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ABSTRACT
Interpretability and stability are two important features that are desired in many contemporary big data
applications arising in statistics, economics, and finance. While the former is enjoyed to some extent
by many existing forecasting approaches, the latter in the sense of controlling the fraction of wrongly
discovered features which can enhance greatly the interpretability is still largely underdeveloped. To
this end, in this article, we exploit the general framework of model-X knockoffs introduced recently in
Candès, Fan, Janson and Lv [(2018), “Panning for Gold: ‘model X’Knockoffs for High Dimensional Controlled
Variable Selection,” Journal of the Royal Statistical Society, Series B, 80, 551–577], which is nonconventional
for reproducible large-scale inference in that the framework is completely free of the use of p-values for
significance testing, and suggest a new method of intertwined probabilistic factors decoupling (IPAD) for
stable interpretable forecasting with knockoffs inference in high-dimensional models. The recipe of the
method is constructing the knockoff variables by assuming a latent factor model that is exploited widely in
economics and finance for the association structure of covariates. Our method and work are distinct from
the existing literature in which we estimate the covariate distribution from data instead of assuming that it
is known when constructing the knockoff variables, our procedure does not require any sample splitting, we
provide theoretical justifications on the asymptotic false discovery rate control, and the theory for the power
analysis is also established. Several simulation examples and the real data analysis further demonstrate that
the newly suggested method has appealing finite-sample performance with desired interpretability and
stability compared to some popularly used forecasting methods. Supplementary materials for this article
are available online.
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1. Introduction

Forecasting is a fundamental problem that arises in statistics,
economics, and finance. With the availability of big data, many
machine learning algorithms such as the Lasso and random
forest can be resorted to for such a purpose by exploring a large
pool of potential features. Many of these existing procedures
provide a certain measure of feature importance which can
then be utilized to judge the relative importance of selected
features for the goal of interpretability. Yet, the issue of stability
in the sense of controlling the fraction of wrongly discovered
features is still largely underdeveloped. As argued in De Mol,
Giannone, and Reichlin (2008) in the econometric settings, it
is difficult to obtain interpretability and stability simultane-
ously even in simple Lasso forecasting. A natural question is
how to ensure both interpretability and stability for flexible
forecasting.

Naturally, stability is related to statistical inference. The
recent years have witnessed a growing body of work on
high-dimensional inference in the statistics and econometrics
literature; see, for example, Wooldridge and Zhu (2018),
Stucky and van de Geer (2018), Zhang and Cheng (2017),
Chernozhukov et al. (2018), Chernozhukov, Newey, and Robins
(2018), Chernozhukov et al. (2018), Shah and Bühlmann
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(2018), and Guo et al. (2018). Most existing work on high-
dimensional inference for interpretable models has focused
primarily on the aspects of post-selection inference known
as selective inference and debiasing for regularization and
machine learning methods. In real applications, one is often
interested in conducting global inference relative to the full
model as opposed to local inference conditional on the selected
model. Moreover, many statistical inferences are based on p-
values from significance testing. However, oftentimes obtaining
valid p-values even for the Lasso in relatively complicated high-
dimensional nonlinear models also remains largely unresolved,
not to mention for the case of more complicated model fitting
procedures such as random forest. Indeed, high-dimensional
inference is intrinsically challenging even in the parametric
settings Fan, Demirkaya, and Lv (2019).

The desired property of stability for interpretable forecasting
in this article concentrates on global inference by controlling
precisely the fraction of wrongly discovered features in high-
dimensional models, which is also known as reproducible large-
scale inference. Such a problem involves testing the joint sig-
nificance of a large number of features simultaneously, which is
known widely as the problem of multiple testing in statistical
inference. For this problem, the null hypothesis for each fea-
ture states that the feature is unimportant in the joint model
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which can be understood as the property that this individ-
ual feature and the response are independent conditional on
all the remaining features, while the corresponding alternative
hypothesis states the opposite. Conventionally, p-values from
the hypothesis testing are used to decide whether or not to
reject each null hypothesis with a significance level to control
the probability of false discovery in a single hypothesis test,
meaning rejecting the null hypothesis when it is true. When
performing multiple hypothesis tests, the probability of making
at least one false discovery which is known as the family-wise
error rate can be inflated compared to that for the case of a
single hypothesis test. The work on controlling such an error
rate for multiple testing dates back to Bonferroni (1935), where
a simple, useful idea is lowering the significance level for each
individual test as the target level divided by the total number
of tests to be performed. The Bonferroni correction procedure
is, however, well known to be conservative with relatively low
power. Later on, Holm (1979) proposed a step-down procedure
which is less conservative than the Bonferroni procedure. More
recently, Romano and Wolf (2005) suggested a procedure in
which the critical values of individual tests are constructed
sequentially.

