 0.3427 0.0759 0.5201 1.0682

TDNN 15 0.1021 0.0109 0.0888 0.923 1.1536 0.3237 0.0791 0.1746 0.8124 1.5445

DNN 20 0.1628 0.0382 0.0985 0.820 1.1669 0.3394 0.1757 0.1094 0.6642 1.2368

k-NN 20 0.1330 0.0497 0.0798 0.877 1.0981 0.4232 0.3366 0.0764 0.5248 1.0721

TDNN 20 0.1061 0.0125 0.0892 0.927 1.1564 0.3215 0.0772 0.1748 0.8144 1.5464

Table 5: Comparison of DNN, k-NN, and TDNN in simulation setting 3 described in

Section C.3.
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separately, and then take the difference between the TDNN estimators for the two groups

to estimate the HTE. In addition, we also report the coverage probability of 95% confidence

intervals for the HTE constructed based on the asymptotic normality results established in

Section B. The DNN and k-NN estimators are similarly applied for estimation and inference

of the HTE. In particular, we see from the results in Table 5 that the TDNN estimator

indeed provides lower MSEs for HTE estimation and valid confidence intervals for HTE

inference with higher coverage compared to the DNN and k-NN estimators.

D Proofs of main results

D.1 Proof of Theorem 1

Let us investigate the higher-order asymptotic expansion for the bias term of the single-scale

distributional nearest neighbors (DNN) estimator Dn(s)(x) introduced in (5) under the

asymptotic setting when the subsampling scale s→∞ as the sample size n increases. Recall

that the target point x is a given vector inside the domain supp(X) ⊂ Rd of the covariate

distribution, where the feature dimensionality d is assumed to be fixed for simplifying the

technical presentation of our work. The main idea of the proof is to first consider the specific

case of s = n in Lemma 5 in Section E.4, and then analyze the general case of s → ∞ by

exploiting the projection of the mean function µ(X) = E(Y |X) onto the positive half line

R+ = [0,∞) given by ‖X− x‖ in Lemma 6 in Section E.5.

Since {i1, · · · , is} is a random subsample of {1, · · · , n} with subsampling scale s, in

view of (4) and (5) we have

EDn(s)(x) = EΦ(x; Zi1 ,Zi2 , · · · ,Zis)

= E [Y(1)(Zi1 ,Zi2 , · · · ,Zis)]

= E [m(r(1))(Zi1 ,Zi2 , · · · ,Zis)], (A.8)
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where the kernel Φ(x; ·) in the U-statistic representation of the DNN estimator is simply the

1-nearest neighbor (1NN) estimator Y(1)(·) given by the response for the closest neighbor

Xi(1) of x in the random subsample {Xi1 , · · · ,Xis} with Zij denoting (Xij , Yij), m(r) =

E(Y | ‖X− x‖ = r) is the projection of the mean function µ(X) onto the positive half line

introduced in (A.111) in Lemma 6, and r(1) = ‖Xi(1) − x‖. The representation in (A.8)

provides a useful starting point for our technical analysis.

From (A.8) above, we see that it is necessary to first study the asymptotic behavior

of term r(1). Without loss of generality, for this step we can simply replace parameter

s with parameter n since both subsample size s and full sample size n are assumed to

diverge simultaneously. With such a notational simplification, the 1NN Xi(1) of x in the

subsample becomes the 1NN X(1) of x in the full sample and thus r(1) = ‖X(1) − x‖. We

see from Lemma 5 that Er2
(1) = E‖X(1) − x‖2 admits a higher-order asymptotic expansion

with explicit constants provided for the first two leading orders, which are n−2/d and n−4/d,

respectively, for d ≥ 2 as shown in (A.97) and (A.98), and n−2 and n−3, respectively, for

d = 1 as shown in (A.98). To apply such an asymptotic expansion in Lemma 5 to the term

r(1) = ‖Xi(1) − x‖ in (A.8), we now need to replace parameter n back with parameter s,

which also diverges by assumption.

A natural next step is to consider the expectation on the right-hand side of (A.8) by

conditioning on r(1) = ‖Xi(1)−x‖. Indeed, this motivates us to investigate the higher-order

asymptotic expansion of the projected mean function m(r) = E(Y | ‖X−x‖ = r) in Lemma

6, where r → 0 and some constants are given for the first two leading orders r2 and r4

in (A.113). Observe that the asymptotic regime of r → 0 is reasonable since it has been

shown by Lemma 2.2 in Biau and Devroye (2015) that r(1) = ‖Xi(1)−x‖ → 0 almost surely

as s→∞.

Based on the expansion of E‖X(1)−x‖2 under different regimes of d provided in (A.96)–

(A.98) in Lemma 5, we can see that there are two cases for the expansion of E‖X(1)−x‖2.
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Specifically, the first two leading orders are n−2 and n−3 for d = 1, while the first two

leading orders are n−2/d and n−4/d for d ≥ 2. Thus, we calculate EDn(s)(x) for d ≥ 2 and

d = 1, separately.

First, for the case of d = 1, combining the arguments above using (A.96) and Lemma

6, from (A.8) we can deduce that

EDn(s)(x) = µ(x) +
f(x)tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d f(x)
Er2

(1) +O4Er4
(1)

= µ(x) +
f(x)tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d f(x)

×
(

Γ(2/d+ 1)

(f(x)Vd)2/d
s−2/d −

(
Γ(2/d+ 2)

d(f(x)Vd)2/d

)
s−(1+2/d)

)
+O4

Γ(4/d+ 1)

(f(x)Vd)4/d
s−4/d + o(s−(1+2/d))

= µ(x) + Γ(2/d+ 1)
f(x)tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d V
2/d
d f(x)2/d+1

s−2/d +R(s), (A.9)

where R(s) = O(s−3). In addition, Γ(·) denotes the gamma function, Vd = πd/2

Γ(1+d/2)
, f ′(x)

and µ′(x) represent the first-order gradients of f(x) and µ(x) at x, respectively, µ′′(x)

denotes the Hessian matrix of µ(·) at x, O4 is some constant given in Lemma 6, and tr(·)

stands for the trace operator.

We proceed to prove for the case of d ≥ 2. In the same fashion of deriving (A.9),

applying (A.97)–(A.98) and Lemma 6, from (A.8) we can obtain that

EDn(s)(x) = µ(x) +
f(x)tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d f(x)
Er2

(1) +O4Er4
(1)

= µ(x) +
f(x)tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d f(x)
×
(

Γ(2/d+ 1)

(f(x)Vd)2/d
s−2/d − C(d, f, µ,x)s−4/d

)
+O4

Γ(4/d+ 1)

(f(x)Vd)4/d
s−4/d + o(s−4/d)

= µ(x) + Γ(2/d+ 1)
f(x)tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d V
2/d
d f(x)2/d+1

s−2/d +R(s), (A.10)
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where R(s) = O(s−4/d).

Therefore, combining the above results, we obtain the desired higher-order asymptotic

expansion for the bias term of the single-scale DNN estimator B(s) = EDn(s)(x)− µ(x).

This completes the proof of Theorem 1.

D.2 Proof of Theorem 2

We now proceed to prove the asymptotic normality of the single-scale DNN estimator

Dn(s)(x). Recall that in Theorem 1, the higher-order asymptotic expansion for the bias

term B(s) of Dn(s)(x) requires the assumption that the subsampling scale s→∞ as sample

size n increases. As shown in the proof of Theorem 1 in Section D.1, the single-scale DNN

estimator Dn(s)(x) reduces to the 1NN estimator when we choose s = n, since in such a

case, there is a single subsample with size s = n, i.e., the full sample. We immediately

realize that although the choice of s = n satisfies the need on the bias side, it does not

make the variance shrink asymptotically. Intuitively, we would need to form the empirical

average over a diverging number of such individual estimates in order to establish the

desired asymptotic normality. This naturally calls for the assumption of s = o(n), which

entails that the total number of these individual estimates
(
n
s

)
diverges as sample size n

increases. Thus we will work with the asymptotic regime of subsampling scale with s→∞

and s = o(n).

In view of the U-statistic representation of Dn(s)(x) given in (5), a natural idea of

the proof for the asymptotic normality of the single-scale DNN estimator is to exploit the

asymptotic theory of the U-statistic framework. However, the classical U-statistic asymp-

totic theory is not readily applicable due to the common assumption of fixed subsampling

scale s. In contrast, as discussed above, our asymptotic analysis needs the opposite assump-

tion of diverging subsampling scale s, i.e., s → ∞. Such a discrepancy causes additional

technical challenges when we derive the asymptotic normality.
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Let us first exploit Hoeffding’s canonical decomposition introduced in Hoeffding (1948),

which is an extension of the projection idea. For each 1 ≤ i ≤ s, we define the centered

conditional expectation

Φ̃i(x; z1, · · · , zi) = E[Φ(x; z1, · · · , zi,Zi+1, · · · ,Zs) | z1, · · · , zi]

− EΦ(x; Z1, · · · ,Zs), (A.11)

where Φ(x; ·) is the kernel defined in (4) for the U-statistic representation of the single-scale

DNN estimator. Then in light of (A.11), for each 1 ≤ i ≤ s we can successively define the

canonical term

gi(x; z1, · · · , zi) = Φ̃i(x; z1, · · · , zi)−
i−1∑
j=1

∑
1≤α1<···<αj≤i

gj(x; zα1 , · · · , zαj
), (A.12)

where g1(x; z1) = Φ̃1(x; z1) by definition. Combining (4), (A.11), and (A.12), we see that

the kernel Φ(x; ·) can be rewritten as a sum of the canonical terms

Φ(x; Z1, · · · ,Zs)− EΦ(x; Z1, · · · ,Zs) =
s∑
j=1

∑
1≤α1<···<αj≤s

gj(x; Zα1 , · · · ,Zαj
). (A.13)

Moreover, it holds that

Var(Φ(x; Z1, · · · ,Zs)) =
s∑
j=1

(
s

j

)
Var(gj(x; Z1, · · · ,Zj)). (A.14)

The above Hoeffding’s canonical decomposition in (A.13) plays an important role in estab-

lishing the asymptotic normality.

In view of (5), (A.11), and (A.13), we can deduce that

Dn(s)− EDn(s) =

(
n

s

)−1 ∑
1≤i1<i2<···<is≤n

Φ̃s(x; Zi1 ,Zi2 , · · · ,Zis)

=

(
n

s

)−1{(n− 1

s− 1

) n∑
i1=1

g1(x; Zi1) +

(
n− 2

s− 2

) ∑
1≤i1<i2≤n

g2(x; Zi1 ,Zi2) + · · ·

+

(
n− s
s− s

) ∑
1≤i1<i2<···<is≤n

gs(x; Zi1 ,Zi2 , · · · ,Zis)
}
. (A.15)
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From the above Hoeffding’s canonical decomposition in (A.15) for the single-scale DNN

estimator, we see that the Hájek projection introduced in Hájek (1968) of the centered

DNN estimator Dn(s)− EDn(s) is given by

D̂n(s) =

(
n

s

)−1(
n− 1

s− 1

) n∑
i=1

g1(x; Zi), (A.16)

which is the first-order part of the decomposition in (A.15).

A useful observation is that the Hájek projection given in (A.16) involves the sum of

some independent and identically distributed (i.i.d.) terms. Denote by σ2
n the variance of

the Hájek projection. Then it follows from g1(x; z1) = Φ̃1(x; z1) and (A.11) that

σ2
n = Var(D̂n(s)) =

s2

n
Var(Φ̃1(x; Z1))

=
s2

n
Var(Φ1(x; Z1)) =

s2

n
η1, (A.17)

where the non-centered conditional expectation Φ1(x; Z1) is defined later in (A.128) and

η1 is defined as the variance of Φ1(x; Z1). From (A.11), we see that each term g1(x; Zi) =

Φ̃1(x; Zi) of the i.i.d. sum in (A.16) has zero mean. Thus by (A.17), an application of the

Lindeberg–Lévy central limit theorem in Borovkov (2013) leads to

D̂n(s)

σn

D−→ N(0, 1), (A.18)

which establishes the asymptotic normality of the Hájek projection D̂n(s).

Finally, we aim to show that similar asymptotic normality as above holds when the

Hájek projection D̂n(s) in the numerator on the left-hand side of (A.18) is replaced with

the centered single-scale DNN estimator Dn(s)(x)−EDn(s)(x) = Dn(s)(x)−µ(x)−B(s),

where B(s) is the bias term identified in Theorem 1. With the aid of Slutsky’s lemma, we

see that it suffices to show that

Dn(s)− EDn(s)− D̂n(s)

σn
= oP (1). (A.19)
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Following Lemma 3.3 in Wager and Athey (2018) and replacing “tree in forest” with “kernel

in U-statistics” in the proof, we can easily see that

E[Dn(s)− EDn(s)− D̂n(s)]2 ≤ s2

n2
Var(Φ(x; Z1, · · · ,Zs)). (A.20)

It remains to bound the variance term Var(Φ(x; Z1, · · · ,Zs)) above.

