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Asymptotic Equivalence of Regularization Methods
in Thresholded Parameter Space

Yingying FAN and Jinchi Lv

High-dimensional data analysis has motivated a spectrum of regularization methods for variable selection and sparse modeling, with two
popular methods being convex and concave ones. A long debate has taken place on whether one class dominates the other, an important
question both in theory and to practitioners. In this article, we characterize the asymptotic equivalence of regularization methods, with
general penalty functions, in a thresholded parameter space under the generalized linear model setting, where the dimensionality can grow
exponentially with the sample size. To assess their performance, we establish the oracle inequalities—as in Bickel, Ritov, and Tsybakov
(2009)—of the global minimizer for these methods under various prediction and variable selection losses. These results reveal an interesting
phase transition phenomenon. For polynomially growing dimensionality, the L-regularization method of Lasso and concave methods are
asymptotically equivalent, having the same convergence rates in the oracle inequalities. For exponentially growing dimensionality, concave
methods are asymptotically equivalent but have faster convergence rates than the Lasso. We also establish a stronger property of the oracle
risk inequalities of the regularization methods, as well as the sampling properties of computable solutions. Our new theoretical results are

illustrated and justified by simulation and real data examples.

KEY WORDS: General penalty functions; Global minimizer; High-dimensional prediction and variable selection.

1. INTRODUCTION

Among all efforts on high-dimensional inference in the last
decade, regularization methods have received much attention
due to their ability to simultaneously conduct variable selection
and estimation. The idea of regularization is to add a penalty
term on model complexity to some model fitting loss measure.
Then minimizing the penalized model fitting loss measure yields
an estimate of the model parameters. Various penalty functions
have been proposed in the literature. Broadly speaking, they can
be classified into two classes: convex ones and concave ones.
The former class is most popularly represented by the Lasso
with the L;-penalty (Tibshirani 1996), and the latter class in-
cludes the smoothly clipped absolute deviation (SCAD; Fan and
Li 2001), minimax concave penalty (MCP; Zhang 2010), and
smooth integration of counting and absolute deviation (SICA;
Lv and Fan 2009), among others.

There has been a long debate on which class of regular-
ization methods one should use. Convex regularization meth-
ods enjoy nice computational properties and can be efficiently
implemented with algorithms such as the least-angle regres-
sion (LARS; Efron et al. 2004) and coordinate optimization
(Friedman et al. 2007; Wu and Lange 2008). On the theoretical
side, Zhao and Yu (2006) introduced the irrepresentable condi-
tions to characterize the model selection consistency of Lasso.
See also, for example, Donoho, Elad, and Temlyakov (2006);
Bunea, Tsybakov, and Wegkamp (2007); van de Geer (2008);
and Bickel, Ritov, and Tsybakov (2009) for the properties of
the L,-regularization method of Lasso. Despite its appealing
properties, the Lasso suffers from an intrinsic bias issue (Fan
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and Li 2001; Zou 2006; Zhang and Huang 2008). The irrep-
resentable conditions ensuring the model selection consistency
of Lasso become stringent in high dimensions due to increased
collinearity among predictors (Lv and Fan 2009; Fan and Lv
2011).

On the other hand, concave regularization methods, initiated
in Fan and Li (2001), ameliorate the bias issue of Lasso and
enjoy the model selection consistency property under much
weaker conditions. Fan and Li (2001) proposed nonconcave
penalized likelihood methods including the use of the SCAD
penalty and established their oracle properties in the finite-
dimensional setting. Their results were later extended by Fan
and Peng (2004) to the moderate-dimensional setting with
p =o(n'3) or o(n'?), where p is the dimensionality and n
is the sample size. Recently, Lv and Fan (2009) established
the weak oracle properties for regularization methods with gen-
eral concave penalties in linear regression model, where p is
allowed to grow exponentially with sample size n. Fan and
Lv (2011) extended these results to generalized linear models
(GLMs) and further proved the oracle properties of nonconcave
penalized likelihood estimators. Despite all these theoretical de-
velopments, most existing studies on nonconvex regularization
methods have focused on some appealing local minimizers. The
global properties of these methods are still largely unknown and
the theoretical characterizations of the global minimizers pose
challenges.

The aforementioned advantages and potential issues of the
two classes of regularization methods make it difficult for prac-
titioners to decide which one to use. Understanding the connec-
tions and differences between different regularization methods
is important both theoretically and empirically. An important
question that has long puzzled researchers is: What are the
connections and differences of all regularization methods? We
intend to provide some answer to this question in this article. To
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characterize the performance of different regularization meth-
ods, we establish the oracle inequalities and a stronger property
of oracle risk inequalities of the global minimizer for regular-
ization methods with general penalty functions, including both
convex and concave ones.

The oracle inequalities have been frequently exploited to pro-
vide theoretical insights into high-dimensional inference meth-
ods and show how closely a sparse modeling method can mimic
the oracle procedure. For example, Candes and Tao (2007)
proved the oracle inequalities for the Danztig selector, showing
that the resulting estimator can achieve a loss within a logarith-
mic factor of the dimensionality for the oracle estimator. In a
seminal article, Bickel, Ritov, and Tsybakov (2009) established
the oracle inequalities simultaneously for two well-known L -
regularization methods, the Lasso and Danztig selector. These
oracle inequalities show that the two methods are asymptotically
equivalent under certain regularity conditions. Extensive results
on the oracle inequalities for general regularization methods
were obtained in Antoniadis and Fan (2001) for the wavelets
setting.

Our theoretical analysis reveals the asymptotic equivalence
of regularization methods in a thresholded parameter space, in
the sense of having the same convergence rates in the oracle
inequalities and oracle risk inequalities. The introduction of the
thresholded parameter space is motivated by the goal of dis-
tinguishing between important predictors and noise predictors
in variable selection. The new results on oracle inequalities are
parallel to those in Bickel, Ritov, and Tsybakov (2009) for the
Lasso, but with improved sparsity bound. Our results on the or-
acle risk inequalities are stronger theoretical developments than
those on the oracle inequalities. Specifically, in the case of poly-
nomially growing dimensionality p, all regularization methods
under consideration including the Lasso and concave ones have
the same convergence rates, within a factor of logn of the ora-
cle rates, in the oracle inequalities and oracle risk inequalities,
leading to their asymptotic equivalence. In the case of expo-
nentially growing dimensionality p, all concave regularization
methods under consideration have the same convergence rates
as in the previous case for both oracle inequalities and oracle
risk inequalities, but the rates are faster than those of the Lasso,
which are within a factor of log p of the oracle rates.

The connections and differences between the two classes of
regularization methods revealed by our study provide an inter-
esting phase transition of how different regularization methods
perform as the dimensionality grows with the sample size. To
the best of our knowledge, the results and phase transition phe-
nomenon shown in this article are new to the literature. In addi-
tion, our theoretical results are for the global minimizers of the
regularization methods, which is different from most studies in
the literature.

The rest of the article is organized as follows. Section 2
introduces the regularization methods in the thresholded
parameter space. We present the sampling properties of the
concave regularization methods in a thresholded parameter
space in ultrahigh-dimensional GLMs, as well as the sampling
properties of computable solutions, in Section 3. We discuss the
implementation of the methods and present several simulation
and real data examples in Section 4. Section 5 provides some
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discussions of our results and their implications. All technical
details are relegated to Appendices A and B.

2. REGULARIZATION METHODS IN THRESHOLDED
PARAMETER SPACE

Let (x;, y;){_, be asample of n independent observations from
(x, Y) in the GLM linking a p-dimensional predictor vector x
to a scalar response variable Y. The GLM assumes that with
a canonical link, the conditional distribution of Y given the
predictor vector x belongs to the exponential family, with a
density function taking the form

JF(y:0,¢) = exp{yf — b(0) + c(y. )}, ey

where 0 = x” B with B = (B1, ..., B,)T € RP aregression co-
efficient vector, b(-) and c(-, -) are some suitably chosen known
functions, and ¢ is some positive dispersion parameter. The
function b(-) is assumed to be smooth and convex and gives rise
to the link function g(u) = 0 with u = E(Y|x) = b'(0). Thus
the log-likelihood function given by the sample is
n
6B =Y {yix] B — b B) + cvi, §)} - )
i=1
To ensure model identifiability and improve model interpretabil-
ity in high dimensions, it is common to assume that only a por-
tion of all predictors contributes to the response, that is, the true
regression coefficient vector B, = (Bo.1, - - - » Po. p)T is sparse
with many components being zero. We refer to predictors with
nonzero coefficients By ; as true covariates and the remaining
ones as noise covariates. Without loss of generality, we write
By = (ﬂlT, 07)7 with B, consisting of all s nonzero coefficients.
To ease the presentation, we suppress the dependence of all
parameters such as s and p on n whenever there is no confusion.
In the GLM setting, the regularization method minimizes the
penalized negative log-likelihood function

0.(B) = —n""y"XB — 1"bXB)} + IpaBlli,  (3)

where y = (y1,...,y,)" is an n-dimensional response vec-
tor, X = (Xy, ..., X,)] isann x p deterministic design matrix,
b(0) = (b(6)), ..., b6,))T is a vector-valued function with § =
©1.....6)" and 6; =xI B, and [|px(B)l = X7, pi(IB;1)
is a separable penalty term on model parameters with p,(¢)
a penalty function defined on ¢ € [0, 00) and indexed by a
nonnegative regularization parameter A. The last term in the
log-likelihood function (2) involving the dispersion param-
eter ¢ is dropped for simplicity. Here we use a compact
notation p;(B) = p,(IBD) = (pa(1B1), - -, pA(I1B, )" with the
penalty function applied componentwise and |B| = (|81, .. .,
| ﬁp|)T. To align all covariates to a common scale, we rescale
each column vector of the n x p design matrix X for each co-
variate to have Ly-norm n'/2. As mentioned in the Introduction,
many penalty functions have been proposed for variable selec-
tion and sparse modeling; see the references therein for their
specific forms.

The level of collinearity among the covariates typically in-
creases with the dimensionality. When this level is high, the
estimation can become unstable and the model identifiability
may not be guaranteed. We consider the idea of bounding the
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sparse model size to control the collinearity for sparse models
and ensure identifiability and stability of model for reliable pre-
diction and variable selection. A natural bound is given by the
following concept of robust spark on the design matrix X, as
introduced in Zheng, Fan, and Lv (2014).

Definition 1 (Robust spark). The robust spark k. of then x p
design matrix X is defined as the smallest possible positive
integer such that there exists an n x k. submatrix of n~1/2X
having a singular value less than a given positive constant c.

The above concept of robust spark generalizes that of spark
in Donoho and Elad (2003), which plays an important role in
the problem of sparse recovery; see also Lv and Fan (2009).
As ¢ — 04, the robust spark k. approaches the spark of X. For
each sparse model with size m < k., the corresponding n x m
submatrix of n~'/2X have all singular values bounded from be-
low by c. The robust spark k. is always a positive integer no
larger than n + 1 and can be some large number diverging with
n. Although we consider the case of deterministic design ma-
trix, the following proposition formally characterizes the order
of k. when the design matrix X is generated from Gaussian
distribution.

Proposition 1. Assume log p = o(n) and that the rows of the
n x p random design matrix X are independent and identically
distributed (iid) as N(0, X), where X has smallest eigenvalue
bounded from below by some positive constant. Then there exist
positive constants ¢ and ¢ such that with asymptotic probability
one, k. > c¢n/(log p).

To compare different regularization methods in (3), we intro-
duce the thresholded parameter space

Bre ={B €R”:|Bllo < k./2 and for each j,
Bj=0or|B;| = 1}, 4)

where 8 = (B, ..., ﬂp)T and 7 is some positive threshold on
parameter magnitude. The threshold t is key to distinguish-
ing between important covariates and noise covariates for the
purpose of variable selection. As shown in Theorem 1 in Sec-
tion 3.2, the threshold 7 is needed to satisfy t+/n/(log p) — o0
as n — 0o, indicating that the threshold level should dominate
the maximum noise level of p independent standard Gaussian
errors asymptotically.

The use of the thresholded parameter space B; . in (4) is
motivated by the approach of the best subset regression with
the Ly-regularization, which was proved in Barron, Birge, and
Massart (1999) to enjoy the oracle risk inequalities under the
prediction loss. The following proposition is satisfied by any
global minimizer of the regularization problem (3) when the
Lo-penalty p; (1) = Aly+q) is used.

