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This Supplementary Material contains additional technical details. In particular, we present
in Section B the proofs of all the lemmas and provide in Section C some further techni-
cal details on under what regularity conditions the asymptotic normality can hold for the
asymptotic expansion in Theorem 5. Section D contains the technical details on relaxing the
spike strength condition when considering scenario ii) of Condition 2 in place of scenario i),

as well as the proof sketch for results in Section 4.2.

B Proofs of technical lemmas

B.1 Proof of Lemma 1

Let x = (w1, ,2,)" and y = (y1,--- ,yn)? be two arbitrary n-dimensional unit vectors.
Since W is a symmetric random matrix of independent entries above the diagonal, it is easy

to show that

X'Wy —x"EWy = Y wi(wiys +zm) + Y (wi — Bw) (@iy;) (A1)
1<i,j<n, i<j 1<i<n
and
52 = E(x'Wy—xTEWy)? = Z Ew?j(xiyj—l—xjyi)Q—i— Z E(wy;—Ews;)2xy?. (A.2)
1<i,j<n, i<j 1<i<n

Since w;; with 1 <14 < j < n and wy; —Ew;; with 1 <4 < n are independent random variables
with zero mean, by the Lyapunov condition (see, for example, Theorem 27.3 of Billingsley

(1995)) we can see that if

1
3 Z E|wij\3|xiyj + xjyi|3 + Z ]E|w“ — Ew”]3|1:lyl|3 — 0,
no1<i,j<n,i<j 1<i<n

then it holds that




Since by assumption maxi<; j<n |wij| < 1 and |[X||oc ||y |loc < sn, we have

1
= > ElwiPlaiy; +aul® + ) Elwi — Bwil?|zigi)?

n | 1<i,j<n,i<j 1<i<n
2
<3 > BlwglPlriy + 2wl + Y Blwi — Buw*lziyil®
no|1<ij<n,i<j 1<i<n

2s
< 573” Z E\wij|2|xiyj + :L“jyi’2 + Z E\wii — Ewii|2\xiyi]2 S 2, (A3)
1<i,j<n,i<j 1<i<n

which completes the proof of Lemma 1.

B.2 Proof of Lemma 2

The technical arguments for the proof of Lemma 2 are similar to those for the proof of
Lemma 1 in Section B.1. For the case of xT (W? — EW?)y, let us first consider the term

xTW?2y. Such a term can be written as

2
o wrwazgy =Y wewa(Ty+ mye) Y WSk
1<k,il<n 1<k,il<n, k>l 1<k,i<n
= Z wyiwit (Teyr + T1Yx) + Z Wi Wi (TRY + T1Yk)
1<kyil<n, k>1, k<i 1<kyil<n, k>1, k>i
2
+ Y www(TRy + TYr) Y WhTEY
1<i<k<n 1<k,i<n
= > wrwi (Tey + Tiyr) + > wirwp (Tiy + 1Y)
1<k,il<n, k>l k<i 1<kyil<n, i>l,i>k
2
+ Y wmwg(y  TyE) + > whTkYk
1<i<k<n 1<k,i<n
= Z wm‘(wk Z wayr + Yk Z Wy + T Z WrLYt + Yi Z wkm)
1<k<i<n 1<Il<k<n 1<I<k<n 1<I<i<n 1<I<i<n
2 2
+ Z Werwr (Tryr + T1yx) + Z Wi (TeYr + Tiyi) + Z Wick Tk Yk (A4)
1<I<k<n 1<k<i<n 1<k<n

Then it follows from (A.4) and the independence of entries wy; with 1 < k < i <n that

Ex?W?y = Z Ewg; (xryr + 2iyi) + Z Ewi 21y
1<k,i<n, k<i 1<k<n

To ease the technical presentation, let us define some new notation wy; = 2~ wgs, and



a,%k = Ew,%k. We can further show that

T (w2 2
(W2 —EW?)y = >y [iﬂk ST owayitye Y, wam+xi >, wwy
1<k,i<n, k<i 1<i<k<n 1<I<k<n 1<l<i<n

+ Yi Z wrzy + Ewgi (2, + xkyi)] + Z [(w,%l- — o) (zryr + Tiy;)
1<I<i<n 1<k i<n, k<i

+2(wiy — o) (@kyx + xiyi)] + > 2wk — Ewpr) (!L‘k > way
1<k<n 1<i<k<n

+ Yk Z wklu’vz), (A.5)

1<I<k<n

where O']%i = Ew,%i denotes the variance of entry wy; as defined before.

We next define a o-algebra F; = o{toy,--- ,10;}, where w; = wy; with t = k+271(1 - 1)
and 1 < k <[ < n. Clearly we have t < 2_1n(n + 1). In fact, there is a one to one
correspondence between t < 27 'n(n+1) and (k,[) with k& < I. Suppose that such a statement
is not true. Then there exist two different pairs (k1,1) and (kz2,l2) with 1 < k; <13 < n and
1 < ky <y < n such that

Ih1(l; —1 Ia(ls —1
g i =D (1) (A.6)
2 2
It is easy to see that we must have k1 # ko and l; # ls. Without loss of generality, let us
assume that [; < ly. Then by (A.6), it holds that
la(la — 1)  ULi(l3 —1)

— =k —ky <k —1.
5 5 1— K2 S K1

On the other hand, since I1 < Iy we have

ol B _
2e=1) hh=D  hh+D) hlh=1) o,
2 2 2 2

which contradicts the previous inequality. Thus we have shown that there is indeed a one to
one correspondence between ¢ < 27 n(n + 1) and (k,[) with k < [.

Assume that t; < to with t; = ky +271(l1 — 1) and t3 = ko + 27 !5(I3 — 1). Then using
the similar arguments we can show that {1 < [y and further k1 < ko when I; = l». This
means that for t = k£ +271(l — 1) with 1 < k <1 < n, we have F; = o{toy,--- ,t;} =
a{w,-j 1<i<j<lorl<i<k<j=I}. With such a representation, we can see that the
expression in (A.5) is in fact a sum of martingale differences with respect to the o-algebra

Fry2-1ii—1)- This fact entails that for 1 <k <i <mn,
E [(wkz‘ — Ewpi )b + (wii - Ewl%i)cki|Fk+2—1i(i—l)—l] =0,

where by; = x, Zl§l<k§n Wiyl + Yk Zl§l<k§n WX+ T4 Zl§l<i§n WY1 +Yi Zl§l<i§n Wi T+



(1 — 0p) Ewii (ziyx + xy;) with 0x; = 1 when k =i and 0 otherwise, and cx; = xxyr + xiy;.

The conditional variance is given by

Z E { [wribgi + (w; — oii)%]Q ’fk—f—Q*li(i—l)—l}

1<k,i<n, k<i
2 2 2
+ ) E { [(wrk — Bwrr)brr + 2(wi — oiik)Chr] |~7:2—1k(k+1)71}
1<k<n
_ 212 19 Dy Crs i A7
= OjeiOk;i + VribriCri + KkiChis (A7)
1<k,i<n, k<i 1<k,i<n, k<i 1<k,i<n, k<i

where vy, = ]Ew,%i and kp; = ]E(w,%l — O',%Z-)Q for k # 1, and v = Q(Ew,%k — azk]Ewkk) and
KLk = 4E(w,%k - O']%k)Z.

