Supplementary Material to "RANK: Large-Scale Inference with Graphical Nonlinear Knockoffs"

Yingying Fan, Emre Demirkaya, Gaorong Li and Jinchi Lv

This Supplementary Material contains additional technical details for the proofs of Lemmas $3-8$. All the notation is the same as in the main body of the paper.

B Additional technical details

B. 1 Lemma 3 and its proof

Lemma 3. Assume that $\mathbf{X}=\left(X_{i j}\right) \in \mathbb{R}^{n \times p}$ has independent rows with distribution $N\left(\mathbf{0}, \boldsymbol{\Sigma}_{0}\right)$, $\Lambda_{\max }\left(\boldsymbol{\Sigma}_{0}\right) \leq M$, and $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)^{T}$ has i.i.d. components with $\mathbb{P}\left\{\left|\varepsilon_{i}\right|>t\right\} \leq C_{1} \exp \left(-C_{1}^{-1} t^{2}\right)$ for $t>0$ and some constants $M, C_{1}>0$. Then we have

$$
\mathbb{P}\left\{\left\|\frac{1}{n} \mathbf{X}^{T} \varepsilon\right\|_{\infty} \leq C \sqrt{(\log p) / n}\right\} \geq 1-p^{-c}
$$

for some constant $c>0$ and large enough constant $C>0$.
Proof. First observe that $\mathbb{P}\left(\left|X_{i j}\right|>t\right) \leq 2 \exp \left\{-(2 M)^{-1} t^{2}\right\}$ for $t>0$, since $X_{i j} \sim N\left(0, \boldsymbol{\Sigma}_{0, j j}\right)$ and $\boldsymbol{\Sigma}_{0, j j} \leq \Lambda_{\max }\left(\boldsymbol{\Sigma}_{0}\right) \leq M$, where $\boldsymbol{\Sigma}_{0, j j}$ denotes the j th diagonal entry of matrix $\boldsymbol{\Sigma}_{0}$. By assumption, we also have $\mathbb{P}\left(\left|\varepsilon_{i}\right|>t\right) \leq C_{1} \exp \left\{-C_{1}^{-1} t^{2}\right\}$. Combining these two inequalities yields

$$
\begin{aligned}
\mathbb{P}\left(\left|\varepsilon_{i} X_{i j}\right|>t\right) & \leq \mathbb{P}\left(\left|\varepsilon_{i}\right|>\sqrt{t}\right)+\mathbb{P}\left(\left|X_{i j}\right|>\sqrt{t}\right) \\
& \leq C_{1} \exp \left\{-C_{1}^{-1} t\right\}+2 \exp \left\{-(2 M)^{-1} t\right\} \\
& \leq C_{2} \exp \left\{-C_{2}^{-1} t\right\}
\end{aligned}
$$

where $C_{2}>0$ is some constant that depends only on constants C_{1} and M. Thus by Lemma 6 in [28], there exists some constant $\widetilde{C}_{1}>0$ such that

$$
\begin{equation*}
\mathbb{P}\left(\left|n^{-1} \sum_{i=1}^{n} \varepsilon_{i} X_{i j}\right|>z\right) \leq \widetilde{C}_{1} \exp \left\{-\widetilde{C}_{1} n z^{2}\right) \tag{A.1}
\end{equation*}
$$

for all $0<z<1$.
Denote by \mathbf{X}_{j} the j th column of matrix \mathbf{X}. Then by (A.1), the union bound leads to

$$
\begin{aligned}
1-\mathbb{P}\left(\left\|n^{-1} \mathbf{X}^{T} \varepsilon\right\|_{\infty} \leq z\right) & =\mathbb{P}\left(\left\|n^{-1} \mathbf{X}^{T} \varepsilon\right\|_{\infty}>z\right) \\
& =\mathbb{P}\left(\max _{1 \leq j \leq p}\left|n^{-1} \varepsilon^{T} \mathbf{X}_{j}\right|>z\right) \\
& \leq \sum_{j=1}^{p} \mathbb{P}\left(\left|n^{-1} \sum_{i=1}^{n} \varepsilon_{i} X_{i j}\right|>z\right) \\
& \leq p \widetilde{C}_{1} \exp \left\{-\widetilde{C}_{1} n z^{2}\right) .
\end{aligned}
$$

Letting $z=C \sqrt{(\log p) / n}$ in the above inequality, we obtain

$$
\mathbb{P}\left(\left\|n^{-1} \mathbf{X}^{T} \varepsilon\right\|_{\infty} \leq C \sqrt{(\log p) / n}\right) \geq 1-\widetilde{C}_{1} p^{-\left(\widetilde{C}_{1} C^{2}-1\right)} .
$$

Taking large enough positive constant C completes the proof of Lemma 3 .

B. 2 Lemma 4 and its proof

Lemma 4. Assume that all the conditions of Proposition 2 hold and $a_{n}\left[\left(L_{p}+L_{p}^{\prime}\right)^{1 / 2}+K_{n}^{1 / 2}\right]=$ $o(1)$. Then we have

$$
P\left\{\sup _{\boldsymbol{\Omega} \in \mathcal{A},|\mathcal{S}| \leq K_{n}}\left\|\widetilde{\boldsymbol{\rho}}_{\mathcal{S}}-\widetilde{\mathbf{G}}_{\mathcal{S}, \mathcal{S}} \boldsymbol{\beta}_{\mathbb{T}, \mathcal{S}}\right\|_{\infty} \leq C_{4} \sqrt{(\log p) / n}\right\}=1-O\left(p^{-c_{4}}\right)
$$

for some constants $c_{4}, C_{4}>0$.
Proof. In this proof, we use c and C to denote generic positive constants and use the same notation as in the proof of Proposition 2 in Section A.6. Since $\boldsymbol{\beta}_{\mathbb{T}}=\left(\boldsymbol{\beta}_{0}^{T}, 0, \ldots, 0\right)^{T}$ with $\boldsymbol{\beta}_{0}$ the true regression coefficient vector, it is easy to check that $\widetilde{\mathbf{X}}_{\mathrm{KO}} \boldsymbol{\beta}_{\mathbb{T}}=\mathbf{X} \boldsymbol{\beta}_{0}$. In view of $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}_{0}+\varepsilon$, it follows from the definitions of $\widetilde{\boldsymbol{\rho}}$ and $\widetilde{\mathbf{G}}$ that