Proposition 2 (Hard-thresholding property). For the Lo-
penalty p,(t) = Alyzo), the global minimizer B = (E, ceey
B;)T of the regularization problem (3) over R” satisfies that
each component BD is either 0 or has magnitude larger than
some positive threshold.

The above hard-thresholding property is shared by many other
penalty functions. For example, Zheng, Fan, and Lv (2014) and
Fan and Lv (2012) proved such a property in the setting of
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penalized least squares for the hard-thresholding penalty (Hard)
and SICA penalty, respectively. These continuous concave
penalties are also considered in our study. Intuitively, if some
covariates have weak effects, that is, having regression coef-
ficients with magnitude below certain threshold, we can keep
these variables out of the model to improve the prediction accu-
racy with reduced estimation variability because they may have
negligible effects on prediction. Moreover, these weak signals
are generally difficult to stand out compared with some noise
variables due to the impact of high dimensionality.

3. ASYMPTOTIC EQUIVALENCE
OF REGULARIZATION METHODS

In this section, we establish the asymptotic equivalence of the
regularization methods (3) in the thresholded parameter space
B: ., with various penalty functions, in the sense of having the
same convergence rates in the oracle inequalities and oracle risk
inequalities.

3.1 Technical Conditions

We first introduce some notation and two key events to facili-
tate our technical presentation. Denote by € = (g1, ..., &,)T =
Y — EY the n-dimensional random model error vector with
Y the n-dimensional random response vector and o =
supp(By) = {1, ..., s} the support of the true regression co-
efficient vector B, that is, the true underlying sparse model.
Throughout the article, we consider a universal choice of the
regularization parameter A = co+/(log p)/n with some positive
constant ¢y, where p is implicitly understood as n Vv p in all
bounds. Define two events

E={In"'X"e|lw < 1/2} and
& = {|n'XL ||, < cov/ogn)/n}, )

where X, denotes a submatrix of the design matrix X consisting
of columns with indices in a given set o C {1, ..., p}.

Condition 1 (Error tail distribution). The complements of
the two events in (5) satisfy P(£°) = O(p~™) and P(&) =
O(n~°") for some positive constant ¢; that can be sufficiently
large for large enough cy.

Condition 2 (Bounded variance). The function b(0) satisfies
that c; < b"(0) < ¢, ! in its domain, where ¢, is some positive
constant.

Condition 3 (Concave penalty function). The penalty func-
tion p, (¢) is increasing and concave in ¢t € [0, co) with p, (0) =
0 and is differentiable with p;(0+) = c3A for some positive
constant cj.

Condition 4 (Ultrahigh dimensionality). Itholds thatlog p =
O(n*) for some constant a € (0, 1).

Condition 5 (True parameter vector). It holds that s =
o(n'~) and there exists a constant ¢ > 0 such that the robust

spark k. > 2s. Moreover, min; <<, |Bo, ;| > +/(log p)/n.

Condition 1 puts a constraint on the error tail distribu-
tion. The same event £ was considered in Bickel, Ritov, and
Tsybakov (2009) for Gaussian error, and the probability bound
on P(£°) can be easily derived using the classical Gaussian tail
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probability bound. We introduce a second event & to derive
improved estimation and prediction bounds for the regularized
estimator. The probability bound on P(&j) holds similarly for
Gaussian error. Condition 1 also holds for error distributions
other than Gaussian, including bounded or light-tailed error,
with no or mild condition on the design matrix X. We discuss
some technical details of this condition in Appendix A.

Condition 2 is a mild condition that is commonly assumed
in the GLM setting and requires that the variances of all re-
sponses are bounded away from zero and infinity. Condition
3 is a common, mild assumption on the penalty function for
studying regularization methods; see also Lv and Fan (2009)
and Fan and Lv (2011). It requires that the penalty function
p.(t) is concave on the positive half axis [0, 00). In this context,
a wide class of penalty functions, including the L-penalty in
Lasso, SCAD, MCP, and SICA, satisfy Condition 3 and belong
to the class of concave penalty functions.

Condition 4 allows the dimensionality p to increase up to
exponentially fast with the sample size n. Condition 5 puts con-
straints on the design matrix X, the model sparsity, and the mini-
mum signal strength. If 7 is chosen such that t+/n/(log p) — oo
and T < min;<;< |Bo, j|, and Condition 5 is satisfied, then it is
seen that B, € B, with B; . defined in (4). For the reason
presented above, in the future presentation, we only consider
appropriately chosen t such that 8, € B; .. In addition, since
we only need the existence of a constant c satisfying Condition
5 and its exact value is not needed in implementation, we will
suppress the dependence of B; . on ¢ and write it as 3, hereafter.

3.2 Oracle Inequalities of Global Minimizer

In this section, we aim to establish the oracle inequalities for
the global minimizer of the penalized negative log-likelihood
(3) in the thresholded parameter space 5,, that is,

o~

B =arg }snelz? 0.(B). (6)

In general, there may exist multiple global minimizers of Q,(f).
Our theoretical results are satisfied by any of these global min-
imizers. Throughout the article, we refer to any global mini-
mizer as the regularized estimator. The oracle inequalities for
the Lasso estimator under estimation and prediction losses were
established in Bickel, Ritov, and Tsybakov (2009) to study the
asymptotic equivalence of the Lasso estimator and Dantzig se-
lector. In addition to common estimation and prediction losses,
we introduce a variable selection loss defined as the total num-
ber of falsely discovered signs of covariates by an estimator

B=i,....B)",

FS(B) = I{j : sgn(B)) #sgn(Bo. ), 1 < j < pll. (D)

This loss of false signs FS(E) is a stronger measure than com-
monly used ones such as the number of false positives and the
number of false negatives. We will use this measure to study the
sign consistency property of the regularized estimator 8 (Zhao
and Yu 20006).

Theorem I (Oracle inequalities). Assume that Conditions
1-5 hold and 7 is chosen such that T < minj<;<|fo, ;| and
A = co+/(log p)/n = o(t). Then the global minimizer defined
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in (6) exists, and any such global minimizer satisfies that with
probability at least 1 — O(p~"), it holds simultaneously that

(a) (False signs). FS(E) ;Cs)»zr_z/(l — CA2t72);

(b) (Estimation losses). ||B — Bylly < C)le/"(lA—
CA?t=2)"Y4 for each g €[1,2] and ||B — Byl <
Cas'2(1 — CA2c=2)7 172 R

(c) (Prediction loss). n= | X(B — By)|l2 < Crs'/?(1 —
Cr2r=2)" 12,

where C is some positive constant.

Theorem 1 shows the existence of the global minimizer de-
fined in (6) and presents the oracle inequalities for the regular-
ized estimator for a wide class of penalty functions characterized
by Condition 3. All theoretical results in the article hold uni-
formly over the set of all possible global minimizers.

Since the regularization parameter A represents the minimum
regularization level needed to suppress the noise covariates,
and the thresholding level t is just below the minimum signal
strength, a valid thresholding level requires & = o(7) to ensure
that all true covariates will not be screened out asymptotically.
Since Ar~! — 0, the above bound on false signs FS(B) is of
a smaller order than the true model size s, meanin/g that the
proportion of missed signs for signals, that is, FS(8)/s, van-
ishes asymptotically. This tight bound on false signs is a unique
feature of introducing the thresholded parameter space. In con-
trast, the bound on estimated model size ||B]|o for the ordi-
nary Lasso estimator is of order O(¢axs) With ¢y the largest
eigenvalue of the Gram matrix n1XTX (Bickel, Ritov, and
Tsybakov 2009), and thus the proportion of missed signs
FS(ﬁ) /s in this estimator can be of order O(Pmax), Which
does not vanish asymptotically. In view of At~! — 0 and
A = co+/(log p)/n, the bounds on the estimation and predic-
tion losses in Theorem 1 satisfy that for each g € [1, 2],

1B — Boll, = Ofs"4/(log p)/n} and
n 2 IX(B = Byl = O(/s(log p)/n),

whose convergence rates are within a logarithmic factor of log p
of the oracle rates. The above convergence rates in these ora-
cle inequalities are consistent with those in Bickel, Ritov, and
Tsybakov (2009) for the Lasso estimator.

We next show that under some additional conditions, the sign
consistency of the regularized estimator ﬁcan be obtained and
the convergence rates in Theorem 1 can be further improved.
Define a small neighborhood of 8 in the thresholded parameter
space as

By = {B € B: : supp(B) = supp(B) and
1B — Bolla < 2Cs'/?1} (®)
with constant C given in Theorem 1. Note that this neighborhood

is asymptotically shrinking since s'/?A — 0 as guaranteed by
Conditions 4 and 5. We introduce two important constants

1 —1
Vn* = sup {_XgoH(ﬂh ""ﬂn)XDto} ’ (9)
BieBs, i=1,..n || LT o
1
Yo = sup X, HBX.| . (10
BeB, aC{s+1,...,p} and |a|<s n 9]




Downloaded by [USC University of Southern California] at 20:59 07 October 2013

1048

where H(B, ..., B,) = diag{p”"(xT B,),...,b"(xI'B,)} and
H(B) = diag{b"(xT B), ..., b"(x] B)} are diagonal matrices of
variances. To get some intuition on the constants y,* and y,,
let us consider the special case of Gaussian linear model with
b"(0) = 1. In such case, we have

1, !
v = ” <;X%Xa0> and
o0
lor
Vo = sup =X, Xa (11
aCfs+1,...,p}and |a|<s || 1 1)
Since each column of X is rescaled to have L,-norm n'/2, it is

seen that y," is only associated with the design matrix of the true
model &, while y, is related to the correlation between true
covariates and noise covariates.

To evaluate the prediction property, we consider the
Kullback-Leibler divergence of the fitted model from the true
model given by

D(B) = —(EY)"X(B — By) + 17 [b(XB) — b(XBy)],

where EY = (b'(x] B), ..., b'(X] By))" is the true mean re-
sponse vector for the GLM.

Theorem 2 (Sign consistency and oracle inequalities). As-
sume that conditions of Theorem 1 hold with min;<;
Bojl = 2t, A =co/Togp)/n=o(s""21), and y, =
o{t+/n/(slogn)}. Then any global minimizer B in (6) sat-
isfies that with probability at least 1 — O(rn™"), it holds
simultaneously that

(a) (Sign consistency). sgn(ﬁ) = sgn(By);
(b) (Estimation and prediction losses). If the penalty function

further satisfies pi(tv) = O{s/(logn)/n}, then we have
for each g € [1, 2],

1B = Bolly < Cs"/4\/Gogn)/n,
1B = Bollow = C;/Qogn)/n,
and n~'D(B) < Cs(logn)/n,
where C is some positive constant.

In comparison with Theorem 1(a), we obtain in Theorem
2(a) a stronger property of sign consistency of the regular-
ized estimator. The additional condition on the penalty func-
tion p)(r) = O{/(logn)/n} can be easily satisfied by concave
penalties such as the SCAD and SICA, with appropriately cho-
sen . For penalty functions satisfying this additional condition,
the convergence rates of the regularized estimator are improved
with the log p term (see Theorem 1) replaced with logn (see
Theorem 2). In this sense, our study provides a setting show-
ing the general nonoptimality of the logarithmic factor of the
dimensionality log p in oracle inequalities.

To gain more insights into Theorem 2, we consider again the
case of Gaussian linear model. In view of (11) and the robust
spark condition in (4), we have an upper bound on y,* given by

1 —1
(—X;X%>
n

Observing that y,, in (11) measures the correlation between
noise covariates and true covariates, the condition y, =
of{t/n/(slogn)} in Theorem 2 essentially requires that the

* 1/2

Y, <& Sc_'sl/z.

2
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noise covariates and true covariates should not be too highly
correlated with each other. Note that each column of X,, is
rescaled to have L,-norm n'/2. When all true covariates are or-
thogonal to each other, we have y,* = 1 and thus the bound on
the L-estimation loss in Theorem 2 becomes

1B — Bolloo < Cy/(logn)/n,

whose convergence rate is within a logarithmic factor of logn
of the oracle rate.