A more powerful and extremely popular approach to
multiple testing is the Benjamini–Hochberg (BH) procedure
for controlling the false discovery rate (FDR) which was
originated in Benjamini and Hochberg (1995), where the FDR
is defined as the expectation of the fraction of falsely rejected
null hypotheses known as the false discovery proportion.
Given the p-values from the multiple hypothesis tests, this
procedure sorts the p-values from low to high and chooses
a simple, intuitive cut-off point, which can be viewed as an
adaptive extension of the Bonferroni correction for multiple
comparisons, of the p-values for rejecting the null hypotheses.
The BH procedure was shown to be capable of controlling
the FDR at the desired level for independent test statistics in
Benjamini and Hochberg (1995) and for positive regression
dependency among the test statistics in Benjamini and Yekutieli
(2001), where it was shown that a simple modification of
the procedure can control the FDR under other forms of
dependency but such a modification is generally conservative.
There is a huge literature on the theory, applications, and various
extensions of the original BH procedure for FDR control; see,
for instance, Benjamini (2010), Fan, Han, and Gu (2012),
Belloni et al. (2018), and Chudik, Kapetanios, and Pesaran
(2018).

The aforementioned econometric and statistical inference
methods including the BH-type procedures for FDR control are
all rooted on the availability and validity of computable p-values
for evaluating variable importance. As mentioned before, such a
prerequisite can become a luxury that is largely unclear how to
obtain in high dimensions even for the case of Lasso in general
nonlinear models and random forest. In contrast, Barber and
Candès (2015) proposed a novel procedure named the knockoff
filter for FDR control that bypasses the use of p-values in the
Gaussian linear model with deterministic design matrix, where
the dimensionality is no larger than the sample size, and Barber
and Candès (2016) generalized the method to high-dimensional
linear models as a two-step procedure based on sample splitting,
where a feature screening approach is used to reduce the dimen-

sionality to below sample size (see, e.g., Fan and Fan (2008) and
Fan and Lv (2008)) and then the knockoff filter is applied to
the set of selected features after the screening step for selective
inference. The key ingredient of the knockoff filter is construct-
ing the so-called knockoff variables in a geometrical way that
mimic perfectly the correlation structure among the original
covariates and can be used as control variables to evaluate the
importance of original variables. Recently, Candès et al. (2018)
extended the work of Barber and Candès (2015) by introducing
the framework of model-X knockoffs for FDR control in general
high-dimensional nonlinear models. A crucial distinction is
that the knockoff variables are constructed in a probabilistic
fashion such that the joint dependency structure of the original
variables and their knockoff copies is invariant to the swapping
of any set of original variables and their knockoff counterparts,
which enables us to go beyond linear models and handle high
dimensionality. As a result, model-X knockoffs enjoys exact
finite-sample FDR control at the target level. However, a major
assumption in Candès et al. (2018) is that the joint distribu-
tion of all the covariates needs to be known for the valid FDR
control.