The mean of the random variable in (A.7) can be calculated as

ey =E(AT) = ) [Fﬂki(mkyk o)’ +on Y oo+ yea)’
1<k,i<n, k<i 1<l<k<n

ok Y onlwiy+ ym)z} + > oh(l = ki) [E(wi + wi))?
1<I<i<n 1<k, i<n, k<i

X (zyi + Tig)” (A.8)

Moreover, the variance of the random variable in (A.7) is given by

kxy = var(A.7T) = Z ]E{ [0212'1(21311'1 — ]Ez,%lil)

1<k ,i1,k2,i2<n, k1 <i1, k2 <is
2 2 2
+ 27}61@'1 (xk'lyk'l + xiyi)zklil] [ngig (Zkziz - Ezkgiz)

+ 2Ykgin (Lo Yk + TiYi) iy | }, (A9)

where zp; = 37y < Wit (TRl +YrT) + 301 <1ci<p Wht (@it +yiwn) + (L= 0i ) Ews (wyn + 2 31)-
Let us recall the classical martingale CLT; see, for example, Lemma 9.12 of Bai and
Silverstein (2006). If a martingale difference sequence (Y;) with respect to a o-algebra F;

satisfies the following conditions:

S B2 Fin) P
a) ST Ey? — 1,
T EIYRI(Yi|// L EY2|>e€)] T EYA
t=1 t t=1 t 1= < t=1 t
b) ST oy < 35T vy — 0 for any € > 0,

T
then we have —==t2t_ 7, N(0,1) as T — oo, where I(-) denotes the indicator function.

/~T
Zt:l IE}/t2

It follows from the assumption of m,lc/ ;,1 < sx,y that

(A7) p
E(AT) "

which shows that condition a) above is satisfied. Moreover, by the simple fact that for any



fixed i, EwZy? < 1, and the assumptions that sxy — 00 and ||x/|oo||¥lcc — 0, we have

Z {wm[ Z Wiyl + Yk Z Wi T + T Z WY

1<k,i<n, k<i 1<Il<k<n 1<l<k<n 1<i<i<n
4
+ui Y wkzxz—kEwn(Iiyk-kayi)” + ) E[Z(Wkkz_Ewkk)
1<I<i<n 1<k<n
4
Z WriYt + Yk Z wkmﬂ
1<l<k<n 1<i<k<n
+ Y {Elwh - o) e+ 2]+ E[(wh - of) ey + mi)] '} < sk,
1<k i<n, k<i

which entails that condition b) above is also satisfied. Therefore, an application of the

martingale CLT concludes the proof of Lemma 2.

B.3 Further technical details on conditions of Lemma 2

Let us gain some further insights into the technical conditions in Lemma 2. Define ay; =

zky + yro; and note that k;; = E(w 2- — -2-)2 = Ew?- — ij. By the assumption of |w;;| < 1,
it is easy to see that 0 < k;; < Eww < Ew = 012] Then we can show that the random

2

variable in (A.7) subtracted by its mean s

can be represented as

2 _ 2 2 2y 2 2 24 2
(A.7) — Sxy = Z Uk;i[ Z (w; — oj)ag + E (Wi — o) aq
1<k, i<n, k<i 1<l<k<n 1<l<i<n
+ § Wity Wily Akly Akly + Z Wkl Wiy Qily a”ilg:|
1<y, lo<k<n, 1 #l2 1<y l2<i<n, [1 #l2
2
+2 Z Oji Wily Wiy Okly Gily

1<k,i<n, k<i, 1<l <k<n,1<ly<i<n

+2 Y [vkiakk + ki (1 — Oki) B < > waaw+ Y wkl%l) (A.10)

1<k,i<n, k<i 1<I<k<n 1<I<i<n



By (A.10) and (A.31), we have

ey =E[(An -2, <c{B] Y ok Y wh-ohat

1<k,i<n, k<i 1<i<k<n

fEY o Y whoohad] B Y ok X wau,

1<k,i<n, k<i  1<l<i<n 1<ki<n, k<i  1<lylo<k<n,li#l

2 2
2
X Qg ak@) + E( E Olei § Wi, Wiy Gil, ai12>

1<k, i<n, k<i 1<ty ,l2<i<n, l1 #l2

2
2
+ E( E Tjoi Wity Wkiy Okl ailz) +E E [Yriaki
1<k,i<n, k<i, 1<l <k<n, 1<ly<i<n 1<k,i<n, k<i

+ ogiaki(1 — Oki) Ew“< > waam+ Y wkzlazl)}

1<i<k<n 1<i<i<n

SC{( > O’iif( > magt+ Y nmafl)

1<k,i<n, k<i 1<l<k<n 1<l<i<n

2 2 2 2
+ E Ok1i0koiTily Tily Ok1ly Ok1la Akoly Ckolo
1<k ko l1,lo<n, l1#l2, 11 <k1,l2<ko

2 92 2 2
+ Z Oki1 OkiaOkly Okly Virly Qiylp Qigly Figly
1<k i1,02,l1,l2<n, l1 #l2<min{i1 iz}

2 2 92 9 2
+ E OkiTily Okly Okly Qily
1<k,il1,lo<n, k<i,li <k, l2<i

+ > {vake + okiadi (1= 6k [E(wii + wee)]? < > ohap+ Y Jklazl)}

1<k, i<n, k<i 1<l<k<n 1<i<i<n

= O {noy x5yl } (A11)

where C' is some positive constant.

Given [|X]|oo||¥]|coc — 0, it follows from (A.8) that

Siy= > [ﬁki(mkyk- taw)®+ Y onlaey + yrw)”
1<k, i<n, k<i 1<i<k<n
+ Z oy + ym)ﬂ
1<i<i<n
> omin Y { S @ty + > (wwt yz‘wl)2]
1<k,i<n, k<i 1<I<k<n 1<I<i<n
> colin, (A.12)
where 02 . is defined in Condition 3. Then we can exploit the upper bound on kx .y in (A.11)
and the lower bound on s%  in (A.12) to simplify the conditions of Lemma 2, which can be
reduced to
o [1x[136 1y 113
1%l oo ||¥ ]| o0 — O, e — 0, and o2, ,n — oco. (A.13)
mln

Therefore, the conclusions of Lemma 2 hold as long as condition (A.13) is satisfied.



B.4 Proof of Lemma 3

In view of the definition of the function fi(z) defined in (10), we have

fr(2) = dk{R(vk, Vi, 2) — R(Vi, V_g, 2) [D:i +R(V_g, V_g, Z)] -1

* R(V_g, Vi, z)}'. (A.14)

For z € [ag, by, it follows from Lemma 5, Condition 2, and the definition of R in (6) that

L
HR(V—]{,‘)V—ka) 4 Z—lIH — H—Zz_(l'f‘l)VTkEWlV_k
=2
L
<3 HVTkEWlV_kH — 0(a2]27%). (A.15)
=2

Without loss of generality, we assume that k& # 1. For [ such that |d;| > |dg|, by (A.15) the
diagonal entry of D:l,lg + R(V_g, V_g, z) corresponding to d; is given by

it =27+ 0(aq|2|7%) = (2 — di) /(2d)) + O(ag|2| 7).

By Condition 2, there exists some positive constant ¢ such that max{|ag|, |bx|} < (1 —¢)|d].
It follows that |(z —d;)/(zd;)| > ¢/|z| and thus |(z — d;)/(zd;) + O(a2|z|~3)|7! = O(z|). For
the remaining diagonal entry with |d;| < |dk|, there exists some positive constant ¢; such
that min{|ag|, |bx|} > (1 + c1)|d;| and similarly we have |(z — d;)/(zd;) + O(a2|z|73)|7! =
O(|2|). Thus it follows from (A.15) that the off diagonal entries of D~} + R(V_g, V_j, 2)

are dominated by the diagonal ones, leading to
[+ ROV Vo) | = 02D (A.16)

for all z € [ag, by].

Next an application of Lemma 5 gives

L
[+1 1 -
R (Vi, Vi, 2) = Z WV;{Elek =3 +0(a2|z|™).