Combining Theorems 1 and 2 shows that for polynomially
growing dimensionality with p = O(n®) for some positive con-
stant a, the L,-regularization method of Lasso and concave reg-
ularization methods with penalties satisfying Condition 3 are
asymptotically equivalent in the thresholded parameter space,
meaning that all methods have the same convergence rates in the
oracle inequalities, with a logarithmic factor of log n. For expo-
nentially growing dimensionality with log p = O(n®) for some
positive constant  less than 1, the concave regularization meth-
ods satisfying the additional condition p(t) = O{\/(logn)/n}
are asymptotically equivalent and still enjoy the same conver-
gence rates in the oracle inequalities, with a logarithmic fac-
tor of logn. For the Li-penalty used in Lasso, the condition
pi(r) = O{/(logn)/n} and the choice of the regularization
parameter A = co+/(log p)/n are, however, incompatible with
each other in the case of log p = O(n?). Thus in the ultrahigh-
dimensional case, the convergence rates in the oracle inequal-
ities for Lasso, which have a logarithmic factor of log p, are
slower than those for concave regularization methods. These
results reveal an interesting phase diagram on how the perfor-
mance of regularization methods, in the thresholded parameter
space, evolves with the dimensionality and the penalty function,
in terms of convergence rates in the oracle inequalities.

Among different approaches to alleviating the bias issue of
the Lasso, the adaptive Lasso (Zou 2006) exploits the weighted
Ly-penalty Al|lw o B||; with weight vector w = (wy, ..., w,)7,
where w; = | ;|77 for some y >0, 1<j<p, with
Bini = (Bini1s - - -, Bni,p)" an initial estimator, and o denotes
the componentwise product. Under some particular choices of
the initial estimator, the adaptive Lasso can enjoy the properties
established in Theorems 1 and 2, similarly as the Lasso. For
instance, the choice of the trivial initial estimator ;,; = 1 gives
the Lasso estimator. How to choose other nontrivial initial
estimators is crucial to ensuring that the adaptive Lasso has
improved convergence rates as concave methods in ultrahigh
dimensions. Another popular method, the bridge regression in
Frank and Friedman (1993), uses the L,-penalty p;(f) = At¢
for 0 < g <2. When 0 < g < 1, the bridge regression is also
a concave regularization method since p;(¢) is concave on
[0, 00). However, such a method falls outside the class of
regularization methods in our framework, since p;(0+) = oo
in this case, which violates Condition 3. As a consequence, a
key inequality (B.7) in our technical analysis does not hold in
general for the bridge estimator with0 < ¢ < 1.Itis yetunclear
whether similar results to those in Theorems 1 and 2 would
also hold for the bridge estimator in the case of 0 < g < 1.

3.3 Oracle Risk Inequalities of Global Minimizer

The oracle inequalities presented in Section 3.2 are derived
by conditioning on the event £ (Theorem 1) or £ N & (Theorem
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2) defined in (5), and thus they may not hold on the complement
&S or E°UE;. We now establish a stronger property of the
oracle risk inequalities for the regularized estimator § in (6),
which gives upper bounds on the expectations of various variable
selection, estimation, and prediction losses.

Theorem 3 (Oracle risk inequalities). Assume that conditions
of Theorem 2 hold and the fourth moments of _errors E sf.‘ are
uniformly bounded. Then any global minimizer § in (6) satisfies
that

(a) (Sign risk). E{FS(B)} = —={llpx(Bo)lli + 5221
O™ + 0(p~%ke)};
(b) (Estimation and prediction risks). If the penalty function

further satisfies pj(t) = O{s/(logn)/n}, then we have
for each ¢ € [1, 2],

E|IB — Boll¢ < Csl(logn)/n]"2,

EIIB = Bolloo = Cy;/logm)/n, and
E{n"'D(B)} < Cs(logn)/n,

where C is some positive constant.

The expectation of the number of falsely discovered signs
converges to zero at a polynomial rate of n. In the wavelet
setting of Gaussian linear model with p = n and orthogonal
design matrix X, it has been proved in Antoniadis and Fan
(2001) that the risks of the regularized estimators under the L;-
loss are bounded by O {s(logn)/n}, which is consistent with our
aforementioned results. This indicates that there is no additional
cost in risk bounds for generalizing to the ultrahigh-dimensional
nonlinear model setting of the GLM.

3.4 Sampling Properties of Computable Solutions

The theoretical results presented in previous sections are on
any global minimizer of the penalized negative log-likelihood
Q,(B) in the thresholded parameter space B,. The global
minimizer may not be guaranteed to be found by a com-
putational algorithm. Therefore, it is also important to study
the sampling properties of the computable solution produced
by any algorithm. Define a vector-valued function u(f) =
@'@®), ..., 06,))T for@ =@, ...,6,T", which is the mean
function in the GLM.

Theorem 4. Let ﬁ € B; be a computable solution to the
minimization problem (6) produced by any algorithm that is
the global minimizer when constrained on the subspace given
by supp(B). and n, = [~ X" [y — p(XB)]lloc. Assume in ad-
dition that there exists some positive constant ¢4 such that
In= "X, [(XB) — w(XB)lll2 = call B — Boll2 for any B € B,
and o = supp(B) U supp(B,), if model (1) is nonlinear. If
M+ A =o(r) and minj<j<|Bo ;| > css'*(ny + 1) with cs
some sufficiently large positive constant, then 8 enjoys the same
asymptotic properties as for any global minimizer in Theorems
1-3 under the same conditions therein.

The condition that ﬁ is the global minimizer of problem
(6) when constrained on the subspace given by its support can
hold under some mild condition on the penalty function. Such
a property has been formally characterized in proposition 1
of Fan and Lv (2011). For example, when condition (12) in
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Section 4.1 is satisfied, the penalized negative log-likelihood
0,(B) in (3) is strictly convex on the above subspace, which
entails that the local minimizer found by any algorithm will
necessarily be the global minimizer over this subspace.

As shown in the proof of Theorem 4, the above additional
condition on the mean deviation vector u(XpB) — u(Xg,) al-
ways holds for linear model with c4 = ¢?. In nonlinear models,
such a condition requires that a deviation from the true mean
vector u(Xp,) can be captured by the covariates involved. The-
orem 4 shows that a computable solution produced by any algo-
rithm can share the same nice asymptotic properties as for any
global minimizer, when the maximum corr’glation between the
covariates and the residual vector y — u(Xf) is a smaller order
of the threshold 7. Such a solution needs not to be the global
minimizer.

4. NUMERICAL STUDIES
4.1 Implementation

Algorithms for implementing regularization methods include
those mentioned in the Introduction, the local quadratic ap-
proximation algorithm (Fan and Li 2001), and local linear ap-
proximation algorithm (Zou and Li 2008). In particular, the
coordinate optimization algorithm, which solves the problem
one coordinate a time and cycles through all coordinates, has
received much recent attention for solving large-scale problems
thanks to its very low computational cost for each coordinate.
For example, the iterative coordinate ascent (ICA) algorithm
(Fan and Lv 2011) implements regularization methods by com-
bining the ideas of second-order quadratic approximation of
likelihood function and coordinate optimization. For each co-
ordinate within each iteration, the quadratic approximation of
the likelihood function at the p-vector from the previous step
along that coordinate reduces the problem to a univariate pe-
nalized least squares, which admits a closed-form solution for
many commonly used penalty functions. See, for example, Lin
and Lv (2013) for an analysis of convergence properties of this
algorithm.

In this article, we apply the ICA algorithm to implement con-
cave regularization methods in the thresholded parameter space.
A key ingredient of these methods is the use of the thresholded
parameter space, which naturally puts an additional constraint
on each component of the parameter vector. For each coor-
dinate within each iteration, we solve the univariate penalized
least-squares problem with the corresponding quadratic approx-
imation of the likelihood function and update this coordinate
only when the global minimizer has magnitude above the given
threshold t. We found that this optimization algorithm works
well for producing the solution paths for concave regularization
methods in the thresholded parameter space. The thresholding
also induces additional sparsity of the regularized estimate and
thus makes the algorithm converge faster.

To gain some insight into the stability of the computational
algorithm, assume that the penalty function p;, (#) has maximum
concavity

Gy AGY)
h—h

p(p) = sup { }<CCz, (12)

0<t) <t <00



Downloaded by [USC University of Southern California] at 20:59 07 October 2013

1050

where constants ¢ and ¢, are given in Definition 1 and Condi-
tion 2, respectively. This condition holds for penalties satisfy-
ing Condition 3 with suitably chosen regularization parameter
A and shape parameter. For example, the L;-penalty p;(t) =
At in Lasso has maximum concavity 0; the SCAD penalty
pa(t) having derivative p)(t) = AI(t < A)+(a — 1)~ !(ar —
t)+I1(t > A), with shape parameter a > 2, has maximum con-
cavity p(py) = (a — 1)7'; and the SICA penalty p;(t;a) =
Ma + 1)t /(a + t) with shape parameter ¢ has maximum con-
cavity 2x(a~" + a=?). Condition (12) on the maximum con-
cavity of penalty function ensures that the penalized negative
log-likelihood Q,(B) in (3) is strictly convex on a union of co-
ordinate subspaces {8 € R? : ||B|lo < k.}, which is key to the
stability of the sparse solution found by any algorithm.

In implementation, we need to select two tuning parameters:
the threshold t for the thresholded parameter space B; and the
regularization parameter A for the penalty function p, (7). As
shown in the theoretical results, the threshold t should be larger
than the regularization parameter A = co/(log p)/n to filter
the noise. Thus we choose 7 as T = c4(log n)'/?/(log p)/n for
some positive constant cg. As for the regularization parameter
A, we use the validation set or cross-validation (CV) to select 7.

4.2 Simulation Studies

In this section, we investigate the finite-sample properties
of several concave regularization methods in the thresholded
parameter space, in three commonly used GLMs: the linear re-
gression model, the logistic regression model, and the Poisson
regression model, as well as in a real data example. Since the
main purpose of our simulation study is to justify the theo-
retical results, we select the tuning parameters by minimizing
the prediction error calculated using an independent validation
set, with size equal to the sample size in the study. This tun-
ing parameter selection criterion reduces additional estimation
variability incurred by the CV. Fivefold CV was used for tuning
parameter selection in real data analysis.

4.2.1 Linear Regression. We start with the linear regression
model (1) written in the matrix form

y=XB +e. (13)

We generated 100 datasets from this model with error & ~
N(0, 0%1,) independent of the design matrix X. The sample
size n and error standard deviation o were chosen to be 100 and
0.4, respectively. For each dataset, the rows of the design matrix
X were sampled as iid copies of random p-vector from N (0, X)
with X = (r//7*),_; 1<, for some number r. We considered
three settings for the pair (p, r) of dimensionality and population
collinearity level: (1000, 0.25), (1000, 0.5), and (5000, 0.25). In
addition to the population collinearity, the sample collinearity
among the covariates can be of a much higher level due to the
high dimensionality. The true regression coefficient vector 8 was
set to be B, = (1, —0.5,0.7, —1.2, —0.9, 0.5, 0.55,0, ..., 0).
We take the oracle procedure, using the information of the true
underlying sparse model, as the benchmark variable selection
method, and compare the Lasso, SCAD, MCP, Hard, and SICA
in the thresholded parameter space, which are referred to as
Lasso;, SCAD,, MCP,, Hard,, and SICA, for simplicity, respec-
tively. We also include the original SCAD in the comparison.

Journal of the American Statistical Association, September 2013

Simulation results show that SCAD,, MCP;, and Hard, had very
similar performance, so we omit the results on MCP; and Hard,
to save space. The shape parameter a of the SCAD and SICA
penalties was chosen to be 3.7, and 10~* or 1072, respectively.

To evaluate the selected models, we consider several perfor-
mance measures for prediction and variable selection. The first
measure is the prediction error (PE) defined as E(Y —x” §)?
with B an estimate and (x”, Y) an independent observation for
the p covariates and response. An independent test sample of
size 10,000 was generated to calculate the PE. The second to
fourth measures are the L -estimation losses || — Bgll, with
q = 2,1, and oo, respectively. The fifth and sixth measures are
variable selection losses of false positives (FP) and false nega-
tives (FN), where a false positive represents a falsely selected
noise covariate in the model and a false negative represents a
missed true covariate. The seventh measure is the model se-
lection consistency probability of each method based on 100
simulations. We also compare the estimate ¢ of the error stan-
dard deviation o in linear model for all methods.