$$
\begin{aligned}
\widetilde{\boldsymbol{\rho}}_{\mathcal{S}}-\widetilde{\mathbf{G}}_{\mathcal{S}, \mathcal{S}} \boldsymbol{\beta}_{\mathbb{T}, \mathcal{S}} & =\frac{1}{n} \widetilde{\mathbf{X}}_{\mathrm{KO}, \mathcal{S}}^{T} \mathbf{X} \boldsymbol{\beta}_{0}+\frac{1}{n} \widetilde{\mathbf{X}}_{\mathrm{KO}, \mathcal{S}}^{T}-\frac{1}{n} \widetilde{\mathbf{X}}_{\mathrm{KO}, \mathcal{S}}^{T} \widetilde{\mathbf{X}}_{\mathrm{KO}, \mathcal{S}} \boldsymbol{\beta}_{\mathbb{T}, \mathcal{S}} \\
& =\frac{1}{n} \mathbf{X}_{\mathrm{KO}, \mathcal{S}} \boldsymbol{\varepsilon}+\frac{1}{n}\left(\widetilde{\mathbf{X}}_{\mathrm{KO}, \mathcal{S}}-\mathbf{X}_{\mathrm{KO}, \mathcal{S}}\right)^{T} \boldsymbol{\varepsilon} .
\end{aligned}
$$

Using the triangle inequality, we deduce

$$
\left\|\widetilde{\boldsymbol{\rho}}_{\mathcal{S}}-\widetilde{\mathbf{G}}_{\mathcal{S}, \mathcal{S}} \boldsymbol{\beta}_{\mathbb{T}, \mathcal{S}}\right\|_{\infty} \leq\left\|\frac{1}{n} \mathbf{X}_{\mathrm{KO}, \mathcal{S}}^{T} \varepsilon\right\|_{\infty}+\left\|\frac{1}{n}\left(\widetilde{\mathbf{X}}_{\mathrm{KO}, \mathcal{S}}-\mathbf{X}_{\mathrm{KO}, \mathcal{S}}\right)^{T} \varepsilon\right\|_{\infty} .
$$

We will bound both terms on the right hand side of the above inequality.
By Lemma 3, we can show that for the first term,

$$
\left\|\frac{1}{n} \mathbf{X}_{\mathrm{KO}, \mathcal{S}}^{T} \varepsilon\right\|_{\infty} \leq\left\|\frac{1}{n} \mathbf{X}_{\mathrm{KO}}^{T} \varepsilon\right\|_{\infty} \leq C \sqrt{(\log p) / n}
$$

with probability at least $1-p^{-c}$ for some constants $C, c>0$. We will prove that with probability at least $1-o\left(p^{-c}\right)$,

$$
\begin{equation*}
\left\|\frac{1}{n}\left(\widetilde{\mathbf{X}}_{\mathrm{KO}, \mathcal{S}}-\mathbf{X}_{\mathrm{KO}, \mathcal{S}}\right)^{T} \varepsilon\right\|_{\infty} \leq C a_{n}\left(L_{p}+L_{p}^{\prime}\right)^{1 / 2} \sqrt{(\log p) / n}+C a_{n} \sqrt{n^{-1} K_{n}(\log p)} . \tag{A.2}
\end{equation*}
$$

Then the desired result in this lemma can be shown by noting that $a_{n}\left[\left(L_{p}+L_{p}^{\prime}\right)^{1 / 2}+K_{n}^{1 / 2}\right] \rightarrow$ 0.

It remains to prove (A.2). Recall that matrices $\breve{\mathbf{X}}_{\mathcal{S}}$ and $\breve{\mathbf{X}}_{0, \mathcal{S}}$ can be written as

$$
\begin{aligned}
& \breve{\mathbf{X}}_{\mathcal{S}}=\mathbf{X}(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})_{\mathcal{S}}+\mathbf{Z B}_{0, \mathcal{S}}\left(\mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}}\right)^{-1 / 2}\left(\left(\mathbf{B}_{\mathcal{S}}^{\Omega}\right)^{T} \mathbf{B}_{\mathcal{S}}^{\Omega}\right)^{1 / 2} \\
& \breve{\mathbf{X}}_{0, \mathcal{S}}=\mathbf{X}\left(\mathbf{I}-\boldsymbol{\Omega}_{0} \operatorname{diag}\{\mathbf{s}\}\right)_{\mathcal{S}}+\mathbf{Z B}_{0, \mathcal{S}}
\end{aligned}
$$

where the notation is the same as in the proof of Proposition 2 in Section A.6. By the definitions of $\widetilde{\mathbf{X}}_{\mathrm{KO}}$ and \mathbf{X}_{KO}, it holds that

$$
\begin{equation*}
\left\|\frac{1}{n}\left(\widetilde{\mathbf{X}}_{\mathrm{KO}, \mathcal{S}}-\mathbf{X}_{\mathrm{KO}, \mathcal{S}}\right)^{T} \varepsilon\right\|_{\infty}=\left\|\frac{1}{n}\left(\breve{\mathbf{X}}_{\mathcal{S}}-\breve{\mathbf{X}}_{0, \mathcal{S}}\right)^{T} \varepsilon\right\|_{\infty}, \tag{A.3}
\end{equation*}
$$

where $\breve{\mathbf{X}}_{\mathcal{S}}$ and $\breve{\mathbf{X}}_{0, \mathcal{S}}$ represent the submatrices formed by columns in \mathcal{S}. We now turn to analyzing the term $n^{-1}\left(\breve{\mathbf{X}}_{\mathcal{S}}-\breve{\mathbf{X}}_{0, \mathcal{S}}\right)^{T} \varepsilon$. Some routine calculations give

$$
\begin{aligned}
\frac{1}{n}\left(\breve{\mathbf{X}}_{\mathcal{S}}-\breve{\mathbf{X}}_{0, \mathcal{S}}\right)^{T} \boldsymbol{\varepsilon}= & \frac{1}{n}\left(\left(\left(\boldsymbol{\Omega}_{0}-\boldsymbol{\Omega}\right) \operatorname{diag}\{\mathbf{s}\}\right)_{\mathcal{S}}\right)^{T} \mathbf{X}^{T} \boldsymbol{\varepsilon} \\
& +\frac{1}{n}\left(\left(\left(\mathbf{B}_{\mathcal{S}}^{\Omega}\right)^{T} \mathbf{B}_{\mathcal{S}}^{\Omega}\right)^{1 / 2}\left(\mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}}\right)^{-1 / 2}-\mathbf{I}\right) \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \boldsymbol{\varepsilon}
\end{aligned}
$$