1=0, 11

By (A.14) and Condition 2, we have
_ -1 ! _ _
{R(Vk,V—k,Z) (D7} + R(V_g, V_g, 2)] R(V—kavkaz)} = O(ap|2|7%) = o(ad]2|™*).
Thus in view of (A.14), it holds that

F(2) = diz2[1 + o(1)] (A.17)



for z € [ak, bg]. We can see from (A.17) that fi(z) is a monotone function over z € [ay, bg]
when matrix size n is large enough.

Now recall that
_ —1
fre(dy) = 1+dy {R(VmVIw dr) = R(Vie, Vi, di) [DZp + R(V_p, Voo di) ]| R(V_, Vi, dk)} :

By Lemma 5, we have

L
1
1+ dR(Vi, Vi, dg) =1 — Z TV]ZEWZVk = O(Oz%d’;2)
1=0,1#£1 k
and
_ ~1 _
A R(vi, Vi, di) [DZ4 + R(V_i, Voo di)] T R(V g, Vi, diy) = O(0dy ).

Thus it holds that fr(dx) = O(a,%df) = o(1). Noticing that the derivative f;(z) =
dpz"2[1+0(1)] ~ dpz=2 ~ |di]~! and by the mean value theorem, we have fy(ay) ~
o(1)+ |d| " (ar — di) and fi(br) ~ o(1) + |dg| =L (bx, — dy.), where ~ represents the asymptotic
order. Therefore, we see that fi(ax)fr(br) < 0 and consequently the equation fx(z) = 0
has a unique solution for z € [ag, by, which solution satisfies that ¢ = dj + o(dy). This

completes the proof of Lemma 3.

B.5 Proof of Lemma 4

The asymptotic bounds characterized in Lemma 4 play a key role in establishing the more
general asymptotic theory in Theorems 4 and 5. We first assume that all the diagonal entries
of W = (w;j)1<i j<n are zero, that is, w; = 0. The general case of possibly wy # 0 will
be dealt with later. The main idea of the proof is to calculate the moments by counting
the number of nonzero terms involved in E(x” W'y — Ex”W'y)2, which is a frequently used
idea in random matrix theory; see, for example, Chapter 2 of Bai and Silverstein (2006).
An important difference is that bounding the order of E(x? W'y — Ex"W'y)? by simply
counting the number of nonzero terms inside is too rough for our setting since the variances
of the entries of W can be very different from each other. Observe that the nonzero terms
of the variance involve the product of w;} with m > 2. We thus collect all such terms with

the same index ¢ but different index j, which means that we will bound >%_; Ejw;;|™ < a?

2

- can be

instead of using E|w;;|/™ < 1. Then we can obtain a more accurate order since «
much smaller than n in general. Our technical arguments here provide useful refinements to
the classical idea of counting the number of nonzero terms from the random matrix theory.

Let x = (z1,- ,2,)  andy = (y1,--- ,yn)? be two arbitrary n-dimensional unit vectors,



and [ > 1 an integer. Expanding E(x? W'y — Ex? W'y)? yields

E(x"Wly — ExTW'y)?

- Z E{ (xilwiligwizis Wiy Yigyy — By Wiy Wiy - - wizil+1yil+1)
1<ig i 1,J1 541 <,
isFigy 1, JsF#Ts41,1<s<1

X (51055 Wi+ Wiy Yieen = BEH W5 W+ Wiy Yjisa) } (A.18)

Let i = (i1,---,i;41) and j = (j1,--- ,Jiy1) be two vectors taking values in {1,--- ,n}*L.
For any given vector i, we define a graph G; whose vertices represent distinct values of the
components of i. Vertices is and 4541 of G; are connected by undirected edges for 1 < s < 1.
Similarly we can also define graph gj corresponding to j. It can be seen that G is a connected
graph, which means that there exists some path from is to iy for any 1 < s # s’ < n. Thus

for each product

E[ ($i1wi1izwi2i3 C Wi Y — Ezilwhizwiz% e wiliz+1yiz+1)

X (5105 Wi+ Wigega Yeen = BERWh 32 Wiy W2 Yiia) } (A.19)

there exists a corresponding graph gi U Qj. If gi U gj is not a connected graph, then the

corresponding expectation

E[ (wi1wi1i2wi2i3 Wi Yiy — IExilwi1i2wi2i3 T wizil+1yiz+1)
X (lewjljzwjﬂ:s Wi Y — Exj, wj, j, Wjajs - - Wy1g141 yjl+1) } = 0.

This shows that in order to calculate the order of E(x’ W'y — Ex"W'y)? it suffices to
consider the scenario of connected graphs gi U gj.

To analyze the term in (A.59), let us calculate how many distinct vertices are contained
in the connected graph Qi U Qj. Since there are 2/ edges in Qi U gj and Ew,y = 0 for s # 5,
in order to get a nonzero value of (A.59) each edge in G; U gj has at least one copy. Thus for
each nonzero (A.59), we have [ distinct edges in Qi U Qj. Since graph gi U Qj is connected,
there are at most [+ 1 distinct vertices in G U gj. Denote by S the set of all such pairs (i, j).

Combining the above arguments, we can conclude that

(A18) = § E[ ($i1wi1i2wi2i3 S Wiy Yipyy — B Wiy iy Wigig - - wiziz+1yiz+1)

(Lj)es
X (5105 Wi+ Wigieia Yieen — BLiWh 32 Wiajs - W2 Yji) ] (A.20)
For notational simplicity, we denote ji, - -+, jio1 by 449, -+ ,ig12 and definei = (i1, - , 4141,

Jis 5 Jier) = (i1, - -+, d2142). We also denote Gy U Qj by ]-"; which has at most [ + 1 distinct



vertices and [ distinct edges, with each edge having at least two copies. Then it holds that

|(A60)| == ) g E[(xilwiligwigig e w’iﬂ'l+1yil+1 - ]Exilwili2wi2i3 e wilil+1yil+1)
Fs, ies
1
X (xil+2wiz+2il+3wil+3il+4 w0 Wigqigipo Yinipe — Ewil+2wil+2il+3wil+3il+4 T wi21+1i21+2yi21+2)] ‘

< E , E‘xilwilizwiﬂs Wiy Yip 1 Tip o Wiy ody 3 Wiy gig * 7 w121+1i21+2yi21+2‘
Fi,1e8
1
+ § E‘xilwil’iQ’LUiQiS ©r o Wigig o Yig |E‘xil+2wiz+zil+3wil+3iz+4 ©r Wiy yigya Yisigo ‘ (A.21)

7. ies
1

Observe that each expectation in (A.61) involves the product of some independent ran-

dom variables, and x;, Wi, i, Wiyis * Wiip Yip oy AN T Wiy ig, s Wigygig g " Wiggy iy 0 Yig o

1

may share some dependency through factors w],' and w,?, respectively, for some wq, and

nonnegative integers mi and ms. Thus in light of the inequality
E‘wab‘m1E|wab|m2 S E|wab|ml+m2a
we can further bound (A.61) as

(A'61) <2 E E}xhwiﬂzwiﬂ:& W Yi 1 Tipg o Wiy oty 3 Wiy gty * 0

Fi,fes
X Wigy 4 yigoYiniyo ‘ (A.22)

To facilitate our technical presentation, let us introduce some additional notation. Denote
by 1 (21 +2) the set of partitions of the edges {(i1,12), (i2,73), - - , ({2141, 921+2) } and ¥>2(20+
2) the subset of 1(2] + 2) whose blocks have size at least two. Let P(i) € >2(20 4 2) be
the partition of {(i1,42), (i2,43), -+ , (42141, 921+2)} that is associated with the equivalence
relation (is,,%s,+1) ~ (is,,%s,+1) Which is defined as if and only if (is,,%s;+1) = (4sy,%sy+1) OF
(is1,%sy4+1) = (isy+1,%s,). Denote by ]P(T)] = m the number of groups in the partition P(i)
such that the edges are equivalent within each group. We further denote the distinct edges
in the partition P(i) as (s1,s2), (53,54), -, (S2m—1, S2m) and the corresponding counts in
each group as 11, -+ , T, and define s = (s1, s2, -+ , S2, ). For the vertices, let ¢(2m) be the
set of partitions of {1,2,---,2m} and Q(s) € ¢(2m) the partition that is associated with the

equivalence relation a ~ b which is defined as if and only if s, = s;. Note that so;_1 # s2;