The model selection consistency results are summarized in
Table 2 and all other results are summarized in Table 1. We
see that across all settings and over all performance measures
through their means and standard errors, all concave regulariza-
tion methods in the thresholded parameter space mimicked very
closely the oracle procedure. In particular, the model selection
consistency probability for each of these methods was very close
to one and its estimated error standard deviation followed very
closely that by the oracle procedure. Figure 1 further shows that
the regularized estimators given by these methods had almost
identical sampling distributions. These numerical results are in
line with our theory presented in Section 3. We also observe
that SCAD, improved over original SCAD in both prediction
and variable selection. The model selection consistency prob-
ability of SCAD was particularly improved when considering
the thresholded parameter space.

We also consider three additional settings for (n, p,r):
(100, 5000, 0.5), (200, 5000, 0.5), and (400, 5000, 0.5). The
comparison results for all methods are presented in Tables 3
and 4. Due to the high collinearity in the setting of (n, p,r) =
(100, 5000, 0.5), all methods performed worse than the oracle
procedure. As sample size increases, these methods followed
more closely the oracle procedure, which are consistent with
our theoretical results.

4.2.2 Logistic Regression. 'We consider the logistic regres-
sion model (1) with the parameter 6; for the response Y; given
by

0=0,...,60)" =X8. (14)

We generated 100 datasets from this model, each of which
contains an n-dimensional response vector y sampled from the
Bernoulli distribution with success probability vector (¢! /(1 +
ey, ..., e% /(1 + e%))T, where 0 is given in (14). The sample
size n and the true regression coefficient vector f were set to
be200and B, = (2,0, —2.3,0,2.8,0, -2.2,0,2.5,0,...,0)7,
respectively. The rest of the setting is the same as that in
Section 4.2.1. We compared the same concave regularization
methods with the oracle procedure and used the same seven
prediction and variable selection performance measures as in
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Table 1. The means and standard errors (in parentheses) of various performance measures as well as the estimated error standard deviation for
all methods in Section 4.2.1

Method
Measure Lasso, SCAD SCAD, SICA, Oracle
Setting I
PE (x0.1) 1.722 (0.007) 1.736 (0.007) 1.721 (0.007) 1.719 (0.007) 1.719 (0.007)

L,-loss (x0.1)
Li-loss (x0.1)
Lo-loss (x0.01)
FP

FN

o (x0.1)

Setting II

PE (x0.1)
L,-loss (x0.1)
Lq-loss (x0.1)
Lo-loss (x0.01)
FP

FN

o (x0.1)

Setting I1I

PE (x0.1)
L,-loss (x0.1)
Ly-loss (x0.1)
L-loss (x0.01)
FP

FN

o (x0.1)

1.122 (0.032)
2.485 (0.077)
7.48 (0.24)
0.01 (0.01)
0 (0)
4.040 (0.035)

1.789 (0.045)
1.445 (0.100)
3.360 (0.318)
9.42 (0.65)
0.22 (0.18)
0.01 (0.01)
4.023 (0.033)

1.722 (0.008)
1.133 (0.034)
2.457 (0.074)
7.77 (0.28)
0.02 (0.01)
0 (0)
4.003 (0.032)

1.184 (0.030)
2.972 (0.100)
7.67 (0.21)
3.84 (0.47)
0(0)
3.959 (0.034)

1.741 (0.008)
1.403 (0.039)
3.558 (0.118)
8.99 (0.28)
4.11 (0.48)
0(0)
3.937 (0.034)

1.743 (0.008)
1.228 (0.033)
3.455 (0.139)
7.79 (0.24)
8.25 (0.84)
0(0)
3.859 (0.034)

1.115 (0.030)
2.425 (0.071)
7.61 (0.21)
0 (0)

0 (0)
4.019 (0.034)

1.735 (0.008)
1.375 (0.040)
3.180 (0.108)
8.95 (0.28)
0.56 (0.12)
0 (0)
3.963 (0.036)

1.719 (0.007)
1.123 (0.032)
2.455 (0.071)
7.61 (0.26)
0.01 (0.01)
0 (0)
3.988 (0.031)

1.106 (0.031)
2.414 (0.071)
7.55(0.23)
0 (0)

0 (0)
4.011 (0.034)

1.738 (0.019)
1.353 (0.062)
2.957 (0.132)
9.22 (0.49)
0.01 (0.01)
0.01 (0.01)
4.016 (0.035)

1.724 (0.008)
1.138 (0.034)
2.488 (0.075)
7.80 (0.29)
0.06 (0.02)
0 (0)
3.966 (0.032)

1.106 (0.031)
2.414 (0.071)
7.55(0.23)
0(0)
0(0)
4.011 (0.034)

1.719 (0.007)
1.301 (0.038)
2.862 (0.088)
8.76 (0.26)
0(0)
0(0)
4.010 (0.034)

1.715 (0.006)
1.104 (0.031)
2.438 (0.070)
7.43 (0.24)
0(0)
0 (0)
3.983 (0.031)

NOTE: Settings I, II, and III refer to cases of (p, r) = (1000, 0.25), (1000, 0.5), and (5000, 0.25), respectively.
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Figure 1. Boxplots of the PE, L,-loss, FP, and FN over 100 simulations for all methods in Section 4.2.1, with (p, r) = (5000, 0.25). The

X-axis represents

different methods.
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Table 2. Model selection consistency probabilities of all methods in
Section 4.2.1
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Table 4. Model selection consistency probabilities of all methods in
Section 4.2.1 with (p, r) = (5000, 0.5)

Model selection consistency probability

Model selection consistency probability

Setting of (p,r)  Lasso, SCAD SCAD, SICA, Oracle n Lasso, SCAD SCAD, SICA, Oracle
(1000, 0.25) 0.99 0.26 1 1 1 100 0.78 0.10 0.68 0.84 1
(1000, 0.5) 0.96 0.26 0.71 0.98 1 200 1 0.55 1 1 1
(5000, 0.25) 0.98 0.14 0.99 0.94 1 400 1 0.69 1 1 1

Section_4.2.1. The prediction error is defined as E{Y —
exp(x” B)/[1 + exp(x” B)]}*> with B an estimate and (x”, Y) an
independent observation for the p covariates and response.

Tables 5 and 6 and Figure 2 summarize the comparison re-
sults of all methods. The conclusions are similar to those in
Section 4.2.1. Facilitated by the thresholded parameter space,
all methods mimicked very closely the oracle procedure in
this nonlinear model for binary data, confirming the theoretical
results.

4.2.3 Poisson Regression. We now consider the Poisson
regression model (1) with the parameter ; for the response
Y; given as in (14). We generated 100 datasets from this
model, each of which contains an n-dimensional response vec-
tor y sampled from the Poisson distribution with mean vector
e, ...,e")T, where 6 = (8, ...,6,)" is given in (14). The
sample size n and the true regression coefficient vector § were

set to be 200 and B, = (1, —0.9,0.8, —1.1, 0.6, 0, . . ., 0)7, re-
spectively. The rest of the setting is the same as that in Sec-
tion 4.2.2. We compared the same concave regularization meth-
ods with the oracle procedure, using the same seven prediction
and variable selection performance measures as in Section 4.2.1.
The prediction error is defined as E[Y — exp(x” 8)]*> with 8 an
estimate and (x”, Y) an independent observation for the p co-
variates and response.

Tables 7 and 8 and Figure 3 summarize the comparison re-
sults for all methods. As shown in Figure 3, the boxplot for
the prediction error of the oracle procedure exhibits some out-
liers. This is caused by the random design matrix, which may
not be well-behaved in some samples, leading to some unsta-
ble estimates of the true regression coefficients. The instability
comes from the fact that the variance of a Poisson random vari-
able is equal to its mean and thus is generally unbounded if
the mean is not bounded. To better compare the performance

Table 3. The means and standard errors (in parentheses) of various performance measures as well as the estimated error standard deviation for
all methods in Section 4.2.1 with (p, r) = (5000, 0.5)

Method
Measure Lasso, SCAD SCAD, SICA, Oracle
Setting I
PE (x0.1) 2.584 (0.215) 1.958 (0.105) 1.820 (0.062) 2.103 (0.134) 1.715 (0.006)
L>-loss (x0.1) 2.935 (0.343) 1.824 (0.187) 1.555 (0.126) 2.102 (0.243) 1.304 (0.039)
Ly-loss (x0.1) 6.750 (0.841) 5.296 (0.523) 3.681 (0.280) 4.618 (0.535) 2.909 (0.089)
L-loss (x0.01) 19.28 (2.21) 11.48 (1.25) 10.02 (0.91) 14.31 (1.68) 8.63 (0.29)
FP 0.19 (0.07) 11.33 (1.00) 0.91 (0.17) 0.08 (0.03) 0(0)
FN 0.41 (0.09) 0.06 (0.03) 0.05 (0.04) 0.21 (0.07) 0(0)
G (x0.1) 4.394 (0.111) 3.893 (0.061) 3.930 (0.050) 4.169 (0.082) 3.983 (0.031)
Setting 11
PE (x0.1) 1.655 (0.004) 1.661 (0.004) 1.654 (0.004) 1.652 (0.004) 1.652 (0.004)

L-loss (x0.1) 0.920 (0.034) 0.951 (0.032)
L;-loss (x0.1) 2.025 (0.079) 2.427 (0.141)
L-loss (x0.01) 6.08 (0.22) 6.21 (0.22)
FP 0(0) 4.82(1.23)
FN 0 (0) 0(0)

o (x0.1) 4.021 (0.020) 3.970 (0.023)
Setting 11T

PE (x0.1) 1.626 (0.003) 1.629 (0.003)
L,-loss (x0.1) 0.676 (0.020) 0.692 (0.020)
L;-loss (x0.1) 1.505 (0.048) 1.713 (0.084)
L-loss (x0.01) 4.39(0.13) 4.43 (0.13)
FP 0 (0) 3.67 (1.11)
FN 0 (0) 0 (0)

o (x0.1) 4.009 (0.012) 3.993 (0.013)

0.916 (0.031) 0.891 (0.031) 0.894 (0.031)
1.996 (0.071) 1.952 (0.071) 1.958 (0.072)
6.19 (0.22) 5.98 (0.22) 6.00 (0.22)
0(0) 0(0) 0(0)
0(0) 0 (0) 0
4.012 (0.020) 4.010 (0.020) 4.010 (0.020)

1.626 (0.003)

1.625 (0.003)

1.625 (0.003)

0.673 (0.019) 0.661 (0.019) 0.665 (0.019)
1.489 (0.045) 1.469 (0.044) 1.473 (0.044)
4.42(0.13) 4.31(0.13) 4.36 (0.13)
0(0) 0(0) 0(0)
0(0) 0(0) 0(0)
4.008 (0.012) 4.007 (0.012) 4.006 (0.012)

NOTE: Settings I, II, and III refer to cases of n = 100, 200, and 400, respectively.
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Table 5. The means and standard errors (in parentheses) of various prediction and variable selection performance measures for all methods in

Section 4.2.2
Method

Measure Lasso, SCAD SCAD;, SICA, Oracle
Setting I
PE (x0.01) 7.89 (0.03) 7.97 (0.07) 7.86 (0.03) 7.88 (0.04) 7.86 (0.03)
L,-loss 0.954 (0.039) 1.033 (0.096) 0.915 (0.052) 0.913 (0.051) 0.897 (0.049)
L-loss 1.927 (0.087) 2.130 (0.271) 1.793 (0.108) 1.788 (0.107) 1.757 (0.103)
Lo-loss (x0.1) 6.354 (0.224) 6.936 (0.509) 6.346 (0.345) 6.348 (0.346) 6.238 (0.333)
FP 0.02 (0.01) 0.09 (0.05) 0(0) 0.01 (0.01) 0(0)
FN 0 (0) 0 (0) 0 (0) 0 (0) 0(0)
Setting II
PE (x0.01) 9.09 (0.07) 9.13 (0.07) 9.00 (0.05) 9.04 (0.06) 8.94 (0.03)
L>-loss 1.002 ( 0.059) 0.998 (0.072) 0.916 (0.059) 0.908 (0.055) 0.855 (0.049)
L;-loss 2.044 (0.135) 2.036 (0.168) 1.824 (0.129) 1.802 ( 0.120) 1.678 (0.103)
Lo-loss (x0.1) 6.549 (0.334) 6.574 (0.408) 6.213 (0.360) 6.154 (0.338) 5.926 (0.314)
FP 0.06 (0.02) 0.16 (0.05) 0.04 (0.02) 0.06 (0.03) 0(0)
FN 0.01 (0.01) 0 (0) 0 (0) 0 (0) 0(0)
Setting I1I
PE (x0.01) 7.89 (0.04) 7.96 (0.07) 7.94 (0.07) 7.98 (0.08) 7.85 (0.04)
L;-loss 1.060 (0.053) 1.200 (0.089) 1.172 (0.083) 1.175 (0.084) 1.102 (0.079)
L;-loss 2.156 (0.123) 2.411 (0.199) 2.337 (0.181) 2.335(0.182) 2.200 (0.172)