Thus it follows from $s_{j} \leq 2 \Lambda_{\max }\left(\boldsymbol{\Sigma}_{0}\right)$ for all $1 \leq j \leq p$ and the triangle inequality that

$$
\begin{align*}
\left\|\frac{1}{n}\left(\breve{\mathbf{X}}_{\mathcal{S}}-\breve{\mathbf{X}}_{0, \mathcal{S}}\right)^{T} \varepsilon\right\|_{\infty} & \leq 2 \Lambda_{\max }\left(\boldsymbol{\Sigma}_{0}\right)\left\|\frac{1}{n}\left(\boldsymbol{\Omega}_{0, \mathcal{S}}-\boldsymbol{\Omega}_{\mathcal{S}}\right)^{T} \mathbf{X}^{T} \varepsilon\right\|_{\infty} \\
& +\left\|\frac{1}{n}\left(\left(\left(\mathbf{B}_{\mathcal{S}}^{\Omega}\right)^{T} \mathbf{B}_{\mathcal{S}}^{\boldsymbol{\Omega}}\right)^{1 / 2}\left(\mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}}\right)^{-1 / 2}-\mathbf{I}\right) \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \boldsymbol{\varepsilon}\right\|_{\infty} \tag{A.4}
\end{align*}
$$

We first examine the upper bound for $\left\|\frac{1}{n}\left(\boldsymbol{\Omega}_{0, \mathcal{S}}-\boldsymbol{\Omega}_{\mathcal{S}}\right)^{T} \mathbf{X}^{T} \boldsymbol{\varepsilon}\right\|_{\infty}$ in (A.4). Since $\boldsymbol{\Omega} \in \mathcal{A}$ and $\boldsymbol{\Omega}_{0}$ is L_{p}-sparse, by Lemma 3 we deduce

$$
\begin{align*}
\left\|\frac{1}{n}\left(\boldsymbol{\Omega}_{0, \mathcal{S}}-\boldsymbol{\Omega}_{\mathcal{S}}\right)^{T} \mathbf{X}^{T} \boldsymbol{\varepsilon}\right\|_{\infty} & \leq\left\|\frac{1}{n}\left(\boldsymbol{\Omega}_{0}-\boldsymbol{\Omega}\right) \mathbf{X}^{T} \boldsymbol{\varepsilon}\right\|_{\infty} \\
& \leq\left\|\boldsymbol{\Omega}_{0}-\boldsymbol{\Omega}\right\|_{1}\left\|\frac{1}{n} \mathbf{X}^{T} \boldsymbol{\varepsilon}\right\|_{\infty} \\
& \leq \sqrt{L_{p}+L_{p}^{\prime}}\left\|\boldsymbol{\Omega}-\boldsymbol{\Omega}_{0}\right\|_{2} \cdot C \sqrt{(\log p) / n} \\
& \leq C a_{n}\left(L_{p}+L_{p}^{\prime}\right)^{1 / 2} \sqrt{(\log p) / n} \tag{A.5}
\end{align*}
$$

We can also bound the second term on the right hand side of (A.4) as

$$
\begin{aligned}
& \left\|\frac{1}{n}\left(\left(\left(\mathbf{B}_{\mathcal{S}}^{\Omega}\right)^{T} \mathbf{B}_{\mathcal{S}}^{\Omega}\right)^{1 / 2}\left(\mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}}\right)^{-1 / 2}-\mathbf{I}\right) \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \varepsilon\right\|_{\infty} \\
& \leq\left\|\left(\left(\mathbf{B}_{\mathcal{S}}^{\Omega}\right)^{T} \mathbf{B}_{\mathcal{S}}^{\Omega}\right)^{1 / 2}\left(\mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}}\right)^{-1 / 2}-\mathbf{I}\right\|_{1}\left\|\frac{1}{n} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \varepsilon\right\|_{\infty} \\
& \leq \sqrt{2 \mid \mathcal{S} \|}\left\|\left(\left(\mathbf{B}_{\mathcal{S}}^{\Omega}\right)^{T} \mathbf{B}_{\mathcal{S}}^{\Omega}\right)^{1 / 2}\left(\mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}}\right)^{-1 / 2}-\mathbf{I}\right\|_{2}\left\|\frac{1}{n} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \varepsilon\right\|_{\infty} \\
& \leq \sqrt{2 K_{n}} C a_{n} \sqrt{(\log p) / n}=C a_{n} \sqrt{n^{-1} K_{n}(\log p)},
\end{aligned}
$$

where the second to the last step is entailed by Lemma 2 in Section A. 3 and Lemma 5 in Section B.3. Therefore, combining this inequality with (A.3)-(A.5) results in (A.2), which
concludes the proof of Lemma 4.

B. 3 Lemma 5 and its proof

Lemma 5. Under the conditions of Proposition 2, it holds that with probability at least $1-O\left(p^{-c}\right)$,

$$
\sup _{|\mathcal{S}| \leq K_{n}}\left\|\frac{1}{n} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \varepsilon\right\|_{\infty} \geq C \sqrt{(\log p) / n}
$$

for some constant $C>0$.
Proof. Since this is a specific case of Lemma 8 in Section B.6, the proof is omitted.

