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Comment

We congratulate Koenker and Xiao on their interesting and
important contribution to quantile autoregression (QAR). The
article provides a comprehensive overview of the QAR model,
from probabilistic aspects to model identification, statistical in-
ferences, and empirical applications. The attempt to integrate
the quantile regression and the QAR process is intriguing. It
demonstrates that, surprisingly, nonparametric coefficient func-
tions can be estimated at a root-n rate for the QAR processes.
The authors then put forward some useful tools for testing the
significance of lag variables and asymmetric dynamics of time
series. We appreciate the opportunity to comment several as-
pects of this article.

1. CONNECTIONS WITH
VARYING—-COEFFICIENT MODELS

QAR is closely related to the functional-coefficient autore-
gressive (FCAR) model. In the time series context, Cai, Fan,
and Li (2000b) proposed the following FCAR model for cap-
turing the nonlinearity of a time series:

Yi=ao(U) + o1 (U)Y—1 + - +ap(UnYi—p + &1, (1

where U, is a thresholding variable and {¢;} is a sequence of in-
dependent innovations. In particular, when U; = Y;_; for some
lag d, the model was called a functional autoregressive model
(FAR) by Chen and Tsay (1993). Varying-coefficient models
have been widely used in many aspects of statistical model-
ing; see, for example, the work of Hastie and Tibshirani (1993),
Carroll, Ruppert, and Welsh (1998), and Cai et al. (2000a)
for applications to generalized linear models; Brumback and
Rice (1998), Fan and Zhang (2000), and Chiang, Rice, and
Wu (2001) for analysis of functional data; Lin and Ying (2001)
and Fan and Li (2004) for analysis of longitudinal data; Tian,
Zucker, and Wei (2005) and Fan, Lin, and Zhou (2006) for ap-
plications to the Cox hazards regression model; and Fan, Jiang,
Zhang, and Zhou (2003), Hong and Lee (2003), and Mercurio
and Spokoiny (2004) for applications to financial modeling.
These are just a few examples that testify to the flexibility, pop-
ularity, and explanatory power of the varying-coefficient mod-
els. In the same vein, they reflect the importance of the QAR
model.

What makes QAR different from the FCAR model or, more
generally, the varying coefficient model is that the variable U,
is unobservable and &; = 0. This makes estimating techniques
completely different. For example, in the varying-coefficient
model, the coefficient functions in (1) are estimated through
localizing on U; (which are observable), whereas in the QAR
model, the coefficient functions are estimated through quantile
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regression techniques. As a result, two completely different sets
of rates of convergence are obtained. The former model admits
a nonparametric rate, whereas the latter reveals the parametric
rate.

Despite their differences in statistical inferences, QAR is a
subfamily of models of FCAR as far as probabilistic aspects
are concerned. Hence the stochastic properties established in
FCAR are applicable directly to QAR. Chen and Tsay (1993)
have given sufficient conditions for the solution to (1) to admit
a stationary and ergodic solution. With some modifications of
their proof, it can be shown that if «;(-) is bounded by ¢; for all j
and if all roots of the characteristic function

W—cplb -0, =0

are inside the unit circle, then there exists a stationary solution
that is geometrically ergodic.

2. IDENTIFIABILITY OF THE MODEL

An important observation made by Koenker and Xiao is that
if, given Y;_, ..., Y;_1, the function

Br(u) =00 w) + 1 (WYi—1 +--- + (WY 2

is strictly increasing in u, then B;(t) is the conditional t-quan-
tile of Y; given Y;_, ..., ¥;_1. Because the conditional T-quan-
tile is identifiable under some mild conditions, the identifiability
condition becomes that with probability 1, the QAR model gen-
erates at least (p + 1) linearly independent vectors of form
Y,=(,Y—1,...,Yi—p)T. In other words, letting

T ={t: B;(u) is strictly increasing in u}, 3)

there are at least (p + 1) distinct time points #; € 7 such that
Y, are linearly independent for each realization. A natural and
open question is what kind of population would generate, with
probability 1, the samples that satisfy the foregoing condition.

The aforementioned identifiability conditions are hard to
check. However, they are needed not only for connections to the
quantile regression, but also for identifiability. To see this, look
at the specific case where p = 0, in which Y; = 6y(U,). Clearly,
6o (-) is the quantile function of Y; only when 6y(-) is monotone
increasing. When this condition is violated, the model is not
necessarily identifiable. For example, Y; = |U; — .5| and Z; =
U;— .51(U; > .5) have identically the same distribution but very
different 9y(-).