L -loss (x0.1) 6.935 (0.301) 8.157 (0.568) 7.997 (0.547) 8.091 (0.560) 7.495 (0.501)
FP 0.03 (0.02) 0.03 (0.02) 0.01 (0.01) 0.01 (0.01) 0(0)
FN 0 (0) 0.02 (0.01) 0.02 (0.01) 0.03 (0.02) 0 (0)
NOTE: Settings I, IT, and III refer to cases of (p, r) = (1000, 0.25), (1000, 0.5), and (5000, 0.25), respectively.
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Figure 2. Boxplots of the PE, L,-loss, FP, and FN over 100 simulations for all methods in Section 4.2.2, with p = 5000. The x-axis represents

different methods.
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Table 6. Model selection consistency probabilities of all methods in
Section 4.2.2
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Table 8. Model selection consistency probabilities of all methods in
Section 4.2.3

Model selection consistency probability

Setting of (p, r) Lasso, SCAD SCAD; SICA, Oracle

Model selection consistency probability

Setting of (p, r) Lasso, SCAD SCAD, SICA, Oracle

(1000, 0.25) 0.98 0.95 1 0.99 1
(1000, 0.5) 0.93 0.89 0.96 0.95 1
(5000, 0.25) 0.97 0.95 0.97 0.96 1

(1000, 0.25) 0.51 0 0.65 0.89 1
(1000, 0.5) 0.17 0 0.68 0.94 1
(5000, 0.25) 0.27 0 0.51 0.72 1

of all methods in such a case, we considered the 5% trimmed
means, excluding 5% of values from each tail, and their standard
errors of different prediction and variable selection measures.
The asymptotic equivalence of concave regularization methods
in the thresholded parameter space shown in the theory was also
demonstrated in this nonlinear model for count data. But com-
pared to linear models, the finite-sample performance of these
methods differs more from that of the oracle procedure, indi-
cating the increased difficulty of model inference for nonlinear
models. The improvement of SCAD; over original SCAD was
more profound in this setting.

4.3 Real Data Example

We apply all the methods to the prostate cancer dataset, which
was originally studied in Singh et al. (2002) and is available at
http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi. This
dataset, which was also analyzed in Fan and Fan (2008), consists
of 136 patient samples with 77 from the prostate tumor group
(labeled as 1) and 59 from the normal group (labeled as 0). For

each patient, we have the gene expression measurements for
12,600 genes.

Following Singh et al. (2002) and Fan and Fan (2008), we
randomly split the 136 samples into a training set of 52 samples
from the cancer class and 50 samples from the normal class,
and a test set of 25 samples from the cancer class and 9 samples
from the normal class. For each splitting of the dataset, we fit
the logistic regression model to the training data with the reg-
ularization methods. We then calculated the classification error
using the test data. We repeated the random splitting 50 times,
and the means and standard errors of classification errors are
summarized in Table 9. We also calculated the median model
size by each method: 21 by Lasso,, 5 by SCAD, 5 by SCAD;,
and 20 by SICA,. For each method, we computed the percentage
of times each gene was selected and listed the most frequently
chosen m genes in Table 10, with m equal to the median model
size by the method. We see that Lasso, and SICA, performed
similarly, and SCAD and SCAD, produced more sparse models
than the other two methods.

Table 7. The 5% trimmed means and standard errors (in parentheses) of various prediction and variable selection performance measures for all
methods in Section 4.2.3

Method
Measure Lasso, SCAD SCAD; SICA, Oracle
Setting I
PE 21.34 (2.23) 13.11 (0.94) 9.00 (0.66) 7.39 (0.50) 6.22 (0.22)
L>-loss (x0.01) 19.62 (1.44) 17.09 (0.71) 11.58 (0.67) 9.05 (0.45) 7.94 (0.31)
L-loss (x0.1) 4.658 (0.440) 4.714 (0.191) 2.513 (0.173) 1.720 (0.086) 1.513 (0.060)
L-loss (x0.01) 12.13 (0.75) 11.39 (0.58) 7.82 (0.43) 6.69 (0.37) 5.69 (0.23)
FP 1.47 (0.28) 11.61 (0.67) 1.20 (0.22) 0.07 (0.03) 0 (0)
FN 0(0) 0 (0) 0(0) 0(0) 0 (0)
Setting 11
PE 5.934 (0.272) 3.288 (0.065) 2.903 (0.055) 2.754 (0.072) 2.655 (0.030)
L,-loss (x0.01) 38.34 (1.78) 19.12 (0.60) 14.75 (0.69) 12.52 (0.82) 11.54 (0.48)
L-loss (x0.1) 10.07 (0.651) 5.860 (0.225) 3.254 (0.192) 2.357(0.143) 2.180 (0.097)
L-loss (x0.01) 20.96 (0.75) 12.21 (0.49) 9.92 (0.45) 9.15 (0.69) 8.39 (0.35)
FP 2.54 (0.23) 14.84 (0.84) 1.70 (0.34) 0(0) 0 (0)
FN 0(0) 0 (0) 0(0) 0.01 (0.01) 0 (0)
Setting 11T
PE 34.86 (3.04) 14.26 (1.00) 10.38 (0.71) 8.28 (0.51) 6.15 (0.20)
L,-loss (x0.01) 31.67 (1.92) 18.42 (0.55) 14.41 (0.76) 11.62 (0.72) 8.35(0.31)
L-loss (x0.1) 8.158 (0.617) 5.863 (0.175) 3.600 (0.260) 2.252(0.173) 1.552 (0.062)
Loo-loss (x0.01) 18.29 (0.88) 12.10 (0.48) 9.46 (0.46) 8.48 (0.46) 6.21 (0.23)
FP 2.36 (0.28) 19.12 (0.71) 3.06 (0.49) 0.39 (0.08) 0(0)
FN 0(0) 0 (0) 0(0) 0(0) 0 (0)

NOTE: Settings I, I, and III refer to cases of (p, r) = (1000, 0.25), (1000, 0.5), and (5000, 0.25), respectively.


http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
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Figure 3. Boxplots of the PE, L,-loss, FP, and FN over 100 simulations for all methods in Section 4.2.3, with p = 5000. The x-axis represents

different methods.

5. DISCUSSIONS

We have studied the asymptotic equivalence of two popu-
lar classes of regularization methods with convex penalties and
concave penalties, in high-dimensional GLMs. Our framework

Table 9. The means and standard errors of classification errors by
different methods over 50 random splittings of the prostate cancer
data in Section 4.3

Lasso, SCAD SCAD, SICA,
Mean 1.42 4.36 3.44 1.30
Standard error 0.20 0.36 0.32 0.18

covers many commonly used regularization methods such as the
Lasso and concave ones such as the SCAD, MCP, and SICA. The
oracle inequalities as well as the stronger property of the oracle
risk inequalities of the global minimizer for the regularization
methods have been established to characterize their connections
and differences. When the Lasso penalty is considered, our or-
acle inequalities are consistent with those in Bickel, Ritov, and
Tsybakov (2009), with improved sparsity thanks to the intro-
duced thresholded parameter space. The established theoretical
results have revealed an interesting phenomenon of phase tran-
sition in both linear and nonlinear models, confirmed by our
numerical studies. We have also established additional theoret-
ical results to provide insights into the sampling properties of
computable solutions.

Table 10. Selection probabilities of most frequently selected genes with number up to median model size by each method across 50 random
splittings of the prostate cancer data in Section 4.3

Gene ID Lasso, SCAD SCAD, SICA, Gene ID Lasso, SCAD SCAD, SICA,
1018 — — — 0.44 7139 0.38 — — 0.52
4525 0.96 — — 0.94 7539 0.94 — — 0.94
4636 0.42 — — 0.40 8123 0.44 0.12 — 0.42
5319 0.54 — — 0.64 9093 0.86 0.12 0.08 0.90
5661 0.68 — 0.12 0.64 9126 — 0.10 — —
5890 1 0.10 0.28 1 10292 0.36 — — 0.40
5977 0.58 — — 0.44 10494 0.80 — — 0.74
6145 0.28 — — 0.26 10537 0.82 — — 0.74
6185 0.94 0.10 0.10 0.98 11215 0.32 — — 0.32
6390 0.28 — — — 11871 1 — 0.24 1
6462 0.36 — — — 12547 0.28 — — 0.28

6512 0.48 — — 0.46
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To simplify the technical presentation and better illustrate the
ideas, we have focused on the setting of GLMs and the Lasso
for the convex class of regularization methods. The theoretical
results in the article may hold in more general model settings as
well. The phase transition phenomenon may also be shown for
other convex penalties such as the L,-penalty. These problems
are beyond the scope of the current article and will be interesting
topics for future research.

APPENDIX A. TECHNICAL DETAILS ON CONDITION 1

We show that the two probability bounds in Condition 1 hold for a
wide class of error distributions. To this end, note that an application
of the Bonferroni inequality gives

P
P(In ' X e|loe > 1/2) < Z P(n' [Xle| >1/2), (A

j=1

where (X, ...,X,) = X. We consider two cases of error distribution.

Case 1 (Bounded error): Assume that |&;| < a foreach 1 <i <n,
with a being some positive constant. Then it follows from Hoeffding’s
inequality (Hoeffding 1963) that

P(n! |’i§e| > 1/2) < 2exp(—A’n/(8a%)), (A.2)

since [|X;|l, = n'/? for each j. This probability bound is of order
O{p~%/34} when A = co/(log p)/n.

Case 2 (Light-tailed error): Assume that there exist positive con-
stants M, v,y such that

Elexp(M~'l&;]) — 1 — M~ '|&;[IM* < vo/2 (A3)

holds uniformly for 1 <i < n. Then it follows from Bernstein’s in-
equality (Bennett 1962; van der Vaart and Wellner 1996) that

An )
, (A4

—1|3T o
P (n |xjs| > A/2) < 26Xp< 8o+ 41, M

since |X;|, =n'/? for each j. This probability bound is of or-

der O{p*"%/(g””d)} with d = 4coM||X;||lso+/(log p)/n when A =
con/(og p)/n, and this bound becomes O{p~%/120)} if we further
assume X /oo < (coM)"vg/n/(og p). This additional assumption
means that the maximum absolute element of the design matrix X is
bounded from above by (coM )~ vg+/n/(og p), which is a mild condi-
tion. Condition (A.3) was also made in Fan and Lv (2011) for analyzing
nonconcave penalized likelihood estimators in GLM and is mild in view
of the moment-generating function of distributions in the exponential
family.

When ¢, is large enough, combining the above two cases with (A.1)
leads to the desired probability bound on P(£¢) in Condition 1. Since
lag| = s < n is assumed implicitly, similar probability bounds hold for
the event £§. Thus we impose Condition 1 instead of making explicit
assumptions on the model error distribution and design matrix X.