B. 4 Lemma 6 and its proof

Lemma 6. Under the conditions of Proposition 2 and Lemma 1, there exists some constant $c \in\left(2(q s)^{-1}, 1\right)$ such that with asymptotic probability one, $\left|\widehat{\mathcal{S}}^{\Omega}\right| \geq$ cs holds uniformly over all $\boldsymbol{\Omega} \in \mathcal{A}$ and $|\mathcal{S}| \leq K_{n}$, where $\widehat{\mathcal{S}}^{\boldsymbol{\Omega}}=\left\{j: W_{j}^{\boldsymbol{\Omega}, \mathcal{S}} \geqslant T\right\}$.

Proof. Again we use C to denote generic positive constants whose values may change from line to line. By Proposition 2 in Section A.6, we have with probability at least $1-O\left(p^{-c_{1}}\right)$ that uniformly over all $\boldsymbol{\Omega} \in \mathcal{A}$ and $|\mathcal{S}| \leq K_{n}$,

$$
\max _{1 \leq j \leq p}\left|\widehat{\beta}_{j}(\lambda ; \boldsymbol{\Omega}, \mathcal{S})-\beta_{0, j}\right| \leq C \sqrt{s n^{-1}(\log p)} \text { and } \max _{1 \leq j \leq p}\left|\widehat{\beta}_{j+p}(\lambda ; \boldsymbol{\Omega}, \mathcal{S})\right| \leq C \sqrt{s n^{-1}(\log p)}
$$

for some constants $C, c_{1}>0$. Thus for each $1 \leq j \leq p$, we have

$$
\begin{align*}
W_{j}^{\boldsymbol{\Omega}, \mathcal{S}} & =\left|\widehat{\beta}_{j}(\lambda ; \boldsymbol{\Omega}, \mathcal{S})\right|-\left|\widehat{\beta}_{j+p}(\lambda ; \boldsymbol{\Omega}, \mathcal{S})\right| \\
& \geq-\left|\widehat{\beta}_{j+p}(\lambda ; \boldsymbol{\Omega}, \mathcal{S})\right| \geq-C \sqrt{s n^{-1}(\log p)} \tag{A.6}
\end{align*}
$$

On the other hand, for each $j \in \mathcal{S}_{2}=\left\{j: \beta_{0, j} \gg \sqrt{s n^{-1}(\log p)}\right\}$ it holds that

$$
\begin{align*}
W_{j}^{\boldsymbol{\Omega}, \mathcal{S}} & =\left|\widehat{\beta}_{j}(\lambda ; \boldsymbol{\Omega}, \mathcal{S})\right|-\left|\widehat{\beta}_{j+p}(\lambda ; \boldsymbol{\Omega}, \mathcal{S})\right| \\
& \geq\left|\beta_{0, j}\right|-\left|\widehat{\beta}_{j}(\lambda ; \boldsymbol{\Omega}, \mathcal{S})-\beta_{0, j}\right|-\left|\widehat{\beta}_{j+p}(\lambda ; \boldsymbol{\Omega}, \mathcal{S})\right| \gg \sqrt{s n^{-1}(\log p)} \tag{A.7}
\end{align*}
$$

Thus in order for any $W_{j}^{\boldsymbol{\Omega}, \mathcal{S}}, 1 \leq j \leq p$ to fall below $-T$, we must have $W_{j}^{\boldsymbol{\Omega}, \mathcal{S}} \geq T$ for all $j \in \mathcal{S}_{2}$. This entails that

$$
\begin{equation*}
\left|\left\{j: W_{j}^{\Omega, \mathcal{S}} \geq T\right\}\right| \geq\left|\mathcal{S}_{2}\right| \geq c s \tag{A.8}
\end{equation*}
$$

which completes the proof of Lemma 6.

B. 5 Lemma 7 and its proof

Lemma 7. Assume that all the conditions of Proposition 2 hold and $a_{2 n}=a_{n}+\left(L_{p}^{\prime}+\right.$ $\left.K_{n}\right)\{(\log p) / n\}^{1 / 2}=o(1)$. Then it holds that

$$
P\left\{\sup _{\Omega \in \mathcal{A},|\mathcal{S}| \leq K_{n}}\left\|\widetilde{\mathbf{G}}_{\mathcal{S}, \mathcal{S}}-\mathbf{G}_{\mathcal{S}, \mathcal{S}}\right\|_{\max } \leq C_{8} a_{2, n}\right\}=1-O\left(p^{-c_{8}}\right)
$$

for some constants $c_{8}, C_{8}>0$.
Proof. In this proof, we adopt the same notation as used in the proof of Proposition 2 in Section A.6. In light of (36), we have $\widetilde{\mathbf{G}}=n^{-1}\left[\mathbf{X}, \breve{\mathbf{X}}^{\boldsymbol{\Omega}}\right]^{T}\left[\mathbf{X}, \breve{\mathbf{X}}^{\boldsymbol{\Omega}}\right]$. Thus the matrix difference $\widetilde{\mathbf{G}}_{\mathcal{S}, \mathcal{S}}-\mathbf{G}_{\mathcal{S}, \mathcal{S}}$ can be represented in block form as