By Lemma 7 in Section E.6, we have an important result that

Var(Φ(x; Z1, · · · ,Zs)) = o(nη1). (A.21)

Combining (A.17), (A.20), and (A.21), it holds that

E

[
Dn(s)− EDn(s)− D̂n(s))

σn

]2

= o

{
1

σ2
n

s2

n2
(nη1)

}
= o

{
n

s2η1

s2

n2
(nη1)

}
= o(1). (A.22)

Therefore, we are ready to see that (A.22) entails the desired claim (A.19). Finally, by

(A.17) and (A.133) obtained in the proof of Lemma 7 in Section E.6, we see that σn is of

order (s/n)1/2, which concludes the proof of Theorem 2.

D.3 Proof of Theorem 3

We further prove the asymptotic normality of the two-scale DNN estimator Dn(s1, s2)(x)

introduced in (11). It is worth mentioning that Theorem 3 is not a simple consequence

of Theorem 2 since the marginal asymptotic normalities do not necessarily lead to the

joint asymptotic normality. This means that we need to analyze the two single-scale DNN

estimators involved in the definition of the two-scale DNN estimator in a joint fashion. To

this end, we will exploit the ideas in the proof of Theorem 2 in Section D.2. To facilitate

the technical analysis, some key technical tools are provided in Lemmas 8–10 in Sections

E.7–E.9, respectively.
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Without loss of generality, let us assume that s1 < s2 for the two subsampling scales.

In particular, we make the assumptions that s1, s2 →∞, s1, s2 = o(n), and c1 ≤ s1/s2 ≤ c2

for some constants 0 < c1 < c2 < 1. From Lemma 8 in Section E.7, we see that the

two-scale DNN estimator Dn(s1, s2)(x) is also a U-statistic of order s2 with a new kernel

Φ∗(x; Z1,Z2, · · · ,Zs2) introduced later in (A.135). Thus Hoeffding’s canonical decompo-

sition for U-statistics can be applied to derive the asymptotic normality of the two-scale

DNN estimator. For each 1 ≤ i ≤ s2, let us define

Φ∗i (x; z1, · · · , zi) = E[Φ∗(x; z1, · · · , zi,Zi+1, · · · ,Zs2) | z1, · · · , zi], (A.23)

g∗i (x; z1, · · · , zi) = Φ∗i (x; z1, · · · , zi)− EΦ∗i (x; Z1, · · · ,Zi)

−
i−1∑
j=1

∑
1≤α1<···<αj≤i

g∗j (x; zα1 , · · · , zαj
), (A.24)

where g∗1(x; z1) = Φ∗1(x; z1)− EΦ∗1(x; Z1) by definition. We further define

Var Φ∗ = Var(Φ∗(x; Z1,Z2, · · · ,Zs2)) and η∗1 = Var(Φ∗1(x; Z1)). (A.25)

In view of (11), (A.23), and (A.24), an application of similar U-statistic and Hoeffding’s

canonical decomposition arguments to those in the proof of Theorem 2 in Section D.2

entails that

(n−1s2
2η
∗
1)−1/2

(
Dn(s1, s2)(x)− E[Dn(s1, s2)(x)]

)
(A.26)

can be approximated by the first-order part of Hoeffding’s canonical decomposition that

converges to a normal distribution with the remainders asymptotically negligible, where η∗1

is given in (A.25). More specifically, denote by

D̂n(s1, s2) =
s2

n

n∑
i=1

g∗1(x; Zi), (A.27)
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where g∗1(x; Zi) is defined in (A.24). It follows from (A.25), (A.27), and the classical central

limit theorem for i.i.d. random variables that

D̂n(s1, s2)√
n−1s2

2η
∗
1

D−→ N(0, 1), (A.28)

since it holds that Var(g∗1(x; Z1)) = Var(Φ∗1(x; Z1)) = η∗1.

Similar to (A.20), by (A.24), (A.25), and (A.27) we can deduce that

E
[
Dn(s1, s2)(x)− EDn(s1, s2)(x)− D̂n(s1, s2)

]2
n−1s2

2η
∗
1

≤ n−2s2
2 Var Φ∗

n−1s2
2η
∗
1

=
Var Φ∗

nη∗1
. (A.29)

Moreover, it follows from the upper bound on Var Φ∗ obtained in Lemma 9 in Section E.8

and the asymptotic order of η∗1 established in Lemma 10 in Section E.9 that

Var Φ∗/(nη∗1)→ 0 (A.30)

since s2/n → 0 by assumption. Therefore, combining (A.28)–(A.30), an application of

Slutsky’s lemma yields the desired claim in (A.26), that is,

Dn(s1, s2)(x)− EDn(s1, s2)(x)

σn

D−→ N(0, 1), (A.31)

where we define σ2
n = n−1s2

2η
∗
1. Finally, we see from Lemma 10 that σn = (n−1s2

2η
∗
1)1/2

is of order (s2/n)1/2, and from the higher-order asymptotic expansion of the bias term in

Theorem 1 that

Λ = EDn(s1, s2)(x)− µ(x) =

O(s
−4/d
1 + s

−4/d
2 ), d ≥ 2,

O(s−3
1 + s−3

2 ), d = 1.

This together with (A.31) completes the proof of Theorem 3.
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D.4 Proof of Theorem 4

The main idea of the proof is to apply the bias-variance decomposition for the mean-squared

error. Recall that Dn(s1, s2)(x) = w∗1Dn(s1)(x) + w∗2Dn(s2)(x) and

E[Dn(s1, s2)(x)] = w∗1E[µ(X(1)(s1))] + w∗2E[µ(X(1)(s2))],

where X(1)(s1) = X(1)(X1, · · · ,Xs1) denotes the 1-nearest neighbor of x among {X1, · · · ,Xs1}

and similarly, X(1)(s2) = X(1)(X1, · · · ,Xs2). Then we have the bias-variance decomposition

E
(
[Dn(s1, s2)(x)− µ(x)]2

)
= E

{(
Dn(s1, s2)(x)− w∗1E[µ(X(1)(s1))]− w∗2E[µ(X(1)(s2))]

)2
}

+
[
E(Dn(s1, s2)(x))− µ(x)

]2
:= I1(x) + I2(x).

(A.32)

Let us first deal with the bias term I2(x). Using the similar arguments to those in the

proofs of Lemmas 5 and 6, we can deduce that

I2(x) ≤


R2

1(x,d,f,µ)

(c−1)2
c−1s−6

2 , d = 1,

R2
2(x,d,f,µ)

(c−1)2
c−2s

−8/d
2 , d ≥ 2,

where R1(x, d, f, µ) and R2(x, d, f, µ) are some constants depending on the bounds for the

first four derivatives of f(·) and µ(·) in a neighborhood of x.

We now analyze the variance term I1(x). It holds that

I1(x) ≤ (w∗1)2E
{(

n

s1

)−1 ∑
1≤i1<i2<···<is1≤n

(
Y(1)(Zi1 , · · · ,Zis1

)− Eµ(X(1)(s1))
)}2

+ (w∗2)2E
{(

n

s2

)−1 ∑
1≤i1<i2<···<is2≤n

(
Y(1)(Zi1 , · · · ,Zis2

)− Eµ(X(1)(s2))
)}2

.

(A.33)
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By the variance decomposition for the U-statistics shown in the proof of Theorem 2 in

Section D.2, we can obtain that

I1(x) ≤ (w∗1)2
( s2

1

n2
var(Y(1)(Z1, · · · ,Zs1)) +

s2
1

n
var(E[Y(1)(Z1, · · · ,Zs1)|X1])

)
+ (w∗2)2

( s2
2

n2
var(Y(1)(Z1, · · · ,Zs2)) +

s2
2

n
var(E[Y(1)(Z1, · · · ,Zs2)|X1])

)
.

(A.34)

Observe that we have shown in the proof of Lemma 7 that

var(Y(1)(X1, · · · ,Xs1)) = var(µ(X(1)(X1, · · · ,Xs1)) + ε)

≤ µ2(x) + σ2 + o(1).
(A.35)

Moreover, it follows from (A.132) that

var(E[Y(1)(X1, · · · ,Xs1)|X1]) ≤ s−1
1 var(Y(1)(X1, · · · ,Xs1))

≤ s−1
1 (µ2(x) + σ2 + o(1)).

Similar results also hold for terms related to s2. Thus, we have

I1(x) ≤ (µ2(x) + σ2 + o(1))
[
(w∗1)2 · s1

n
+ (w∗2)2 · s2

n

]
. (A.36)

Finally, the desired results can be derived by combining the above bounds for the bias and

variance. This concludes the proof of Theorem 4.

D.5 Proof of Theorem 5

We now aim to establish the consistency of the jackknife estimator σ̂2
J introduced in (24)

for the variance σ2
n of the two-scale DNN estimator Dn(s1, s2)(x) as defined in (22). We

will build on the technique in Arvesen (1969) that expands and reorganizes the jackknife

estimator σ̂2
J . However, a major theoretical challenge is that instead of an application of

the classical asymptotic theory for the case of fixed order, a more delicate technical analysis
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of the remainders is essential to proving the consistency under our current assumption of

diverging order s2 →∞.

More specifically, we will show that the jackknife estimator σ̂2
J can be written as a

weighted sum of a sequence of U-statistics {Uc}0≤c≤s2 to be introduced in (A.42) later,

where U0 and U1 are the dominating terms and the remaining ones are asymptotically

negligible under the assumption of s2 = o(n1/3). Since U-statistics are symmetric with

respect to the input arguments, it follows from (21) and (23) that

n∑
i=1

(
n− 1

s2

)
U

(i)
n−1 = (n− s2)

(
n

s2

)
Dn(s1, s2)(x),

which entails that

n−1

n∑
i=1

U
(i)
n−1 = Dn(s1, s2)(x). (A.37)

Thus, in light of the definition of the jackknife estimator σ̂2
J in (24) and (A.37), we can

deduce that

nσ̂2
J = (n− 1)

{ n∑
i=1

(
U

(i)
n−1

)2 − n(Dn(s1, s2)(x))2

}
= (n− 1)

{(
n− 1

s2

)−2 n∑
i=1

∑
i

Φ∗(x; Zαi
1
, · · · ,Zαi

s2
)Φ∗(x; Zβi

1
, · · · ,Zβi

s2
)

− n
(
n

s2

)−2∑
Φ∗(x; Zα1 , · · · ,Zαs2

)Φ∗(x; Zβ1 , · · · ,Zβs2
)

}
, (A.38)

where we use the shorthand notation
∑
i

for

∑
1≤αi

1<α
i
2<···<αi

s2
≤n

1≤βi
1<β

i
2<···<βi

s2
≤n

αi
1,α

i
2,··· ,αi

s2
6=i;βi

1,β
i
2,··· ,βi

s2
6=i

(A.39)

and
∑

for ∑
1≤α1<α2<···<αs2≤n
1≤β1<β2<···<βs2≤n

(A.40)
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to simplify the technical presentation.

For each 0 ≤ c ≤ s2, by calculating the number of terms with c overlapping components

in Φ∗(x; Zα1 , · · · ,Zαs2
)Φ∗(x; Zβ1 , · · · ,Zβs2

), we can obtain from (A.38)–(A.40) that

nσ̂2
J = (n− 1)

{(
n− 1

s2

)−2 s2∑
c=0

(n− 2s2 + c)
∑

Φ∗(x; Zα1 , · · · ,Zαc ,Zβ1 , · · · ,Zβs2−c)

· Φ∗(x; Zα1 , · · · ,Zαc ,Zγ1 , · · · ,Zγs2−c)

− n
(
n

s2

)−2 s2∑
c=0

∑
Φ∗(x; Zα1 , · · · ,Zαc ,Zβ1 , · · · ,Zβs2−c)

· Φ∗(x; Zα1 , · · · ,Zαc ,Zγ1 , · · · ,Zγs2−c)

}
=
n− 1

n

(
n− 1

s2

)−2 s2∑
c=0

(cn− s2
2)

(
n

2s2 − c

)(
2s2 − c
s2

)(
s2

c

)
Uc, (A.41)

where we introduce a sequence of U-statistics {Uc}0≤c≤s2 defined as

Uc =

{(
n

2s2 − c

)(
2s2 − c
s2

)(
s2

c

)}−1

·
∑

Φ∗(x; Zα1 , · · · ,Zαc ,Zβ1 , · · · ,Zβs2−c)Φ
∗(x; Zα1 , · · · ,Zαc ,Zγ1 , · · · ,Zγs2−c). (A.42)

Here, with slight abuse of notation,
∑

is short for denoting the summation over all possible

combinations of distinct α1, · · · , αc, β1, · · · , βs2−c, γ1, · · · , γs2−c satisfying that 1 ≤ α1 <

· · · < αc ≤ n, 1 ≤ β1 < · · · < βs2−c ≤ n, and 1 ≤ γ1 < · · · < γs2−c ≤ n.

