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Time- and state-domain methods are two common approaches to nonparametric prediction. Whereas the former uses data predominantly
from recent history, the latter relies mainly on historical information. Combining these two pieces of valuable information is an interesting
challenge in statistics. We surmount this problem by dynamically integrating information from both the time and state domains. The
estimators from these two domains are optimally combined based on a data-driven weighting strategy, which provides a more efficient
estimator of volatility. Asymptotic normality is separately established for the time domain, the state domain, and the integrated estimators.
By comparing the efficiency of the estimators, we demonstrate that the proposed integrated estimator uniformly dominates the other two
estimators. The proposed dynamic integration approach is also applicable to other estimation problems in time series. Extensive simulations
are conducted to demonstrate that the newly proposed procedure outperforms some popular ones, such as the RiskMetrics and historical
simulation approaches, among others. In addition, empirical studies convincingly endorse our integration method.
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1. INTRODUCTION

When forecasting a future event or making an investment
decision, two pieces of useful information are frequently con-
sulted. On the one hand, based on the recent history, a form
of local average, such as the moving average in the time do-
main, can be used to forecast a future event. This approach
uses the continuity of a function and ignores the information
in the remote history, which is related to the current through
stationarity. On the other hand, a future event can be forecast
based on state-domain modeling techniques (see Fan and Yao
2003 for details). For example, forecasting the volatility of bond
yields with the current rate 6.47% involves computing the stan-
dard deviation based on the historical information with yields
of around 6.47%. This approach relies on the stationarity of
the yields and depends predominately on historical data, and
ignores the importance of recent data.

In general, the foregoing two pieces of information are
weakly dependent. For example, consider the weekly data on
the yields of 3-month Treasury Bills presented in Figure 1. Sup-
pose that the current time is January 4, 1991 and the interest
rate is 6.47%. Based on the weighted squared differences in
the past 52 weeks (1 year), for example, the volatility may be
estimated. This corresponds to the time-domain smoothing, us-
ing the small vertical stretch of data in Figure 1(a). Figure 1(b)
computes the squared differences of the past year’s data and de-
picts the associated exponential weights. The estimated volatil-
ity (conditional variance) is indicated by the dashed horizontal
bar. Let the resulting estimator be σ̂ 2

t,time. On the other hand,
in financial activities, we do consult historical information to
make better decisions. The current interest rate is 6.47%. The
volatility of the yields may be examined when the interest rate
is around 6.47%, say 6.47% ± .25%. This corresponds to using
the part of the data indicated by the horizontal bar. Figure 1(c)
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plots the squared differences (Xt − Xt−1)
2 against Xt−1, with

Xt−1 restricted to the interval 6.47% ± .25%. Applying the lo-
cal kernel weight to the squared differences results in a state-
domain estimator σ̂ 2

t,state, indicated by the horizontal bar in Fig-
ure 1(c). Clearly, as shown in Figure 1(a), except in the 3-week
period immediately before January 4, 1991, the last period with
an interest rate within 6.47% ± .25% is the period from May
15, 1988 and July 22, 1988. Thus, the time- and state-domain
estimators use two weakly dependent components of the time
series, because these two components are 136 weeks apart in
time; see the horizontal and vertical bars of Figure 1(a).

It is important to combine the estimators from the time do-
main and the state domain separately, because this combination
allows us to use more sampling information and to give better
estimates. In fact, compared with the state-domain estimator,
our new integrated estimator will put more emphasis (weight)
on recent data; in contrast with the time-domain estimator, it
will use historical data to improve the efficiency. These will
also be demonstrated mathematically.

Both state- and time-domain smoothing have been popularly
studied in the literature. Many authors have contributed their
works on the first topic; the survey papers by Cai and Hong
(2003) and Fan (2005) provide overviews. Other works include,
for example, drift and volatility estimation for short rate by
Chapman and Pearson (2000); density estimation for spatial lin-
ear processes by Hallin, Lu, and Tran (2001); diffusion estima-
tion by Bandi and Phillips (2003); Fan and Zhang (2003), and
Aït-Sahalia and Mykland (2004); kernel estimation and test-
ing for continuous-time financial models by Arapis and Gao
(2004); and tests for diffusion model by Chen, Gao, and Tang
(2007) and Hong and Li (2005). On the other hand, there is also
a large literature on time-domain smoothing, including work
by Hall and Hart (1990), Robinson (1997), Gijbels, Pope, and
Wand (1999), Hardle, Herwartz, and Spokoiny (2002), Fan and
Gu (2003), Mercurio and Spokoiny (2004), and Aït-Sahalia,
Mykland, and Zhang (2005), among others. The accuracies of
both time- and state-domain estimators for the volatility de-
pend on the information contained in the recent data and his-
torical data. Brenner, Harjes, and Kroner (1996) proposed an
interesting model on term interest rate that has some flavor of
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(a)
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Figure 1. Illustration of Time-Domain and State-Domain Estimation. (a) The yields of 3-month Treasury Bills from 1954 to 2004. The vertical bar
indicates localization in time, and the horizontal bar represents localization in state. (b) Illustration of time-domain smoothing. Squared differences
are plotted against its time index, and the exponential weights are used to compute the local average. (c) Illustration of state-domain smoothing.
Squared differences are plotted against the level of interest rates, restricted to the interval 6.47% ± .25% indicated by the horizontal bar in (a). The
Epanechnikov kernel is used for computing the local average.

combining the time- and state-domain information in a para-
metric form. However, there is no formal work in the litera-
ture on efficiently integrating the time- and state-domain esti-
mators.

In this article we realize the existence of two pieces of weakly
independent information and introduce a general approach for
integrating the time- and state-domain estimators. The inte-
grated estimator borrows the strengths of both the time- and
state-domain estimators with aggregated information from the
data, and thus dominates both of the estimators when the data-
generating process is a continuous stationary diffusion process.
In particular, when the time domain is far more informative than
the state domain, the integrated estimator will basically become
the time-domain estimator. On the other hand, if at a particular
time when the performance of the state-domain estimator dom-
inates that of the time-domain estimator, the procedure opts au-
tomatically for the state-domain estimator.

Our strategy for integration is to introduce a dynamic weight-
ing scheme, 0 ≤ wt ≤ 1, to combine the two weakly dependent
estimators. Define the resulting integrated estimator as

σ̂ 2
t = wtσ̂

2
t,time + (1 − wt)σ̂

2
t,state. (1)

The question is how to choose the dynamic weight wt to op-
timize the performance. A reasonable approach is to minimize
the variance of the combined estimator, leading to the dynamic

optimal weight

wt = var(σ̂ 2
t,state)

var(σ̂ 2
t,time) + var(σ̂ 2

t,state)
. (2)

Estimation of the unknown variances in (2) is introduced in Sec-
tion 3. Another approach to integration is to use the Bayesian
approach, which considers the historical information the prior.
We explore this idea in Section 4.

To appreciate the intuition behind our approach and how it
works, consider the diffusion process

drt = μ(rt)dt + σ(rt)dWt, (3)

where Wt is a Wiener process on [0,∞). This diffusion process
is frequently used to model asset price and the yields of bonds,
which are fundamental to fixed income securities, financial
markets, consumer spending, corporate earnings, asset pricing,
and inflation. The volatilities of interest rates are fundamentally
important to value the prices of bonds and contract debt obliga-
tions (CDOs), the derivatives of bonds, and their associated risk
management (e.g., hedging).

The family of models in (4) includes famous ones such as
the Vasicek (1977) model, the CIR model (Cox, Ingersoll, and
Ross 1985), and the CKLS model (Chan, Karolyi, Longstaff,
and Sanders 1992). Suppose that at time t we have historic data
{rti}N

i=0 from process (3) with a sampling interval �. Our aim
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is to estimate the volatility σ 2
t ≡ σ 2(rt). Let Yi = �−1/2(rti+1 −

rti). Then, for model (3), the Euler approximation scheme is

Yi ≈ μ(rti)�
1/2 + σ(rti)εi, (4)

where εi
iid∼ N(0,1) for i = 0, . . . ,N − 1. Fan and Zhang (2003)

studied the impact of the order of difference on statistical es-
timation. They found that although a higher order can possi-
bly reduce approximation errors, it substantially increases the
variances of data. They recommended the Euler scheme (4) for
most practical situations.