10



since the diagonal entries of W are assumed to be zero for the moment. Then we have

E E‘*Thwhizwizis © Wigd g Yig Tigyo Wiy 0ty s Wiy giyg * 7" Wiggqqdnigo yi2z+2‘

.7:';,168
1

< Z Z Z Z |xi1yil+1xil+2yi2l+2|

1<|P(l)|=m<i 1 with partition P(1) Q(S)EP(2m) S with partition Q(S)

<81, ,8 <n
0 Ty, rm>2 =818 2m >
Pl)evsq(t2)

m
X [Tl weny_y s, |- (A.23)

j=1
We denote by Fg the graph constructed by the edges of s. Since the edges in s are the
same as those of the graph .7-"}, we see that Fg is also a connected graph. In view of (A.63),

putting term |z;, ¥, Ti),,Yiy .| aside we need to analyze the summation

m
r
E H]E’wSQj—ISQj| 7.

S with partition Q(g) Jj=1
1<sq1,,8gm<n
If index soi_1 satisfies that sop_1 # s for all s € {s1,--+ , S92} \ {S2k—1}, that is, index sox_1
appears only in one ws,. s,;, we call sop_1 a single index (or single vertex). If there exists

some single index sop_1, then we have

m
r
E | | j
E‘w52j7152j ‘

S with partition Q(g) Jj=1
1<s1,,89m<n

m n
T Tk
S E HE‘wSQj—lst’ ! § : E‘ws2k7152k : (A'24)
S\ {s2_1} with partition Q(&\{sax_1}) j=1 Sorp_1=1

1<sy, 82K —2:52k+2:52m <1
sgp=s; for some 1<j<2m

Note that since graph Fg is connected and index sgx_1 is single, there exists some j such

that s; = sgi, which means that in the summation ) | 1 Elws,, s, |™ index sgf, is fixed.

n
S2k—1=

It follows from the definition of a,, |w;i;| < 1, and ry > 2 that

n

Tk 2
z : E‘w52k7152k| S Qp.

Sok—1=1

After taking the summation over index sor_1, we see that there is one less edge in
F(3). That is, by taking the summation above we will have one additional a2 in the upper
bound while removing one edge from graph F(s). For the single index s, we also have
the same bound. If sox,—; is not a single index, without loss of generality we assume that

Sak;—1 = S2p—1. Then this vertex sorp_1 need to deal with carefully. By the assumption of

11



|w;j| <1, we have
Elwag—1 28" |wak, —1,25, |™ < Elwag—1,25|"™" + Elwag, —1,25, |1

Then it holds that

m
Z HE|wS2j—1S2j "

S with partition Q(S) Jj=1
1<sq1,",8m<n

m

S Z H E{w52j—152j "

é\(32k_1,52k1_1) with partition Q(g\(SQk—LSle—l)) J=1,j#k
1<sy,,som<n

m

+ > I Elwsy, a7 (A.25)

S\(s2k—1-52; —1) v;igtil}jfift,i:;ir:grfg\(s2kil,Sleil)) J=1,j#k1
Note that since Fgz is a connected graph, if we delete either edge (sax—1,521) or edge
(S2k;—1,82k,) from graph Fg the resulting graph is also connected. Then the two sum-
mations on the right hand side of (A.25) can be reduced to the case in (A.24) for the graph
with edge (Sax—1, Sak) Or (S2k,—1, S2k, ) removed, since sgi_1 Or Sok,—1 is a single index in the
subgraph. Similar to (A.24), after taking the summation over index so_1 or sgr, 1 there
are two less edges in graph Fg and thus we now obtain 202 in the upper bound.

For the general case when there are m; vertices belonging to the same group, without
loss of generality we denote them by wap,, -+, Wab,,, - If for any k graph Fg is still connected
after deleting edges (a,b1),- -, (a,bk—_1), (a,bg11), -, (a,by,), then we repeat the process
in (A.25) to obtain a new connected graph by deleting k — 1 edges in wgp,, - - s Wab,,, and
thus obtain ka2 in the upper bound. Motivated by the key observations above, we carry out

an iterative process in calculating the upper bound as follows.

(i) If there exists some single index in S, using (A.24) we can calculate the summation
over such an index and then delete the edge associated with this vertex in Fg5. The
corresponding vertices associated with this edge are also deleted. For simplicity, we

also denote the new graph as Fg. In this step, we obtain a? in the upper bound.
(ii) Repeat (i) until there is no single index in graph Fg.

(iii) If there exists some index associated with £ edges such that graph Fy is still connected
after deleting any k — 1 edges. Without loss of generality, let us consider the case of
k = 2. Then we can apply (A.24) to obtain a2 in the upper bound. Moreover, we

delete k edges associated with this vertex in JFg.
(iv) Repeat (iii) until there is no such index.

(v) If there still exists some single index, turn back to (i). Otherwise stop the iteration.

12



Completing the graph modification process mentioned above, we can obtain a final graph

Q that enjoys the following properties:
i) Each edge does not contain any single index;
ii) Deleting any vertex makes the graph disconnected.

Let SQ be the spanning tree of graph Q, which is defined as the subgraph of Q with the
minimum possible number of edges. Since SQ is a subgraph of Q, it also satisfies property
ii) above. Assume that SQ contains p edges. Then the number of vertices in SQ isp+ 1.
Denote by q1,- -, gp+1 the vertices of SQ and deg(q;) the degree of vertex ¢;. Then by the
degree sum formula, we have Zf;l deg(q;) = 2p. As a result, the spanning tree has at least
two vertices with degree one and thus there exists a subgraph of SQ without either of the
vertices that is connected. This will result in a contradiction with property ii) above unless
the number of vertices in graph Q is exactly one. Since [ is a bounded constant, the numbers

of partitions P(i) and Q(3) are also bounded. It follows that

(A.63) < Cdids > T Elwes o1, (A.26)

S with partition Q(g) j:l
1<s1,-,89, <n

where dx = x|/, dy = ||X||oo, and C'is some positive constant determined by /. Combining
these arguments above and noticing that there are at most [ distinct edges in graph Fg, we

can obtain

2 52 201—2
(A4.26) < Cd2d2a? > E|wsyp, 1505 I
1< S0kg 1,52k <M, (S26g— 1,52k )= Q
2 32 21
< Cdidyonn.

Therefore, we have established a simple upper bound of O{dxdyaﬁlnl/ 2.

In fact, we can improve the aforementioned upper bound to O(al1). Note that the
process mentioned above did not utilize the condition that both x and y are unit vectors,
that is, [|x|| = |ly[| = 1. Since term |z, ¥;,, i, ,Yiy,. | is involved in (A.63), we can analyze
them together with random variables w;;. There are four different cases to consider.