Observe that by symmetrization, Uc defined in (A.42) is indeed a U-statistic that can

be represented as

Uc =

(
n

2s2 − c

)−1 ∑
C2s2−c

K(c)(x; Zα1 , · · · ,Zαc ,Zβ1 , · · · ,Zβs2−c ,Zγ1 , · · · ,Zγs2−c), (A.43)

where
∑

C2s2−c

represents the summation taken over all combinations of 1 ≤ α1 < · · · < αc <

β1 < · · · < βs2−c < γ1 < · · · < γs2−c ≤ n, and the symmetrized kernel function K(c) is given
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by

K(c)(x; Zα1 , · · · ,Zαc ,Zβ1 , · · · ,Zβs2−c ,Zγ1 , · · · ,Zγs2−c)

=

{(
2s2 − c

c

)(
2s2 − 2c

s2 − c

)}−1 ∑
∏

2s2−c

Φ∗(x; Zi1 , · · · ,Zic ,Zic+1 , · · · ,Zis2
)

· Φ∗(x; Zi1 , · · · ,Zic ,Zis2+1 , · · · ,Zi2s2−c) (A.44)

with
∑∏
2s2−c

standing for the summation over all the
(

2s2−c
c

)(
2s2−2c
s2−c

)
possible permutations

of (α1, · · · , αc, β1, · · · , βs2−c, γ1, · · · , γs2−c) that are not permuted within sets (α1, · · · , αc),

(β1, · · · , βs2−c), and (γ1, · · · , γs2−c).

From (A.41)–(A.44) above, we can further deduce that as long as s2 = o(
√
n), it holds

that

nσ̂2
J =

s2∑
c=0

(cn− s2
2)

(n− s2 − 1)(n− s2 − 2) · · · (n− 2s2 + c+ 1)

(n− 2)(n− 3) · · · (n− s2)c!

· [s2(s2 − 1) · · · (s2 − c+ 1)]2Uc

= −s2
2

[
1 +O

(s2
2

n

)]
U0 + s2

2[1 +O
(s2

2

n

)
]U1 +

s2∑
c=2

O
(s2

2

n

)c−1 s2
2

c!
Uc

= s2
2(U1 − U0) +O

(s4
2

n

)
(U0 + U1) +

s2∑
c=2

O
(s2

2

n

)c−1 s2
2

c!
Uc,

which leads to

n

s2
2

σ̂2
J = U1 − U0 +O

(s2
2

n

)
(U0 + U1) +

s2∑
c=2

O
(s2

2

n

)c−1Uc
c!
. (A.45)

By (A.42), for the mean we have

EUc = E
[
Φ∗(x; Zα1 , · · · ,Zαc ,Zβ1 , · · · ,Zβs2−c)Φ

∗(x; Zα1 , · · · ,Zαc ,Zγ1 , · · · ,Zγs2−c)
]

= E
(
[Φ∗c(x; Z1, · · · ,Zc)]

2
)
, (A.46)

where Φ∗c(x; Z1, · · · ,Zc) = E[Φ∗(x; Z1, · · · ,Zs2)|Z1, · · · ,Zc].
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As for the variance, it follows from Lemmas 2 and 3 in Sections E.1 and E.2, respectively,

that for each 0 ≤ c ≤ s2 and fixed x, we have

Var(Uc) = O(s2/n). (A.47)

Moreover, in view of (A.46) and Jensen’s inequality, it holds that for each 2 ≤ c ≤ s2,

EUc ≤ E[(Φ∗)2]. (A.48)

Consequently, it follows from (A.45)–(A.48) that

E
([ n
s2

2

σ̂2
J − Var(Φ∗1(x; Z1))

]2)
≤ C

{
Var(U1) + Var(U0) +

s4
2

n2

[
(EΦ∗)4 +

(
E[Φ∗1(x; Z1)]2

)2]
+

s2∑
j=2

s2∑
i=2

(s2
2

n

)i+j−2[
Var(Ui) + (E(Φ∗)2)2

]1/2[
Var(Uj) + (E(Φ∗)2)2

]1/2}
, (A.49)

where C is some positive constant. Recall the facts that E[Φ∗] = O(1) and E[(Φ∗)2] = O(1),

which have been shown previously in the proof of Theorem 3 in Section D.3. Combining

(A.49) with these facts yields

E
([ n
s2

2

σ̂2
J − Var(Φ∗1(x; Z1))

])2

≤ C
(s2

n
+
s4

2

n2

)
. (A.50)

Furthermore, it has been shown in the proof of Theorem 3 in Section D.3 that

Var(Φ∗1(x; Z1)) ≥ Cs−1
2 (A.51)

with C some positive constant. Thus, when s2 = o(n1/3), we can obtain from (A.50) and

(A.51) that

σ̂2
J

s22
n

Var(Φ∗1(x; Z1))

p−→ 1. (A.52)
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In addition, it follows from (A.29) and the decomposition for the variance of the U-statistic

that as long as s2 = o(n), we have

σ2

s22
n

Var(Φ∗1(x; Z1))
→ 1. (A.53)

Therefore, combining (A.52) and (A.53) results in σ̂2
J/σ

2
n

p−→ 1, which establishes the

desired consistency of the jackknife estimator σ̂2
J . This completes the proof of Theorem 5.

D.6 Proof of Theorem 6

We now proceed with establishing the consistency of the bootstrap estimator σ̂2
B,n intro-

duced in (26) for the variance σ2
n of the two-scale DNN estimator Dn(s1, s2)(x) as defined

in (22). Let us define the bootstrap version of the quantity σ2
n conditional on the given

sample {Z1, · · · ,Zn} as

σ̂2
n = Var(D∗n(s1, s2)(x)|Z1, · · · ,Zn), (A.54)

where D∗n(s1, s2) defined in (25) denotes the two-scale DNN estimator constructed as in

(21) using the bootstrap sample {Z∗1, · · · ,Z∗n}. In fact, the quantity introduced in (A.54)

above provides a crucial bridge. The main ingredients of the proof consist of two parts.

First, we will show that the bootstrap estimator σ̂2
B,n is asymptotically close to σ̂2

n given

in (A.54) as the number of bootstrap samples B → ∞. Second, we will prove that the

bootstrap version σ̂2
n is further asymptotically close to the population quantity σ2 under

the assumption of s2 = o(n1/3). It is worth mentioning that the technical analysis for the

second part relies on the consistency of the jackknife estimator σ̂2
J established in Theorem

5.

For each 1 ≤ b ≤ B, denote by D
(b)
n (s1, s2)(x) the two-scale DNN estimator D∗n(s1, s2)

constructed using the bth bootstrap sample. It is easy to see from (A.54) that for each
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1 ≤ b ≤ B,

Var(D(b)
n (s1, s2)(x)|Z1, · · · ,Zn) = σ̂2

n. (A.55)

Since the sample variance defined in (26) is an unbiased estimator for the population

variance, by (A.55) it holds that

E[σ̂2
B,n|Z1,Z2, · · · ,Zn] = σ̂2

n. (A.56)

Thus, in view of (26) and (A.56), we can obtain

E[(σ̂2
B,n − σ2)2] = E[(σ̂2

B,n − σ̂2
n)2] + E[(σ̂2

n − σ2)2]. (A.57)

Without loss of generality, let us assume that E[Dn(s1, s2)(x)] = 0 to ease our technical

presentation; otherwise we can subtract the mean first.

We begin with considering the first term E[(σ̂2
B,n − σ̂2

n)2] on the right-hand side of

(A.57). Since {D(b)
n (s1, s2)(x)}1≤b≤B are i.i.d. random variables conditional on the given
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sample {Z1, · · · ,Zn}, we can deduce that

E[(σ̂2
B,n − σ̂2

n)2|Z1, · · · ,Zn]

= E
[ 1

(B − 1)2

( B∑
b=1

(
[D(b)

n (s1, s2)(x)]2 − σ̂2
n

)
− (BD̄2

B,n − σ̂2
n)
)2∣∣∣Z1, · · · ,Zn

]
≤ 2

(B − 1)2

{
E
[( B∑

b=1

(
[D(b)

n (s1, s2)(x)]2 − σ̂2
n

))2∣∣∣Z1, · · · ,Zn

]
+ E

[
(BD̄2

B,n − σ̂2
n)2|Z1, · · · ,Zn

]}
≤ 2

(B − 1)2

{
BE
[(

[D(1)
n (s1, s2)(x)]2 − σ̂2

n

)2∣∣Z1, · · · ,Zn

]
+

2B

B2
E
[(

[D(1)
n (s1, s2)(x)]2 − σ̂2

n

)2∣∣Z1, · · · ,Zn

]
+

4

B2

∑
1≤i 6=j≤B

E
[(
D(i)
n (s1, s2)(x)

)2(
D(j)
n (s1, s2)(x)

)2∣∣Z1, · · · ,Zn

]}
≤ C

B
E
[(

[D(1)
n (s1, s2)(x)]2 − σ̂2

n

)2∣∣Z1, · · · ,Zn

]
+

C

B2

(
E
[
[D(1)

n (s1, s2)(x)]2
∣∣Z1, · · · ,Zn

])2

≤ C

B
E
[
[D(1)

n (s1, s2)(x)]4
∣∣Z1, · · · ,Zn

]
, (A.58)

where the last inequality follows from the conditional Jensen’s inequality.

Let k = [n/s2] be the integer part of the number n/s2. We define

h(Z1, · · · ,Zn) = k−1
(
Φ∗(x; Z1, · · · ,Zs2) + Φ∗(x; Zs2+1, · · · ,Z2s2)

+ · · ·+ Φ∗(x; Zks2−s2+1, · · · ,Zks2)
)
. (A.59)

Note that it has been shown in (2.1.15) in Korolyuk and Borovskich (1994) that

E
[
[D(1)

n (s1, s2)(x)]4
∣∣Z1, · · · ,Zn

]
≤ E[h4(Z∗1, · · · ,Z∗n)|Z1, · · · ,Zn] (A.60)

with the functional h(·) given in (A.59). Moreover, with an application of Rosenthal’s
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inequality for independent random variables, we can obtain that

E[h4(Z∗1, · · · ,Z∗n)|Z1, · · · ,Zn]

≤ Ck−4k2E
(
[Φ∗(x; Z∗1, · · · ,Z∗s2)]

4
∣∣Z1, · · · ,Zn

)
, (A.61)

where C is some positive constant. Then in light of (A.61), it remains to bound the quantity

E([Φ∗(x; Z∗1, · · · ,Z∗s2)]
4), which has been dealt with in Lemma 4 in Section E.3. Thus, it

follows from (A.58), (A.60)–(A.61), and Lemma 4 that

E[(σ̂2
B,n − σ̂2

n)2] ≤ C

B

s2
2

n2
n−s2

n∑
i1=1

· · ·
n∑

is2=1

E
(
[Φ∗(x; Zi1 , · · · ,Zis2

)]4
)

≤ CMs2
2

Bn2
, (A.62)

where M is some positive constant given in Lemma 4.

We next proceed with analyzing the second term E[(σ̂2
n − σ2)2] on the right-hand side

of (A.57). Recall the definition of the bootstrap version σ̂2
n for the population quantity σ2

introduced in (A.54). Let us define

mn = E[Φ∗(x; Z∗1, · · · ,Z∗s2)|Z1, · · · ,Zn] (A.63)

and

h1(z) = E[Φ∗(x; Z∗1, · · · ,Z∗s2)−mn|Z∗1 = z]. (A.64)

Then applying similar arguments as for (A.20) in the proof of Theorem 2 in Section D.2,

we can deduce that

σ̂2
n =

s2
2

n
E[h2

1(Z∗1)|Z1, · · · ,Zn] + ∆1, (A.65)

where 0 ≤ ∆1 ≤ s22
n2 Var(Φ∗(x; Z∗1, · · · ,Z∗s2)|Z1, · · · ,Zn) and function h1(·) is given in (A.64)

and (A.63). Similarly, it holds that

σ2
n =

s2
2

n
E[g2

1(Z1)] + ∆2, (A.66)
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where g1(Z1) = E[Φ∗(x; Z1, · · · ,Zn)|Z1] and 0 ≤ ∆2 ≤ s22
n2 Var(Φ∗(x; Z1, · · · ,Zs2)). Hence,

by (A.65) and (A.66) we can obtain that

E[(σ̂2
n − σ2

n)2]

≤ CE
( s4

2

n2

[
E[h2

1(Z∗1)|Z1, · · · ,Zn]− E[g2
1(Z1)]

]2
+ ∆2

1 + ∆2
2

)
, (A.67)

where C is some positive constant.