To facilitate the derivation of mathematical theory, we focus
on the estimation of volatility in model (3) to illustrate how
to deal with the problem of dynamic integration. Asymptotic
normality of the proposed estimator is established under this
model, and extensive simulations are conducted. This theoret-
ically and empirically demonstrates the dominant performance
of the integrated estimation. Our method focuses on only the
estimation of volatility, but it can be adapted to other estima-
tion problems, such as the value at risk studied by Duffie and
Pan (1997), the drift estimation for diffusion considered by
Spokoiny (2000), and conditional moments, conditional corre-
lation, conditional distribution, and derivative pricing. It is also
applicable to other estimation problems in time series, such as
forecasting the mean function. Further studies along these lines
are beyond the scope of the current investigation.

2. ESTIMATION OF VOLATILITY

From here on, for theoretical derivations, we assume that the
data {rti} are sampled from the diffusion model (3). As demon-
strated by Stanton (1997) and Fan and Zhang (2003), the drift
term in (4) contributes to the volatility in the order of o(1) under
certain conditions when � → 0 (e.g., Stanton 1997). Thus, for
simplicity, we sometimes ignore the drift term when estimating
the volatility.

2.1 Time-Domain Estimator

A popular version of the time-domain estimator of the
volatility is the moving average estimator,

σ̂ 2
MA,t = n−1

t−1∑

i=t−n

Y2
i , (5)

where n is the size of the moving window. This estimator
ignores the drift component and uses local n data points. An
extension of the moving average estimator is the exponential
smoothing estimation given by

σ̂ 2
ES,t = (1 − λ)Y2

t−1 + λσ̂ 2
ES,t−1

= (1 − λ){Y2
t−1 + λY2

t−2 + λ2Y2
t−3 + · · ·}, (6)

where λ is a smoothing parameter between 0 and 1 that controls
the size of the local neighborhood. This estimator is closely
related to that from the GARCH(1, 1) model (see Fan, Jiang,
Zhang, and Zhou 2003 for more details). The RiskMetrics of
J. P. Morgan (1996), which is used for measuring the risk, called
value at risk (VaR), of financial assets, recommends λ = .94
and λ = .97 for calculating the VaR of the daily and monthly
returns.

The exponential smoothing estimator in (6) is a weighted
sum of the squared returns before time t. Because the weight
decays exponentially, it essentially uses recent data. A slightly
modified version that explicitly uses only n data points before
time t is

σ̂ 2
ES,t = 1 − λ

1 − λn

n∑

i=1

Y2
t−iλ

i−1, (7)

where the smoothing parameter λ depends on n. When λ → 1,
it becomes the moving average estimator (5).

Theorem 1. Suppose that σ 2
t > 0. Under conditions (C1)

and (C2), if n → ∞ and n� → 0, then σ̂ 2
ES,t − σ 2

t → 0, almost
surely. Moreover, if the limit c = limn→∞ n(1 − λ) exists and
n�(2p−1)/(4p−1) → 0 where p is as specified in condition (C2),
then

√
n[σ̂ 2

ES,t − σ 2
t ]/s1,t

D−→ N (0,1),

where s2
1,t = cσ 4

t
ec+1
ec−1 .

Theorem 1 has very interesting implications. We can com-
pute the variance as if the data were independent. Indeed, if the
data in (7) were independent and locally homogeneous, then

var(σ̂ 2
ES,t) ≈ (1 − λ)2

(1 − λn)2
2σ 4

t

n∑

i=1

λ2(i−1) ≈ 1

n
s2

1,t.

This is indeed the asymptotic variance given in Theorem 1.

2.2 Estimation in State Domain

To obtain the nonparametric estimation of the functions
f (x) = �1/2μ(x) and σ 2(x) in (4), we use the local linear
smoother studied by Ruppert, Wand, Holst, and Hössjer (1997)
and Fan and Yao (1998). The local linear technique is chosen
for its several nice properties, including asymptotic minimax
efficiency and design adaptation. Furthermore, it automatically
corrects edge effects and facilitates bandwidth selections (Fan
and Yao 2003).

Note that the historical data used in the state-domain estima-
tion at time t are {(rti ,Yi), i = 0, . . . ,N − 1}. Let f̂ (x) = α̂1 be
the local linear estimator that solves the weighted least squares
problem

(α̂1, α̂2) = arg min
α1,α2

N−1∑

i=0

[
Yi − α1 − α2

(
rti − x

)]2
Kh1

(
rti − x

)
,

where K(·) is a kernel function and h1 > 0 is a bandwidth. De-
note the squared residuals by R̂i = {Yi − f̂ (rti)}2. Then the local
linear estimator of σ 2(x) is σ̂ 2

S (x) = β̂0 given by

(β̂0, β̂1) = arg min
β0,β1

N−1∑

i=0

{
R̂i − β0 − β1

(
rti − x

)}2
Wh

(
rti − x

)
,

(8)
with a kernel function W and a bandwidth h. Fan and Yao
(1998) gave strategies for bandwidth selection. Stanton (1997)
and Fan and Zhang (2003) showed that Y2

i instead of R̂i in (8)
also can be used for the estimation of σ 2(x).

The asymptotic bias and variance of σ̂ 2
S (x) have been given

by Fan and Zhang (2003, thm. 4). Set νj = ∫
ujW2(u)du for

j = 0,1,2, and let p(·) be the invariant density function of the
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Markov process {rs} from (3). We then have the following re-
sult.

Theorem 2. Set s2
2(x) = 2ν0σ

4(x)/p(x). Let x be in the inte-
rior of the support of p(·). Suppose that the second derivatives
of μ(·) and σ 2(·) exist in a neighborhood of x. Under conditions

(C3)–(C6),
√

Nh[σ̂ 2
S (x) − σ 2(x)]/s2(x)

D−→ N (0,1).

3. DYNAMIC INTEGRATION OF TIME– AND
STATE–DOMAIN ESTIMATORS

In this section we first show how the optimal dynamic
weights in (2) can be estimated, and then prove that the time-
domain and state-domain estimators are indeed asymptotically
independent.

3.1 Estimation of Dynamic Weights

For the exponential smoothing estimator in (7), we can apply
the asymptotic formula given in Theorem 1 to get an estimate of
its asymptotic variance. But because the estimator is a weighted
average of Y2

t−i, we also can obtain its variance directly by as-
suming that Yt−j ∼ N(0, σ 2

t ) for small j. Indeed, with the fore-
going local homogeneous model, we have

var(σ̂ 2
ES,t)

≈ (1 − λ)2

(1 − λn)2
2σ 4

t

n∑

i=1

n∑

j=1

λi+j−2ρt(|i − j|)

= 2(1 − λ)2σ 4
t

(1 − λn)2

{
n + 2

n−1∑

k=1

ρt(k)λk(1 − λ2(n−k))

1 − λ2

}
, (9)

where ρt(k) = cor(Y2
t ,Y2

t−k) is the autocorrelation of the series
{Y2

t−k}. The autocorrelation can be estimated from the data in
history. Note that due to the locality of the exponential smooth-
ing, only ρt(k)’s with the first 30 lags, say, contribute to the
variance calculation.

We now turn to estimate the variance of σ̂ 2
S,t = σ̂ 2

S (rt). Details
of this have been given by Fan and Yao (1998, 2003, sec. 6.2).
Let

Vj(x) =
N−1∑

i=1

(rti − x)jW
((

rti − x
)
/h1

)
(10)

and ξi(x) = W(
rti −x

h1
){V2(x) − (rti − x)V1(x)}/{V0(x)V2(x) −

V1(x)2}. Then the local linear estimator can be expressed as
σ̂ 2

S (x) = ∑N−1
i=1 ξi(x)R̂i, and its variance can be approximated

as

var(σ̂ 2
S (x)) ≈ 2σ 4(x)

N−1∑

i=1

ξ2
i (x). (11)

Substituting (9) and (11) into (2), we propose to combine
the time-domain and state-domain estimators with the dynamic
weight

ŵt = σ̂ 4
S,t

∑N−1
i=1 ξ2

i (rt)

σ̂ 4
S,t

∑N−1
i=1 ξ2

i (rt) + ctσ̂
4
ES,t

, (12)

where ct = (1−λ)2

(1−λn)2 {n+2
∑n−1

k=1 ρt(k)λk(1−λ2(n−k))/(1−λ2)}.
For practical implementation, we truncate the series {ρt(k)}t−1

k=1

in the summation as {ρt(k)}30
k=1. This results in the dynamically

integrated estimator

σ̂ 2
I,t = ŵtσ̂

2
ES,t + (1 − ŵt)σ̂

2
S,t, (13)

where σ̂ 2
S,t = σ̂ 2

S (rt). The function σ̂ 2
S (·) uses historical data

up to the time t, and we need to update this function as time
evolves. Fortunately, we need know only the function value at
the point rt, which significantly reduces the computational cost.
The computational cost can be further reduced if we update the
estimated function σ̂ 2

S,t on a prescribed time schedule (e.g., once
every 2 months for weekly data).