Motivated by applications in economics and finance, in this
article we model the association structure of the covariates using
the latent factor model, which reduces effectively the dimen-
sionality and enables reliable estimation of the unknown joint
distribution of all the covariates. By taking into account, the
latent factor model structure, we first estimate the association
structure of covariates and then construct empirical knockoffs
matrix using the estimated dependency structure. Our empirical
knockoffs matrix can be regarded as an approximation to the
oracle knockoffs matrix in Candès et al. (2018) that requires the
knowledge of the true covariate distribution. Exploiting the gen-
eral framework of model-X knockoffs in Candès et al. (2018),
we suggest the new method of intertwined probabilistic fac-
tors decoupling (IPAD) for stable interpretable forecasting with
knockoffs inference in high-dimensional models. The innova-
tions of our method and work are fourfold. First, we estimate
the covariate distribution from data instead of assuming that it
is known when constructing the knockoff variables. Second, our
procedure does not require any sample splitting and is thus more
practical when the sample size is limited. Third, we provide
theoretical justifications on the asymptotic FDR control when
the estimated dependency structure is employed. Fourth, the
theory for power analysis is also established which reveals that
there can be asymptotically no power loss in applying the knock-
offs procedure compared to the underlying variable selection
method. Therefore, FDR control by knockoffs can be a pure
gain. Compared to earlier work, an additional challenge of our
study is that knowing the true underlying distribution does not
lead to the most efficient construction of the oracle knockoffs
matrix due to the presence of latent factors.

The rest of the article is organized as follows. Section 2
introduces the model setting and presents the new IPAD
procedure. We establish the asymptotic properties of IPAD in
Section 3. Sections 4 and 5 present several simulation and real
data examples to showcase the finite-sample performance and
the advantages of our newly suggested procedure compared
to some popularly used ones. We discuss some implications
and extensions of our work in Section 6. The proofs of the
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main results are relegated to appendix. Additional technical
details and numerical results are provided in the supplementary
material.

2. Intertwined Probabilistic Factors Decoupling

To facilitate the technical presentation, we will introduce the
model setting for the high-dimensional FDR control problem in
Section 2.1 and present the new IPAD procedure in Section 2.2.

2.1. Model Setting

Consider the high-dimensional linear regression model

y = Xβ + ε, (1)

where y ∈ R
n is the response vector, X ∈ R

n×p is the
random matrix of a large number of potential regressors, β =
(β1, . . . , βp)′ ∈ R

p is the regression coefficient vector, ε ∈ R
n is

the vector of model errors, and n and p denote the sample size
and dimensionality, respectively. Here without loss of generality,
we assume that both the response and the covariates are centered
with mean zero and thus there is no intercept. Motivated by
many applications in economics and finance, we further assume
that the design matrix X follows the exact factor model

X = F0�0′ + E = C0 + E, (2)

where F0 = (f0
1 , . . . , f0

n)′ ∈ R
n×r is a random matrix of latent

factors, �0 = (λ0
1, . . . , λ0

p)
′ ∈ R

p×r is a matrix of deterministic
factor loadings, and error term E ∈ R

n×p captures the remain-
ing variation that cannot be explained by these latent factors. We
assume that the number of factors r is fixed but unknown and
the components of E are independent and identically distributed
(iid) from some parametric distribution with cumulative distri-
bution function G(·; η0), where η0 ∈ R

m is a finite-dimensional
unknown parameter vector. For technical simplicity, models (1)
and (2) are assumed to have no endogeneity and satisfy that F0

has iid rows and is independent of E.
In this article, we focus on the high-dimensional scenario

when the dimensionality p can be much larger than sample size
n. Therefore, to ensure model identifiability we impose the spar-
sity assumption that the true regression coefficient vector β has
only a small portion of nonzeros; specifically, β takes nonzero
values only on some (unknown) index set S0 ⊂ {1, . . . , p} and
βj = 0 for all j ∈ S1 := {1, . . . , p}\S0. Denote by s = |S0| the
size of S0. We assume that s = o(n) throughout the article.

We are interested in identifying the index set S0 with a
theoretically guaranteed error rate. To be more precise, we try
to select variables in S0 while keeping the FDR under some
prespecified desired level q ∈ (0, 1), where the FDR is defined
as

FDR := E [FDP] with FDP := |Ŝ ∩ S1|
|Ŝ| ∨ 1

. (3)

Here, the FDP stands for the false discovery proportion and
Ŝ represents the set of variables selected by some procedure

using observed data (X, y). A slightly modified version of FDR
is defined as

mFDR := E

[
|Ŝ ∩ S1|
|Ŝ| + q−1

]
. (4)

Clearly, FDR is more conservative than mFDR in that the latter
is always under control if the former is.