1). Two pairs of indices i1, 941, 942, G242 in .7-"1 are equal. Without loss of generality,
let us assume that i3 = i;41 # 442 = d2142. Then it holds that |z Y, T, Yiy..| =

|y Yir Ty o Vi o] < 4722 + yi)(;r?Hz + yi2l+2)' Let us consider the bound for

m
Z 1'221 x121+2 H E‘ws2j—182j 7. (A.27)
j=1

S with partition Q(g)
1<s1, ,89m<n

We assume without loss of generality that i1 = s; and 4;,9 = so for this partition. Then the

13



summation in (A.27) becomes

m

2 .2 T

Z LT,y HE‘w52j7152j 7.
=1

S with partition Q(s)
1<s1,,89m<n
By repeating the iterative process (i)—(v) mentioned before, we can bound the summation

for fixed so and obtain an alternative upper bound

n n
Z azglE‘wsls2|” < Z xgl =1
s1=1 s1=1
since X is a unit vector. Thus for this step of the iteration, we obtain 1 instead of a2 in the
upper bound. Since the graph is always connected during the iteration process, there exists
another vertex b such that wg,, is involved in (A.27). For index s2, we do not delete the
edges containing s, in the graph during the iterative process (i)—(v). Then after the iteration
stops, the final graph Q satisfies properties i) and ii) defined earlier except for vertex ss.
Since there are at least two vertices with degree one in SQ, we will also reach a contradiction
unless the number of vertices in graph Q is exactly one. As a result, we can obtain the upper
bound

(A.63) < Ca?~* Z Ex§2}w52b|r < Ca?l—2 (A.28)
1<s9,b<n, (SQ,b):Q

with C' some positive constant. Therefore, the improved bound of O(al!) is shown for this
case.

2). Indices i1, ij11, {112, i2742 In .7-'; are all distinct. Then by the triangle inequality, we
have 4, Yiy, , Tipy o Vigo| < 47127 + x?Hz)(y?lﬂ + yi221+2). Thus this case reduces to case 1
above.

3). Indices i1, 9141, 142, lo142 In F are all equal. Then it holds that Ty Yiy o Tig o Wiy | =
a2 y? < 7. We see that there are at most [(2/ +2 — 2)/2] = [ distinct vertices in the chain
H?l:_ll w;,i,,, and for this case there are at most [ — 1 distinct edges in }—f’ where [-] denotes
the integer part of a number. Compared to case 1, the maximum number of edges in the

graph becomes smaller. Therefore, for this case we have

(A.63) < Ca2l > Ex? |ws,p|" < CaZ 72, (A.29)
1<s1,b<n, (sl,b):Q

where C' is some positive constant and we have assumed that i; = s; without loss of gener-
ality.
4). Three of the indices i1, 4141, 142, i2+2 in ]-"} are equal. For such a case, without

. . _ 2
loss of generality let us write |74 Y\ i, o Yioipo|l = |77, YiyYis,o|- Then there are at most
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[(2l + 2 — 1)/2] = [ distinct vertices in the chain Hil:_ll W;,i,,, and thus for this case there
are at most [ — 1 distinct edges in .7-"}. Therefore, this case reduces to case 3 above.

In addition, we can also improve the upper bound to O(min{dxal,, dyal,}). The technical
arguments for this refinement are similar to those for the improvement to order O(al™!)

above. As an example, we can bound the components of y by dy = ||y||c, Which leads to

2

irs1)/2. Then the analysis becomes similar to that for case 3

‘$ilyil+lxil+2yi2l+2| < d?,(l‘?l +x
above. The only difference is that the length of graph .7-"} is at most [ instead of I — 1. Thus

similar to (A.29), for this case we have

(A.63) < CdZap~? > Ex2, |ws,p|” < Cdiad), (A.30)
1<s2,b<n, (52,6)=Q

where C' is some positive constant and we have assumed that i; = s1 or z;,,, = s1 without
loss of generality. The other one can then be used to remove a factor of «,,. Thus we can
obtain the claimed upper bound O(min{dxa!,,dyal,}). Therefore, combining the two afore-
mentioned improved bounds yields the desired upper bound of Op(min{al; !, dxal,, dyal}).

We finally return to the general case of possibly wy; # 0. Let us rewrite W as W =
Wy + W, with Wy = diag(wi1, -+ ,wny,). Then it holds that

xIWly — ExTW'y = xT(Wy + W))ly — Ex? (W + W))ly.

Recall the classical inequality

E(X;+ -4 Xpn)? <m(EX? + .-+ EX2), (A.31)
where X1, -+, X,, are m random variables with finite second moments. Define a function
!
f(h) =W, (A.32)
=1

where the vector h = (hy,- -+, h;) with h; = 0 or 1. Then we have
T ! T e T 2
E[x"(Wo + Wh)ly — ExT(Wo + W1)'y] " = E{ 3" x"[/(h) ~ Ef(b)]y }
h

<o SR (n) ~Ef )y} (A.33)
h

This shows that we need only to consider terms of form E{x”[f(h) — Ef(h)]y}?, each of
which is a polynomial of Wy and W7.
As an example, let us analyze the term E(XTW1W6_1y — EXTW1W6_1y)2. Similar to
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(A.18), it can be shown that

E(x"W, W,y — Ex"W,; Wi y)?

= E E[ (xi1wi1i1wi1i2 Wiy Yi — Bz, wiyi, Wiyig + - wizflilyil)
1<iq,--,ip,01, 5 J <N,
isFig 1, JsFTs41, 1<s<l

X (@5 W1 Wi+ Wi Yy — BT W1 W - Wi ) } (A.34)
Repeating the arguments from (A.18)—(A.62), we can obtain

(A'34) <2 E E‘xilwilhwiliz Cr Wiy Yiy T Wi yi Wiggqigye * " Wigg_qig Yigy

Fz
1

<2 § E‘xilwiliQ Wi Y Lip Wipprigge " Wigg_qig Yig ‘

Fs
1

Comparing to (A.62), we can see that by replacing the diagonal entries with 1 in the expec-
tations, the number of edges in this graph is no more than the original one in (A.62). Thus

repeating all the steps before (A.34), we can deduce the bound
E(x"W Wiy — Ex" Wi W{ 'y)? = O(min{o"Y, dxo) d50ll}).

For the other expectations E{x”[f(h) —Ef(h)]y}?, by the same reason that W7 is a diagonal
matrix we can obtain a similar expression as (A.34) with the number of edges no larger than
the original one for E(XTW6y — ]EXTWBy)2. Thus all the technical arguments above can be
applied to E{x”[f(h) — Ef(h)]y}? so we can have the same order for the upper bound as
before. This shows that all the previous arguments can indeed be extended to the general

case of possibly w;; # 0, which concludes the proof of Lemma 4.

B.6 Proof of Lemma 5

The main idea of the proof is similar to that for the proof of Lemma 4 in Section B.5. We
first consider the case when all the diagonal entries of W = (wj;)i<i j<n are zero, that is,

wj; = 0. Then we can derive a similar expression as (A.18)

Txarls, E :
Ex W Yy = E (:vilwiliQwiQiS .. -wililﬂyil“) . (A.35)
1<iy, i1 <n
isFigy1, 1<s<l
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By the definition of graph G; in the proof of Lemma 4, we can obtain a similar expression
as (A.62)

[(A.35)] < Z E‘xi1wi1i2wi2i3 T

Qi with at most [I/2] distinct edges and [I/2] + 1 distinct vertices

X Wiy Yipq ‘ (A.36)

Using similar arguments for bounding the order of the summation through the iterative
process as for case 3 in the proof of Lemma 4 and noticing that |z, y;,,,| <27 (z} + yZH),

we can deduce the desired bound
Ex! Wiy = O(al ™), (A.37)

where the diagonal entries of W have been assumed to be zero.
For the general case of W with possibly nonzero diagonal entries, we can apply the similar

expansion as in the proof of Lemma 4 to get

Ex"(Wo + W)y =Y Ex"f(h)y, (A.38)
h

where W = W + W with W = diag(wi1,- -, Wny), and vector h and function f(h) are
as defined in (A.32). Since by assumption W7 is a diagonal matrix with bounded entries,

an application of similar arguments as in the proof of Lemma 4 gives
Ex" f(h)y = O(aj, ).