Observe that

∆2
2 = O(

s4
2

n4
) (A.68)

and

E(∆2
1) ≤ s4

2

n4
E
[
E
(
[Φ∗(x; Z∗1, · · · ,Z∗s2)]

2|Z1, · · · ,Zn

)]2
≤ s4

2

n4
E
(
[Φ∗(x; Z∗1, · · · ,Z∗s2)]

4
)

≤ Ms4
2

n4
, (A.69)

where the last inequality follows from Lemma 4 with M some positive constant. In addition,

it holds that

E[h2
1(Z∗1)|Z1, · · · ,Zn] =

1

n

n∑
i=1

h2
1(Zi) (A.70)

and

h1(Zi) = n−s2+1

n∑
i2=1

· · ·
n∑

is2=1

Φ∗(x; Zi,Zi2 , · · · ,Zis2
)

− n−s2
n∑

i1=1

· · ·
n∑

is2=1

Φ∗(x; Zi1 , · · · ,Zis2
). (A.71)

Let us further define

Si =

(
n− 1

s2 − 1

)−1 ∑
1≤j1<j2<···<js2−1≤n

j1,j2,··· ,js2−1 6=i

Φ∗(x; Zi,Zj1 , · · · ,Zjs2−1). (A.72)
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From the equality
(
n−1
s2

)
U

(i)
n−1 +

(
n−1
s2−1

)
Si =

(
n
s2

)
Dn(s1, s2)(x) in view of (A.72), it is easy to

see that the jackknife estimator σ̂2
J introduced in (24) satisfies that

nσ̂2
J

s2
2

=
n− 1

(n− s2)2

n∑
i=1

(
Si −Dn(s1, s2)(x)

)2
. (A.73)

Then the main idea of the remaining proof is to show that under the assumption of s2 =

o(n1/3), h1(Zi) is asymptotically close to Si −Dn(s1, s2)(x) and thus E[h2
1(Z∗1)|Z1, · · · ,Zn]

is asymptotically close to
nσ̂2

J

s22
. Observe that

n−s2+1

(
n− 1

s2 − 1

)
(s2 − 1)! = 1 +O(s2

2/n)

and

n−s2
(
n

s2

)
s2! = 1 +O(s2

2/n),

which entail that (
ns2−1 −

(
n− 1

s2 − 1

)
(s2 − 1)!

)
n−s2+1 = O(s2

2/n)

and (
ns2 −

(
n

s2

)
s2!
)
n−s2 = O(s2

2/n).

Thus, it follows from (A.71) and these facts that

h1(Zi) = (1 +O(s2
2/n))

[
Si −Dn(s1, s2)(x)

]
+ n−s2+1

∑
D1

Φ∗(x; Zi,Zi2 , · · · ,Zis2
)

− n−s2
∑
D2

Φ∗(x; Zi1 ,Zi2 , · · · ,Zis2
), (A.74)

where D1 = {(i2, · · · , is2) : there is at least one pair that are equal or there is a component

that is equal to i} and D2 = {(i1, · · · , is2) : there is at least one pair of components that are

equal}.

With an application of similar arguments as in the proof of Lemma 4 in Section E.3,

we can obtain that

E
(
[Φ∗(x; Zi1 ,Zi2 , · · · ,Zis2

)]4
)
≤M (A.75)
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with M some positive constant, regardless of how many components of (i1, i2, · · · , is2) are

equal. As a consequence, by (A.75) it holds that

E
[( 1

n

n∑
i=1

(
n−s2+1

∑
D1

Φ∗(x; Zi,Zi2 , · · · ,Zis2
)
)2)2]

≤ 1

n

n∑
i=1

E
[(
n−s2+1

∑
D1

Φ∗(x; Zi,Zi2 , · · · ,Zis2
)
)4]
≤ CMs8

2

n4
(A.76)

and similarly,

E
[( 1

n

n∑
i=1

(
n−s2

∑
D2

Φ∗(x; Zi1 ,Zi2 , · · · ,Zis2
)
))2]

≤ CMs8
2

n4
, (A.77)

where C represents some positive constant whose value may change from line to line. Hence,

combining (A.70), (A.74), and (A.76)–(A.77), we can deduce that as long as s2 = o(n1/3),

it holds that

E
([

E[h2
1(Z∗1)|Z1, · · · ,Zn]− E[g2

1(Z1)]
]2)

≤ CE
[( 1

n

n∑
i=1

(1 +O(s2
2/n))2[Si −Dn(s1, s2)(x)]2 − Var(Φ∗1(x; Z1))

)2]
+
CMs8

2

n4

≤ CE
[((n− s2)2

n(n− 1)
(1 +O(s2

2/n))
n

s2
2

σ̂2
J − Var(Φ∗1(x; Z1))

)2]
+
CMs8

2

n4

≤ C(1 +O(s2
2/n))E

(
[
n

s2
2

σ̂2
J − Var(Φ∗1(x; Z1))]2

)
+
Cs4

2

n2
(Var(Φ∗1(x; Z1)))2

+
CMs8

2

n4

≤ Cs2

n
+
s2

2

n2
+
CMs8

2

n4
≤ C(M + 1)s2

n
, (A.78)

where the second to the last inequality comes from (A.50) and (A.146) in the proof of

Lemma 10 in Section E.9.

Substituting the above bounds in (A.68)–(A.69) and (A.78) into (A.67) leads to

E[(σ̂2
n − σ2

n)2] = O
( s5

2

n3
+
s4

2

n4

)
. (A.79)
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Thus, combining (A.62) and (A.79), we can obtain that

E[(σ̂2
B,n − σ2

n)2] = O
( s5

2

n3
+

s2
2

Bn2

)
. (A.80)

Recall the fact that σ2 = O( s2
n

) under the assumption of s2 = o(n). Consequently, such

fact along with (A.80) entails that

E
[( σ̂2

B,n

σ2
n

− 1
)2]

= O(
s3

2

n
+

1

B
). (A.81)

Therefore, combining (A.81) and the assumptions of s2 = o(n1/3) and B → ∞ yields

σ̂2
B,n/σ

2
n

p−→ 1, which establishes the desired consistency of the bootstrap estimator σ̂2
B,n.

This concludes the proof of Theorem 6.

D.7 Proof of Theorem 7

The main idea of the proof is to show that both the TDNN estimator Dn(s1, s2)(x) and its

bootstrap version D∗n(s1, s2)(x) are asymptotically normal and in addition, their asymptotic

variances are close to each other. Then the conditional distribution of D∗n(s1, s2)(x) given

(Z1, · · · ,Zn) approaches the distribution of Dn(s1, s2)(x) as the sample size n increases.

To this end, let us first recall that it has been shown in Theorem 3 that Dn(s1, s2)(x) is

asymptotically normal. Since the normal distribution Φ(·) is continuous, it follows that

sup
u∈R

∣∣P(σ−1
n (Dn(s1, s2)(x)− µ(x)− Λ) ≤ u)− Φ(u)

∣∣ = o(1), (A.82)

where σ2
n = Var(Dn(s1, s2)(x)).

We next deal with the bootstrapped statistic D∗n(s1, s2)(x). In light of Hoeffding’s

decomposition for the U-statistic, we have

D∗n(s1, s2)(x)− θ∗ =
s2

n

n∑
i=1

ĝ1(x; Z∗i ) +R∗n,
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where ĝ∗1(x; z) = E∗
[
Φ∗(x; Z∗1, · · · ,Z∗s2)|Z

∗
1 = z

]
− θ∗ with the expectation E∗ taken with

respect to the bootstrap resampling distribution of (Z∗2, · · · ,Z∗n) given (Z1, · · · ,Zn), and

R∗n is the higher-order remainder. Given (Z1, · · · ,Zn), the Berry–Esseen theorem for the

sum of i.i.d. random variables (Berry, 1941) leads to

sup
u∈R

∣∣∣P∗([nVar∗(ĝ1(x; Z∗1))]−1/2

n∑
i=1

ĝ1(x; Z∗i ) ≤ u
)
− Φ(u)

∣∣∣
≤ E∗(|ĝ1(x; Z∗1)|3)√

nVar∗(ĝ1(x; Z∗1))
,

where the variance Var∗ is again taken with respect to the bootstrap resampling distribution

given (Z1, · · · ,Zn).

An application of similar arguments as in the proof of Lemma 10 yields

Var∗(ĝ1(x; Z∗1)) ∼ Op(s
−1
2 ).

It follows from Jensen’s inequality that

E∗(|ĝ1(x; Z∗1)|3) ≤ E∗(|Φ∗(x; Z∗1, · · · ,Z∗s2)|
3).

Similar to Lemma 9, we can deduce that

E(|Φ∗(x; Z1, · · · ,Zs2)|3) ≤M

for some positive constant M . Hence, it holds that E∗(|Φ∗(x; Z∗1, · · · ,Z∗s2)|
3) = Op(1) and

E∗(|ĝ1(x; Z∗1)|3) = Op(1). Consequently, the approximation error satisfies that

sup
u∈R

∣∣∣P∗([nVar∗(ĝ1(x; Z∗1))]−1/2

n∑
i=1

ĝ1(x; Z∗i ) ≤ u
)
− Φ(u)

∣∣∣
= Op(s2/

√
n) = op(1) (A.83)

since s2 = o(n1/3).
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Let us define σ̂2
n = Var[D∗n(s1, s2)(x)|Z1, · · · ,Zn]. Then the variance decomposition of

the U-statistic implies that

σ̂2
n =

s2
2

n
Var∗(ĝ1(x; Z∗1)) + Var∗(R∗n).

Note that from the similar argument as in (A.20), we see that the remainder R∗n above

satisfies that

Var∗(R∗n) ≤ s2
2

n2
Var∗(Φ∗(x; Z∗1, · · · ,Z∗s2)).

Since it has been shown in Section E.8 that the second moment E{[Φ∗(x; Z1, · · · ,Zs2)]
2} ≤

M for some positive constant M , we have

Var∗(Φ∗(x; Z∗1, · · · ,Z∗s2)) = Op(1),

and thus Var∗(R∗n) = Op(s
2
2/n

2). Furthermore, it follows from Var∗(ĝ1(x; Z∗1)) ∼ Op(s
−1
2 )

that
s2

2

n
Var∗(ĝ1(x; Z∗1))/σ̂2

n

p−→ 1.

Hence, (A.83) entails that

sup
u∈R

∣∣∣P∗(σ̂−1
n (D∗n(s1, s2)(x)− θ∗) ≤ u

)
− Φ(u)

∣∣∣ = op(1). (A.84)

Moreover, we have shown in Section D.3 that σn is of order (s2/n)1/2 and in Section

D.6 that σ̂n/σn
p−→ 1. Therefore, combining (A.82) and (A.83) results in

sup
u∈R

∣∣∣P∗(σ−1
n (D∗n(s1, s2)(x)− θ∗) ≤ u

)
− P

(
σ−1
n (Dn(s1, s2)(x)− µ(x)− Λ)

)∣∣∣
= op(1).

Since σn is of order (s2/n)1/2 and unknown in practice, we can rewrite the above approxi-

mation error as

sup
u∈R

∣∣∣P∗((s2/n)−1/2(D∗n(s1, s2)(x)− θ∗) ≤ u
)
− P((s2/n)−1/2(Dn(s1, s2)(x)− µ(x)− Λ))

∣∣∣
= op(1).
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This completes the proof of Theorem 7.

D.8 Proof of Theorem 8

We now aim to prove the asymptotic normality of the HTE estimator

τ̂(x) = D(1)
n1

(s
(1)
1 , s

(1)
2 )(x)−D(0)

n0
(s

(0)
1 , s

(0)
2 )(x)

introduced in (A.6), where D
(1)
n1 (s

(1)
1 , s

(1)
2 )(x) and D

(0)
n0 (s

(0)
1 , s

(0)
2 )(x) denote the two-scale

DNN estimators constructed using the treatment sample of size n1 and the control sample

of size n0, respectively. Denote by n = n0 + n1 the total sample size. By the assumption

P (T = 1|X, YT=0, YT=1) = 1/2, it is easy to see that n0/n1
p−→ 1 as n → ∞. For each

of the treatment and control groups in the randomized experiment, by the assumptions

a separate application of Theorem 3 shows that there exist some positive numbers σn1 of

order (s
(1)
2 /n1)1/2 and σn0 of order (s

(0)
2 /n0)1/2 such that

D
(1)
n1 (s

(1)
1 , s

(1)
2 )(x)− E[D

(1)
n1 (s

(1)
1 , s

(1)
2 )(x)]

σn1

D−→ N(0, 1) (A.85)

and
D

(0)
n0 (s

(0)
1 , s

(0)
2 )(x)− E[D

(0)
n0 (s

(0)
1 , s

(0)
2 )(x)]

σn0

D−→ N(0, 1). (A.86)

In view of the randomized experiment assumption, the treatment sample and control

sample are independent of each other, which entails that the two separate two-scale DNN

estimators D
(1)
n1 (s

(1)
1 , s

(1)
2 )(x) and D

(0)
n0 (s

(0)
1 , s

(0)
2 )(x) are independent. Thus it follows from

(A.85) and (A.86) that

D
(1)
n1 (s

(1)
1 , s

(1)
2 )(x)−D(0)

n0 (s
(0)
1 , s

(0)
2 )(x)− E[D

(1)
n1 (s

(1)
1 , s

(1)
2 )(x)−D(0)

n0 (s
(0)
1 , s

(0)
2 )(x)]

σn
D−→ N(0, 1), (A.87)

where we define σn = (σ2
n1

+σ2
n0

)1/2. Moreover, from the higher-order asymptotic expansion

of the bias term in Theorem 1 applied to the potential treatment and control responses,
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respectively, and the definition of the heterogeneous treatment effect (HTE) τ(x) introduced

in (A.5), we see that

E[D(1)
n1

(s
(1)
1 , s

(1)
2 )(x)]− E[D(0)

n0
(s

(0)
1 , s

(0)
2 )(x)] = τ(x) + Λ, (A.88)

where Λ = O{(s(1)
1 )−4/d+ (s

(1)
2 )−4/d+ (s

(0)
1 )−4/d+ (s

(0)
2 )−4/d} for d ≥ 2 and Λ = O{(s(1)

1 )−3 +

(s
(1)
2 )−3 + (s

(0)
1 )−3 + (s

(0)
2 )−3} for d = 1. Therefore, combining (A.87) and (A.88) yields

the desired asymptotic normality of the HTE estimator τ̂(x) based on the two-scale DNN

estimators. This concludes the proof of Theorem 8.