Finally, we note that in the choice of weight, only the vari-
ance of the estimated volatility is considered, not the mean
squared error (MSE). This is mainly to facilitate the choice of
dynamic weights. Because the smoothing parameters in σ̂ 2

ES,t

and σ̂ 2
S (x) have been tuned to optimize their performance sep-

arately, their bias and variance trade-offs have been considered
indirectly. Thus, controlling the variance of the integrated esti-
mator σ̂ 2

I,t also controls, to some extent, the bias of the estima-
tor.

3.2 Sampling Properties

The fundamental component in the choice of dynamic
weights is the asymptotic independence between the time- and
state-domain estimators. The following theorem shows that the
time- and state-domain estimators are indeed asymptotically in-
dependent. To facilitate the expression of notations, we present
the result at the current time tN .

Theorem 3. Suppose that the second derivatives of μ(·) and
σ 2(·) exist in a neighborhood of rtN . Under conditions (C1) and
(C3)–(C6), if condition (C2) holds at time point t = tN , then

(a) Asymptotic independence:

[√
n(σ̂ 2

ES,tN
− σ 2

tN )

s1,tN
,

√
Nh(σ̂ 2

S,tN
− σ 2

tN )

s2,tN

]T D−→ N (0, I2),

where s1,tN and s2,tN = s2(rtN ) are as given in Theorems 1 and 2.
(b) Asymptotic normality of σ̂ 2

tN with wtN in (2): If the

limit d = limN→∞ n/[Nh] exists, then
√

Nh/ω[σ̂ 2
tN − σ 2

tN ] D−→
N (0,1), where ω = w2

tN s2
1,tN

/d + (1 − wtN )2s2
2,tN

.

(c) Asymptotic normality of σ̂ 2
I,tN

with an estimated weight
ŵtN : If the weight ŵtN converges to the weight wtN in proba-
bility and the limit d = limN→∞ n/[Nh] exists, then

√
Nh/ω ×

(σ̂ 2
I,tN

− σ 2
tN )

D−→ N (0,1).

Because the estimators σ̂ 2
S,t and σ̂ 2

ES,t are consistent,

ŵt ≈
∑t−1

i=1 ξ2
i (rt)

∑t−1
i=1 ξ2

i (rt) + ct
≈ var(σ̂ 2

S (rt))

var(σ̂ 2
S (rt)) + var(σ̂ 2

ES,t(rt))
= wt,

and hence the condition in Theorem 3(c) holds. Note that the
theoretically optimal weight minimizing the variance in Theo-
rem 3(b) is

wtN ,opt = ds2
2,tN

s2
1,tN

+ ds2
2,tN

≈ var(σ̂ 2
S (rt))

var(σ̂ 2
S (rt)) + var(σ̂ 2

ES,t(rt))
≈ wtN .
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It follows that the integrated estimator σ̂ 2
I,tN

is optimal in the
sense that it achieves the minimum variance among all of the
weighted estimators in (1).

When 0 < d < ∞ in Theorem 3, the effective sample sizes
in both time and state domains are comparable; thus neither
the time-domain estimator nor the state-domain estimator dom-
inates. From Theorem 3, based on the optimal weight, the as-
ymptotic relative efficiencies of σ̂ 2

I,tN
with respect to σ̂ 2

S,tN
and

σ̂ 2
ES,tN

are

eff(σ̂ 2
I,tN , σ̂ 2

S,tN ) = 1 + ds2
2,tN /s2

1,tN and

eff(σ̂ 2
I,tN , σ̂ 2

ES,tN ) = 1 + s2
1,tN /(ds2

2,tN ),

which are >1. This demonstrates that the integrated estimator
σ̂ 2

I,tN
is more efficient than the time-domain and state-domain

estimators.

4. BAYESIAN INTEGRATION OF
VOLATILITY ESTIMATES

Another possible approach is to consider the historical infor-
mation as the prior and to incorporate it into the estimation of
volatility using the Bayesian framework. We now explore such
an approach.

4.1 Bayesian Estimation of Volatility

The Bayesian approach is to consider the recent data Yt−n,

. . . ,Yt−1 as an independent sample from N(0, σ 2) [see (4)] and
to consider the historical information being summarized in a
prior. To incorporate the historical information, we assume that
the variance σ 2 follows an inverse-gamma distribution with pa-
rameters a and b, which has the density function

f (σ 2) = ba�−1(a){σ 2}−(a+1)
exp(−b/σ 2).

Write σ 2 ∼ IG(a,b). It is well known that

E(σ 2) = b

a − 1
,

var(σ 2) = b2

(a − 1)2(a − 2)
, and (14)

mode(σ 2) = b

a + 1
.

The hyperparameters a and b are estimated from historical data
using the state-domain estimators.

It can be easily shown that given Y = (Yt−n, . . . ,Yt−1), the
posterior density of σ 2 is IG(a∗,b∗), where a∗ = a + n

2 , and
b∗ = 1

2

∑n
i=1 Y2

t−i + b. From (14), the Bayesian mean of σ 2 is

σ̂ 2 = b∗

a∗ − 1
=

n∑

i=1

Y2
t−i + 2b

2(a − 1) + n
.

This Bayesian estimator can be easily written as

σ̂ 2
B = n

n + 2(a − 1)
σ̂ 2

MA,t + 2(a − 1)

n + 2(a − 1)
σ̂ 2

P, (15)

where σ̂ 2
MA,t is the moving average estimator given by (5) and

σ̂ 2
P = b/(a−1) is the prior mean, determined from the historical

data. This combines the estimate based on the data and prior
knowledge.

The Bayesian estimator (15) uses the local average of n data
points. To incorporate the exponential smoothing estimator (6),
we consider it the local average of n∗ = ∑n

i=1 λi−1 = 1−λn

1−λ
data

points. This leads to the following integrated estimator:

σ̂ 2
B,t = n∗

n∗ + 2(a − 1)
σ̂ 2

ES,t + 2(a − 1)

2(a − 1) + n∗ σ̂ 2
P

= 1 − λn

1 − λn + 2(a − 1)(1 − λ)
σ̂ 2

ES,t

+ 2(a − 1)(1 − λ)

1 − λn + 2(a − 1)(1 − λ)
σ̂ 2

P . (16)

In particular, when λ → 1, the estimator (16) reduces to (15).

4.2 Estimation of Prior Parameters

A reasonable source for the prior information in (16) is the
historical data up to time t. Thus, the hyperparameters a and b
should depend on t and can be used to match with the moments
from the historical information. Using the approximation model
(4), we have

E
[
(Yt − f̂ (rt))

2 | rt
] ≈ σ 2(rt) and

(17)
var

[
(Yt − f̂ (rt))

2 | rt
] ≈ 2σ 4(rt).

These can be estimated from the historical data up to time t,
namely the state-domain estimator σ̂ 2

S (rt). Because we have as-
sumed that the prior distribution for σ 2

t is IG(at,bt), by (17) and
the method of moments, we would get the following estimation
equations by matching the moments from the prior distribution
with the moment estimation from the historical estimate:

E(σ 2
t ) = σ̂ 2

S (rt) and var(σ 2
t ) = 2σ̂ 4

S (rt).

This, together with (14), leads to

bt

at − 1
= σ̂ 2

S (rt) and
b2

t

(at − 1)2(at − 2)
= 2σ̂ 4

S (rt),

where E represents from the expectation with respect to the
prior. Solving the foregoing equations, we obtain

ât = 2.5 and b̂t = 1.5σ̂ 2
S (rt).

Substituting this into (16), we obtain the estimator

σ̂ 2
B,t = 1 − λn

1 − λn + 3(1 − λ)
σ̂ 2

ES,t +
3(1 − λ)

1 − λn + 3(1 − λ)
σ̂ 2

S,t. (18)

Unfortunately, the weights in (18) are static and do not depend
on the time t. Thus, the Bayesian method that we use does
not produce a satisfactory answer to this problem. However,
other implementations of the Bayesian method may yield the
dynamic weights.