It is easy to see that FDR is a measurement of Type I error
for variable selection. The other important aspect of variable
selection is power, which is defined as

Power := E

[
|Ŝ ∩ S0|

|S0|

]
= E

[
|Ŝ ∩ S0|

s

]
. (5)

It is well known that FDR and power are two sides of the same
coin. We aim at developing a variable selection procedure with
theoretically guaranteed FDR control and meanwhile achieving
high power.

2.2. IPAD

The key ingredient of the model-X knockoffs framework intro-
duced originally in Candès et al. (2018) is the construction of
the so-called model-X knockoff variables defined as follows.

Definition 1 (Model-X knockoff variables Candès et al. (2018)).
For a set of random variables x = (X1, . . . , Xp), a new set of
random variables x̃ = (X̃1, . . . , X̃p) is called a set of model-X
knockoff variables if it satisfies the following properties:

1) For any subset S ⊂ {1, . . . , p}, we have [x, x̃]swap(S)
d=

[x, x̃], where d= denotes equal in distribution and the vector
[x, x̃]swap(S) is obtained by swapping Xj and X̃j for each j ∈ S .

2) Conditional on x, the knockoffs vector x̃ is independent of
response Y .

See Section B of the supplementary material for a brief review
of the model-X knockoffs framework. In theory, if the distribu-
tion of C0 and the value of η0 are known, the SCIP algorithm
proposed in Candès et al. (2018) can be used to construct the
knockoff variables. However, the computational cost can be high
depending on the exact distributions. Instead, we introduce
a more efficient and practically implementable approach for
constructing the knockoff variables below.

We start with introducing the knockoff generating function—
for each given augmented parameter vector θ = vec(vec C, η),
define

X̃(θ) = C + Eη, (6)

where Eη is a matrix composed of iid random samples from
distribution G(·; η). To gain some insights, let us first consider
the ideal situation where the factor model structure (2) is fully
available; that is, we know the realization C0 and the true dis-
tribution G(·; η0) for the error matrix E. In such case, the oracle
(ideal) knockoffs matrix X̃(θ0) can be constructed as

X̃(θ0) = C0 + Eη0 , (7)

where Eη0 is an iid copy of E. Note that Eη0 itself is not a
function of η0, but we slightly abuse the notation to emphasize
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the dependence of the distribution function on parameter η0.
In practice, θ0 is unknown and needs to be estimated. Letting
θ̂ denote an estimator (obtained using data X) of θ0, we name
X̃(θ̂) as the empirical knockoffs matrix

X̃(θ̂) = Ĉ + Eη̂ , (8)

where Ĉ is an empirical estimate of C0 and Eη̂ ∈ R
n×p is

composed of iid random variables from the plug-in estimate of
the distribution function, G(·; η̂), and is independent of (X, y)

conditional on η̂. The following proposition justifies the validity
of the oracle knockoffs matrix.

Proposition 1. Under model setting (2), the oracle knockoffs
matrix defined in (7) satisfies Definition 1.

However, the empirical knockoffs matrix given in (8) gen-
erally does not satisfy the exchangeability property because of
the dependence of θ̂ on the training data X. Although the oracle
knockoffs matrix is generally unavailable, it plays an important
role in our theoretical developments as a proxy of the empirical
knockoffs matrix. We remark that in the construction above,
we slightly misuse the concept and call C0 a parameter. This is
because although C0 is a random matrix, for the construction of
valid knockoff variables it is the particular realization C0 leading
to the observed data matrix X that matters. In other words, a
valid construction of knockoff variables requires the knowledge
of the specific realization C0 instead of the distribution of C0.
To understand this, consider the scenario where the underlying
parameter η0 and the exact distribution of C0 are fully available.
If we independently generate random variables from this known
distribution and form a new data matrix X1, because of the inde-
pendence between X1 and X, the exchangeability assumption
in Definition 1 will be violated and thus X1 cannot be a valid
knockoffs matrix. On the other hand, as long as we know the
realization C0 and parameter η0, a valid knockoffs matrix X̃(θ0)
can be constructed using (7) regardless of whether the exact
distribution of C0 is available or not.