E Some key lemmas and their proofs

E.1 Lemma 2 and its proof

Lemma 2. Under the conditions of Theorem 5, we have that for each 0 ≤ c ≤ s2 and fixed

x,

Var(Uc) ≤
2s2 − c
n

Var(K(c)), (A.89)

where Uc is the U-statistic defined in (A.42) and K(c) is the symmetrized kernel function

given in (A.44).

Proof. For notational simplicity, we will drop the dependence of all the functionals on the

fixed vector x whenever there is no confusion. For each 1 ≤ j ≤ 2s2 − c, let us define

K
(c)
j (Z1, · · · ,Zj) = E[K(c)|Z1, · · · ,Zj],

g
(c)
j (Z1, · · · ,Zj) = K

(c)
j − E[K(c)]−

j−1∑
i=1

∑
1≤α1<···<αi≤j

g
(c)
i (Zα1 , · · · ,Zαi

),

and Vj = Var(g
(c)
j (Z1, · · · ,Zj)). Then it follows from Hoeffding’s decomposition that

Uc = E[K(c)] +

(
n

2s2 − c

)−1 2s2−c∑
i=1

(
n− i

2s2 − c− i

) ∑
1≤α1<···<αi≤n

g
(c)
i (Zα1 , · · · ,Zαi

). (A.90)
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Observe that Var(K(c)) =
∑2s2−c

i=1

(
2s2−c
i

)
Vi. Thus, in view of (A.90), we can deduce

that

Var(Uc) =

2s2−c∑
i=1

(
n

2s2 − c

)−2(
n− i

2s2 − c− i

)2(
n

i

)
Vj

=

2s2−c∑
i=1

(2s2 − c)!(n− i)!
n!(2s2 − c− i)!

(
2s2 − c

i

)
Vi

≤ 2s2 − c
n

2s2−c∑
i=1

(
2s2 − c

i

)
Vi

=
2s2 − c
n

Var(K(c)),

which establishes the desired upper bound in (A.89). This completes the proof of Lemma

2.

E.2 Lemma 3 and its proof

Lemma 3. Under the conditions of Theorem 5, it holds that for each 0 ≤ c ≤ s2 and fixed

x,

Var(K(c)) ≤ C[(w∗1)4 + (w∗2)4]
(
µ4(x) + 6µ2(x)σε + 4µ(x) + E[ε41]

)
, (A.91)

where K(c) is the symmetrized kernel function given in (A.44) and C is some positive

constant.
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Proof. By the Cauchy–Schwarz inequality, we can deduce that

Var(K(c)) ≤ E[(K(c))2]

=

[(
2s2 − c

c

)(
2s2 − 2c

s2 − c

)]−2 ∑
Π2s2−c

∑
Π2s2−c

E
{

Φ∗(x; Zi1 , · · · ,Zic ,Zic+1 , · · · ,Zis2
)Φ∗(x; Zi1 , · · · ,Zic ,Zis2+1 , · · · ,Zi2s2−c)

× Φ∗(x; Zj1 , · · · ,Zjc ,Zjc+1 , · · · ,Zjs2
)Φ∗(x; Zj1 , · · · ,Zjc ,Zjs2+1 , · · · ,Zj2s2−c)

}
≤ E

{[
Φ∗(x; Z1,Z2, · · · ,Zs2)

]4}
, (A.92)

where
∑∏
2s2−c

denotes the summation introduced in (A.44). In light of the definition of Φ∗

in (A.135), we have

E
{[

Φ∗(x; Z1,Z2, · · · ,Zs2)
]4} ≤ 8(w∗1)4E[Φ4(x; Z1, · · · ,Zs1)]

+ 8(w∗2)4E[Φ4(x; Z1, · · · ,Zs2)]. (A.93)

Let us make some useful observations. Note that

E[Φ4(x; Z1, · · · ,Zs1)] = E
[( n∑

i=1

yiζi,s1

)4]
=
∑
i=1

E[y4
i ζi,s1 ] = s1E[y4

1ζ1,s1 ]

and

E[y4
1ζ1,s1 ] = E

(
[µ(X1) + ε1]4ζ1,s1

)
= E[µ4(X1)ζ1,s1 ] + 6E[µ2(X1)ζ1,s1 ]σ

2
ε + 4E[µ(X1)ζ1,s1 ] + E[ε41],

where ζi,s represents the indicator function for the event that Xi is the 1NN of x among

X1, · · · ,Xs. Moreover, it follows from Lemma 13 in Section F.3 that as s1 →∞,

s1E[µk(X1)ζ1,s1 ]→ µk(x)
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for k = 1, 2, 4. Hence, it holds that

E[Φ4(x; Z1, · · · ,Zs1)] = s1E[y4
1ζ1,s1 ]

→ µ4(x) + 6µ2(x)σε + 4µ(x) + E[ε41]

as s1 →∞.

Using similar arguments, we can show that as s2 →∞,

E[Φ4(x; Z1, · · · ,Zs2)]→ µ4(x) + 6µ2(x)σε + 4µ(x) + E[ε41].

Therefore, combining the asymptotic limits obtained above, (A.92), and (A.93) results in

Var(K(c)) ≤ C[(w∗1)4 + (w∗2)4]
(
µ4(x) + 6µ2(x)σε + 4µ(x) + E[ε41]

)
,

where C is some positive constant. This concludes the proof of Lemma 3.

E.3 Lemma 4 and its proof

Lemma 4. Under the conditions of Theorem 6, there exists some constant M > 0 depend-

ing upon w∗1, w∗2, x, and the distribution of ε such that

E
(
[Φ∗(x; Z∗1, · · · ,Z∗s2)]

4
)
≤M. (A.94)

Proof. Since the observations in the bootstrap sample {Z∗1, · · · ,Z∗n} are selected indepen-

dently and uniformly from the original sample {Z1, · · · ,Zn}, we have

E
(
[Φ∗(x; Z∗1, · · · ,Z∗s2)]

4
)

= E
(
E
(
[Φ∗(x; Z∗1, · · · ,Z∗s2)]

4
∣∣Z1, · · · ,Zn

))
= n−s2

n∑
i1=1

· · ·
n∑

is2=1

E
(
[Φ∗(x; Zi1 , · · · ,Zis2

)]4
)
.

Observe that for distinct i1, · · · , is2 , we have shown in the proof of Lemma 3 in Section E.2

that as s2 →∞,

E
(
[Φ∗(x; Z1, · · · ,Zs2)]

4
)
→ A
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for some positive constant A that depends upon w∗1, w∗2, x, and the distribution of ε.

Furthermore, note that if i1 = i2 = · · · = ic and the remaining arguments are distinct,

then it holds that

Φ(x; Zi1 , · · · ,Zis2
) = Φ(x; Zi1 ,Zic+1 , · · · ,Zis2

).

Therefore, there exists some positive constant M depending upon w∗1, w∗2, x, and the

distribution of ε such that

E
(
[Φ∗(x; Zi1 , · · · ,Zis2

)]4
)
≤M

for any 1 ≤ i1 ≤ n, · · · , 1 ≤ is2 ≤ n. This completes the proof of Lemma 4.

E.4 Lemma 5 and its proof

In Lemma 5 below, we will provide the asymptotic expansion of E ‖X(1) − x‖k with k ≥ 1

and its higher-order asymptotic expansion for the case of k = 2 as the sample size n→∞.

Lemma 5. Assume that Conditions 1–3 hold and x ∈ supp(X) ⊂ Rd is fixed. Then the

1-nearest neighbor (1NN) X(1) of x in the i.i.d. sample {X1, · · · ,Xn} satisfies that for any

k ≥ 1,

E ‖X(1) − x‖k =
Γ(k/d+ 1)

(f(x)Vd)k/d
n−k/d + o(n−k/d) (A.95)

as n→∞, where Γ(·) is the gamma function and Vd = πd/2

Γ(1+d/2)
. In particular, when k = 2,

there are three cases. If d = 1, we have

E ‖X(1) − x‖2 =
Γ(2/d+ 1)

(f(x)Vd)2/d
n−2/d −

(
Γ(2/d+ 2)

d(f(x)Vd)2/d

)
n−(1+2/d) + o(n−(1+2/d)). (A.96)

If d = 2, we have

E ‖X(1) − x‖2 =
Γ(2/d+ 1)

(f(x)Vd)2/d
n−2/d −

(
tr(f ′′(x))Γ(4/d+ 1)

f(x)(f(x)Vd)4/dd(d+ 2)
+

Γ(2/d+ 2)

d(f(x)Vd)2/d

)
n−4/d

+ o(n−4/d), (A.97)
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where f ′′(·) stands for the Hessian matrix of the density function f(·). If d ≥ 3, we have

E ‖X(1) − x‖2 =
Γ(2/d+ 1)

(f(x)Vd)2/d
n−2/d −

(
tr(f ′′(x))Γ(4/d+ 1)

f(x)(f(x)Vd)4/dd(d+ 2)

)
n−4/d

+ o(n−4/d). (A.98)

Proof. Denote by ϕ the probability measure on Rd given by random vector X. We begin

with obtaining an approximation of ϕ(B(x, r)), where B(x, r) represents a ball in the

Euclidean space Rd with center x and radius r > 0. Recall that by Condition 2, the

density function f(·) of measure ϕ with respect to the Lebesgue measure λ is four times

continuously differentiable with bounded corresponding derivatives in a neighborhood of

x. Then using the Taylor expansion, we see that for any ξ ∈ Sd−1 and 0 < ρ < r,

f(x + ρξ) = f(x) + f ′(x)Tξρ+
1

2
ξTf ′′(x)ξρ2 + o(ρ2), (A.99)

where Sd−1 denotes the unit sphere in Rd, and f ′(·) and f ′′(·) stand for the gradient vector

and the Hessian matrix, respectively, of the density function f(·). With the aid of the

representation in (A.99), an application of the spherical integration leads to

ϕ(B(x, r)) =

∫ r

0

∫
Sd−1

f(x + ρξ)ρd−1ν(dξ) dρ

=

∫ r

0

∫
Sd−1

(
f(x) + f ′(x)Tξρ+

1

2
ξTf ′′(x)ξρ2 + o(ρ2)

)
ρd−1ν(dξ) dρ

=

∫ r

0

[
f(x)dVdρ

d−1 +
tr(f ′′(x))Vd

2
ρd+1 + o(ρd+1)

]
dρ

= f(x)Vdr
d +

tr(f ′′(x))Vd
2(d+ 2)

rd+2 + o(rd+2), (A.100)

where ν denotes a measure constructed on the unit sphere Sd−1 as characterized in Lemma

11 in Section F.1 and d· stands for the differential of a given variable hereafter.

We now turn our attention to the target quantity E ‖X(1)−x‖k for any k ≥ 1. It holds
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that

E ‖X(1) − x‖k =

∫ ∞
0

P (‖X(1) − x‖k > t) dt

=

∫ ∞
0

P (‖X(1) − x‖ > t1/k) dt

=

∫ ∞
0

[1− ϕ(B(x, t1/k))]n dt

= n−k/d
∫ ∞

0

[
1− ϕ

(
B

(
x,
t1/k

n1/d

))]n
dt. (A.101)

To evaluate the integration in (A.101), we need to analyze the term
[
1− ϕ

(
B
(
x, t

1/k

n1/d

))]n
.

It follows from the asymptotic expansion of ϕ(B(x, r)) in (A.100) that[
1− ϕ

(
B

(
x,
t1/k

n1/d

))]n
=
[
1− f(x)Vdt

d/k

n
−

tr(f ′′(x))Vd
2(d+2)

t(d+2)/k

n1+2/d
+ o(n−(1+2/d))

]n
. (A.102)

From (A.102), we see that for each fixed t > 0,

lim
n→∞

[
1− ϕ

(
B

(
x,
t1/k

n1/d

))]n
= exp(−f(x)Vdt

d/k).

Moreover, by Condition 1, we have[
1− ϕ

(
B

(
x,
t1/k

n1/d

))]n
≤
[
exp

(
−α t

1/k

n1/d

)]n
≤ exp

(
−αt1/k

)
.

Thus, an application of the dominated convergence theorem yields

lim
n→∞

∫ ∞
0

[
1− ϕ

(
B

(
x,
t1/k

n1/d

))]n
dt =

∫ ∞
0

lim
n→∞

[
1− ϕ

(
B

(
x,
t1/k

n1/d

))]n
dt

=

∫ ∞
0

exp(−f(x)Vdt
d/k) dt

=
Γ(k/d+ 1)

(f(x)Vd)k/d
, (A.103)
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which establishes the desired asymptotic expansion in (A.95) for any k ≥ 1.