5. SIMULATION STUDIES AND EXAMPLES

To facilitate the presentation, we use the simple abbrevia-
tions in Table 1 to denote seven volatility estimation methods.
Details on the first three methods have been given by Fan and
Gu (2003). In particular, the first method is to estimate volatility
using the standard deviation of the yields in the past year, and
the RiskMetrics method is based on the exponential smooth-
ing with λ = .94. The semiparametric method of Fan and Gu
(2003) is an extension of a local model used in the exponential
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Table 1. Seven Volatility Estimators

Hist: The historical method
RiskM: The RiskMetrics method of J. P. Morgan
Semi: The semiparametric estimator (SEV) of Fan and Gu (2003)
NonBay: The nonparametric Bayesian method in (18)
Integ: The integration method of time and state domains in (13)
GARCH: The maximum likelihood method based on a GARCH(1, 1)

model
StaDo: The state-domain estimation method in Section 2.2

smoothing, with the smoothing parameter determined by min-
imizing the prediction error. It includes exponential smoothing
with λ selected by data as a specific example. For our integrated
methods, the parameter λ is taken as .94.

The following five measures are used to assess the per-
formance of different procedures for estimating the volatility.
Other related measures also can be used (see Davé and Stahl
1997).

Measure 1: Exceedence Ratio Against Confidence Level.
This measure counts the number of the events for which the
loss of an asset exceeds the loss predicted by the normal model
at a given confidence α. It was given by Fan and Gu (2003) and
computed as

ER(σ̂ 2
t ) = m−1

T+m∑

i=T+1

I(Yi < 
−1(α)σ̂i), (19)

where 
−1(α) is the α-quantile of the standard normal distribu-
tion and m is the size of the out-sample. This gives an indication
of how effectively the volatility estimator can be used for pre-
diction.

As noted by Fan and Gu (2003), one shortcoming of the mea-
sure is its large Monte Carlo error. Unless the postsample size
m is sufficiently large, this measure has difficulty by differenti-
ating the performance of various estimators due to the presence
of large error margins. Note that the ER depends strongly on
the assumption of normality. In our simulation study, we use
the true α-quantile of the error distribution instead of 
−1(α)

in (19) to compute the ER. For real data analysis, we use the
α-quantile of the last 250 residuals for the in-sample data.

Measure 2: Mean Absolute Deviation Error. To motivate this
measure, we first consider the MSEs

PE(σ̂ 2
t ) = m−1

T+m∑

i=T+1

(Y2
i − σ̂ 2

i )2.

The expected value can be decomposed as

E(PE) = m−1
T+m∑

i=T+1

E(σ 2
i − σ̂ 2

i )2 + m−1
T+m∑

i=T+1

E(Y2
i − σ 2

i )2

+ m−1
T+m∑

i=T+1

E(Y2
i − σ 2

i )(σ 2
i − σ̂ 2

i ). (20)

Because σ̂ 2
i is predicable at time ti and Y2

i − σ 2
i is a martingale

difference, the third term is 0 [the drift is assumed to be neg-
ligible in the forgoing formulation of PE; otherwise, the drift
term should be removed first. In both cases, it has an affec-
tion O(�2)]. Therefore, we need consider only the first two

terms. The first term reflects the effectiveness of the estimated
volatility, whereas the second term is the size of the stochastic
error and independent of estimators. As in all statistical pre-
diction problems, the second term is usually of an order of
magnitude larger than the first term. Thus a small improvement
in PE could mean substantial improvement over the estimated
volatility. However, due to the well-known fact that financial
time series contain outliers, the MSE is not a robust measure.
Therefore, we used the mean absolute deviation error (MADE),
MADE(σ̂ 2

t ) = m−1 ∑T+m
i=T+1 |Y2

i − σ̂ 2
i |.

Measure 3: Square-Root Absolute Deviation Error. An al-
ternative to MADE is the Square-root absolute deviation error
(RADE), defined as

RADE(σ̂ 2
t ) = m−1

T+m∑

i=T+1

∣∣| Yi | −√
2/πσ̂i

∣∣.

The constant factor comes from the fact that E|εt| = √
2/π for

εt ∼ N(0,1). If the underlying error distribution deviates from
normality, then this measure is not robust.

Measure 4: Ideal Mean Absolute Deviation Error and Oth-
ers. To assess the estimation of the volatility in simulations, we
also can use the ideal mean absolute deviation error (IMADE),

IMADE = m−1
T+m∑

i=T+1

|σ̂ 2
i − σ 2

i |,

and the ideal square root absolute deviation error (IRADE),

IRADE = m−1
T+m∑

i=T+1

|σ̂i − σi|.

Another intuitive measure is the relative IMADE (RIMADE),

RIMADE = m−1
T+m∑

i=T+1

|σ̂ 2
i − σ 2

i |
σ 2

i

.

This measure may create some outliers when the true volatility
is quite small at certain time points. For real data analysis, both
measures are not applicable.

5.1 Simulations

To assess the performance of the five estimation methods
listed in Table 1, we compute the average and standard devi-
ation of each of the four measures over 600 simulations. Gen-
erally speaking, the smaller the average (or the standard devia-
tion), the better the estimation approach. We also compute the
“score” of an estimator, which is the percentage of times among
600 simulations that the estimator outperforms the average of
the 7 methods in terms of an effectiveness measure. To be more
specific, for example, consider RiskMetrics using MADE as an
effectiveness measure. Let mi be the MADE of the RiskMet-
rics estimator at the ith simulation, and let m̄i be the average of
the MADEs for the five estimators at the ith simulation. Then
the “score” of the RiskMetrics approach in terms of the MADE
is defined as 1

600

∑600
i=1 I(mi < m̄i). Obviously, estimators with

higher scores are preferred. In addition, we define the “relative
loss” of an estimator σ̂ 2

t relative to σ̂ 2
I,t, in terms of MADEs, as

RLOSS(σ̂ 2
t , σ̂ 2

I,t) = MADE(σ̂ 2
t )/MADE(σ̂ 2

I,t) − 1,
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where MADE(σ̂ 2
t ) is the average of MADE(σ̂ 2

t ) among simula-
tions.

Example 1. In this example we compare the proposed
methods with the maximum likelihood estimation approach
for a parametric generalized autoregressive conditional het-
eroscedasticity [GARCH(1, 1)] model. This will give an assess-
ment of how well our methods perform compared with the most
efficient estimation method.

Because the GARCH model does not have a state variable,
rti , but the diffusion model does, the diffusion model cannot be
used to fit the data simulated from the GARCH model. A sen-
sible approach is to use the diffusion limit of the GARCH(1, 1)
model to generate data. There are several interesting works on
reconciling the two modeling approaches along this line; for
example, Nelson (1990) established the continuous-time dif-
fusion limit for the discrete ARCH model, Duan (1997) pro-
posed an augmented GARCH model to unify various paramet-
ric GARCH models and derived its diffusion limit, and Wang
(2002) studied the asymptotic relationship between GARCH
models and diffusions. Here we use the result on the diffusion
limit of the GARCH(1, 1) model of Wang (2002).

Specifically, we first generate data from the GARCH(1, 1)
model,

{
Yt = σtεt

σ 2
t = c0 + a0σ

2
t−1 + b0Y2

t−1,

where the εt’s are from the standard normal distribution and the
true parameters c0 = 4.98 × 10−7, a0 = .9289615, and b0 =
.0411574 are from the fitted values of the parameters for the
daily exchange rate of the Australian dollar with the U.S. dollar
from January 3, 1994 to December 29, 2000. The GARCH(1, 1)
model is then fitted by maximum likelihood estimation.

Second, we use the diffusion limit (see Wang 2002, sec. 2.3)
of the foregoing GARCH model,

{
drt = σt dW1t,

dσ 2
t = (β0 + β1σ

2
t )dt + β2σ

2
t dW2t,

where W1,t and W2,t are two independent standard Wiener
process and the parameters are computed as (β0, β1, β2) =
(2.5896 × 10−5,−1.5538, .4197). To simulate the diffusion
process σ 2

t , we use the discrete-time order 1.0 strong ap-
proximation scheme of Kloeden, Platen, Schurz, and Sørensen
(1996).