To see this, with similar arguments as below (A.33) let us analyze the term EXTW1W6_1y
as an example. Similar to (A.35), it holds that

T -1 § :
Ex* W 1 VVO Yy = E (xilwililwiliQ cee wil—lilyil) . (A39)
1<ig,- iy <n
isFigp1, 1<s<I—1

By the assumption of max;<;<p |wi;| < 1, we can derive a similar bound as (A.36)

‘(A,?)Q)‘ < Z E‘xhwhizwiﬂs T
gi with at most [({ — 1)/2] distinct edges and [(I — 1)/2] + 1 distinct vertices
X Wi i Yiy |- (A.40)

Since the number of edges is no more than that in (A.36), we can obtain the same bound

Ex"W, Wiy = O(alh).
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For the other terms in (A.38), by the same reason that W1 is a diagonal matrix with bounded
entries we can derive similar expression as (A.40) with the number of edges no more than that
in (A.36). Therefore, since [ is a bounded constant we can show that Ex” W'y = O(al™!)
for the general case of W with possibly nonzero diagonal entries. This completes the proof

of Lemma 5.

B.7 Lemma 6 and its proof

Lemma 6. The random matric W given in (1) satisfies that for any positive constant L,

there exist some positive constants Cr, and o such that

IP{HWH > O (log n)1/2an} <n°L, (A.41)

where || - || denotes the matriz spectral norm and o, = ||E(W — EW)?||'/2,

Proof. The conclusion of Lemma 6 follows directly from Theorem 6.2 of Tropp (2012).

C Further technical details on when asymptotic normality

holds for Theorem 5

We now consider the joint distribution of the three random variables specified in expres-
sion (116) in the proof of Theorem 5 in Section A.6. To establish the joint asymptotic
normality under some regularity conditions, it suffices to show that the random vector
(te[(W —EW) ey, — (W2 = EW?)Lyey ], tr(W —EW)viv]), tr((W —EW)Qy y 1. 1,))
tends to some multivariate normal distribution as matrix size n increases, where we consider
the de-meaned version of this random vector for simplicity. Consequently, we need to show

that for any constants ci, cg, and c3 such that c% + c% + c% =1, the linear combination

ctr[(W —EW) Iy ks, — (W2 —=EW?)Lyy 11, ] + cotr(W — EW)vivi)
+ cstr((W — EW)Qx7y7k7tk) (A.42)

converges to a normal distribution asymptotically. Define S = vkvg and let J, L, and
Q be the rescaled versions of Jxy k1., Lxykt,, and Qxy 4, , respectively, such that the
asymptotic variance of each of the above three terms is equal to one. Then it remains to

analyze the asymptotic behavior of the random variable

> wm‘{q [ S wilw+ Y wiLi + T+ (1= 0k) (L + Lik)Ewii}

1<k,i<n, k<i 1<i<k<n 1<i<i<n
+ (1 — i) (caShi + CSkai)} e Y, (i — o) (L + L), (A.43)
1<k i<n, k<i
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where A;; indicates the (i, j)th entry of a matrix A and 0z; = 1 when k = i and 0 otherwise.
Using similar arguments as in (A.7), we can show that (A.43) is in fact a sum of martingale
differences with respect to the o-algebra Fj o-1;;-1)—1- The conditional variance of the

random variable given in (A.43) can be calculated as

> U]%i{cl [ > wal+ Y wiLi + T+ (1= 0) (L + Lik)Ewii]

1<k,i<n, k<i 1<i<k<n 1<i<i<n
2
2 2
+ (1 — Ogi) (c2Ski + CSQki)} +d Y kki(Lek + L)
1<k, i<n, k<i

+20 Y (L + Lii){cl [ > wilm+ Y wiLi+ Ik
1<k,i<n, k<i 1<i<k<n 1<i<i<n

+ (1 — k) (Ligs + Lik)Ewii} + (1 — ki) (c2Ski + C3Qm‘)}- (A.44)

Moreover, the expectation of the random variable given in (A.44) can be shown to take the

form

ot Z {ng{ Z oL + Z oLy + I + (1 — 0pi) (L + Lik)Q(Ewii)2]
1<k, i<n, k<i 1<i<k<n 1<i<i<n

2 2 2 @2 2 2 2
+ Kki (Lgk + L) } +c; E 01iSki + 3 E 01 Qi
1<k,i<n, k<i 1<ki<n, k<i

+2 Z {Uzi(CQSki + c3Qy) (Liki + Lz‘k)Ewn}
1<k,i<n, k<i

+2c1ea Y wiSki(Lak +Lid) +2cics D WiQui(Lik + Lig)

1<k, i<n, k<i 1<k, i<n, k<i
+ 2coc3 Z U%iskiQki + 26% Z [/‘fki(ka + L) (Lg; + Lik)Ewii} . (A.4b)
1<k,i<n, k<i 1<k,i<n, k<i

Let us consider the following three regularity conditions.

i) Assume that the six individual summation terms in (A.45) tend to some constants
asymptotically. Then (A.45) tends to some constant C' asymptotically. Without loss
of generality, we assume that C' # 0; otherwise (A.43) tends to zero in probability.

ii) Assume that SD(A.44) <« (A.45), where SD stands for the standard deviation of a

random variable.

iii) Assume that

4
> Fém{E[ S wilim+ Y wii + ki + (1= 0k) (Lgi + L) Ewis
1<k, i<n, k<i 1<I<k<n 1<I<i<n
+ (1= 0ki) (Si; + Q%i)} + Y E(wi—op)* (L + La)* < 1. (A.46)
1<ki<n, k<i

We can see that conditions i) and ii) entail condition a) in the proof of Lemma 2 in Section
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B.2 below (A.9), while condition iii) entails condition b). Therefore, (A.43) converges to a

normal distribution asymptotically.

D Relaxing the spike strength condition and proof sketch for

results in Section 4.2

The main goal of this section is to show that all the results continue to hold when Condition
2i) is replaced with Condition 2ii), which is a weaker assumption on the spike strength. Thus
from now on, we will assume Condition 2ii) instead of Condition 2i). Moreover, we provide

the proof sketch for results in Section 4.2.

D.1 Replacing Condition 2i) with Condition 2ii)

Checking the proofs of our theorems, we can see that it is sufficient to show that the asymp-
totic expansion of XTG(z)y remains to hold under Condition 2ii). In other words, we need
to prove (76) and (108) under Condition 2ii). To accommodate the smaller magnitude of dx
in Condition 2ii), the key idea is to carefully examine the asymptotic expansions (76) and
(108) as L — oo. To this end, we choose L = logn and define ¢ = ¢/(1 + 27 1¢cg). Since

an < n'/?, we have the following improved version of inequality (66)

Oéngl(ClOgn)(LJrl)ﬂ _ aZ(Clogn)(L+1)/2 _ C(logn+1)/2,3/2
min{|aK"|bK|}L72 - (C/ logn)L72 — (logn)(lognfS)/QC/logan

—0 (A.47)

for any positive constant C'.
We first show that (76) holds with the choice of L = logn. In view of (75), it is sufficient

to establish the following two equations

o0

_ 1
Z z (21+2)XTle:OP(W) (A.48)
I=L+1
and .
> 2Bk —~EW))y =0, (’ ’3) (A.49)

1=2
for z € Q. In fact, (A.48) is a direct consequence of Lemma 6 and (A.47). In light of the
definitions of ax and by below (10), we can conclude that for any z € Qp, |z| > 4cia,, logn.
Thus we see that

{ a2 (4cy logn)?