In practice, however, θ0 is unavailable and consequently,
X̃(θ0) is inaccessible. To overcome this difficulty, we next intro-
duce our new method IPAD. With the aid of empirical knockoffs
matrix, we suggest the following IPAD procedure for FDR con-
trol with knockoffs inference.

Procedure 1 (IPAD). 1. (Estimation of parameters) Estimate
the unknown parameters in θ0 using the design matrix X.
Denote by θ̂ = (Ĉ, η̂) the resulting estimated parameter
vector.

2. (Construction of empirical knockoffs matrix) Construct the
empirical knockoffs matrix (8) by applying the knockoff gen-
erating function in (6) to the estimated parameter θ̂ .

3. (Application of knockoffs inference) Calculate knockoff
statistics Wj(θ̂) using data ([X, X̃(θ̂)], y) and then construct
Ŝ by applying knockoffs inference to Wj(θ̂).

Intuitively, the accuracy of the estimator θ̂ in Step 1 will affect
the performance of our IPAD procedure. In fact, as shown later
in our Theorem 1 in Section 3, the consistency rate of θ̂ is indeed
reflected in the asymptotic FDR control of the IPAD procedure.

There are various ways to construct estimator θ̂ . A natural and
popularly used one is the principal component (PC) estimator
(̂F, �̂) studied in Bai (2003). Specifically, we first estimate the
number of factors r, denoted as r̂, using some method such as
the information criterion in Bai and Ng (2002) or the approach
in Ahn and Horenstein (2013), and then set Ĉ = F̂�̂

′, where F̂
is T1/2 times the eigenvectors corresponding to the top r̂ largest
eigenvalues of XX′, and �̂ = X′̂F/T. As for the estimation
of η0, existing methods such as the method of moments can
be used based on the residual matrix Ê = (êij). As a concrete
example, consider the case where E has iid N (0, σ 2) entries.
Then the unknown population parameter is η0 = σ 2 and can
be estimated naturally as (np)−1 ∑n

i=1
∑p

j=1 ê2
ij.

In Step 3, various methods can be used to construct knock-
off statistics. For the illustration purpose, we use the Lasso
coefficient difference (LCD) statistic as in Candès et al. (2018).
Specifically, with y being the response vector and ([X, X̃(θ̂)])
the augmented design matrix, we consider the variable selection
procedure Lasso Tibshirani (1996) which solves the following
optimization problem

β̂
aug

(θ̂ ; λ) = arg min
b∈R2p

{
‖y − [X, X̃(θ̂)]b‖2

2 + λ‖b‖1
}

, (9)

where λ ≥ 0 is the regularization parameter and ‖ · ‖m with
m ≥ 1 denotes the vector �m-norm. Then, for each variable xj,
the knockoff statistic can be constructed as

Wj(θ̂ ; λ) = |β̂aug
j (θ̂ ; λ)| − |β̂aug

p+j(θ̂ ; λ)|, (10)

where β̂
aug
� (θ̂ ; λ) is the �th component of the Lasso regression

coefficient vector β̂
aug

(θ̂ ; λ). It is seen that intuitively the LCD
knockoff statistics evaluate the relative importance of the jth
original variable by comparing its Lasso coefficient β̂

aug
j (θ̂ ; λ)

with that of its knockoff copy β̂
aug
j+p(θ̂ ; λ). In the ideal case when

the oracle knockoffs matrix X̃(θ0) is used instead of X̃(θ̂) in
(9), it is easy to verify that the LCD is a valid construction of
knockoff statistics and satisfies the sign-flip property in (A.2)
of Supplementary Material. Consequently, the general theory
in Candès et al. (2018) can be applied to show that the FDR
is controlled in finite sample. We next show that even with the
empirical knockoffs matrix employed in (9), the FDR can still
be asymptotically controlled with delicate technical analyses.

3. Asymptotic Properties of IPAD

We now provide theoretical justifications for our IPAD proce-
dure suggested in Section 2 with the LCD knockoff statistics
Wj(θ̂ ; λ) = wj([X, X̃(θ̂)], y; λ) defined in (10). We will first
present some technical conditions in Section 3.1, then prove
in Section 3.2 that the FDR is asymptotically under control at
a desired target level q, and finally in Section 3.3 show that
asymptotically IPAD has no power loss compared to the Lasso
under some regularity conditions.