APPENDIX B. PROOFS OF MAIN RESULTS

For notational simplicity, we use C to denote a generic pos-
itive constant, whose value may change from line to line. De-
note by b’'(0) = (b'(6,), ...,b'(8,))T the n-vector of mean function,
b"(0) = (b"(6), ..., b"(6,))T the n-vector of variance function for
0=@,...,6)T €R", and a, the subvector of a vector a € R?
formed by components with indices in a given set C {1, ..., p}.
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B.1 Proof of Proposition 1

Let kg = c4n be an integer with ¢4 € (0, 1) some constant. For each
seta; C {1,..., p} with |o;| = ko, denote by X, o, the principal sub-
matrix of X corresponding to variables in «;. We will show that there
exist some universal positive constants ¢s and C; such that

P {hin(n ™' X] Xa,) < €5} < exp(—Cn), (B.1)

where Apnin(-) denotes the smallest eigenvalue of a matrix. Note that
for any submatrix n=1/2X,, with |a| < ko, its smallest singular value is
bounded from below by the smallest singular value of n~'/?X,, with
lo1| = ko and o D «. It follows that Amin(n“XZXa) satisfies the same
deviation probability bound (B.1). Thus, an application of the Bonfer-
roni inequality with K an integer satisfying K = 27!Cn/(log p) < k¢
gives

P {‘r‘rlliI}{ kmin(n’lXoT(Xa) < 05}
< ) exp(=Cin) < p* exp(~Cin) — 0.

le|<K

This shows that with asymptotic probability one, k. > K forany ¢ < ¢s.
It remains to prove (B.1). Define X, = X, 2,2 Then X[ X, =

oy, "
T o " - _
2%, X, Xo, 2,2, and the rows of X, are iid standard Gaussian

o],0q op,oq
random vectors. Since X has smallest eigenvalue bounded from below,

we have

)\min(n71X§] Xotl) = }Vmin(n71§; ial)kmin(zal.al)
> Chuin(n "X, X))

Therefore, we only need to show that Amin(n”)’z:l im) satisfies a sim-
ilar deviation probability bound as (B.1), which is entailed by the con-
centration property proved in Fan and Lv (2008) [see their deviation
inequality (16)]. This completes the proof.

B.2 Proof of Proposition 2

Since 8 = (B, ..., B,)" is the global minimizer of Q,(8), it holds
that for each j, §; is also the global minimizer of the same objective
function along the jth coordinate, that is, 8; minimizes

n

0.(B)) = a0 —n"'y'X,;B; + Zb(ai +xijB)) + Ay, 1015

i=1

where (Xi,...,X,) =X with X; = (x;,...,x,;)7 and a;’s with i =
0,1,...,n are constants independent of ;. Note that the first three
terms of én(ﬁj) are continuous functions of ;, while the last term is
a step function of B;. Thus it follows easily that the global minimizer
E_/ is either O or has magnitude larger than certain positive threshold
whose value depends on A and the continuous part of én(ﬂ ), which
concludes the proof.

B.3 Lemma 1 and lts Proof

We single out a lemma that is used in the proofs of Theorems 1-3.
Lemma 1. Under Conditions 2-3, we have
18113 < ¢ 'n 7" IX8113 < C(In~' X elloo + A) 1811, (B.2)
where § = ﬁ — B, is the estimation error for the regularized estimator

B in (6), c is the positive constant in Definition 1, and C is some positive
constant.
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Proof of Lemma 1. Since ﬁis the global minimizer of Q,(B) in B,
and B, € B;, it follows that

1 .
0= 0u(Bo) = Qu(B) = {y'X8 — 1" [b(XB) — b(XB,)]}
+ 1P Bl = (Bl (B.3)

To analyze the nonlinear term 1T[b(XB\) — b(XB)], we do a second-
order Taylor expansion of the function 17 [b(X8) — b(Xp,)] around B,
and retain the Lagrange remainder term, which gives

17[b(XB) — b(XBy)] = {b'(XB,)} X8 + %STXTH@)xa, (B.4)

where H(B) = diag{b"(XB)} is a diagonal matrix with B € R” lying
on the line segment connecting 8, and 8. Thus combining inequality
(B.3) with representation (B.4) yields

1 ~ -~
0<n! [ETXS - ESTXTH(ﬂ)th] + 1p2B)lly = Ip2(B)ll1. (B.5)

where e =y — Ey =y — b'(XB,) denotes the n-dimensional error

vector in the GLM. We observe that the first term on the right-hand side

of (B.5) resembles the corresponding one in the case of linear model.
A rearrangement of inequality (B.5) gives

)y ' STXTHB)XS < n~'e"X8 + 7Bl — 17 B)li.  (B.6)

It follows from B, B € B; that [|8]lo < |B,llo + IBllo < k.. Thus, by
Condition 2 and the robust spark definition, the left-hand side of (B.6)
can be bounded as
n'8TXTH(B)XS > con” X852
= (,‘2}’171 ”Xsupp(&)ssupp(&)”% > CC2||6”§

On the other hand, the first term on the right-hand side of (B.6) can be
bounded as

In~'e" X8| < In""X el 181

The concavity of the penalty function p,(¢) assumed in Condition 3
entails that p; (¢) is decreasing in ¢, which leads to p; (1) < p}(0+) =
c3A for any ¢ > 0. Thus, it follows from the mean value theorem and
triangular inequality that

P
N Bl = 1B = Zp;(lj)uﬁ()‘jl —1B;D| < csrlIsly,
j=1

(B.7)
where ¢; lies between | ;| and |E,~| for j=1,...,p and ﬁ:
(Bi, ..., Bp)'. Combining the above three results with (B.6) completes

the proof.

B.4 Proof of Theorem 1

We first show the existence of the global minimizer and then prove
the bounds under different losses.

Existence of global minimizer: Since the negative log-likelihood
function is smooth by Condition 2 and the penalty function is con-
tinuous by Condition 3, we see that the objective function Q,(B) is
continuous. Let R be any subspace of R” with dimension less than
k./2, and denote by L(B) = —n~'{y"XB — 1"b(XB)} the negative
log-likelihood function. It follows from Condition 2 and the defini-
tion of the robust spark that L(B) is strictly convex on R and its
Hessian matrix has the smallest eigenvalue bounded from below by
c,c?. Applying the second-order Taylor expansion around 0 with the
Lagrange remainder term shows that L(p) is bounded from below
by L(B) = —n~'y"XB + b(0) + n~"{b'(0)}" XB + c,c?[| B3 for any
B € R, with L(0) = Z(O) = b(0). This entails that there exists some
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sufficiently large positive number C, which is independent of the sub-
space R, such that

L(B) = L(B) > L(0) = L(0)

for any B € R with ||B||, > C. Thus the global minimizer of Q,(8) =
L(B) + || p».(B)|l1 on the thresholded parameter space B, must lie in
T=8B,N{B eR?:|B| < C}. Inview of (4), B, is a closed set and
thus 7' is a compact set. Therefore, the existence of the global minimizer
of 0, (B) over B, is guaranteed by its continuity.

False signs: We use the induction method to prove the result. Let
§=(1....8,)" =B — By.Since 3o < IByllo + IBllo < xc., by the
Cauchy-Schwarz inequality, we have ||§]|; < ./k.[|8]>. Hence, it fol-
lows from Lemma 1 that conditional on the event &,

1813 < CAlISIL < Chi/iecl81lo- (B.8)
Solving for ||§]|, yields

1812 < Cr/k,. (B.9)

On the other hand, it follows from B, B, € B; that ||8]|, > {FS(B)}'/*t.
This together with (B.9) ensures that

FS(B) < C(A/7)k..

Thus we have [|8]lo < [|Bollo + FS(E) < s 4+ C(A/1)*k.. Therefore, the
upper bound s + C(A/7)%k. plays the same role as i, in (B.9). Repeat-
ing the above derivations with «, replaced with s + C(A/ 7)%k, and by
induction, we have FS(8) < CsA?t~2/(1 — CA*t~?) conditional on &,
which completes the proof of the result on false signs.

Estimation losses: We first prove the inequalities under the L,- and
L,-norms, and then use Holder’s inequality to prove the general result
under the L,-norm with ¢ € (1, 2). The result on L -norm follows
immediately from the L,-norm result. By default, all arguments are
conditioning on £ in Condition 1, which holds with probability at least
1L—0(p™").

Since |81l < [Bollo + FS(ﬁ), by the Cauchy—Schwarz inequality,
and the result on FS(E) proved above, we have

18111 < 1816”1812 < Cls/(1 = CR* 23]
This together with the first inequality in (B.8) entails that
18112 < Cafs/(1 = CAPT )2, (B.10)
Combining the above two inequalities, we obtain

181l < Cas/(1 — CA2t72). (B.11)

Finally, for g € (1,2), applying Holder’s inequality and in view of
(B.10) and (B.11), we have
1/q

P

2— 2g-2 2—q), 2(g—1)
181 = [ D 18,1718, < 18118
j=1

IA

Cis/(1 — CAPT D))/, (B.12)

The oracle inequality on ||§|| -, follows immediately from ||§||oc < [|8]2

and (B.10). This completes the proof for the estimation losses.

Prediction loss: The inequality for this loss follows immediately
from plugging (B.11) into Lemma 1 and using Condition 1, which
concludes the proof.

B.5 Proof of Theorem 2

Define an event £ = £ N &, with £ and &, defined in (5). We will
prove that all results in Theorem 2 hold simultaneously on the event &;.



Downloaded by [USC University of Southern California] at 20:59 07 October 2013

1058

Then Theorem 2 follows immediately from Condition 1. By default,
all arguments in this proof are conditioning on &;.

Sign consistency: Denote by o = supp(ﬁ) and ap = supp(B,). We
use the method of proof by contradiction to show that we must have
o = ap. Let ﬁ* be the oracle-assisted maximum likelihood estimator.
We make use of the following decomposition:

0.(B)— Q.(B) =1, + I,

where I} = —n"~ yTX(ﬁ B* )+n*‘1T[b(XB) —bXB*)] and I, =
||ph(ﬂ)||1 — ||pA(ﬂ )|l1. We will prove that ﬂ* € B, and that if @ # «,
then
I, > cert?/4, (B.13)
|L| < o(r?). (B.14)

Combining the above results, we haveA Q,I(;/S\) -0, (E*) > 0 for suffi-
ciently large n, which contradicts with 8 being a global minimizerin B,,
and thus we must have o« = a. On the other hand, since A = o(t/+/s),
Theorem 1 ensures that for large enough n,

IB = Bollow < C/5 = 0(7). (B.15)

This together with o« = o and B, ﬂ € B; entails that conditioning on
&, egn(ﬂ) = sgn(B). Thus, the sign consistency result follows easily
from Condition 1.
We ﬁrst proceed to prove (B.14). By definition, supp(ﬂ ) = ap and
(/31, .. ﬂ )" minimizes the negative log-likelihood function

Qn(ﬂao) = —¥" XeyBap + 1"b(Xy B,,) with B, € R°. Thus, B isa
critical point of Q:(ﬁao) and satisfies
= X[ [y = b'(X,B5,)] = 0. (B.16)

Plugging the true model y = b'(Xy, B4,) + € into (B.16) and applying
the mean value theorem componentwise, we have

Xl e+ X! HB,, ... B)Xey (Bl — Bow) =0, (B.17)

where H(ﬁl, .. ﬂn) = diag{p"(x! /3,), e, b”(an,En)} with each
ﬂ (/3, Iy ﬂ, »)T lying on the line segment connecting B, and
ﬁ *. The above equation can be rewritten as

;0 - ﬂO.ao = {X;H(ﬂlv e
Therefore, by Condition 2, we obtain that conditioning on &,

1Bz, = Boas |, = CIXGel/n = OB XGe]  /n < €52,
(B.19)

B)X.,) 'Xle  (B.IY)

This together with the assumptions min; <, |8y ;| > 27 and \/sA = o(7)
entails that

lm_in |/’3\;| > 27 — C+/sA > T and thus ﬁ* € B;.
<jss

Similarly to (B.7) and by Theorem 1 and (B.19), we can prove

< pLODIB =Bl < es2 (1B = Bolli + 18" = Boll)
< 3218 = Bolli + V/51IB* = Byll2) < Cs2*> = o(z?). (B.20)
This completes the proof of (B.14) and ﬁ* € B..
It remains to prove (B.13). Applying the second-order Taylor ex-

pansion around $* with the Lagrange remainder term, /; can be de-
composed as

A

|12

1 ~ ~ o~
hi=——ly- b’ (XB")1"X(B — B*)
1 ~ ~ ~x ~ o~
+5-(B - B X"H(BHXB —B*) =11+ 15, (B2l

where H(ﬂ )= dlag{b”(Xﬂ )} with ﬂ lymg on the llne segment con-
necting ;3* and ﬂ It follows from ﬂ ﬂ* € B; that ||ﬂ ﬂ llo < xe.
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Thus, by Condition 2, the robust spark definition, and ﬁ, ﬁ* € B,, we
have

1 1
L= szcllﬂ B3 = czcr(llﬂa\ao |+ 1Bl) B22)
We now consider the term /; ; in (B.21). By (B.16), we have
_nil[y b/( aoﬁzo)] L) (ﬂao - ﬂmo)