$$
\begin{aligned}
\widetilde{\mathbf{G}}_{\mathcal{S}, \mathcal{S}}-\mathbf{G}_{\mathcal{S}, \mathcal{S}} & =\frac{1}{n}\left(\begin{array}{cc}
\mathbf{X}_{\mathcal{S}}^{T} \mathbf{X}_{\mathcal{S}} & \left(\breve{\mathbf{X}}_{\mathcal{S}}^{\boldsymbol{\Omega}}\right)^{T} \mathbf{X}_{\mathcal{S}} \\
\mathbf{X}_{\mathcal{S}}^{T}{\mathbf{X}_{\mathcal{S}}^{\Omega}}^{\left(\breve{\mathbf{X}}_{\mathcal{S}}^{\Omega}\right)^{T} \breve{\mathbf{X}}_{\mathcal{S}}^{\Omega}}
\end{array}\right)-\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{0} & \boldsymbol{\Sigma}_{0}-\operatorname{diag}\{\mathbf{s}\} \\
\boldsymbol{\Sigma}_{0}-\operatorname{diag}\{\mathbf{s}\} & \boldsymbol{\Sigma}_{0}
\end{array}\right)_{\mathcal{S}, \mathcal{S}} \\
& =\left(\begin{array}{cc}
n^{-1} \mathbf{X}_{\mathcal{S}}^{T} \mathbf{X}_{\mathcal{S}}-\boldsymbol{\Sigma}_{0, \mathcal{S}, \mathcal{S}} & n^{-1}\left(\breve{\mathbf{X}}_{\mathcal{S}}^{\Omega}\right)^{T} \mathbf{X}_{\mathcal{S}}-\left(\boldsymbol{\Sigma}_{0}-\operatorname{diag}\{\mathbf{s}\}\right)_{\mathcal{S}, \mathcal{S}} \\
n^{-1} \mathbf{X}_{\mathcal{S}}^{T} \breve{\mathbf{X}}_{\mathcal{S}}^{\Omega}-\left(\boldsymbol{\Sigma}_{0}-\operatorname{diag}\{\mathbf{s}\}\right)_{\mathcal{S}, \mathcal{S}} & n^{-1}\left(\breve{\mathbf{X}}_{\mathcal{S}}^{\boldsymbol{\Omega}}\right)^{T} \breve{\mathbf{X}}_{\mathcal{S}}^{\Omega}-\boldsymbol{\Sigma}_{0, \mathcal{S}, \mathcal{S}}
\end{array}\right) .
\end{aligned}
$$

Note that the off-diagonal blocks are the transposes of each other. Then we see that $\| \widetilde{\mathbf{G}}_{\mathcal{S}, \mathcal{S}}-$ $\mathbf{G}_{\mathcal{S}, \mathcal{S}} \|_{\max }$ can be bounded by the maximum of $\left\|\eta_{1}\right\|_{\max },\left\|\eta_{2}\right\|_{\max }$, and $\left\|\eta_{3}\right\|_{\max }$ with

$$
\begin{aligned}
\eta_{1} & =n^{-1} \mathbf{X}_{\mathcal{S}}^{T} \mathbf{X}_{\mathcal{S}}-\boldsymbol{\Sigma}_{0, \mathcal{S}, \mathcal{S}}, \\
\eta_{2} & =n^{-1} \mathbf{X}_{\mathcal{S}}^{T} \breve{\mathbf{X}}_{\mathcal{S}}^{\boldsymbol{\Omega}}-\left(\boldsymbol{\Sigma}_{0}-\operatorname{diag}\{\mathbf{s}\}\right)_{\mathcal{S}, \mathcal{S}} \\
\eta_{3} & =n^{-1}\left(\breve{\mathbf{X}}_{\mathcal{S}}^{\boldsymbol{\Omega}}\right)^{T} \breve{\mathbf{X}}_{\mathcal{S}}^{\boldsymbol{\Omega}}-\boldsymbol{\Sigma}_{0, \mathcal{S}, \mathcal{S}} .
\end{aligned}
$$

To bound these three terms, we define three events

$$
\begin{aligned}
& \mathcal{E}_{5}=\left\{\left\|n^{-1} \mathbf{X}^{T} \mathbf{X}-\boldsymbol{\Sigma}_{0}\right\|_{\max } \leq C \sqrt{(\log p) / n}\right\}, \\
& \mathcal{E}_{6}=\left\{\sup _{|\mathcal{S}| \leq K_{n}}\left\|n^{-1} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \mathbf{X}\right\|_{\infty} \leq C \sqrt{(\log p) / n}\right\}, \\
& \mathcal{E}_{7}=\left\{\sup _{|\mathcal{S}| \leq K_{n}}\left\|n^{-1} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \mathbf{Z} \mathbf{B}_{0, \mathcal{S}}-\mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}}\right\|_{\max } \leq C \sqrt{(\log p) / n}\right\} .
\end{aligned}
$$

By Lemma 8 in Section B.6, it holds that $P\left(\mathcal{E}_{6}\right) \geq 1-O\left(p^{-c}\right)$ and $P\left(\mathcal{E}_{7}\right) \geq 1-O\left(p^{-c}\right)$. Using Lemma A. 3 in [6], we also have $P\left(\mathcal{E}_{5}\right) \geq 1-O\left(p^{-c}\right)$. Combining these results yields

$$
P\left(\mathcal{E}_{5} \cap \mathcal{E}_{6} \cap \mathcal{E}_{7}\right) \geq 1-O\left(p^{-c}\right)
$$

with $c>0$ some constant.
Let us first consider term η_{1}. Conditional on \mathcal{E}_{5}, it is easy to see that

$$
\begin{equation*}
\left\|\eta_{1}\right\|_{\max } \leq\left\|n^{-1} \mathbf{X}^{T} \mathbf{X}-\boldsymbol{\Sigma}_{0}\right\|_{\max } \leq C \sqrt{(\log p) / n} \tag{A.9}
\end{equation*}
$$

We next bound $\left\|\eta_{2}\right\|_{\text {max }}$ conditional on $\mathcal{E}_{5} \cap \mathcal{E}_{6}$. To simplify the notation, denote by $\widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}=$ $\left(\mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}}\right)^{-1 / 2}\left(\left(\mathbf{B}_{\mathcal{S}}^{\Omega}\right)^{T} \mathbf{B}_{\mathcal{S}}^{\Omega}\right)^{1 / 2}$. By the definition of $\breve{\mathbf{X}}_{\mathcal{S}}$, we deduce