We note that the QAR( p) model

Y: =00(Up) + 01 (U Yt + -+ 6,(U) Y, = 0(U)'X,
is not differentiable from the model
Y, =0(1-Up'X,

where X; = (Y,_1, ..., ¥—p)T. Thus if 8(7) is a solution, then

sois @(1 — 7).
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3. FITTING AND DIAGNOSTICS

Koenker and Xiao estimate the coefficient functions 6(t)
with the quantile regression

rr;}an(Y, - X/0). )

This convex optimization usually exists. The resulting esti-
mates @ (t) are consistent estimates of the parameter

0*(t) = argmin Ep, (Y; — X 9) 3)
6

under some mild conditions. Without some technical condi-
tions, #*(7) and 6(t) are not necessarily the same. This is ev-
idenced by the example given in the previous section in which
0*(t) = t/2 with no ambiguity, whereas 6(t) = |t — .5| or
T —.5I(t > .5).

The foregoing argument suggests that the results of Koenker
and Xiao should replace 0(t) by 6*(z) unless the conditions
under which they are identical are clearly imposed. If the pri-
mary interest is really on 6(z), then the conditional quan-
tile regression should be replaced by the restricted conditional
quantile regression (RCQR),

rr})inZl(t eTp: (Y, —X9). (6)

This avoids some samples in which the monotonicity condi-
tion is violated that create inconsistent estimators. However, the
set 7 is unknown and depends on the value at another quan-
tile 7. This creates some difficulties in implementation.

One possible way out is to replace 7 by one of its sub-
sets. For example, if all 0;(-)’s are monotonically increasing,
then we can replace 7 by the subset in which all compo-
nents of X; are nonnegative. Another possibility is to use (4)
to get an initial estimate and then check whether the functions
{,3,(1), t=1,...,T} are strictly increasing at some percentiles
(e.g., T =.05,.1,.15,...,.95). Delete the cases in which the
monotonicity is violated and use RCQR (6). The process can
be iterated.

(a)

0 0.2 0.4 06 0.8 1

Journal of the American Statistical Association, September 2006

To illustrate the problem using the conditional quantile re-
gression (4) and to address the issue of identifiability, we gen-
erate 2,000 data points from the QAR(1) model

Y, =d (U, + (1.8U;, — 1.7)Y,_;. 7

Hence we have 6y(t) = ®~!(¢) and 6;(r) = 1.8t — 1.7. Fit
the data using (4) and (6). The resulting estimates are de-
picted in Figure 1. The estimates (dot-dashed curve) obtained
using RCQR (6) are very close to the true coefficient functions
(thin solid curve), whereas the conditional quantile method (4)
results in estimates (dashed curve) far away from the true
functions. Indeed, the latter estimates are for the functions
05 (7) and 0] (t) defined by (5), which were computed numer-
ically and depicted in Figure 1 by the thick solid curve. This
example shows that even if monotonicity conditions are not ful-
filled at all ¢, the coefficient functions can still be identifiable
and consistently estimated, but the conditional quantile regres-
sion estimate, defined by maximizing (4), can be inconsistent.

A related question is how robust the fitting techniques are
to model misspecification. For example, if the data-generating
process is FCAR (1) without observing U, but we still use the
conditional quantile regression (4) or its modification (6) to fit
the data, how robust is the quantile estimate? To quantify this,
we simulate the 2,000 data points from the model

Y, =d N U) + (85 + 25U, Y1 + &, 8)

where &, ~ N(O, 02). Figure 2 shows the plots for small noise,
o = 0; moderate noise, o = .8, and relatively large noise,
o = 2. The fitting techniques are very sensitive to the noise
level. The estimates differ substantially from the true coefficient
functions for even moderate o = .8.

Checking monotonicity of B:(t) is one aspect of model diag-
nostics. Another aspect is to check whether the distribution of
U, = ,3[1 (Y;) for t € T is uniform. There are many approaches
to this kind of testing problem, including the Kolmogorov—
Smirnov test and visual inspection of the estimated density.
For example, one can create the normally transformed data
Z, = @‘1(17,), then use the normal-reference rule of the ker-
nel density estimate to see whether, the transformed residu-
als {Z;} are normally distributed. Alternatively, one can use the
quantile—quantile plot to accomplish a similar task.