—n l[y b/(Xﬂ )] Xa\aoﬂa\ao
—n l[y b(XB )] Xa\o{oﬂa\ao (B23)

Plugging y = b'(XB8,) + ¢ into (B.23) and by the mean value theorem,
we have

Ly =—n""e"Xo\aoBorao + 1" (Biy —Bog)

Iy

T ~ ~
XZ;OH(ﬂ)Xa\ao ﬂa\ag )
(B.24)
where H(E) = c’liag{b”(XE)} with E lying on the line segment con-
necting B, and B*. Conditioning on &, the first term of (B.24) can be
bounded as

e XgraoBureo| = |17 XD 6] | Burwo |, = Al B, (B25)

Next we study the second term of (B.24). We will make use of (B.18).
By the Cauchy—Schwarz inequality, Condition 2, and the robust spark
definition, we have

1820 = Boaollow = [Boy = Boa
. ~ ~ -1 _
= [{n "X HB - BOXa ) [ X e
< CVs||n™'X] e|| . < Cy/s(logn)/n.  (B.26)
Recall that ﬂ defined in (B.24) lies on the line segment connecting B,
and B*. Thus, by (B.19), we have |8 — Boll2 < [IB* — Byl < C/5A,
which ensures that /3 € B} w1th B} defined in (8). Since Theorem 1

ensures that |o \ og| < FS(ﬂ) < s for large enough 7, it follows from
inequality (B.26) that the second term of (B.24) can be bounded as

n”! | (A* - IgO ao)TXZUH(E)Xa\ugB\a\aO }

= |n XG0 HEXe | B2, = Bocy ool Bare
< Cyu/s(logn)/nlBara - (B.27)

Combining (B.25) and (B.27) and in view of (B.24), we obtain that

1,1] < [A + Cyuv/s0gn)/n1l Bara |l -

This together with (B.21), (B.22), ﬁ*, ﬁe B, and the assumption

T > max{X, y,+/s(logn)/n} ensures that if o # «, then for large
enough n,

1 ~ 1 ~
I > ECCZT”ﬂZO\a”l + [Ecczr — A= Cy,,\/s(logn)/n] | Barao ||l
> eyt /4,
which proves (B.13) and completes the proof of sign consistency.

Estimation losses: We first prove for the L-estimation loss. By
(B.15) and the sign consistency proved above, we have supp(B) =
ap and min << |,§j| > min; << |Bo,j| — o(t) > t for large enough n.
Thus, B\is an interior point of B;. Since fi\ is the global minimizer, it
follows that B, is a critical point of Q,(B,,, 0) and satisfies

— Xy + X! b'(XB) + npr(Bay) = (B.28)

where p,\(ﬂmJ is an s-dimensional vector with components
pk(|,3]|)§gn(,31) for j € ap. Similarly to (B.17), plugging y =
b'(XB,) + € into (B.28) and applying the mean value theorem compo-
nentwise, we have

n5:(Bay) = =X HB,. ... B)Xay (Bay — Boy) + XL e, (B.29)
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where H(El, ey 73”) is defined similarly as in (B.17) with each ﬁi
lying on the line segment connecting B, and E Thus, for each 1 <
i < n, supp(B,) = ao, and by Theorem 1, [|B; = Boll> < 1B — Byl <
2Cx+/s for large enough n, which ensures that 8; € B} with B} defined
in (8). Therefore, (B.29) can be rewritten as

B\ao - BO‘HO = [XZ;OH(EU R En)X‘XO]71 XZOS
—n[XIH®B,. ... B)Xeo] " 52(Buao)
= I (o) + (). (B.30)

We first study I;(cp). Since ﬁ[ € Bf, by the Cauchy—Schwarz
inequality,
. ~ = -1 .
Il < | [ XLH@ o B)Xa] | i X e

< Cy,\/(logn)/n. (B.31)

Next we study /I(ap). Similarly, since p;(f) is a concave penalty,
supp(B) = @, and B € B,, we can prove that

[n@ol, < | XEBB, . B)Xe ]| 15 (Bu) .
< ¥, pi(0). (B.32)
Therefore, if p;(t) = O{y/(logn)/n}, then conditioning on &,

1By = Boayllse < I111@0)lse + 1 a(@0) o < Cy;iy/(ogn)/n,

which completes the proof of the oracle inequality under the L -
estimation loss.

We now study the L, -estimation loss with g € [1, 2]. Similarly as
in Theorem 1, we first prove results under the L;- and L,-norms,
and then use Holder’s inequality to prove the general results. Since

supp(ﬁ) = oy, p;(t) = O{y/(logn)/n}, and p;(¢) is decreasing in t €
(0, 00), inequality (B.7) in the proof of Lemma 1 can be bounded as
(12 Bol = Bl = |3 piaBos = 1BiD)
< p, @ISl < C/(logn)/nll8],

where the second step is because #; is between |8y ;| and |,§j| and thus
t; > 7 for each j € ap. Using similar proof as in Lemma 1 and the
above inequality, we obtain that conditioning on &,

18113 < ¢™'n"IX8113 < Cy/(logn)/nl8]. (B.33)

Since the sign consistency proved above ensures ||§[; < /s||8]l2, it
follows from (B.33) that

812 < V/s1I8115/1181l; < Cy/s(logn)/n  and
181l < +/sll8ll> < Csy/(logn)/n. (B.34)

The oracle inequalities under the L -estimation loss with g € (1, 2)
follow immediately from Holder’s inequality and (B.34), as in (B.12).
Thus, the results on estimation losses are proved.

Prediction loss: Since EY = b'(XB,), it follows from the second-
order Taylor expansion around g, with the Lagrange remainder term
that

D(B) = %STXTH(,?)X& (B.35)

where H(’ﬂv)/\: diag{b”(XE)} with E lying on the line segment connect-
ing B, and B. Since supp(fB) = «y, it follows from Condition 2, (B.33),
and (B.34) that

8TXTH(B)X3 < ¢;'X8|2 < C/nllogm)||8]l; < Cs(logn).

Thus, combining the above inequality with (B.35) completes the proof.
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B.6 Proof of Theorem 3

Define £ = £ N & as in the proof of Theorem 2. Then all results
in Theorem 2 hold simultaneously on the event ;1, which satisfies
P(&)) = O(n~°") by Condition 1. Denote by § = 8 — B,.

Estimation risks: Similarly as in Theorem 2, we first prove the
results under the L,- and L-losses, and then use Holder’s inequality
to prove the general result under the L,-loss with g € (1, 2). We first
show that

E|8]? < Cs(logn)/n. (B.36)
The key is to prove the following three inequalities:
E{|I8131¢,} < Cs(logn)/n, (B.37)
E{lI8]31e} = O(p™ k), (B.38)
E{[8]31ene} = O(hsn™ ). (B.39)

Since & = E°U(E§NE), ¢ can be chosen arbitrarily large, and
k. <n+1, inequality (B.36) follows immediately by combining
(B.37)-(B.39).

We first proceed to prove (B.37). By (B.34) in the proof of Theorem
2, (B.37) can be proved as follows:

E[ll8ll21¢1 < E[Cy/s(logn)/nlg] < Cy/s(logn)/n.

Next we prove (B.38). By the Cauchy—Schwarz inequality and Condi-
tion 1, we have

E[lln"'X"ell3 1ec] < n{E[IX"ell%] PEN

12
<0(p*n {E [lmax IX; IIQIIEIIE‘]}

<J=p
= O(p~/%), (B.40)

where the last step is because of [X;|l, = 4/n and the assumption
max;;<, E¢} < C. Similarly, we can prove that

El|n"'X elloolec] = O(p~@/?) and E [[In~'X" |12, 1¢]
= 0(mn ). (B.41)

Since [18llo < IBollo + IBllo < k. it follows that |3l < /e8],
This together with (B.2) in Lemma 1 yields

[18l21ec < C/icc(lln' X" €lloc + A) Lee. (B.42)
Thus, by Condition 1 and (B.40), inequality (B.38) is proved as follows:
E[18131e] < CoE [lIn™'X el 1ec] + Crod® P(EY)
= 0(p~"*,). (B.43)
Finally we prove (B.39). To this end, we first prove
E[N81l11ggnel = O(san™"). (B.44)

Then by Lemma 1 and the definition of £, (B.39) can be proved as
follows:

E[18131gne] < CAE[8]11gene] = O(Psn™ ). (B.45)

It remains to prove (B.44). We first study E[||8]|; lg(t)‘mg] by decom-
posing it into two terms:

E[l18]l11egne] = E[”5ag 115305] + E[ 84 Hllegmg]- (B.46)

We now consider the first term on the right-hand side of (B.46).
Since B € B, it follows that [|8]13 = [|84, /15 + [184¢ 15 > 57" 1184, I +
T||845 11 Thus, by Lemma 1, we have conditioning on & N €,

5 18ug I + Tl8agllr < 1815 < CAUSN = CAll8aq 1 + 1845 110)-
A rearrangement of the above inequality yields

(800, = €53)7 < s(Ch = D)} dug

[+ Cs7AE (B4
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Since the left-hand side of (B.47) is always nonnegative and A =
o(t/+/5), we have [|8ag [l 1ggne < Ct'sA%1ggne. Thus, it follows from
Condition 1 and A = o(t/+/s) that

E[]8.;

egne] < Ct7'sA?P (E5 N E) = o(skn™).  (B.48)

Since A = o(t/+/s), the first term on the right-hand side of (B.47) is
negative for sufficiently large n. Therefore, it follows from (B.47) that
conditioning on &§ N &, [[|84, 111 — CsA| < Csi. Hence, we obtain that

E[||8a, |, 1esne] < CsAE[legne] = O(san™).

This together with (B.48) proves (B.44), which completes the proof of
(B.39). Consequently, (B.36) follows and the result under the L,-loss
is proved.

We now consider E||§]|; under the L;-estimation loss by using the
following decomposition

E|I8]ly = E[lI8]11¢,] + E[II8Ih 1engg ] + ELISI 1ec].  (B.49)

First, by Theorem 2, the first term on the right-hand side of (B.49) can
be bounded as

E[lI8lli1¢,] < sy/(logn)/nP (&) < Csy/(logn)/n.  (B.50)

The second term of (B.49) has already been considered in (B.44).
Therefore, we only need to study the third term. Since [|8]l; < /kc[I8]l2,
by (B.42) and (B.41), we can bound the third term as

E[I8]l11ec] < /kcEl8ll21ec] < CieE[lln™' X" €loo 1]
+ CkAP(ES) = O(p~1k.). (B.51)

Since ¢; can be chosen arbitrarily large and «. < n + 1, the above
inequality together with (B.50), (B.44), and (B.49) leads to

E||é]l, < Cs(logn)/n. (B.52)

Thus, the risk result under the L;-estimation loss is proved.

Now, applying Holder’s inequality and by (B.36) and (B.52), we can
prove the risk inequalities under the L ,-estimation loss with g € (1, 2),
as in (B.12).

Finally we consider the L .,-estimation loss. By (B.36) and Condition
1,

1/2

IA

E[18llsc1ec] < E[I8121e:] < {E[1813] P (&)}

= O{s"?n~*V2 Jlogn}.

Moreover, by Theorem 2, we have [|§]|1s, < Cy,v/(logn)/n. Since
¢ can be chosen arbitrarily large, it follows that

Ell8llo = E[I8llo15,] + E[I18llc16:] < Cy;7/(ogm)/n,
which completes the proof for estimation risks.
Prediction risk: By (B.35) and Condition 2, we have
E{D(B)} = E[27'8"X"H(B)X8] = 2c)”'(Ih + L+ 1)), (B.53)

where I} = E[|IX8]31¢,], L = E[|X8|31gnel, and I3 =
E[||X8|31gc]. We first consider I, = E[[|X§]21¢,]. By the sec-
ond inequality in (B.33) and (B.52),

I = Cy/(ogmnE[8]li1¢,] < Cy/(logmnE[||3]l1]1 < Cs(logn).
(B.54)

Next, we study the term /,. By Lemma 1, the definition of £, and
(B.44), we have

L < CniE[[18]l11esne ] = O(sA°n' =), (B.55)

Now we consider the last term /3. It follows from the proof of Lemma
1 that

I; < CE[|e"X8|lgc] + CnrE[|I8l11¢c] = 31 + L32.  (B.56)

Journal of the American Statistical Association, September 2013

Since ||8]]; < /x18]|2, by (B.38) and (B.40), we can bound I3 as
Iy = E[|e"X8|1g] < CE[||8]111Xe oo Lec]
1/2 1/2
< C{E[I8I1]} " {E [I1Xe )2 16]}"

ce (E[181316]}” {E [IX el 16])
O(np~1"k,). (B.57)

1/2

IA

By (B.51), we have I3, = O(Anp~/?k,.). This together with (B.56)
and (B.57) entails

L = O(np~"k,). (B.58)

Combing (B.58) with (B.53)—(B.55) and noting that ¢; can be chosen
arbitrarily large, we finish the proof for prediction risk.