For each of the two models, we generate 600 series of daily
data, each with length 1,200. For each simulation, we set the
first 900 observations as the “in-sample” data and the last 300
observations as the “out-sample” data. The results, summarized
in Table 2, show that all estimators have acceptable ER values
close to .05. The integrated estimator has minimum RIMADE,
IMADE, MADE, IRADE, and RADE on average among all
of the nonparametric estimators. Compared with the most ef-
ficient maximum likelihood estimator (MLE) of the GARCH
model, the integrated estimator has smaller MADE but larger
RIMADE, IMADE, and IRADE. The RADEs of the MLE
and the integrated estimator are very close, demonstrating that
the integrated estimator is very impressive in forecasting the
volatility of this example.

Note that the dynamic weights for the integrated estimator
are estimated by minimizing the variance of the combined esti-
mator in (1). As one anonymous referee pointed out, one may
choose to minimize the MSE instead, which seems to be dif-
ficult and computationally intensive in current situations. As
argued in Section 3.1, the biases and variances trade-off have
been considered indirectly in the time-domain and state-domain
estimation methods. The bias of the integrated estimator was
controlled before the weights were chosen.

To investigate whether the foregoing intuition is correct, here
we opt for the suggestion from the referee to visually display
how the integrated estimator dominates the state-domain/time-
domain estimators over time through the dynamic weights, and
compare the biases of the state-domain estimator and the inte-
grated estimator. The weights and biases are shown in Figure 2.

Table 2. Comparisons of Several Volatility Estimation Methods

Measure Empirical formula Hist RiskM Semi NonBay Integ GARCH StaDo

RIMADE Score (%) 40.73 28.05 64.94 50.92 73.79 76.29 40.90
Average .205 .204 .183 .187 .178 .169 .204

Standard (×10−2) 6.55 3.31 4.50 3.08 3.97 3.67 5.67
Relative loss (%) 15.44 14.44 2.66 4.97 0 −4.76 14.75

IMADE Score (%) 61.77 25.54 53.42 46.08 72.12 75.46 40.90
Average (×10−5) .332 .367 .330 .336 .318 .304 .362
Standard (×10−6) 1.118 .744 .877 .690 .851 .800 1.113
Relative loss (%) 4.40 15.44 3.73 5.81 0 −4.47 13.90

MADE Score (%) 28.21 49.58 49.75 56.59 88.15 57.43 79.63
Average (×10−4) .164 .153 .153 .152 .149 .152 .149
Standard (×10−6) 2.314 2.182 2.049 2.105 1.869 1.852 1.876
Relative loss (%) 10.16 2.84 2.93 2.09 0 2.07 .11

IRADE Score (%) 62.77 24.04 51.09 47.08 70.62 77.13 40.40
Average (×10−3) .403 .448 .407 .410 .391 .369 .446
Standard (×10−3) .121 .075 .092 .070 .093 .085 .131
Relative loss (%) 3.17 14.75 4.11 4.98 0 −5.53 14.22

RADE Score (%) 30.55 50.42 43.41 59.10 84.64 58.93 79.13
Average (×10−2) .20 .19 .19 .19 .19 .19 .19
Standard (×10−4) 1.53 1.45 1.41 1.42 1.34 1.33 1.37
Relative loss (%) 5.13 1.42 1.65 .96 0 1.06 −.25

ER Average (×10−2) 4.95 5.45 5.38 5.28 5.25 5.16 5.00
Standard (×10−2) 1.57 1.13 1.28 1.12 1.36 1.25 1.49
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(a) (b)

Figure 2. The Dynamic Weights for Prediction for Example 1 (a) and the Biases for Prediction for the State-Domain Estimator ( − − −) and the
Integration Estimator ( —) (b).

It is seen that the bias is actually controlled, because both of the
estimators have very close biases. The weights are around .2,
and through the weights the integrated method improves both
the RiskMetrics method and the state-domain approach.

Example 2. To simulate the interest rate data, we consider
the Cox–Ingersoll–Ross (CIR) model,

drt = κ(θ − rt)dt + σ r1/2
t dWt, t ≥ t0,

where the spot rate, rt, moves around a central location or long-
run equilibrium level θ = .08571 at speed κ = .21459. The σ

is set at .07830. These parameters values given by Chapman
and Pearson (2000), satisfy the condition 2κθ ≥ σ 2, so that the
process rt is stationary and positive. The model has been studied
by Chapman and Pearson (2000) and Fan and Zhang (2003).

We simulated weekly data (600 runs) from the CIR model.
For each simulation, we designated the first 900 observations

as the “in-sample” data and the last 300 observations the “out-
sample” data. The results, summarized in Table 3, show that the
integrated method performs closely to the state-domain method.
This is mainly because the dynamic weights shown in Figure 3
are very small and the integration estimator is very close to the
state-domain estimator, supporting our statement at the end of
the third paragraph in Section 1. Table 3 shows that the inte-
grated estimator uniformly dominates the other estimators on
average due to its highest score and lowest averaged RIMADE,
IMADE, MADE, IRADE, and RADE. The improvement in
RIMADE, IMADE, and IRADE is about 100%. This demon-
strates that our integrated volatility method better captures the
volatility dynamics. The historical simulation method performs
poorly due to misspecification of the function of the volatility
parameter. The results here show the advantage of aggregating
the information of the time and state domains. Note that all es-
timators have reasonable ER values at level .05, and that the ER
value of the integrated estimator is closest to .05.

Table 3. Comparisons of Several Volatility Estimation Methods

Measure Empirical formula Hist RiskM Semi NonBay Integ GARCH StaDo

RIMADE Score (%) 5.01 18.20 21.04 36.56 99.33 24.04 99.17
Average (×10−1) 2.67 1.90 1.88 1.64 .61 2.02 .62
Standard (×10−1) 1.48 .35 .81 .31 .39 1.30 .43
Relative loss (%) 337.32 210.74 207.98 168.21 0 230.12 1.12

IMADE Score (%) 7.68 13.19 14.69 29.72 99.67 21.20 99.50
Average (×10−6) 2.37 2.08 1.91 1.79 .64 1.96 .63
Standard (×10−6) 1.00 .78 .69 .68 .45 .91 .46
Relative loss (%) 271.62 225.58 199.05 181.07 0 206.96 −1.63

MADE Score (%) 38.23 52.09 57.76 56.09 71.45 53.92 69.45
Average (×10−5) 1.02 .93 .93 .93 .91 .94 .92
Standard (×10−6) 3.49 3.33 3.21 3.30 3.17 3.10 3.17
Relative loss (%) 11.00 2.12 2.21 1.62 0 2.29 .21

IRADE Score (%) 8.18 12.52 14.02 30.72 99.83 21.04 99.50
Average (×10−4) 3.76 3.22 3.07 2.77 .99 3.16 .98
Standard (×10−4) 1.40 .75 .90 .66 .60 1.92 .62
Relative loss (%) 278.55 223.97 208.98 178.92 0 218.21 −1.11

RADE Score (%) 40.40 52.09 50.42 55.93 73.79 48.75 72.79
Average (×10−2) .15 .15 .15 .15 .15 .15 .15
Standard (×10−4) 2.72 2.67 2.57 2.65 2.58 2.51 2.57
Relative loss (%) 6.08 1.23 1.60 .92 0 1.89 .06

ER Average .056 .055 .054 .053 .049 .053 .049
Standard .023 .011 .013 .011 .013 .036 .013
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(a) (b)

Figure 3. The Dynamic Weights for Prediction for Example 2 (a) and the Biases for Prediction for the State-Domain Estimator ( − − −) and for
the Integration Estimator ( —) (b).

Again, Figure 3(b) displays the biases for the state domain
and integration estimators. It can be seen that the state-domain
and integration estimators have almost overlaid biases, demon-
strating that the bias of the integrated estimator is taken care of
even though we choose the dynamic weights by minimizing the
variance.

Example 3. To assess the performance of the proposed meth-
ods under a nonstationary situation, we now consider the geo-
metric Brownian (GBM),

drt = μrt dt + σ rt dWt,

where Wt is a standard one-dimensional Brownian motion. This
is a nonstationary process against which we check whether our
method continues to apply. Note that the celebrated Black–
Scholes option price formula is derived from Osborne’s as-
sumption that the stock price follows the GBM model. By Itô’s
formula, we have

log rt − log r0 = (μ − σ 2/2)t + σ 2Wt.