P } is a decreasing sequence when [ is increasing for z € (. (A.50)
z
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Then it follows from Lemma 7 and (A.50) that

9
Z P 2l+2 Ewl)y 19) (
=2

S

I=vL
(4010210[721172 L )21 21—2

(4cylogn
CL Z | 2|22

|Z|21+2

9 afl(4cllogn)2vl°g" < C(4c1)%at (logn)® <<oil
|2|8(c/ log n)2VIesn—4 = | 2|8(¢! /(4cy ))2VIosn—4 2|8’

< C(logn)

and

VI VE
Y T(W_EWy | | < VLY || IR [XT(WI ~EW)y

=10 =10
l2l 20-2

< ovE 3 el

|2l+2
=10

ad((4e)’logn)!® _ ot
ERCI L=

(4c1/Togn)?a2l-2
<C\FZ 2242
1=10

< Clogn

Therefore, combining (A.51)—(A.53) yields (A.49).
To establish (108) with L = logn, we need only to prove (A.48) and
L .

> KT (WL —EW!)y = O(
=3

i

where the former has been shown before. By Lemma 7, we can deduce

9
ZZ_(2Z+2)XT(WZ _ EWZ)y — Op(

(A51)

2
L L
2
E [Z 5 2l+2) T Ewl)y < I Z ‘Z‘_(QH_Q)E [XT(WZ _Ewl)y
C

(A.52)

2

(A.53)

(A.54)

(A.55)

Thus (A.54) holds by combining (A.52), (A.53), and (A.55). This concludes the proofs of

the desired results.

D.2 Improvement of Lemmas 4 and 5 under Condition 2ii)

Lemma 7. For any n-dimensional unit vectors x and 'y, there exists some positive constant

C independent of | such that

2
E [x7 (W! —]EWl)y} < C(4erl)? (min{als !, dxaly, dyal, })2
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with | > 1 some positive integer and dx = ||X||co-

Lemma 8. For any n-dimensional unit vectors x and 'y, there exists some positive constant
C independent of | such that
‘EXTle‘ < C(2cl)lal, (A.57)

with [ > 2 some bounded positive integer.

D.3 Proof of Lemma 7

The proof of Lemma 7 is a modification of that for Lemma 4. Thus we highlight only the
differences of the technical arguments here. We work directly on the general case allowing

for Ew;; # 0. In view of (A.18), we have

E(x"Wly — ExTW'y)?

- 2 E[ (xilwilizwizis Wiy Yy — BT Wiyiy Wiy -+ wizilﬂyizﬂ)
1<iy, - stiq1,01, 0 Ji1<n
X (5105 5 Wi+ Wiesa Yieen = BEj W52 Wi+ Wiy Ui ) } (A.58)
Let i = (i1,---,i;41) and j = (j1,--- ,jiy1) be two vectors taking values in {1,--- ,n}*L.

For any given vector i, we define a graph G; whose vertices represent the components of i.
Vertices is and is11 of G; are connected by undirected edges for 1 < s <. Similarly we can
also define graph Qj corresponding to j. It can be seen that G; is a connected graph, which
means that there exists some path from is to iy for any 1 < s # s’ < n. One should notice
that here we allow for is = i541 or js = jsy1. Such relaxation will affect only the number
of pairs (i,j), but will not affect the main arguments of the proof which are similar to the

graph arguments for proving Lemma 4. Thus for each product

E[ (Scilwilizwizi:a W Y, — Exhwilizwizi;a Cr Wigdy gy yil+1)
x ($j1wj1j2 Wiags " Wipgip1 Yjipr — Ele Wiy jaWiagz *** Wyigjigq yjl+1) } ) (A-59)

there exists a corresponding graph G; U gj. If G; U gj is not a connected graph, then the

corresponding expectation

E[ (xi1wi1i2wi2i3 Wiy Yigyy — BT Wiy iy Wiy - - wiziz+1yiz+1)
X (wjle1j2wj2j3 S WG Yy — B Wi o Wings Wy yjz+1) } =0.
This shows that in order to calculate the order of E(XTle — IEXTWZy)Z, it suffices to
consider the scenario of connected graphs gi U Qj.

To analyze the term in (A.59), let us calculate how many distinct vertices are contained

in the connected graph G; U Qj. We say that (is,is41) € Gy is an efficient edge if is # is11.
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Since there are at most 2/ efficient edges in G; U gj and Ewgy = 0 for s # §', in order to get
a nonzero value of (A.59) each efficient edge in gi U gj has at least one copy. Thus for each
nonzero (A.59), we have at most [ distinct efficient edges in G; U gj. Since graph G; U gj is
connected, there are at most [ + 1 distinct vertices in gi U gj. Denote by S the set of all such

pairs (i,j). Combining the above arguments, we can conclude that

(A]'S) = E E[ (xilwi1i2wi2i3 e wilil+1yil+1 - E$i1wi1i2wi2i3 U wilil+1y’il+1)

(ijes
X (i W W Wi Vs — B Wi oW Wi Yi) | (A60)
For notational simplicity, we denote ji,- - , ji4+1 as j49, - ,ig+2 and define i = (i1, -+ , 4141,

Jis s Jigr) = (i1, - -+, d9142). We also denote G; U gj as .7-'} which has at most [ + 1 distinct
vertices and [ distinct efficient edges, with each edge having at least two copies. Then it
holds that

|(A60)| == ) g E[(xilwilbwigig o w’il’il+1y’il+1 - ExilwiliQwiQiS e wilil+1yil+l)
Fi,ies
1
X (xil+2wiz+2iz+3wil+3il+4 © WiggyqiogyoYiogpa — Ewiz+2wil+2iz+3wiz+3il+4 e wi21+1i21+2yi21+2)] ‘

< E E’$i1w11i2wi2i3 C Wiy Y Tigo Wit 3 Wiy i g "0 wi21+1i21+2yi21+2‘
F3, ies
1
+ E E‘xilwili2wi2i3 C W Yiga |E‘xil+2wil+2il+3wil+3il+4 C Wiy yigipo Yisgyo ‘ (A'61)

7. ies
1

Observe that each expectation in (A.61) involves the product of some independent ran-
dom variables, and ;Wi i, Wigig - - Wiyiy g Yigq and LigpoWipyoipysWipysiirg """ WigpyigrgoYisrgo

1

may share some dependency through factors w],' and w;?, respectively, for some wq, and

nonnegative integers m; and my. Thus with the aid of the inequality
IE|wab|ml]E|wab|m2 < E|wab|ml+m27
we can further bound (A.61) as

(A'ﬁl) <2 E E‘wi1wi1i2wi2i3 C Wigiy 1 Yig g1 Tip o Wiy oiy 1 3Wip gty 4a "0

Fs,ies
1

(A.62)

X Wiy yigy 12 Yioit2 ‘ .