We further investigate higher-order asymptotic expansion for the case of k = 2. The

leading term of the asymptotic expansion for E ‖X(1) − x‖2 has been identified in (A.103)

with the choice of k = 2. But we now aim to conduct a higher-order asymptotic expansion.

To do so, we will resort to the higher-order asymptotic expansion given in (A.102). In view

of (A.102), we can deduce from the Taylor expansion for function log(1− x) around 0 that[
1− ϕ

(
B

(
x,
t1/2

n1/d

))]n
− exp

{
−f(x)Vdt

d/2
}

= exp

{
n log

[
1− f(x)Vdt

d/2

n
−

tr(f ′′(x))Vd
2(d+2)

t(d+2)/2

n1+2/d
+ o(n−(1+2/d))

]}
− exp

{
−f(x)Vdt

d/2
}

= exp

{
−f(x)Vdt

d/2 −
tr(f ′′(x))Vd

2(d+2)
t(d+2)/2

n2/d
− f 2(x)V 2

d t
d

2n
+ o(n−(2/d))

}
− exp

{
−f(x)Vdt

d/2
}

(A.104)

as n→∞. To determine the order of the above remainders, there are three separate cases,

that is, d = 1, d = 2, and d ≥ 3.

First, for the case of d = 1, it follows from (A.104) that[
1− ϕ

(
B

(
x,
t1/2

n1/d

))]n
− exp

{
−f(x)Vdt

d/2
}

= exp

{
−f(x)Vdt

d/2 − f 2(x)V 2
d t

d

2n
+ o(n−1)

}
− exp

{
−f(x)Vdt

d/2
}

= exp
{
−f(x)Vdt

d/2
}(

exp

{
−f

2(x)V 2
d t

d

2n
+ o(n−1)

}
− 1

)
= exp

{
−f(x)Vdt

d/2
}(
−f

2(x)V 2
d t

d

2n
+ o(n−1)

)
(A.105)

as n→∞. Furthermore, it holds that∫ ∞
0

exp
{
−f(x)Vdt

d/2
}(
−f

2(x)V 2
d t

d

2

)
dt = − Γ(2/d+ 2)

d(f(x)Vd)2/d
, (A.106)
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where we have used the fact that for any a > 0 and b > 0,∫ ∞
0

xa−1 exp(−bxp) dx =
1

p
b−a/pΓ(

a

p
). (A.107)

Therefore, combining (A.101), (A.103), (A.105), and (A.106) results in the desired higher-

order asymptotic expansion in (A.96) for the case of k = 2 and d = 1.

When d = 2, noting that 2/d = 1, it follows from (A.104) that[
1− ϕ

(
B

(
x,
t1/2

n1/d

))]n
− exp

{
−f(x)Vdt

d/2
}

= exp

{
−f(x)Vdt

d/2 −
tr(f ′′(x))Vd

2(d+2)
t(d+2)/2

n2/d
− f 2(x)V 2

d t
d

2n2/d
+ o(n−(2/d))

}
− exp

{
−f(x)Vdt

d/2
}

= exp
{
−f(x)Vdt

d/2
}(

exp

{
−

tr(f ′′(x))Vd
2(d+2)

t(d+2)/2

n2/d
− f 2(x)V 2

d t
d

2n2/d
+ o(n−(2/d))

}
− 1

)

= exp
{
−f(x)Vdt

d/2
}(
−

tr(f ′′(x))Vd
2(d+2)

t(d+2)/2

n2/d
− f 2(x)V 2

d t
d

2n2/d
+ o(n−(2/d))

)
(A.108)

as n→∞. Applying equality (A.107) again yields∫ ∞
0

exp
{
−f(x)Vdt

d/2
}(
− tr(f ′′(x))Vd

2(d+ 2)n2/d
t(d+2)/2

)
dt

= −
(

tr(f ′′(x))Γ(4/d+ 1)

d(d+ 2)f(x)(f(x)Vd)4/d

)
n−2/d. (A.109)

Hence, combining (A.101), (A.103), (A.106), (A.108), and (A.109) leads to the desired

higher-order asymptotic expansion in (A.97) for the case of k = 2 and d = 2.

Finally, it remains to investigate the case of d ≥ 3. In view of n−1 = o(n−2/d) for d ≥ 3,
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we can obtain from (A.104) that[
1− ϕ

(
B

(
x,
t1/2

n1/d

))]n
− exp

{
−f(x)Vdt

d/2
}

= exp

{
−f(x)Vdt

d/2 −
tr(f ′′(x))Vd

2(d+2)
t(d+2)/2

n2/d
+ o(n−(2/d))

}
− exp

{
−f(x)Vdt

d/2
}

= exp
{
−f(x)Vdt

d/2
}(

exp

{
−

tr(f ′′(x))Vd
2(d+2)

t(d+2)/2

n2/d
+ o(n−(2/d))

}
− 1

)

= exp
{
−f(x)Vdt

d/2
}(
−

tr(f ′′(x))Vd
2(d+2)

t(d+2)/2

n2/d
+ o(n−(2/d))

)
. (A.110)

Consequently, combining (A.101), (A.103), (A.109), and (A.110) yields the desired higher-

order asymptotic expansion in (A.98) for the case of k = 2 and d ≥ 3. This concludes the

proof of Lemma 5.

E.5 Lemma 6 and its proof

As in Biau and Devroye (2015), we define the projection of the mean function µ(X) =

E(Y |X) onto the positive half line R+ = [0,∞) given by ‖X− x‖ as

m(r) = lim
δ→0+

E [µ(X) | r ≤ ‖X− x‖ ≤ r + δ] = E [Y | ‖X− x‖ = r] (A.111)

for any r ≥ 0. Clearly, the definition in (A.111) entails that

m(0) = E [Y |X = x] = µ(x). (A.112)

We will show in Lemma 6 below that the projection m(·) admits an explicit higher-order

asymptotic expansion as the distance r → 0.

Lemma 6. For each fixed x ∈ supp(X) ⊂ Rd, we have

m(r) = m(0) +
f(x) tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d f(x)
r2 +O4r

4 (A.113)
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as r → 0, where O4 is some bounded quantity depending only on d and the fourth-order

partial derivatives of the underlying density function f(·) and regression function µ(·). Here

g′(·) and g′′(·) stand for the gradient vector and the Hessian matrix, respectively, of a given

function g(·).

Proof. We will exploit the spherical coordinate integration in our proof. Let us first

introduce some necessary notation. Denote by B(0, r) the ball centered at 0 and with

radius r in the Euclidean space Rd, Sd−1 the unit sphere in Rd, ν a measure constructed

on the unit sphere Sd−1 as in (A.100), and ξ = (ξi) ∈ Sd−1 an arbitrary point on the unit

sphere. Let Vd be the volume of the unit ball in Rd as given in (A.95). The integration with

the spherical coordinates is equivalent to the standard integration through the identity∫
B(0,r)

f(x) dx =

∫ r

0

ud−1

∫
Sd−1

f(u ξ) ν(dξ) du. (A.114)

From Lemma 11 in Section F.1, we have the following integration formulas with the spher-

ical coordinates ∫
Sd−1

ν(dξ) = d Vd, (A.115)∫
Sd−1

ξ ν(dξ) = 0, (A.116)∫
Sd−1

ξTA ξ ν(dξ) = tr(A)Vd, (A.117)∫
Sd−1

ξiξjξkν(dξ) = 0 for any 1 ≤ i, j, k ≤ d, (A.118)

where A is any d × d symmetric matrix. We will make use of the identities in (A.115)–

(A.118) in our technical analysis.

Let us decompose m(r) into two terms that we will analyze separately

m(r) = lim
δ→0+

E [µ(X) | r ≤ ‖X− x‖ ≤ r + δ]

= lim
δ→0+

E [µ(X)1(r ≤ ‖X− x‖ ≤ r + δ)]

P (r ≤ ‖X− x‖ ≤ r + δ)
, (A.119)
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where 1(·) stands for the indicator function. In view of (A.114), we can obtain the spherical

coordinate representations for the denominator and numerator in (A.119)

P (r ≤ ‖X− x‖ ≤ r + δ) =

∫ r+δ

r

ud−1

∫
Sd−1

f(x + u ξ) ν(dξ) du (A.120)

and

E [µ(X)1(r ≤ ‖X− x‖ ≤ r + δ)]

=

∫ r+δ

r

ud−1

∫
Sd−1

µ(x + u ξ)f(x + u ξ) ν(dξ) du. (A.121)

Note that in light of (A.119)–(A.121), an application of L’Hôpital’s rule leads to

m(r) = lim
δ→0+

E [µ(X)1(r ≤ ‖X− x‖ ≤ r + δ)]

P (r ≤ ‖X− x‖ ≤ r + δ)

=

∫
Sd−1 µ(x + r ξ)f(x + r ξ) ν(dξ)∫

Sd−1 f(x + r ξ) ν(dξ)
. (A.122)

First let us expand the denominator. Using the spherical coordinate integration, we

can deduce that∫
Sd−1

f(x + rξ) ν(dξ)

=

∫
Sd−1

(
f(x) + f ′(x)T ξ r +

1

2
ξT f ′′(x) ξ r2 +

1

6

∑
1≤i,j,k≤d

∂3f(x)

∂xi∂xj∂xk
ξiξjξkr

3

+
1

24

∑
1≤i,j,k,l≤d

∂4f(x + θrξ)

∂xi∂xj∂xk∂xl
ξiξjξkξlr

4
)
ν(dξ), (A.123)

where 0 < θ < 1. Note that the fourth-order partial derivatives of f are bounded in some

neiborghhood of x by Condition 2, and∫
Sd−1

∑
1≤i,j,k,l≤d

|ξiξjξkξl| ν(dξ) =

∫
Sd−1

( d∑
i=1

|ξi|
)4

ν(dξ)

≤
∫
Sd−1

d2
( d∑
i=1

ξ2
i

)2

ν(dξ)

= d2

∫
Sd−1

ν(dξ) = d3Vd. (A.124)
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Thus, from (A.115)–(A.118) and (A.124) we can obtain∫
Sd−1

f(x + rξ) ν(dξ) = f(x) d Vd +
1

2
tr(f ′′(x))Vd r

2 +R1(d, f,x) r4, (A.125)

where the coefficient R1(d, f,x) in the remainder term is bounded and depends only on the

fourth-order partial derivatives of f and dimensionality d.

For the numerator, it holds that∫
Sd−1

µ(x + r ξ)f(x + r ξ) ν(dξ)

=

∫
Sd−1

[
µ(x) + µ′(x)Tξ r +

1

2
ξTµ′′(x) ξ r2

+
1

6

∑
1≤i,j,k≤d

∂3µ(x)

∂xi∂xj∂xk
ξiξjξkr

3 +
1

24

∑
1≤i,j,k,l≤d

∂4µ(x + θ1rξ)

∂xi∂xj∂xk∂xl
ξiξjξkξlr

4
]

×
[
f(x) + f ′(x)Tξ r +

1

2
ξTf ′′(x) ξ r2

+
1

6

∑
i,j,k

∂3f(x)

∂xi∂xj∂xk
ξiξjξkr

3 +
1

24

∑
1≤i,j,k,l≤d

∂4f(x + θ2rξ)

∂xi∂xj∂xk∂xl
ξiξjξkξlr

4
]
ν(dξ), (A.126)

where 0 < θ1 < 1 and 0 < θ2 < 1. In the same manner as deriving (A.124), we can bound

the integrals associated with r4 and the higher-orders r5, r6, r7, and r8 under Condition 2

that the fourth-order partial derivatives of f(·) and µ(·) are bounded in a neighborhood of

x. Hence, we can deduce that∫
Sd−1

µ(x + r ξ)f(x + r ξ) ν(dξ)

= µ(x)f(x)

∫
Sd−1

ν(dξ) +
µ(x)r2

2

∫
Sd−1

ξTf ′′(x)ξ ν(dξ)

+ r2

∫
Sd−1

ξTµ′(x)f ′(x)Tξ ν(dξ) +
f(x)r2

2

∫
Sd−1

ξTµ′′(x)ξ ν(dξ)

+R2(d, f,x)r4 + o(r4)

= µ(x)f(x)dVd +
1

2
[f(x) tr(µ′′(x)) + µ(x) tr(f ′′(x))]Vd r

2

+ µ′(x)Tf ′(x)Vd r
2 +R2(d, f,x)r4 + o(r4), (A.127)
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where the coefficient R2(d, f,x) in the remainder term is bounded and depends only on

the fourth-order partial derivatives of f and dimensionality d. The last equality in (A.127)

follows from (A.115)–(A.118). Therefore, substituting (A.125) and (A.127) into (A.122)

leads to

m(r) = µ(x) +
f(x)tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d f(x)
r2 +O4r

4

as r → 0, where O4 is a bounded quantity depending only on d and the fourth-order partial

derivatives of f(·) and µ(·). This completes the proof of Lemma 6.

E.6 Lemma 7 and its proof

Lemma 7 below provides us with the order of the variance for the first-order Hájek projec-

tion. To simplify the technical presentation, we use Zi as a shorthand notation for (Xi, Yi).