We set μ = .03 and σ = .26 in our simulations. With the
Brownian motion simulated from independent Gaussian incre-
ments, we can generate the samples for the GBM. We simulate
600 times with � = 1/252. For each simulation, we generate
1,000 observations and use the first two-thirds of the observa-
tions as in-sample data and the remaining observations as out-
sample data.

Because of the nonstationarity of the process, the simulation
results are somewhat unstable with a few uncommon realiza-
tions appearing. Therefore, we use a robust method to sum-
marize the results. For each measure, we compute the relative
loss and the median, along with the median absolute deviation
(MAD) for scale estimation. The MAD for sample {ai}s

i=1 is
defined as MAD(a) = median{|ai − median(a)|, i = 1, . . . , s}.
It is easy to see that MAD(a) provides a robust estimator of
the standard deviation of {ai}. Table 4 reports the results. The
table shows that the integrated estimator performs quite well.
All estimators have acceptable ER values. The proposed esti-

Table 4. Robust Comparisons of Several Volatility Estimation Methods

Measure Empirical formula Hist RiskM Semi NonBay Integ GARCH StaDo

RIMADE Score (%) 7.33 43.00 35.83 72.83 61.33 27.33 52.33
Median (×10−1) 2.254 1.561 1.770 1.490 1.382 2.036 1.443

MAD .035 .012 .024 .012 .034 .036 .037
Relative loss (%) 63.10 12.96 28.05 7.81 0 47.32 4.44

IMADE Score (%) 13.33 43.33 26.33 73.33 65.17 25.50 53.00
Median (×10−7) .217 .174 .193 .163 .146 .265 .154
MAD (×10−8) .566 .474 .486 .445 .322 .817 .357

Relative loss (%) 48.64 19.13 32.11 12.05 0 81.45 5.61

MADE Score (%) 39.00 39.50 26.50 49.33 52.00 42.33 51.33
Median (×10−6) .115 .111 .111 .110 .109 .111 .109
MAD (×10−7) .236 .244 .240 .244 .231 .230 .230

Relative loss (%) 5.92 1.43 1.81 1.23 0 1.74 .29

Score (%) 14.17 43.17 25.00 73.17 64.67 26.83 53.00
IRADE Median (×10−4) .346 .267 .310 .255 .251 .378 .266

MAD (×10−5) .599 .406 .488 .389 .566 .847 .644
Relative loss (%) 37.87 6.49 23.58 1.49 0 50.37 5.91

RADE Score (%) 39.00 37.00 24.33 51.17 61.50 29.50 57.50
Median (×10−4) 1.581 1.509 1.515 1.508 1.504 1.661 1.503
MAD (×10−4) .185 .201 .198 .200 .193 .257 .192

Relative loss (%) 5.09 .30 .73 .23 0 10.42 −.07

ER Median .054 .051 .054 .051 .048 .057 .0480
MAD .010 .003 .004 .003 .006 .007 .006
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(a) (b)

Figure 4. The Dynamic Weights for Prediction for Example 3 (a) and the Biases for Prediction; for the State-Domain Estimator ( − − −) and the
Integration Estimator ( —) (b).

mators have the smallest measure values in median or robust
scale. This shows that our integrated method continues to per-
form better than the others for this nonstationary case.

Again, Figure 4(b) displays the biases for the state domain
and integration estimators. It can be seen that the state-domain
and integration estimators have almost overlaid biases, demon-
strating that the bias of the integrated estimator is taken care of
even though we choose the dynamic weights by minimizing the
variance.

5.2 Real Examples

In this section we apply the integrated volatility estimation
methods and other methods to the analysis of real financial data.

5.2.1 Treasury Bond. Here we consider the weekly returns
of three Treasury Bonds with terms of 1, 5, and 10 years. The
in-sample data are for January 4, 1974–December 30, 1994, and
out-sample data are for January 6, 1995–August 8, 2003. The
total sample size is 1,545, and the in-sample size is 1,096. The
results are reported in Table 5.

From Table 5, for the 1-year Treasury Notes, the integrated
estimator is of the smallest MADE and the smallest RADE, re-
flecting that the integrated estimation method of the volatility
is the best among the seven methods. For the bonds with 5-
or 10-year maturities, the seven estimators have close MADEs
and RADEs, where the historical simulation method is bet-
ter than the RiskMetrics in terms of MADE and RADE and
the integrated estimation approach has the smallest MADEs.
In addition, the integrated estimator has ER values closest to

.05. This demonstrates the advantage of using state-domain
information, which can improve the time-domain prediction
of the volatilities in the interest dynamics. The nonparametric
Bayesian method does not perform as well as the integrated es-
timator because it uses fixed weights and the inverse-gamma
prior, which may not be true in practice.

5.2.2 Exchange Rate. We analyze the daily exchange rate
of several foreign currencies against the U.S. dollar. The data
are for January 3, 1994–August 1, 2003. The in-sample data
consist of the observations before January 1, 2001, and the out-
sample data consist of the remaining observations. The results,
reported in Table 6, show that the integrated estimator has the
smallest MADEs and moderate RADEs for the exchange rates.
Note that the RADE measure is effective only when the data
seem to be from a normal distribution and thus cannot calibrate
the accuracy of volatility forecast for data from an unknown
distribution. For this reason, the RADE might not be a good
measure of performance for this example. Both the integrated
volatility estimation and GARCH perform nicely for this exam-
ple. They outperform other nonparametric methods.

Figure 5 reports the dynamic weights for the daily exchange
rate of the U.K. pound to the U.S. dollar. Because the RiskM
estimator is far more informative than the StaDo estimator, our
integrated estimator becomes basically the time-domain esti-
mator by automatically choosing large dynamic weights. This
exemplifies our statement in the paragraph immediately before
(1) in Section 1.

Table 5. Comparisons of Several Volatility Estimation Methods

Term Measure (×10−2) Hist RiskM Semi NonBay Integ GARCH StaDo

1 year MADE 1.044 .787 .787 .794 .732 .893 .914
RADE 5.257 4.231 4.256 4.225 4.105 4.402 4.551

ER 2.237 2.009 2.013 1.562 3.795 0 7.366

5 years MADE 1.207 1.253 1.296 1.278 1.201 1.245 1.638
RADE 5.315 5.494 5.630 5.563 5.571 5.285 6.543

ER .671 1.339 1.566 1.112 5.804 0 8.929

10 years MADE 1.041 1.093 1.103 1.111 1.018 1.046 1.366
RADE 4.939 5.235 5.296 5.280 5.152 4.936 6.008

ER 1.112 1.563 1.790 1.334 4.911 0 6.920
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Table 6. Comparison of Several Volatility Estimation Methods

Currency Measure Hist RiskM Semi NonBay Integ GARCH StaDo

U.K. MADE (×10−4) .614 .519 .536 .519 .493 .506 .609
RADE (×10−3) 3.991 3.424 3.513 3.440 3.492 3.369 3.900

ER .009 .014 .019 .015 .039 .005 .052

Australia MADE (×10−4) .172 .132 .135 .135 .126 .132 .164
RADE (×10−3) 1.986 1.775 1.830 1.798 1.761 1.768 2.033

ER .054 .025 .026 .022 .042 .018 .045

Japan MADE (×10−1) 5.554 5.232 5.444 5.439 5.064 5.084 6.987
RADE (×10−1) 3.596 3.546 3.622 3.588 3.559 3.448 4.077

ER .012 .011 .019 .012 .028 .003 .032

6. CONCLUSIONS

We have proposed a dynamically integrated method and a
Bayesian method to aggregate the information from the time
domain and the state domain. We studied the performance com-
parisons both empirically and theoretically. We showed that the
proposed integrated method effectively aggregates the informa-
tion from both the time and state domains and has advantages
over some previous methods; for example, it is powerful in fore-
casting volatilities for the yields of bonds and for exchange
rates. Our study also revealed that proper use of information
from both the time domain and the state domain makes volatil-
ity forecasting more accurate. Our method exploits both the
continuity in the time domain and the stationarity in the state
domain, and can be applied to situations in which these two
conditions hold approximately.

APPENDIX: CONDITIONS AND PROOFS
OF THEOREMS

We state technical conditions for the proof of our results:

(C1) (Global Lipschitz condition.) There exists a constant k0 ≥ 0
such that

|μ(x) − μ(y)| + |σ(x) − σ(y)| ≤ k0|x − y| for all x, y ∈ R.