(b)
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Figure 1. Estimates of 6y(t) = @~ "(zr) (a) and 6;(t) = 1.8t — 1.7 (b) in Model (7). The thin curves are the true coefficient functions
6o(t) and 64 (), the dashed curves are the estimates obtained by using conditional quantile regression (4), the dot-dashed curves are the es-
timates obtained by using restricted conditional quantile regression (6), and the thick solid curves are 85 (t) and 6 (t ).
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Figure 2. The Influences of the Error ¢ on the Estimation of 6y(r)= ®~(t) (a) and the Estimation of 04 (t) = .85+ .25t (b) in Model (8) for
Different Noise Levels o [(a) —, true; i, 0 =0;===-,0=.8; ==, 0 =2. (b)—, true; —,0=0,=-==,0=.8, ==, 0 =2].

For the data generated from (7) used in Figure 1, Figure 3 the RCQR method (6) is uniformly distributed. These results
presents the histograms of U; and the quantile—quantile plots are also supportive of our previous points.
of Z. From these plots, we can see that the distribution of Note that when the data are generated from model (1) with-
l% = ,3f ! (Y;) for t € T by using the conditional quantile re- out observing Uy, the model still can be identifiable when the
gression method (4) is not uniform, whereas U, obtained using  density f; of innovation &; is known. The problem is more com-
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Figure 3. Histograms of U; and Quantile—Quantile Plots of Z;. (a) Histogram plot of U; = ﬁ[ (V) for t e T, where Bi(z) is estimated using the
conditional quantile regression (4). (b) Quantile-quantile plot of @~ (U; ) versus the standard normal distribution, where Uy is the same as in (a).
(c) and (d) The same as (a) and (b), but with restricted conditional quantile regression (6) as the estimation method.
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plicated but similar to a deconvolution problem. The estimation
procedure can be quite complicated. To see this, note that

P(Y; <alYi-1,...,Yi—p) = P(B(Up) + & < a)

:/‘Bt_l(a—x)fg(x)dx.

Thus letting Q;(7) be the conditional t-quantile, we have

/ﬂt_l(Qt(T) —x)fe(x)dx=rt.

Let us denote the solution by Q;(t) = h(B:(-), ) for some func-
tion h. Then the coefficient functions can be estimated by min-
imizing a quantity similar to (6),

1
min [ 301 Thpe(i = h(pi (). 1) dr,
t

where 0(-) and S;(-) are related through (2). This is indeed a
complicated optimization problem. The method of Koener and
Xiao is a specific case of this method with &, = 0.

4. CONCLUDING REMARKS

Koenker and Xiao have developed a nice scheme for condi-
tional quantile inference and made insightful connections with
the QAR model. However, the issues of identifiability and pos-
sible misspecification of models suggest that extra care should
be taken in making this kind of link. In particular, the condi-
tional quantile method does not always produce a consistent
estimate for the random-coefficient functions 6(-) when the
monotonicity conditions are not satisfied. Further studies are
needed.

Keith KNIGHT
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Comment

First, I would like to congratulate the authors for a truly in-
teresting and stimulating article. They have presented a very
elegant methodology that should prove useful in many disci-
plines in which time series analysis is used. I find myself with
really nothing to criticize; however, I comment on two issues:
(a) the relationship between QAR( p) and AR( p) processes and
(b) asymptotics for estimation in the infinite-variance case.

1. QAR VERSUS AR

QAR processes appear to be a very useful complement to
AR processes, particularly in identifying local behavior in time
series having different structure than the global behavior. How-
ever, viewed under the lens of classical time series analysis, the
two processes are quite similar. In particular, it is interesting to
note that the autocovariance function of a stationary QAR( p)
process is simply that of a stationary (fixed) parameter AR( p)
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process; we have
i =00(Up) +601(UDyr—1 + -+ + 6,(UDyi—p
= E[01(UD1y—1 + - - + E[0,(UD1y—p + Vi,
where
Vi =60(Up) + {61(Uy) — E[6: (U 1}y
+ -+ {6,(Up) — E[6,(UD}yi—p-

It is easy to verify that {V;} is a sequence of uncorrelated
(but not independent) random variables. Thus classical model
identification techniques based on autocorrelations, partial au-
tocorrelations, and so on will tend to identify data generated
from a QAR(p) process as a (fixed-parameter) AR( p) model.
Although this is probably acceptable from certain viewpoints
(e.g., prediction), it would also fail to identify structure in the
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