Given any fixed vector x, the projection of Φ(x; Z1,Z2, · · · ,Zs) onto Z1 is denoted as

Φ1(x; z1) given by

Φ1(x; z1) = E [Φ(x; Z1,Z2, · · · ,Zs)|Z1 = z1]

= E [Φ(x; z1,Z2, · · · ,Zs)]. (A.128)

Denote by Ei and Ei:s the expectations with respect to Zi and {Zi,Zi+1, · · · ,Zs}, respec-

tively.

Lemma 7. For any fixed x, the variance η1 of Φ1(x; Z1) defined in (A.128) satisfies that

when s→∞ and s = o(n),

lim
n→∞

Var(Φ)

nη1

= 0. (A.129)

Proof. A main ingredient of the proof is to decompose Var(Φ) and η1 using the conditioning

arguments. Denote by ζi,s the indicator function for the event that Xi is the 1NN of x
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among {X1, · · · ,Xs}. By symmetry, we can see that ζi,s are identically distributed with

mean

Eζi,s = s−1.

In addition, observe that Φ(x; Z1,Z2, · · · ,Zs) =
∑s

i=1 yiζi,s. Then we can obtain an upper

bound of Var Φ as

Var(Φ) ≤ E[Φ2] = E
[( s∑

i=1

yiζi,s

)2]
=

s∑
i=1

E[y2
i ζi,s]

= sE[y2
1ζ1,s],

where we have used the fact that ζi,sζj,s = 0 with probability one when i 6= j.

Since E[ε|X] = 0 by assumption, it holds that

sE[y2
1ζ1,s] = sE[µ2(X1)ζ1,s] + σ2

ε sE[ζ1,s]

= E1[µ2(X1)sE2:s[ζ1,s]] + σ2
ε .

A key observation is that E2:s[ζ1,s] = {1 − ϕ(B(x, ‖X1 − x‖))}s−1 and E1[sE2:s[ζ1,s]] = 1.

See Lemma 12 in Section F.2 for a list of properties for the indicator functions ζi,s. Thus,

sE2:s[ζ1,s] behaves like a Dirac measure at x as s→∞. Such observation leads to Lemma

13 in Section F.3, which entails that

Var(Φ) ≤ µ2(x) + σ2
ε + o(1) (A.130)

as s→∞.

To derive a lower bound for η1, we exploit the idea in Theorem 3 of Peng et al. (2019).

Let B be the event that X1 is the nearest neighbor of x among {X1, · · · ,Xs}. Denote by
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X∗1 the nearest point to x and y∗1 the corresponding response. Then we can deduce that

Φ1(x; Z1) = E[y11B|Z1] + E[y∗11Bc|Z1]

= y1E[1B|Z1] + E[y∗11Bc |Z1]

= ε1E[1B|X1] + µ(X1)E[1B|X1] + E[µ(X∗1)1Bc |X1]

= ε1E[1B|X1] + E[µ(X∗1)|X1].

Since ε is an independent model error term with E[ε|X] = 0 by assumption, it holds that

η1 = Var(Φ1(x; Z1)) = Var(ε1E[1B|X1]) + Var(E[µ(X∗1)|X1])

≥ Var(ε1E[1B|X1]) = σ2
εE
[
E2[1B|X1]

]
=

σ2
ε

2s− 1
, (A.131)

where we have used the fact that

E[E2[1B|X1]] = E[1B′|X1] =
1

2s− 1

with B′ representing the event that X1 is the nearest neighbor of x among the i.i.d. obser-

vations {X1,X2, · · · ,Xs,X
′
2, · · · ,X′s}.

We now turn to the upper bound for η1. From the variance decomposition for Var(Φ)

given in (A.14), we can obtain

Var(Φ) =
s∑
j=1

(
s

j

)
Var(gj(x; Z1, · · · ,Zj))

= sη1 +
s∑
j=2

(
s

j

)
Var(gj(x; Z1, · · · ,Zj)),

which along with (A.130) entails that

sη1 ≤ Var(Φ) ≤ µ2(x) + σ2
ε + o(1). (A.132)
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Consequently, combining (A.131) and (A.132) leads to

η1 ∼ s−1, (A.133)

where ∼ denotes the asymptotic order. Finally, recall that it has been shown that Var(Φ) ≤

C for some positive constant depending upon µ(x) and σε. Therefore, we see that as long

as s→∞ and s = o(n),
Var(Φ)

nη1

= O(
s

n
)→ 0,

which yields the desired conclusion in (A.129). This concludes the proof of Lemma 7.

E.7 Lemma 8 and its proof

Assume that s1 < s2 for the two subsampling scales. Let us define

Φ(1)(x; Z1,Z2, · · · ,Zs2) =

(
s2

s1

)−1 ∑
1≤i1<i2<···<is1≤s2

Φ(x; Zi1 ,Zi2 , · · · ,Zis1
) (A.134)

and

Φ∗(x; Z1,Z2, · · · ,Zs2) = w∗1Φ(1)(x; Z1,Z2, · · · ,Zs2) + w∗2Φ(x; Z1,Z2, · · · ,Zs2), (A.135)

where w∗1 and w∗2 are determined by the system of linear equations (9)–(10).

Lemma 8. The two-scale DNN estimator Dn(s1, s2)(x) admits a U-statistic representation

given by

Dn(s1, s2)(x) =

(
n

s2

)−1 ∑
1≤i1<i2<···<is2≤n

Φ∗(x; Z1,Z2, · · · ,Zs2), (A.136)

where the kernel function Φ∗(x; ·) is defined in (A.135).
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Proof. From the definition of the two-scale DNN estimator Dn(s1, s2)(x) introduced in

(11), we have

Dn(s1, s2)(x) = w∗1

(
n

s1

)−1 ∑
1≤i1<i2<···<is1≤n

Φ(x; Zi1 , · · · ,Zis1
)

+ w∗2

(
n

s2

)−1 ∑
1≤i1<i2<···<is2≤n

Φ(x; Zi1 , · · · ,Zis2
).

Thus, to establish the U-statistic representation for the two-scale DNN estimatorDn(s1, s2)(x),

it suffices to show that(
n

s1

)−1 ∑
1≤i1<i2<···<is1≤n

Φ(x; Zi1 , · · · ,Zis1
)

=

(
n

s2

)−1 ∑
1≤i1<i2<···<is2≤n

Φ(1)(x; Z1,Z2, · · · ,Zs2)

=

(
n

s2

)−1(
s2

s1

)−1 ∑
1≤i1<i2<···<is2≤n

∑
1≤j1<j2<···<js1≤s2

Φ(x; Zij1
,Zij2

, · · · ,Zijs1
). (A.137)

Observe that for each given tuple 1 ≤ u1 < u2 < · · · < us1 ≤ n, it will appear a total of(
n−s1
s2−s1

)
times in the summation∑

1≤i1<i2<···<is2≤n

∑
1≤j1<j2<···<js1≤s2

Φ(x; Zij1
,Zij2

, · · · ,Zijs1
).

Indeed, if (ij1 , ij2 , · · · , ijs1 ) = (u1, u2, · · · , us1) are fixed, then there exist
(
n−s1
s2−s1

)
options for

the remaining s2 − s1 places in (i1, i2, · · · , is2). Consequently, it holds that(
n

s2

)−1(
s2

s1

)−1 ∑
1≤i1<i2<···<is2≤n

∑
1≤j1<j2<···<js1≤s2

Φ(x; Zij1
,Zij2

, · · · ,Zijs1
)

=

(
n

s2

)−1(
s2

s1

)−1(
n− s1

s2 − s1

) ∑
1≤i1<i2<···<is1≤n

Φ(x; Zi1 , · · · ,Zis1
)

=

(
n

s1

)−1 ∑
1≤i1<i2<···<is1≤n

Φ(x; Zi1 , · · · ,Zis1
),

which establishes the desired claim in (A.137). This completes the proof of Lemma 8.
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E.8 Lemma 9 and its proof

We provide in Lemma 9 below the order of the variance of the kernel function Φ∗ defined

in (A.135) for the two-scale DNN estimator Dn(s1, s2)(x), which states that the variance

of the kernel function is bounded from above by some positive constant depending upon

the underlying distributions. Denote by Var(Φ∗) = Var[Φ∗(x; Z1, · · · ,Zs2)] for simplicity.

Lemma 9. Under the conditions of Theorem 3, there exists some positive constant C

depending upon c1 and c2 such that

Var(Φ∗) ≤ C
(
µ2(x) + σ2

ε + o(1)
)

(A.138)

as s1 →∞ and s2 →∞.

Proof. Since Var(Φ∗) ≤ E[(Φ∗)2], it suffices to bound E[(Φ∗)2]. It follows that

E[(Φ∗)2] ≤ 2(w∗1)2E
{

[Φ(1)(x; Z1, · · · ,Zs2)]
2
}

+ 2(w∗2)2E[Φ2(x; Z1, · · · ,Zs2)]

≤ 2(w∗1)2E[Φ2(x; Z1, · · · ,Zs1)]

+ 2(w∗2)2E[Φ2(x; Z1, · · · ,Zs2)], (A.139)

where the last inequality holds since

E
{

[Φ(1)(x; Z1, · · · ,Zs2)]
2
}

=

(
s2

s1

)−2 ∑
1≤i1<···<is1≤s2
1≤j1<···<js1≤s2

E
{

Φ(x; Zi1 , · · · ,Zis1
)Φ(x; Zj1 , · · · ,Zjs1

)
}

≤
(
s2

s1

)−2 ∑
1≤i1<···<is1≤s2
1≤j1<···<js1≤s2

E[Φ2(x; Z1, · · · ,Zs1)]

= E[Φ2(x; Z1, · · · ,Zs1)].
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Since Φ(x; Z1, · · · ,Zs1) =
∑s1

i=1 yiζi,s1 and ζi,s1ζj,s1 = 0 with probability one when i 6= j,

we can deduce that

E[Φ2(x; Z1, · · · ,Zs1)] = E
[( s1∑

i=1

yiζi,s1

)2]
=

s1∑
i=1

s1∑
j=1

yiyjζi,s1ζj,s1

=

s1∑
i=1

y2
i ζi,s1 = s1E[y2

1ζ1,s1 ]

= s1E[µ2(X1)ζ1,s1 ] + σ2
ε s1E[ζ1,s1 ].

Note that s1E[ζ1,s1 ] =
∑n

i=1 ζi,s1 . Furthermore, it follows from Lemma 13 in Section F.3

that

s1E[µ2(X1)ζ1,s1 ]→ µ2(x)

as s1 →∞. Thus, we have that as s1 →∞,

E[Φ2(x; Z1, · · · ,Zs1)] = µ2(x) + σ2
ε + o(1). (A.140)

Similarly, we can show that as s2 →∞,

E[Φ2(x; Z1, · · · ,Zs2)] = µ2(x) + σ2
ε + o(1). (A.141)

Consequently, combining (A.139), (A.140), and (A.141) results in

E[(Φ∗)2] ≤ 2
[
(w∗1)2 + (w∗2)2

][
µ2(x) + σ2

ε + o(1)
]
. (A.142)

Since c1 ≤ s1/s2 ≤ c2 by assumption, it holds that

(w∗1)2 ≤ C and (w∗2)2 ≤ C

for some absolute positive constant C depending upon c1 and c2, which together with

(A.142) entails the desired upper bound in (A.138). This concludes the proof of Lemma 9.
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E.9 Lemma 10 and its proof

Lemma 10 below establishes the order of the variance for the first-order Hájek projection of

the kernel function Φ∗ defined in (A.135). Recall that in the proof of Theorem 3 in Section

D.3, we have defined that for each 1 ≤ i ≤ s2,

Φ∗i (x; z1, · · · , zi) = E[Φ∗(x; z1, · · · , zi,Zi+1, · · · ,Zs2) | z1, · · · , zi],

g∗i (z1, · · · , zi) = Φ∗i (x; z1, · · · , zi)− EΦ∗(x; Z1, · · · ,Zi)

−
i−1∑
j=1

∑
1≤α1<···<αj≤i

g∗j (zα1 , · · · , zαj
),

and η∗1 = Var(Φ∗1(x; Z1)).

Lemma 10. Under the conditions of Theorem 3, it holds that

η∗1 ∼ s−1
2 , (A.143)

where ∼ denotes the asymptotic order.

Proof. We begin with the lower bound for η∗1. The proof follows the ideas used in the proof

of Lemma 7 in Section E.6. By definition, it holds that

Φ∗1(x; Z1) = w∗1

(
s2

s1

)−1 ∑
1≤i1<···<is1≤s2

E[Φ(x; Zi1 , · · · ,Zis1
)|Z1]

+ w∗2E[Φ(x; Zi1 , · · · ,Zis2
)|Z1]

= w∗1
s2 − s1

s2

E[Φ(x; Z1, · · · ,Zs1)] + w∗1
s1

s2

E[Φ(x; Z1, · · · ,Zs1)|Z1]

+ w∗2E[Φ(x; Z1, · · · ,Zs2)|Z1].