(C2) Given time point t > 0, there exists a constant L > 0 such that

E|μ(rs)|4(p+δ) ≤ L and E|σ(rs)|4(p+δ) ≤ L

for any s ∈ [t − η, t], where η is some positive constant, p is a positive
integer, and δ is some small positive constant.

Figure 5. Dynamic Weights for the Daily Exchange Rate of the U.K.
Pound and the U.S. Dollar.

(C3) The discrete observations {rti}N
i=0 satisfy the stationarity con-

ditions of Banon (1978). Furthermore, the G2 condition of Rosenblatt
(1970) holds for the transition operator.

(C4) The conditional density p�(y|x) of rti+� given rti is continuous
in the arguments (y, x) and is bounded by a constant independent of �.

(C5) The kernel W is a bounded, symmetric probability density
function with compact support, say [−1,1].

(C6) (N − n)h → ∞, (N − n)h5 → 0 and (N)h� → 0.

Condition (C1) ensures that (3) has a unique strong solution, {rt, t ≥
0}, continuous with probability 1, if the initial value r0 satisfies that
P(|r0| < ∞) = 1 (see thm. 4.6 of Liptser and Shiryayev 2001). Condi-
tion (C2) indicates that, given time point t > 0, there is a time interval
[t − η, t] on which the drift and the volatility have finite 4(p + δ)th
moments, which is needed for deriving asymptotic normality of the
time-domain estimate σ̂ 2

ES,t . Conditions (C3)–(C5) are similar to those
of Fan and Zhang (2003). Condition (C6) is assumed for bandwidths
where undersmoothing is uses to yield zero bias in the asymptotic nor-
mality of the state-domain estimate.

Throughout the proof, we denote by M a generic positive constant
and use μs and σs to represent μ(rs) and σ(rs).

Proposition A.1. Under conditions (C1) and (C2), we have, for al-
most all sample paths,

|σ 2
s − σ 2

u | ≤ K|s − u|(2p−1)/(4p) (A.1)

for any s,u ∈ [t − η, t], where the coefficient K satisfies E[K2(p+δ)]<
∞.

Proof. First, we show that the process {rs} is locally Hölder-
continuous with order q = (p − 1)/(2p) and coefficient K1, such that

E[K4(p+δ)
1 ] < ∞, that is,

|rs − ru| ≤ K1|s − u|q, ∀s, u ∈ [t − η, t]. (A.2)

In fact, by Jensen’s inequality and martingale moment inequalities
(Karatzas and Shreve 1991, sec. 3.3.D, p. 163), we have

E|ru − rs|4(p+δ)

≤ M

(
E

∣∣∣∣
∫ u

s
μv dv

∣∣∣∣
4(p+δ)

+ E

∣∣∣∣
∫ u

s
σv dWv

∣∣∣∣
4(p+δ))

≤ M(u − s)4(p+δ)−1
∫ u

s
E|μv|4(p+δ) dv

+ M(u − s)2(p+δ)−1
∫ u

s
E|σv|4(p+δ) dv

≤ M(u − s)2(p+δ).

Then, by theorem 2.1 of Revuz and Yor (1999, p. 26),

E
[(

sup
t 
=s

{|rs − ru|/|s − u|α}
)4(p+δ)]

< ∞ (A.3)



Fan, Fan, and Jiang: Integrating Time and State Domains for Volatility Estimation 629

for any α ∈ [0,
2(p+δ)−1

4(p+δ)
). Let α = p−1

2p and K1 = sups 
=u{|rs −
ru|/|s−u|(p−1)/(2p)}. Then E[K4(p+δ)

1 < ∞], and the inequality (A.2)
holds.

Second, by condition (C1), we have |σ 2
s − σ 2

u | ≤ k0(σs + σu)|rs −
ru|. This, combined with (A.2), leads to

|σ 2
s − σ 2

u | ≤ k0(σs + σu)K1|s − u|q ≡ K|s − u|q.

Then, by Hölder’s inequality,

E
[
K2(p+δ)

] ≤ ME
[
(σsK1)2(p+δ)

]

≤ M
√

E
[
σ

4(p+δ)
s

]
E
[
K4(p+δ)

1

]
< ∞.

Proof of Theorem 1

Let Zi,s = (rs − rti)
2. Applying Itô’s formula to Zi,s, we obtain

dZi,s = 2

(∫ s

ti
μu du +

∫ s

ti
σu dWu

)(
μs ds + σs dWs

)
+ σ 2

s ds

= 2

[(∫ s

ti
μu du +

∫ s

ti
σu dWu

)
μs ds + σs

(∫ s

ti
μu du

)
dWs

]

+ 2

(∫ s

ti
σu dWu

)
σs dWs + σ 2

s ds.

Then Y2
i can be decomposed as Y2

i = 2ai + 2bi + σ̄ 2
i , where

ai = �−1
[∫ ti+1

ti
μs ds

∫ s

ti
μu du +

∫ ti+1

ti
μs ds

∫ s

ti
σu dWu

+
∫ ti+1

ti
σs dWs

∫ s

ti
μu du

]
,

bi = �−1
∫ ti+1

ti

∫ s

ti
σu dWuσs dWs,

and

σ̄ 2
i = �−1

∫ ti+1

ti
σ 2

s ds.

Therefore, σ̂ 2
ES,t can be written as

σ̂ 2
ES,t = 2

1 − λ

1 − λn

t−1∑

i=t−n

λt−i−1ai + 2
1 − λ

1 − λn

t−1∑

i=t−n

λt−i−1bi

+ 1 − λ

1 − λn

t−1∑

i=t−n

λt−i−1σ̄ 2
i

≡ An,� + Bn,� + Cn,�.

By Proposition A.1, as n� → 0, |Cn,� − σ 2
t | ≤ K(n�)q, where q =

(2p − 1)/(4p). This, combined with Lemmas A.1 and A.2, completes
the proof of the theorem.

Lemma A.1. If condition (C2) is satisfied, then E[A2
n,�] = O(�).

Proof. Simple algebra gives the result. In fact,

E(a2
i ) ≤ 3E

[
�−1

∫ ti+1

ti
μs ds

∫ s

ti
μu du

]2

+ 3E

[
�−1

∫ ti+1

ti
μs ds

∫ s

ti
σu dWu

]2

+ 3E

[
�−1

∫ ti+1

ti
σs dWs

∫ s

ti
μu du

]2

≡ I1(�) + I2(�) + I3(�).

Applying Jensen’s inequality, we obtain that

I1(�) = O(�−1)E

[∫ ti+1

ti

∫ s

ti
μ2

s μ2
u du ds

]

= O(�−1)

∫ ti+1

ti

∫ s

ti
E(μ4

u + μ4
s )du ds = O(�).

By Jensen’s inequality, Hölder’s inequality, and martingale moment
inequalities, we have

I2(�) = O(�−1)

∫ ti+1

ti
E

(
μs

∫ s

ti
σu dWu

)2
ds

= O(�−1)

∫ ti+1

ti

{
E[μs]4E

[∫ ti+1

ti
σu dWu

]4}1/2
ds

= O(�).

Similarly, I3(�) = O(�). Therefore, E(a2
i ) = O(�). Then, by the

Cauchy–Schwartz inequality, and noting that n(1 − λ) = O(1), we ob-
tain that

E[A2
n,�] ≤ n

(
1 − λ

1 − λn

)2 n∑

i=1

λ2(n−i)E(a2
i ) = O(�).

Lemma A.2. Under conditions (C1) and (C2), if n → ∞ and
n� → 0, then

s−1
1,t

√
nBn,�

D−→ N (0,1). (A.4)

Proof. Note that bj = σ 2
t �−1 ∫ tj+1

tj (Ws − Wtj)dWs + εj, where

εj = �−1
∫ tj+1

tj
(σs − σt)

[∫ s

tj
σu dWu

]
dWs

+ �−1σt

∫ tj+1

tj

[∫ s

tj
(σu − σt)dWu

]
dWs.