$$
\begin{aligned}
\eta_{2} & =n^{-1} \mathbf{X}_{\mathcal{S}}^{T} \breve{\mathbf{X}}_{\mathcal{S}}^{\boldsymbol{\Omega}}-\left(\boldsymbol{\Sigma}_{0}-\operatorname{diag}\{\mathbf{s}\}\right)_{\mathcal{S}, \mathcal{S}} \\
& =n^{-1} \mathbf{X}_{\mathcal{S}}^{T} \mathbf{X}(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})_{\mathcal{S}}+n^{-1} \mathbf{X}_{\mathcal{S}}^{T} \mathbf{Z} \mathbf{B}_{0, \mathcal{S}} \widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}-\left(\boldsymbol{\Sigma}_{0}-\operatorname{diag}\{\mathbf{s}\}\right)_{\mathcal{S}, \mathcal{S}} \\
& =\left(\left(n^{-1} \mathbf{X}^{T} \mathbf{X}-\boldsymbol{\Sigma}_{0}\right)(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})\right)_{\mathcal{S}, \mathcal{S}}+\left(\operatorname{diag}\{\mathbf{s}\}-\boldsymbol{\Sigma}_{0} \boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\}\right)_{\mathcal{S}, \mathcal{S}}+n^{-1} \mathbf{X}_{\mathcal{S}}^{T} \mathbf{Z} \mathbf{B}_{0, \mathcal{S}} \widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}} \\
& \equiv \eta_{2,1}+\eta_{2,2}+\eta_{2,3} .
\end{aligned}
$$

We will examine the above three terms separately.
Since $\boldsymbol{\Omega}$ is L_{p}^{\prime}-sparse, $\left\|\mathbf{I}-\boldsymbol{\Omega}_{0} \operatorname{diag}(\mathbf{s})\right\|_{2} \leq\|\mathbf{I}\|_{2}+\left\|\boldsymbol{\Omega}_{0} \operatorname{diag}(\mathbf{s})\right\|_{2} \leq C$, and $\left\|\left(\boldsymbol{\Omega}-\boldsymbol{\Omega}_{0}\right) \operatorname{diag}\{\mathbf{s}\}\right\|_{2} \leq$ $C a_{n}$, we have

$$
\begin{align*}
\|\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\}\|_{1} & \leq \sqrt{L_{p}^{\prime}}\|\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\}\|_{2} \\
& \leq \sqrt{L_{p}^{\prime}}\left(\left\|\mathbf{I}-\boldsymbol{\Omega}_{0} \operatorname{diag}\{\mathbf{s}\}\right\|_{2}+\left\|\left(\boldsymbol{\Omega}-\boldsymbol{\Omega}_{0}\right) \operatorname{diag}\{\mathbf{s}\}\right\|_{2}\right) \\
& \leq C \sqrt{L_{p}^{\prime}} \tag{A.10}
\end{align*}
$$

Thus it follow from (A.10) that conditional on \mathcal{E}_{5},

$$
\begin{align*}
\left\|\eta_{2,1}\right\|_{\max } & =\left\|\left(\left(n^{-1} \mathbf{X}^{T} \mathbf{X}-\mathbf{\Sigma}_{0}\right)(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})\right)_{\mathcal{S}, \mathcal{S}}\right\|_{\max } \\
& \leq\left\|\left(n^{-1} \mathbf{X}^{T} \mathbf{X}-\mathbf{\Sigma}_{0}\right)(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})\right\|_{\max } \\
& \leq\left\|n^{-1} \mathbf{X}^{T} \mathbf{X}-\mathbf{\Sigma}_{0}\right\|_{\max }\|\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\}\|_{1} \\
& \leq C \sqrt{L_{p}^{\prime}} \sqrt{(\log p) / n} \tag{A.11}
\end{align*}
$$

For term $\eta_{2,2}$, it holds that

$$
\begin{align*}
\left\|\eta_{2,2}\right\|_{\max } & =\left\|\left(\operatorname{diag}\{\mathbf{s}\}-\boldsymbol{\Sigma}_{0} \boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\}\right)_{\mathcal{S}, \mathcal{S}}\right\|_{\max } \\
& \leq C\left\|\mathbf{I}-\boldsymbol{\Sigma}_{0} \boldsymbol{\Omega}\right\|_{\max } \leq C\left\|\boldsymbol{\Sigma}_{0}\right\|_{2}\left\|\boldsymbol{\Omega}_{0}-\boldsymbol{\Omega}\right\|_{2} \leq C a_{n} \tag{A.12}
\end{align*}
$$

Note that by Lemma 2 in Section A.3, we have

$$
\left\|\widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right\|_{1} \leq \sqrt{|\mathcal{S}|} \mid\left\|\widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right\|_{2} \leq \sqrt{|\mathcal{S}|}\left(\left\|\widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}-\mathbf{I}\right\|_{2}+1\right) \leq C \sqrt{|\mathcal{S}|} \leq C \sqrt{K_{n}}
$$

when $|\mathcal{S}| \leq K_{n}$. Then conditional on \mathcal{E}_{6}, it holds that

$$
\begin{align*}
\left\|\eta_{2,3}\right\|_{\max } & =\left\|n^{-1} \mathbf{X}_{\mathcal{S}}^{T} \mathbf{Z} \mathbf{B}_{0, \mathcal{S}} \widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right\|_{\max } \\
& \leq\left\|n^{-1} \mathbf{X}_{\mathcal{S}}^{T} \mathbf{Z B}_{0, \mathcal{S}}\right\|_{\max }\left\|\widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right\|_{1} \\
& \leq C \sqrt{n^{-1} K_{n}(\log p)} . \tag{A.13}
\end{align*}
$$

Thus combining (A.11)-(A.13) leads to

$$
\begin{equation*}
\left\|\eta_{2}\right\|_{\max } \leq C\left\{a_{n}+\sqrt{n^{-1} L_{p}^{\prime}(\log p)}+\sqrt{n^{-1} K_{n}(\log p)}\right\} \tag{A.14}
\end{equation*}
$$