Since the first term on the right-hand side of the above equality is a constant, we have

Var(Φ∗1(x; Z1)) = Var
(
w∗1
s1

s2

E[Φ(x; Z1, · · · ,Zs1)|Z1]

+ w∗2E[Φ(x; Z1, · · · ,Zs2)|Z1]
)
.
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Denote by A1 the event that X1 is the nearest neighbor of x among {X1, · · · ,Xs1} and

A2 the event that X1 is the nearest neighbor of x among {X1, · · · ,Xs2}. Let X∗1 be the

nearest point to x among {X1, · · · ,Xs1} and y∗1 the corresponding value of the response.

Similarly, we define X̆1 as the nearest point to x among {X1, · · · ,Xs2} and y̆1 as the

corresponding value of the response. Since εi ⊥⊥ Xi and E[εi] = 0 by assumption, we can

write

E[Φ(x; Z1, · · · ,Zs1)|Z1] = E[y11A1|Z1] + E[y∗11Ac
1
|Z1]

= ε1E[1A1|X1] + E[µ(X1)1A1|X1] + E[µ(X∗1)1Ac
1
|X1]

= ε1E[1A1|X1] + E[µ(X∗1)|X1].

Similarly, we can show that

E[Φ(x; Z1, · · · ,Zs2)|Z1] = ε1E[1A2|X1] + E[µ(X̆1)|X1].

Thus, we can obtain

Var(Φ∗1(x; Z1)) = Var
{
ε1

(
w∗1
s1

s2

E[1A1|X1] + w∗2E[1A2|X1]
)

+ w∗1
s1

s2

E[µ(X∗1)|X1] + w∗2E[µ(X̆1)|X1]
}
,

which along with the assumption of ε1 ⊥⊥ X1 and E[ε1] = 0 yields

Var(Φ∗1(x; Z1)) = Var
{
ε1

(
w∗1
s1

s2

E[1A1|X1] + w∗2E[1A2|X1]
)}

+ Var
{
w∗1
s1

s2

E[µ(X∗1)|X1] + w∗2E[µ(X̆1)|X1]
}

≥ Var
{
ε1

(
w∗1
s1

s2

E[1A1|X1] + w∗2E[1A2|X1]
)}
.
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Furthermore, we can deduce that

Var
{
ε1

(
w∗1
s1

s2

E[1A1|X1] + w∗2E[1A2|X1]
)}

= σ2
εE
{(
w∗1
s1

s2

E[1A1|X1] + w∗2E[1A2|X1]
)2}

= σ2
ε

{(
w∗1
s1

s2

)2

E
[
E2[1A1|X1]

]
+ 2w∗1w

∗
2

s1

s2

E
[
E[1A1|X1]E[1A2 |X1]

]
+ (w∗2)2E

[
E2[1A2|X1]

]}
.

Let us make use of the following basic facts

E
[
E2[1A1|X1]

]
=

1

2s1 − 1
,

E
[
E[1A1|X1]E[1A2|X1]

]
=

1

s1 + s2 − 1
,

E
[
E2[1A2|X1]

]
=

1

2s2 − 1
.

Then it follows that

Var(Φ∗1(x; Z1)) ≥ σ2
ε

{(
w∗1
s1

s2

)2 1

2s1 − 1
+ 2w∗1w

∗
2

s1

s2

1

s1 + s2 − 1

+ (w∗2)2 1

2s2 − 1

}
. (A.144)

By (A.144) and the assumption of c1 ≤ s1/s2 ≤ c2, we can obtain

Var(Φ∗1(x; Z1)) ≥ Cσ2
ε s
−1
2 (A.145)

for some positive constant C depending upon c1 and c2.

We next proceed to show the upper bound for Var(Φ∗1(x; Z1)). Since

Φ∗(x; Z1, · · · ,Zs2)− EΦ∗(x; Z1, · · · ,Zs2) =

s2∑
j=1

∑
1≤α1<···<αj≤s2

g∗j (Zα1 , · · · ,Zαj
),

we see that

Var(Φ∗(x; Z1, · · · ,Zs2)) =

s2∑
j=1

(
s2

j

)
Var(g∗j (Z1, · · · ,Zj)).
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Then it follows that

Var(Φ∗(x; Z1, · · · ,Zs2)) ≥ s2 Var(Φ∗1(x; Z1)).

Recall that it has been shown in Lemma 9 in Section E.8 that

Var(Φ∗(x; Z1, · · · ,Zs2)) ≤ C,

where C is some positive constant depending upon c1, c2, and the underlying distributions.

Therefore, we can deduce that

Var(Φ∗1(x; Z1)) ≤ Cs−1
2 , (A.146)

which together with (A.145) entails the desired asymptotic order in (A.143). This completes

the proof of Lemma 10.

F Additional technical details

F.1 Lemma 11 and its proof

We present in Lemma 11 below some useful spherical integration formulas.

Lemma 11. Let Sd−1 be the unit sphere in Rd, ν some measure constructed specifically on

the unit sphere Sd−1, and ξ = (ξi) ∈ Sd−1 an arbitrary point on the unit sphere. Then for

any d× d symmetric matrix A, it holds that∫
Sd−1

ν(dξ) = d Vd, (A.147)∫
Sd−1

ξ ν(dξ) = 0, (A.148)∫
Sd−1

ξTA ξ ν(dξ) = tr(A)Vd, (A.149)∫
Sd−1

ξiξjξkν(dξ) = 0 for any 1 ≤ i, j, k ≤ d, (A.150)
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where Vd = πd/2

Γ(1+d/2)
denotes the volume of the unit ball in Rd.

Proof. It is easy to see that identities (A.148) and (A.150) hold. This is because for each

of them, the integrand is an odd function of variable ξ, which entails that the integral is

zero. Identity (A.147) can be derived using the iterated integral

Vd =

∫ 1

0

∫
Sd−1

ρd−1ν(dξ) dρ =

(∫ 1

0

ρd−1 dρ

)(∫
Sd−1

ν(dξ)

)
=

1

d

∫
Sd−1

ν(dξ).

To prove (A.149), we first represent the integral in (A.149) as a sum of integrals by

expanding the quadratic expression in the integrand∫
Sd−1

ξTA ξ ν(dξ) =
∑

1≤i,j≤d

Aij

∫
Sd−1

ξiξj ν(dξ). (A.151)

For i 6= j, we have by symmetry that∫
Sd−1

ξiξj ν(dξ) =

∫
Sd−1

−ξiξj ν(dξ) = 0. (A.152)

Thus, it holds that ∫
Sd−1

ξTA ξ ν(dξ) =
d∑
i=1

Aii

∫
Sd−1

ξ2
i ν(dξ)

= tr(A)

∫
Sd−1

ξ2
1 ν(dξ). (A.153)

When d = 1, Sd−1 reduces to the trivial case of two points, 1 and −1. Then we can obtain

that for d = 1, ∫
Sd−1

ξTA ξ ν(dξ) = 2tr(A) = tr(A)Vd, (A.154)

where the last equality comes from the fact that Vd = 2 for d = 1. When d ≥ 2, we now

use the spherical coordinates: ξ1 = cos(φ1), ξk = cos(φk)
∏k−1

i=1 sin(φi) for 1 ≤ k ≤ d − 1,
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and ξd =
∏d−1

i=1 sin(φi), where 0 ≤ φd−1 < 2π and 0 ≤ φi < π for 1 ≤ i ≤ d − 2. Then the

volume element becomes

ν(dξ) =

(
d−2∏
i=1

sind−1−i(φi)

)
d∏
i=1

dφi.

It follows that∫
Sd−1

ξ2
1 ν(dξ) =

∫ 2π

0

∫ π

0

· · ·
∫ π

0

cos2(φ1)

(
d−2∏
i=1

sind−1−i(φi)

)
d∏
i=1

dφi

=

∫ π
0

cos2(φ1) sind−2(φ1) dφi∫ π
0

sind−2(φ1) dφi

∫ 2π

0

∫ π

0

· · ·
∫ π

0

(
d−2∏
i=1

sind−1−i(φi)

)
d∏
i=1

dφi

=

∫ π
0

cos2(φ1) sind−2(φ1) dφi∫ π
0

sind−2(φ1) dφi

∫
Sd−1

ν(dξ)

=

∫ π
0

cos2(φ1) sind−2(φ1) dφi∫ π
0

sind−2(φ1) dφi
dVd. (A.155)

By applying the integration by parts twice to the numerator from the above expression,

we can obtain ∫ π

0

cos2(φ1) sind−2(φ1) dφ1 =
1

d− 1

∫ π

0

sind(φ1) dφ1.

In addition, using the trigonometric integration formulas, we can show that∫ π
0

sind(φ1) dφ1∫ π
0

sind−2(φ1) dφ1

=
d− 1

d
,

which along with (A.153) and (A.155) leads to∫
Sd−1

ξTA ξ ν(dξ) = tr(A)Vd

for the case of d = 2. Also, it is easy to see that the same formula holds for the case of

d = 1 by (A.154). This concludes the proof of Lemma 11.
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F.2 Lemma 12 and its proof

Let us define ζi,s as the indicator function for the event that Xi is the 1NN of x among

{X1, · · · ,Xs}. We provide in Lemma 12 below a list of properties for these indicator

functions ζi,s.

Lemma 12. The indicator functions ζi,s satisfy that

1) For any i 6= j, we have ζi,sζj,s = 0 with probability one;

2)
∑s

i=1 ζi,s = 1;

3) E[ζi,s] = s−1;

4) E2:s[ζ1,s] = {1−ϕ(B(x, ‖X1−x‖))}s−1, where Ei:s denotes the expectation with respect

to {Zi,Zi+1, · · · ,Zs}.

The proof of Lemma 12 involves some standard calculations and thus we omit it here

for simplicity. Let us make some remarks on E2:s[ζ1,s] that can be regarded as a function

of X1. The last property in Lemma 12 above shows that E2:s[ζ1,s] vanishes asymptotically

as s tends to infinity, unless X1 is equal to x. Moreover, we see that

E1[E2:s[ζ1,s]] = s−1.

These two facts suggest that E2:s[ζ1,s] tends to approximate the Dirac delta function at x,

which will be established formally in Lemma 13 in Section F.3.

F.3 Lemma 13 and its proof

Lemma 13. For any L1 function f that is continuous at x, it holds that

lim
s→∞

E1[f(X1)sE2:s[ζ1,s]] = f(x). (A.156)
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Proof. We will show that the absolute difference |E1[f(X1)sE2:s[ζ1,s]]− f(x)| converges to

zero as s→∞. By property 3) in Lemma 12 in Section F.2, we have

E1[sE2:s[ζ1,s]] = 1.

Thus, we can deduce that

|E1[f(X1)sE2:s[ζ1,s]]− f(x)| = |E1[(f(X1)− f(x)) sE2:s[ζ1,s]]|

≤ E1[|f(X1)− f(x)|sE2:s[ζ1,s]]. (A.157)

Let ε > 0 be arbitrarily given. By the continuity of function f at point x, there exists a

neighborhood B(x, δ) of x with some δ > 0 such that

|f(X1)− f(x)| < ε

for all X1 ∈ B(x, δ). We will decompose the above expectation in (A.157) into two parts:

one inside and the other outside of B(x, δ) as

E1[|f(X1)− f(x)|sE2:s[ζ1,s]] = E1[|f(X1)− f(x)|sE2:s[ζ1,s]1B(x,δ)(X1)]

+ E1[|f(X1)− f(x)|sE2:s[ζ1,s]1Bc(x,δ)(X1)], (A.158)

where the superscript c stands for set complement in Rd.

The first term on the right-hand side of (A.158) is bounded by ε since

E1[|f(X1)− f(x)|sE2:s[ζ1,s]1B(x,δ)(X1)] ≤ E1[εsE2:s[ζ1,s]1B(x,δ)(X1)]

≤ E1[εsE2:s[ζ1,s]] = ε. (A.159)

To bound the second term on the right-hand side of (A.158), observe that

B(x, δ) ⊂ B(x, ‖X1 − x‖)

when X1 ∈ Bc(x, δ). Then an application of Lemma 12 gives

E2:s[ζ1,s] ≤ (1− ϕ(B(x, δ)))s−1

63



when X1 ∈ Bc(x, δ). Thus, we can deduce that

E1[|f(X1)− f(x)|sE2:s[ζ1,s]1Bc(x,δ)(X1)]

≤ E1[|f(X1)− f(x)|s(1− ϕ(B(x, δ)))s−1
1Bc(x,δ)(X1)]

≤ s(1− ϕ(B(x, δ)))s−1E1[|f(X1)− f(x)|]

≤ s(1− ϕ(B(x, δ)))s−1 (‖f‖L1 + f(x)) , (A.160)

where ‖ · ‖L1 denotes the L1-norm of a given function.

Finally, we see that the right-hand side of the last equation in (A.160) tends to 0 as

s→∞. Therefore, for large enough s, the quantity

E1[|f(X1)− f(x)|sE2:s[ζ1,s]1Bc(x,δ)(X1)]

can be bounded from above by 2ε. Since the choice of ε > 0 is arbitrary, combining such

upper bound, (A.157), (A.158), and (A.159) yields the desired limit in (A.156) as s→∞.

This completes the proof of Lemma 13.
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