Sign risk: §jnce Ee B, and p; (1) ii increasing in ¢t € [(,)4 00),
we have [|pa(B)ll = 2_7_, pa(1B;1) = lIBllops(r) and thus [|Bllo <
[ I pa(B)ll1. This together with (B.6) and Condition 2 gives

FS(B) < I1Bllo +s
1 ~
<s+[p@]! [npx(ﬂo)ul +n'e"X8 — ZMXTH(/&)XS]
< s+ [P P Bo)lli +n~'e"X81. (B.59)

Since [n7'e"X8| < [n7'X"e|l|I8l; < All8], on the event &, by
(B.57) and (B.44), we have

E[n~'|e"X8|1gc | = Eln~"1e"X8|1ec] + E[n"|e" X8| 1g5ne ]
O(p~"ke) + AE[|I8]|1 1 ggre |

O(p™%k.) + O(sA*n™). (B.60)

IA

Thus, combining (B.59) with (B.60) and noting || ps(By)ll1 > sp:(7),
we obtain

E[FS(B)1¢]
< P(EN s + [P @1 1P (Bl + [P (01 E[n ™" &7 X8| 157]
= [P @1 1P Bl O™ + O(p™ k) + O(s27n V)],

On the other hand, Theore/rp 2 shows that FS([?) =0 on the event
& ThES, we have E[FS(B)lg ] =0, which leads to E[FS(B)] =
E[FS(B)1 el This concludes the proof.

B.7 Proof of Theorem 4

To simplify the technical presentation, we first consider the case
of linear model. Then the penalized negative log-likelihood minimiza-
tion problem in (6) becomes the penalized least-squares problem with
0.(B) = 2n)~ly — XBI13 + Il p»(B)|l1. Note that in the case of linear
model, u(0) = 6 and thus

|n~'XE [(XB) —w(XB] [, = [n ' XIXB—By)|, = csl BByl

holds for any B € B,, with ¢4 = ¢ and o = supp(B) U supp(By).
Denote by § = (31.....8,)" =B — B, with B = (Bi.....B,)". Let
ap = supp(B,) and a; = supp(B). Clearly, supp(8) C & = ap U ;. It
follows from B, ﬁe B, that |og| < k./2, |oy| < k./2, and |a| <
lag| + |ty | < k. Thus by the definition of the robust spark «., we
have Amin(n "' X2 X,) > ¢?, which leads to

18112 = 118all2 < ¢ |n ™' X Xa8e |, = ¢ [n7'XIX8|,. (B.61)

Since y = XB, + € in linear model, we have Xé = X(ﬁ— Bo) =
—(y — XB) + € and thus

n'XIX8 = n ' X! [—(y—XB) + e] = —n XL (y—XB) + n~'Xe.
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This representation together with (B.61) yields
I8l < ¢ |n~'X] X8|,
Xy = XB), + ¢ [nXGel,. B.62)

A

IA

Such an inequality provides an effective way to bound the size of the
set o.
By Condition 1, the event £ = {||n~'X"¢| < A/2} has a large

probability. We condition on this event hereafter. Then it holds that
[n~'Xle|, < lal?[n'X[e| <lal'?2/2.  (B.63)
Since 7, = 17" X" [y — pXB) oo = 0 X" (y — XB)l|oc, we have
[n'X0y = XB)|, < lal'21n"'XL(y — XB) oo < lal"n,. (B.64)

Let k = |o; \ og|. Clearly, |o| =
for each j € ) \ g, we have §; = ﬂj Boj =
which entails that

lotg| + lets \ ctg| = s + k. Note that
,BJ and thus |§;| > 7,

811> > &'z (B.65)
Combining inequalities (B.62)—(B.65) along with |«| = s + k gives
k2T < s+ 00, + 27,

which ensures that

—4 2232 /72
k< A2/ (B.66)
1 —c*(m, +2720)%/7?
Since 1, + A = o(7), it follows from the bound in (B.66) that k < s for
large enough 7. Thus, applying similar arguments as above results in

18112 < ¢2(25) (s +27'2). (B.67)

Since min; < |Bo,;| > ¢s5'/2(n, + 1) with ¢s some sufficiently large
positive constant, inequality (B.67) entails that for large enough n,
,B] # 0 for each j € . This shows that supp(,B) D o = supp(By).
Note that by assumption, ﬂ is the global minimizer of problem (6)
when constrained on the subspace given by its support. Observe that
all arguments in the proofs of Theorems 1-3 on the global minimizer
equally apply to the computable solution B as long as supp(ﬂ) D
supp(B,). Therefore, /3 enjoys the same asymptotic properties as for
any global minimizer in Theorems 1-3 under the same conditions
therein.
For the case of nonlinear model, by assumption, we have

|n'XE (i (XB) — n(XBYI|, = calldllo.
which together with e =y — u(Xp,) leads to
181> < ;' |n X1y — wXB)I|, +c;' o' X]e|,. (B.68)

Observe that inequality (B.68) is of similar form as (B.62). Thus an
application of similar arguments as above completes the proof.

[Received May 2012. Revised March 2013 ]

REFERENCES

Antoniadis, A., and Fan, J. (2001), “Regularization of Wavelets Approxima-
tions” (with discussion), Journal of the American Statistical Association,
96, 939-967. [1045,1049]

Barron, A., Birge, L., and Massart, P. (1999), “Risk Bounds for Model Se-
lection via Penalization,” Probability Theory Related Fields, 113, 301-
413. [1046]

Bennett, G. (1962), “Probability Inequalities for the Sum of Independent Ran-
dom Variables,” Journal of the American Statistical Association, 57, 33—
45.[1056]

1061

Bickel, P. J., Ritov, Y., and Tsybakov, A. (2009), “Simultaneous Analysis of
Lasso and Dantzig Selector,” The Annals of Statistics, 37, 1705-1732.
[1044,1045,1046,1047,1055]

Bunea, F., Tsybakov, A., and Wegkamp, M. H. (2007), “Sparsity Ora-
cle Inequalities for the LASSO,” Electronic Journal of Statistics, 1,
169-194. [1044]

Candes, E., and Tao, T. (2007), “The Dantzig Selector: Statistical Estimation
‘When p Is Much Larger Than n” (with discussion), The Annals of Statistics,
35, 2313-2404. [1045]

Donoho, D., and Elad, M. (2003), “Optimally Sparse Representation in Gen-
eral (Nonorthogonal) Dictionaries via £' Minimization,” Proceedings of
the National Academy of Sciences of the United States of America, 100,
2197-2202. [1046]

Donoho, D. L., Elad, M., and Temlyakov, V. (2006), “Stable Recovery of Sparse
Overcomplete Representations in the Presence of Noise,” IEEE Transactions
on Information Theory, 52, 6-18. [1044]

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004), “Least Angle
Regression” (with discussion), The Annals of Statistics, 32, 407-499. [1044]

Fan, J., and Fan, Y. (2008), “High-Dimensional Classification Using Fea-
tures Annealed Independence Rules,” The Annals of Statistics, 36, 2605—
2637. [1054]

Fan, J., and Li, R. (2001), “Variable Selection via Nonconcave Penalized Like-
lihood and Its Oracle Properties,” Journal of the American Statistical Asso-
ciation, 96, 1348-1360. [1044,1049]

Fan, J., and Lv, J. (2008), “Sure Independence Screening for Ultrahigh Dimen-
sional Feature Space” (with discussion), Journal of the Royal Statistical
Society, Series B, 70, 849-911. [1056]

(2011), “Nonconcave Penalized Likelihood With NP-Dimensionality,”
IEEE  Transactions on Information  Theory, 57, 5467-5484.
[1044,1047,1049,1056]

Fan, J., and Peng, H. (2004), “Nonconcave Penalized Likelihood With Diverging
Number of Parameters,” The Annals of Statistics, 32, 928-961. [1044]

Fan, Y., and Lv, J. (2012), “Asymptotic Properties of Global Optimum for
Combined L and Concave Regularization,” unpublished manuscript. [1046]

Frank, 1. E., and Friedman, J. H. (1993), “A Statistical View of Some Chemo-
metrics Regression Tools” (with discussion), Technometrics, 35, 109-148.
[10438]

Friedman, J., Hastie, T., Hofling, H., and Tibshirani, R. (2007), “Path-
wise Coordinate Optimization,” The Annals of Applied Statistics, 1,
302-332. [1044]

Hoeffding, W. (1963), “Probability Inequalities for Sums of Bounded Ran-
dom Variables,” Journal of the American Statistical Association, 58, 13-30.
[1056]

Lin, W,, and Lv, J. (2013), “High-Dimensional Sparse Additive Hazards
Regression,” Journal of the American Statistical Association, 108, 247—
264. [1049]

Lv, J., and Fan, Y. (2009), “A Unified Approach to Model Selection and Sparse
Recovery Using Regularized Least Squares,” The Annals of Statistics, 37,
3498-3528. [1044,1046,1047]

Singh, D., Febbo, P. G., Ross, K., Jackson, D. G., Manola, J., Ladd, C., Tamayo,
P., Renshaw, A. A., D’Amico, A. V., Richie, J. P, Lander, E. S., Loda, M.,
Kantoff, P. W., Golub, T. R., and Sellers, W. R. (2002), “Gene Expression
Correlates of Clinical Prostate Cancer Behavior,” Cancer Cell, 1, 203-209.
[1054]

Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,”
Journal of the Royal Statistical Society, Series B, 58, 267-288. [1044]

van de Geer, S. (2008), “High-Dimensional Generalized Linear Models and the
LASSO,” The Annals of Statistics, 36, 614—645. [1044]

van der Vaart, A. W., and Wellner, J. A. (1996), Weak Convergence and Empir-
ical Processes, New York: Springer. [1056]

Wu, T. T., and Lange, K. (2008), “Coordinate Descent Algorithms for Lasso
Penalized Regression,” The Annals of Applied Statistics, 2, 224-244.[1044]

Zhang, C.-H. (2010), “Nearly Unbiased Variable Selection Under Minimax
Concave Penalty,” The Annals of Statistics, 38, 894-942. [1044]

Zhang, C.-H., and Huang, J. (2008), “The Sparsity and Bias of the LASSO
Selection in High-Dimensional Linear Regression,” The Annals of Statistics,
36, 1567-1594. [1044]

Zhao, P., and Yu, B. (2006), “On Model Selection Consistency of Lasso,” Journal
of Machine Learning Research, 7, 2541-2563. [1044,1047]

Zheng,Z.,Fan, Y., and Lv, J. (2014), “High-dimensional thresholded regression
and shrinkage effect,” Journal of the Royal Statistical Society, Series B, 76,
forthcoming. [1046]

Zou, H. (2006), “The Adaptive Lasso and Its Oracle Properties,” Journal of the
American Statistical Association, 101, 1418-1429. [1044,1048]

Zou, H., and Li, R. (2008), “One-Step Sparse Estimates in Nonconcave Pe-
nalized Likelihood Models” (with discussion), The Annals of Statistics, 36,
1509-1566. [1049]




	Asymptotic Equivalence of Regularization Methods&break; in Thresholded Parameter Space
	INTRODUCTION
	REGULARIZATION METHODS IN THRESHOLDED PARAMETER SPACE
	ASYMPTOTIC EQUIVALENCE&break; OF REGULARIZATION METHODS
	Technical Conditions
	Oracle Inequalities of Global Minimizer
	Oracle Risk Inequalities of Global Minimizer
	Sampling Properties of Computable Solutions

	NUMERICAL STUDIES
	Implementation
	Simulation Studies
	Real Data Example

	DISCUSSIONS
	Proof of Proposition 1
	Proof of Proposition 2
	Lemma 1 and Its Proof
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4