We finally deal with term η_{3}. Some routine calculations show that

$$
\begin{aligned}
\eta_{3} & =n^{-1}\left(\breve{\mathbf{X}}_{\mathcal{S}}^{\boldsymbol{\mathcal { S }}}\right)^{T} \breve{\mathbf{X}}_{\mathcal{S}}^{\boldsymbol{\Omega}}-\mathbf{\Sigma}_{0, \mathcal{S}, \mathcal{S}} . \\
& =n^{-1}\left((\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})_{\mathcal{S}}^{T} \mathbf{X}^{T}+\left(\widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right)^{T} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T}\right)\left(\mathbf{X}(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})_{\mathcal{S}}+\mathbf{Z B}_{0, \mathcal{S}} \widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right)-\boldsymbol{\Sigma}_{0, \mathcal{S}, \mathcal{S}} \\
& =\left(n^{-1}(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})^{T} \mathbf{X}^{T} \mathbf{X}(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})-\boldsymbol{\Sigma}_{0}+\mathbf{B}_{0}^{T} \mathbf{B}_{0}\right)_{\mathcal{S}, \mathcal{S}} \\
& +n^{-1}\left(\widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right)^{T} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \mathbf{X}(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})_{\mathcal{S}}+(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})_{\mathcal{S}}^{T} \mathbf{X}^{T} \mathbf{Z B}_{0, \mathcal{S}} \widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}} \\
& +\left(\left(\widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right)^{T} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \mathbf{Z} \mathbf{B}_{0, \mathcal{S}} \widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}-\mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}}\right) \\
& \equiv \eta_{3,1}+\eta_{3,2}+\eta_{3,2}^{T}+\eta_{3,3} .
\end{aligned}
$$

Conditional on event \mathcal{E}_{5}, with some simple matrix algebra we derive

$$
\begin{align*}
\left\|\eta_{3,1}\right\| & =\left\|\left(n^{-1}(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})^{T} \mathbf{X}^{T} \mathbf{X}(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})-\boldsymbol{\Sigma}_{0}+\mathbf{B}_{0}^{T} \mathbf{B}_{0}\right)_{\mathcal{S}, \mathcal{S}}\right\|_{\max } \\
& \leq\left\|n^{-1}(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})^{T} \mathbf{X}^{T} \mathbf{X}(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})-\boldsymbol{\Sigma}_{0}+\mathbf{B}_{0}^{T} \mathbf{B}_{0}\right\|_{\max } \\
& \leq\left\|(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})^{T}\left(n^{-1} \mathbf{X}^{T} \mathbf{X}-\boldsymbol{\Sigma}_{0}\right)(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})\right\|_{\max } \\
& +\left\|(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})^{T} \boldsymbol{\Sigma}_{0}(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})-\boldsymbol{\Sigma}_{0}+2 \operatorname{diag}\{\mathbf{s}\}-\operatorname{diag}\{\mathbf{s}\} \boldsymbol{\Omega}_{0} \operatorname{diag}\{\mathbf{s}\}\right\|_{\max } \\
& \leq\left\|n^{-1} \mathbf{X}^{T} \mathbf{X}-\boldsymbol{\Sigma}_{0}\right\|_{\max }\|(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})\|_{1}^{2} \\
& +\left\|\operatorname{diag}\{\mathbf{s}\}\left(\mathbf{I}-\boldsymbol{\Omega} \boldsymbol{\Sigma}_{0}\right)\right\|_{\max }+\left\|\left(\mathbf{I}-\boldsymbol{\Sigma}_{0} \boldsymbol{\Omega}\right) \operatorname{diag}\{\mathbf{s}\}\right\|_{\max }+\left\|\operatorname{diag}\{\mathbf{s}\}\left(\boldsymbol{\Omega}_{0}-\boldsymbol{\Omega} \boldsymbol{\Sigma}_{0} \boldsymbol{\Omega}\right) \operatorname{diag}\{\mathbf{s}\}\right\|_{\max } \\
& \leq C L_{p}^{\prime} \sqrt{(\log p) / n}+C a_{n}, \tag{A.15}
\end{align*}
$$

where the last step used (A.10) and calculations similar to (A.12).
It follows from (A.10) and the previously proved result $\left\|\widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right\|_{1} \leq C \sqrt{K_{n}}$ for $|\mathcal{S}| \leq K_{n}$ that conditional on event \mathcal{E}_{6},

$$
\begin{align*}
\left\|\eta_{3,2}\right\| & =\left\|n^{-1}\left(\widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right)^{T} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \mathbf{X}(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})_{\mathcal{S}}\right\|_{\max } \\
& \leq\left\|\widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right\|_{1}\left\|n^{-1} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \mathbf{X}\right\|_{\max }\left\|(\mathbf{I}-\boldsymbol{\Omega} \operatorname{diag}\{\mathbf{s}\})_{\mathcal{S}}\right\|_{1} \\
& \leq C \sqrt{K_{n}} \sqrt{L_{p}^{\prime} n^{-1}(\log p)} \\
& =C \sqrt{n^{-1} K_{n} L_{p}^{\prime}(\log p)} . \tag{A.16}
\end{align*}
$$

Finally, by Lemma 2 it holds that conditioned on \mathcal{E}_{7},

$$
\begin{align*}
\left\|\eta_{3,3}\right\| & =\left\|n^{-1}\left(\widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right)^{T} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \mathbf{Z} \mathbf{B}_{0, \mathcal{S}} \widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}-\mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}}\right\|_{\max } \\
& \leq\left\|\left(\widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right)^{T}\left(n^{-1} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \mathbf{Z} \mathbf{B}_{0, \mathcal{S}}-\mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}}\right) \widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right\|_{\max } \\
& +\left\|\left(\widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right)^{T} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}} \widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}-\mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}}\right\|_{\max } \\
& \leq\left\|n^{-1} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \mathbf{Z} \mathbf{B}_{0, \mathcal{S}}-\mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}}\right\|_{\max }\left\|\widetilde{\mathbf{B}}^{\mathcal{S}, \boldsymbol{\Omega}}\right\|_{1}^{2}+C a_{n} \\
& \leq C K_{n} \sqrt{(\log p) / n}+C a_{n} . \tag{A.17}
\end{align*}
$$

Therefore, combining (A.15)-(A.17) results in

$$
\begin{aligned}
\left\|\eta_{3}\right\|_{\max } & \leq C a_{n}+C\left(L_{p}^{\prime}+K_{n}+\sqrt{K_{n} L_{p}^{\prime}}\right) \sqrt{(\log p) / n} \\
& \leq C a_{n}+2 C\left(L_{p}^{\prime}+K_{n}\right) \sqrt{(\log p) / n}
\end{aligned}
$$

which together with (A.9) and (A.14) concludes the proof of Lemma 7 .