By the central limit theorem for martingales (see Hall and Heyde 1980,
cor. 3.1), it suffices to show that

V2
n ≡ E[s−2

1,t nB2
n,�] → 1 (A.5)

and that the following Lyapunov condition holds:

t−1∑

i=t−n

E

(√
n

1 − λ

1 − λn λt−i−1bi

)4
→ 0. (A.6)

Note that

�2

2
E(ε2

j ) ≤ E

{∫ tj+1

tj
(σs − σt)

[∫ s

tj
σu dWu

]
dWs

}2

+ σ 2
t E

{∫ tj+1

tj

[∫ s

tj
(σu − σt)dWu

]
dWs

}2

≡ Ln1 + Ln2. (A.7)

By Jensen’s inequality, Hölder’s inequality, and moment inequalities
for martingale, we have

Ln1 ≤
∫ tj+1

tj
E

{
(σs − σt)

2
[∫ s

tj
σu dWu

]2}
ds

≤
∫ tj+1

tj

{
E(σs − σt)

4E

[∫ s

tj
σu dWu

]4}1/2
ds

≤
∫ tj+1

tj

{
E[k0K1(n�)q]436�

∫ s

tj
E(σ 4

u )du

}1/2
ds

≤ M(n�)2q�2, (A.8)



630 Journal of the American Statistical Association, June 2007

where K1 is defined in Proposition A.1. Similarly,

Ln2 ≤ M(n�)2q�2. (A.9)

By (A.7), (A.8), and (A.9), we have E(ε2
j ) ≤ M(n�)2q; therefore,

E[σ−4
t b2

j ] = 1
2 + O((n�)q). By the theory of stochastic calculus, sim-

ple algebra gives that E(bj) = 0 and E(bibj) = 0 for i 
= j. It follows
that

V2
n = E(s−2

1,t nB2
n,�) =

t−1∑

i=t−n

E

(
2s1,t

√
n

1 − λ

1 − λn λt−i−1bi

)2
→ 1;

that is, (A.5) holds. For (A.6), it suffices to prove that E(b4
j ) is

bounded, which holds from condition (C2) and by applying the mo-
ment inequalities for martingales to b4

j .

Proof of Theorem 2

The proof is completed along the same lines as given by Fan and
Zhang (2003).

Proof of Theorem 3

By Fan and Yao (1998), the volatility estimator σ̂ 2
S,tN

behaves as
if the instantaneous return function f were known. Thus, without loss
of generality, we assume that f (x) = 0 and hence R̂i = Y2

i . Let Y =
(Y2

0 , . . . ,Y2
N−1)T and W = diag{Wh(rt0 − rtN ), . . . ,Wh(rtN−1 − rtN )},

and let X be a (N − t0)× 2 matrix with each of the elements in the first
column being 1 and the second column being (rt0 − rtN , . . . , rtN−1 −
rtN )′. Let mi = E[Y2

i |rti ], m = (m0, . . . ,mN−1)T , and e1 = (1,0)T .
Define SN = XT WX and TN = XT WY. Then it can be written that
σ̂ 2

S,tN
= eT

1 S−1
N TN (see Fan and Yao, 2003). Hence

σ̂ 2
S,tN

− σ 2
tN = eT

1 S−1
N XT W{m − XβN} + eT

1 S−1
N XT W(Y − m)

≡ eT
1 b + eT

1 t, (A.10)

where βN = (m(rtN ), m′(rtN ))T with m(rx) = E[Y2
1 |rt1 = x]. Follow-

ing Fan and Zhang (2003), the bias vector b converges in probability to
a vector b̄ with b̄ = O(h2) = o(1/

√
(N)h). In what follows, we show

that the centralized vector t is asymptotically normal.
In fact, write u = (N)−1H−1XT W(Y − m), where H = diag{1,h}.

Then, following Fan and Zhang (2003), the vector t can be written as

t = p−1(rtN )H−1S−1u(1 + op(1)), (A.11)

where S = (μi+j−2)i,j=1,2 with μj = ∫
ujW(u)du and p(x) is the in-

variant density of rt defined in Section 2.2. For any constant vector c,
define

QN = cT u = 1

N

N−1∑

i=0

{Y2
i − mi}Ch

(
rti − rtN

)
,

where Ch(·) = 1/hC(·/h) with C(x) = c0W(x) + c1xW(x). Applying
the “big-block” and “small-block” arguments of Fan and Yao (2003,
thm. 6.3, p. 238), we obtain

θ−1(rtN )
√

(N)hQN
D−→ N(0,1), (A.12)

where θ2(rtN ) = 2p(rtN )σ 4(rtN )
∫ +∞
−∞ C2(u)du. In what follows, we

decompose QN into two parts, Q′
N and Q′′

N , which satisfy the follow-
ing:

(a) NhE[θ−1(rtN )Q′
N ]2 ≤ (h/N)(h−1aN(1 + o(1)) + (N) ×

o(h−1)) → 0.

(b) Q′′
N is identically distributed as QN and is asymptotically inde-

pendent of σ̂ 2
ES,tN

.

Define Q′
N = 1

N
∑aN

i=0{Y2
i − E[Y2

i |rti ]}Ch(rti − rtN ) and Q′′
N = QN −

Q′
N , where aN is a positive integer satisfying aN = o(N) and aN� →

∞. Obviously, aN � n. Let ϑN,i = (Y2
i − mi)Ch(rti − rtN ). Then, fol-

lowing Fan and Zhang (2003),

var
[
θ−1(

rtN
)
ϑN,1

] = h−1(1 + o(1))

and

N−2∑

�=1

| cov(ϑN,1, ϑN,�+1)| = o(h−1),

which yields the result in (a). This, combined with (A.12), (a), and the
definition of Q′′

N leads to

θ−1(rtN )
√

NhQ′′
N

D−→ N(0,1). (A.13)

Note that the stationarity conditions of Banon (1978) and the G2 con-
dition of Rosenblatt (1970) on the transition operator imply that the
ρt mixing coefficient ρt(�) of {rti } decays exponentially, and that the
strong mixing coefficient α(�) ≤ ρt(�), it follows that
∣∣E exp

{
iξ

(
Q′′

N + σ̂ 2
ES,tN

)} − E exp{iξ(Q′′
N)}E exp

{(
iξ σ̂ 2

ES,tN

)}∣∣

≤ 32α((aN − n)�) → 0,

for any ξ ∈ R. Using the theorem of Volkonskii and Rozanov (1959),
we get the asymptotic independence of σ̂ 2

ES,tN
and Q′′

N .

By (a),
√

NhQ′
N is asymptotically negligible. Then, by Theorem 1,

d1θ−1(
rtN

)√
NhQN + d2V−1/2

2
√

n
[
σ̂ 2

ES,tN
− σ 2(

rtN
)]

D−→N (0,d2
1 + d2

2),

for any real d1 and d2, where V2 = ec+1
ec−1σ 4(rtN ). Because QN is a

linear transformation of u,

V−1/2
[ √

Nhu√
n[σ̂ 2

ES,tN
− σ 2(rtN )]

]
D−→ N (0, I3),

where V = blockdiag{V1,V2} with V1 = 2σ 4(rtN )p(rtN )S∗, where
S∗ = (νi+j−2)i,j=1,2 with νj = ∫

ujW2(u)du. This, combined with

(A.11), gives the joint asymptotic normality of t and σ̂ 2
ES,tN

. Note that

b = op(1/
√

Nh), and it follows that

�−1/2
(√

Nh[σ̂ 2
S,tN

− σ 2(rtN )]
√

n[σ̂ 2
ES,tN

− σ 2(rtN )]
)

D−→ N (0, I2),

where � = diag{2σ 4(rtN )ν0/p(rtN ),V2}. Note that σ̂ 2
S,tN

and σ̂ 2
ES,tN

are asymptotically independent; it follows that the asymptotical nor-
mality in (b) holds.

The result in (c) follows from (b) and the fact that ŵtN
P→ wtN and

σ̂ 2
I,tN

= ŵtN σ̂ 2
ES,tN

+ (1 − ŵtN )σ̂ 2
S,tN

. It follows that

σ̂ 2
I,tN − σ 2

tN

= σ̂ 2
tN − σ 2

tN + (
ŵtN − wtN

)[(
σ̂ 2

ES,tN
− σ 2

tN

) − (
σ̂ 2

S,tN
− σ 2

tN

)]

≡ Ln1 + (
ŵtN − wtN

)
(Ln2 − Ln3).

Because Ln1, Ln2, and Ln3 are of the same order, the second and third
terms are dominated by the first term, Ln1. Then σ̂ 2

I,tN
− σ 2

tN = (σ̂ 2
tN −

σ 2
tN )(1 + op(1)), and thus σ̂ 2

I,tN
− σ 2

tN shares the same asymptotical

normality as σ̂ 2
tN − σ 2

tN .

[Received November 2005. Revised December 2006.]
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