To facilitate our technical presentation, let us introduce some additional notation. Denote

by (204 2) the set of partitions of the edges {(i1,72), (i2,43), - , (2141, 12142), Is 7 ls+1,S =
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1,---,2l + 1} and ¢>2(20 + 2) the subset of ¥(2] + 2) whose blocks have size at least two.
Let P(i) € 1h>2(20 + 2) be the partition of {(i1,4a), (io,i3), - , (i2141, f2142), is £ Gss1,5 =
1,---,20+ 1} that is associated with the equivalence relation (is,,is,4+1) ~ (isy,%s,+1) Which
is defined as if and only if (is,,is,41) = (isysls9+1) OF (isy,4s,4+1) = (isy+1,ls,). Denote

by |P(i)] = m the number of groups in the partition P(i) such that the edges are equiv-
alent within each group. We further denote the distinct edges in the partition P(T) as
(s1,82),(83,84), -+, (S2m—1, S2m) and the corresponding counts in each group as r1,- -, 7,
and define s = (s1,82, -+ ,S2m). For the vertices, let ¢(2m) be the set of partitions of
{1,2,---,2m} and Q(S) € ¢(2m) the partition that is associated with the equivalence re-
lation @ ~ b which is defined as if and only if s, = s;. Note that sy;_1 # s9; since in the
partition, we consider only the off-diagonal entries (efficient edges) and for diagonal entries,

we use the simple inequality |w;;| < 1. Then it holds that

E E‘xilwiliz Wigig *** Wigig g1 Yigp1 Lippo Wiy oty sWip g gipya * " wi21+1i21+2yi21+2}

7. ies
1

< Z Z Z Z |z, Yigp1TigpoYioigo |

1<|P(1)|=m<i 1 with partition P(1) Q(8)EP(2m) S with partition Q(S)
= 1<s1,,89m<n
P(hews,2ir2)

m

r

X H E}w52j7152j | !
Jj=1

Ty, Tm 22

2.2

< Z (%)m Z Z Z |xi1yiz+1xil+2yi21+2"

i with partition P(i) Q(§)€¢(2m) g with partition Q(g)

1<|p(d)|=m<
< T rm >2 1<sq, 59 <n

P)eysq(2i+2)

(A.63)

It suffices to bound the number of graphs in the above summation. In fact, since the
graph is connected there are at most m+-1 different vertices in the graph. Moreover, there are
2l edges in the original graph with at most [ efficient edges and the partitions corresponding
to the edges have at most (41)? cases. Thus combining these arguments together we can

deduce

2.2
1% \m
§ (T) E § § |74y yiz+1xiz+2y121+2|
1<|P(d)|=m<t 1 with partition P(1) @(S)EP(2m) S with pﬁfcitiong(S)
3 Y, ;T'mZQ <s71, 38o9m SN
P(I)Ew22(2l+2)

2 2
CTOx
< dgdy ()t Y > > > 1
n - . . ~ ~ ~
1§|P(i)\:mgl i with partition P(1) @(S)€E4(2m) S with partition Q(S)
Pyevsyrzy  1TTME2

S d%{dgf( )l(4l)2lnl+1
< (4erl)* nall dyd3,. (A.64)

2.2
ciog,
n
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Therefore, we can establish the simple upper bound that
2
E |x"(W' —EW)y| < C(deil)nalldids. (A.65)

For the other upper bounds C(4c;l)?d%a?, C’(4cll)2ld§,a%l, and C(4c1l)?a2 =2, the ar-
guments are similar to those for the proof of Lemma 4. The crucial steps are considering
the impact of |z, Y, Tiy, o Yisy,.| from (A.27) to (A.30). For our case, we can directly prove
the desired bounds C/(4¢11)? d%a?, C’(4cll)2ld§,a721l, and C(4c11)?'a2!=2 by combining the left
hand side of (A.64) with the arguments from (A.27) to (A.30). This completes the proof of

Lemma 7.

D.4 Proof of Lemma 8

Similar to the proof of Lemma 5, the proof of Lemma 8 is a direct modification of that of

Lemma 7. Thus we omit it for brevity.

D.5 Proof sketch for results in Section 4.2

By calculating the variance of p, we have

ﬁ:p+0p(p(1l_p)):p[1+0p<‘2?)]. (A.66)

Then the mean and variance of v W2vy in (26) can be estimated as

vIEW?2v; = np(1 —p) and var(vi W2vi) =p(1 —p) [2(n — 1) +5° + (1 — p)*] , (A.67)

receptively. By Theorem 1, (A.66), and (A.67), direct calculations show that if n™! < p < 1,
then it holds that

1
N =t = 0p(— +vb),
=0tV
vIEW2v;  vIEW?vy

+ 0p(1).

\/Var(v{w2v1) \/V&I‘(V{WQVﬂ

Thus if the conditions of Corollary 1 hold, by (24) we can obtain

201 (vivi— 1) + vIEW2v; 4
}1/2 —

[ — N(0,1). (A.68)
var(vi W2vy)

Since vi = n~'/21 under the null hypothesis, the above results together with (A.68) ensure
that under the null hypothesis, statistic 7}, is asymptotically standard normal.

Next we consider the case of alternative hypothesis. It can be derived that the leading
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eigenvalue and eigenvector take the following forms

1

di = = [np+ni(g —p) + (n®p? + 2n1(2n1 — n)p(q — p) + ni(q —p)?)

2 "]

and vi = (v, vl,)T, where vy is an nj-dimensional vector with all entries being

(n—mn1)p
\/(n - nl)(dl — nlq)Q + nl(n _ n1)2p2

and vy 2 is an (n — np)-dimensional vector with all entries being

di —mniq
V(n—n1)(dy —n1q)2 + ni(n — ny)2p?

With some direct calculations, we can show that under the alternative hypothesis,

n-1/21Ty. — (n—n1)(di —ni(qg—p))
n \/n((n - 7”L1)(d1 — le)2 + nl(n — n1)2p2) : (A.69)

Since n1 = o(n), n™! < p < ¢, and p ~ ¢, by the Taylor expansion we can deduce

dp+5(g—p)  ,nilg—p)?
di = 200 )2 7\ P it A N
1 =np+ni(g—p) np + O( n2p )
and
Vn((n —n1)(di —n1g)? 4+ na(n —n1)?p?)
nivn(n —ny )%p? n? n?
=+/n(n—n1)(di —niq) + 1v/n( )P +£+O(£)
2y/(n—n1)(dr —nig) 4 L
2 3
_ - (g —p) AP P e (AP =D) o P
= vn(n—ni) [np nilg—p) =~ = - tnile—p) T O 7)
Substituting the above two equations into (A.69) yields
- 2 2(q —p)? 4p+5(q¢ —p)
—1/2qTy 1 ™ nl[ m ng nilg—p)° 5 Ap+5(g—p
" Vi n + 2n  4n? n2p? ni(g = p) 4n2p?
3 3 2
ny  ni(g—p)
L0+ )]
2 2 3 3 2
_ nilg—p)? 4p+5(q —p) ny | ni(g—p)
If the conditions of Corollary 1 hold, by (24) we have
MMV = DAV EWSL g (A.71)

var(viT W2y, )] /2
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This entails that

T 2 TNAT2 1/2
vi* EW?vy + |var(vi! W4vy) 1
[ 2 } )= Op(—np), (A.72)
1

V{Vl —1= Op<

where the last step is obtained by directly calculating the mean and variance of V?Wzvl

and noting that t; ~ np. Since vi,--- , v, form an orthonormal basis, it follows from (A.72)
that
=, T 1
ST =1- (9 = 0 ). (A.73)
=2

Similarly, by (A.69) and the assumptions of n; = o(n) and ¢ ~ p, we can deduce

n 3 3 2
Z —1/21T _ M ni(q —p) A 74
j=2 O(n3 " n3p? ) (A.74)

Then it follows from (A.69), (A.72), and (A.74) that

n
n 217G -1 = n_l/ZlTvlv{Ql —1+n V27 Zvjv]T§1
j=2
2 2 3 3 2
ni(q —p) 2 4p+5(q—p)} i, nig-p?* 1
= |22 ) P L A O, [ —_— —} A.75
n2p2 + ny (q p) 4n2p2 + n3 nsp + ( )

Under the alternative hypothesis, it can be shown that the estimators in (27) are of orders

np(1 — p) = Op(np) and p(1 — p) [2(n — 1) + p* + (1 — p)*] = Op(np), respectively, and in

addition, t; ~ np. Therefore, if the conditions of Corollary 1 holds and = (qpp ) +n1(q 2SN 1,

with probability tending to one we have

T, — —o0,

which means that the power can tend to one asymptotically. This concludes the proof sketch

for the results in Section 4.2.
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