B. 6 Lemma 8 and its proof

Lemma 8. Under the conditions of Proposition 2, it holds that with probability at least $1-O\left(p^{-c}\right)$,

$$
\begin{aligned}
& \sup _{|\mathcal{S}| \leq K_{n}}\left\|\frac{1}{n} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \mathbf{X}\right\|_{\max } \geq C \sqrt{(\log p) / n}, \\
& \sup _{|\mathcal{S}| \leq K_{n}}\left\|n^{-1} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \mathbf{Z} \mathbf{B}_{0, \mathcal{S}}-\mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}}\right\|_{\max } \geq C \sqrt{(\log p) / n}
\end{aligned}
$$

for some constants $c, C>0$.
Proof. We still use c and C to denote generic positive constants. We start with proving the first inequality. Observe that

$$
\sup _{|\mathcal{S}| \leq K_{n}}\left\|\frac{1}{n} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \mathbf{X}\right\|_{\max } \leq\left\|\frac{1}{n} \mathbf{B}_{0}^{T} \mathbf{Z}^{T} \mathbf{X}\right\|_{\max }
$$

Thus it remains to prove

$$
\begin{equation*}
P\left(\left\|\frac{1}{n} \mathbf{B}_{0}^{T} \mathbf{Z}^{T} \mathbf{X}\right\|_{\max } \geq C \sqrt{(\log p) / n}\right) \leq o\left(p^{-c}\right) \tag{A.18}
\end{equation*}
$$

Let $\mathbf{U}=\mathbf{Z B}_{0} \in \mathbb{R}^{n \times p}$ and denote by \mathbf{U}_{j} the j th column of matrix \mathbf{U}. We see that the components of \mathbf{U}_{j} are i.i.d. Gaussian with mean zero and variance $\mathbf{e}_{j}^{T} \mathbf{B}_{0}^{T} \mathbf{B}_{0} \mathbf{e}_{j}$, and the vectors \mathbf{U}_{j} are independent of $\boldsymbol{\varepsilon}$. Let $\widetilde{\mathbf{U}}_{j}=\left(\mathbf{e}_{j}^{T} \mathbf{B}_{0}^{T} \mathbf{B}_{0} \mathbf{e}_{j}\right)^{-1 / 2} \mathbf{U}_{j}$. Then it holds that $\tilde{\mathbf{U}}_{j} \sim N\left(\mathbf{0}, \mathbf{I}_{n}\right)$. Since $X_{i j} \sim N\left(0, \boldsymbol{\Sigma}_{0, j j}\right)$ and $\boldsymbol{\Sigma}_{0, j j} \leq \Lambda_{\max }\left(\boldsymbol{\Sigma}_{0}\right) \leq C$ with $C>0$ some
constant, it follows from Bernstein's inequality that for $t>0$,

$$
\begin{aligned}
\mathbb{P}\left(\left\|\frac{1}{n} \mathbf{B}_{0}^{T} \mathbf{Z}^{T} \mathbf{X}\right\|_{\max } \geq t\left\|\mathbf{B}_{0}^{T} \mathbf{B}_{0}\right\|_{2}\right) & \leq \sum_{j=1}^{p} \mathbb{P}\left(\frac{1}{n}\left|\left(\mathbf{U}_{j}\right)^{T} \mathbf{X}_{i}\right| \geq t\left\|\mathbf{B}_{0}^{T} \mathbf{B}_{0}\right\|_{2}\right) \\
& \leq \sum_{j=1}^{p} \mathbb{P}\left(\frac{1}{n}\left|\left(\widetilde{\mathbf{U}}_{j}\right)^{T} \mathbf{X}_{i}\right| \geq t\right) \\
& \leq C p \exp \left(-C n t^{2}\right) .
\end{aligned}
$$

Taking $t=C \sqrt{(\log p) / n}$ with large enough constant $C>0$ in the above inequality yields

$$
\mathbb{P}\left(\left\|\frac{1}{n} \mathbf{B}_{0}^{T} \mathbf{Z}^{T} \mathbf{X}\right\|_{\max } \geq C \sqrt{(\log p) / n}\left\|\mathbf{B}_{0}^{T} \mathbf{B}_{0}\right\|_{2}\right) \leq C p^{-c}
$$

for some constant $c>0$. Thus with probability at least $1-O\left(p^{-c}\right)$, it holds that

$$
\begin{aligned}
& \left\|\frac{1}{n} \mathbf{B}_{0}^{T} \mathbf{Z}^{T} \mathbf{X}\right\|_{\max } \leq C \sqrt{(\log p) / n}\left\|\mathbf{B}_{0}^{T} \mathbf{B}_{0}\right\|_{2} \\
& =C \sqrt{(\log p) / n}\left\|\operatorname{diag}(\mathbf{s})-\operatorname{diag}(\mathbf{s}) \boldsymbol{\Omega}_{0} \operatorname{diag}(\mathbf{s})\right\|_{2} \\
& \leq C \sqrt{(\log p) / n}
\end{aligned}
$$

which establishes (A.18) and thus concludes the proof for the first result.
The second inequality follows from

$$
\sup _{|\mathcal{S}| \leq K_{n}}\left\|n^{-1} \mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{Z}^{T} \mathbf{Z} \mathbf{B}_{0, \mathcal{S}}-\mathbf{B}_{0, \mathcal{S}}^{T} \mathbf{B}_{0, \mathcal{S}}\right\|_{\max } \leq\left\|n^{-1} \mathbf{B}_{0}^{T} \mathbf{Z}^{T} \mathbf{Z} \mathbf{B}_{0}-\mathbf{B}_{0}^{T} \mathbf{B}_{0}\right\|_{\max }
$$

and Lemma A. 3 in [6], which completes the proof of Lemma 8.