3.1. Technical Conditions

We first introduce some notation and definitions which will
be used later on. We use X ∼ subG(C2

x) to denote that X is
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a sub-Gaussian random variable with variance proxy C2
x > 0

if E[X] = 0 and its tail probability satisfies P(|X| > u) ≤
2 exp(u2/C2

x) for each u ≥ 0. In all technical assumptions below,
we use M > 1 to denote a large enough generic constant.
Throughout the article, for any vector v = (vi) let us denote
by ‖v‖1, ‖v‖2, and ‖v‖max the �1-norm, �2-norm, and max-
norm defined as ‖v‖1 = ∑

i |vi|, ‖v‖2 = (
∑

i v2
i )

1/2, and
‖v‖max = maxi |vi|, respectively. For any matrix M = (mij),
we denote by ‖M‖F , ‖M‖1, ‖M‖2, and ‖M‖max the Frobenius
norm, entrywise �1-norm, spectral norm, and entrywise �∞-
norm defined as ‖M‖F = ‖ vec(M)‖2, ‖M‖1 = ‖ vec(M)‖1,
‖M‖2 = supv �=0 ‖Mv‖2/‖v‖2, and ‖M‖max = ‖ vec(M)‖max,
respectively, where vec(M) represents the vectorization of M.
For a symmetric matrix M, vech(M) stands for the vectorization
of the lower triangular part.

Condition 1 (Regression errors). The model error vector ε has
iid components from subG(C2

ε).

Condition 2 (Latent factors). The rows of F0 consist of mean zero
iid random vectors f0

i ∈ R
r such that ‖F0‖max ≤ M almost

surely (a.s.) and ‖�f ‖2 + ‖�−1
f ‖2 ≤ M, where �f := E[f0

i f0
i
′].

Condition 3 (Factor loadings). The rows of �0 consist of deter-
ministic vectors λ0

j ∈ R
r such that ‖�0‖max ≤ M and

‖p−1�0′
�0‖2 + ‖(p−1�0′

�0)−1‖2 ≤ M.

Condition 4 (Factor errors). The entries of matrix Eη0 are iid
copies of eη0 ∼ subG(C2

e ) with continuous distribution function
G(·; η0). For each 1 ≤ � ≤ m, the �th element of η0 is specified
as η0

� = h�(E[eη0], . . . ,E[em
η0 ]) with h� : Rm → R some local

Lipschitz continuous function in the sense that∣∣∣h�(t1, . . . , tm) − h�(E[eη0 ], . . . ,E[em
η0 ])

∣∣∣
≤ M max

k∈{1,...,m}

∣∣∣tk − E[ek
η0 ]

∣∣∣
for each tk ∈ {t : |t − E[ek

η0]| ≤ Mcnp} and 1 ≤ k ≤ m, where
cnp := (p−1 log n)1/2 + (n−1 log p)1/2. Moreover, there exists
some stochastic process (eη)η such that

(i) for each η ∈ {η ∈ R
m : ‖η − η0‖max ≤ Mcnp}, the entries

of Eη in (6) have identical distribution to eη,
(ii) for some sub-Gaussian random variable Z ∼ subG

(
c2

e
)

with some positive constant ce,

sup
η: ‖η−η0‖max≤Mcnp

|eη − eη0 | ≤ M1/2c1/2
np |Z|. (11)

Condition 5 (Eigenseparation). The r eigenvalues of p−1�0′
�0�f

are distinct for all p.

The number of factors r is assumed to be known for devel-
oping the theory with simplification, but in practice it can be
estimated consistently using methods such as information cri-
teria (Bai and Ng 2002) and test statistics (Ahn and Horenstein
2013). The sub-Gaussian assumptions in Conditions 1 and 4 can
be replaced with some other tail conditions as long as similar
concentration inequalities hold. Condition 3 is standard in the

analysis of factor models. Stochastic loadings can be assumed in
Condition 3 with some appropriate distributional assumption,
such as sub-Gaussianity, at the cost of much more tedious tech-
nical arguments. The boundedness of the eigenvalues of �f in
Condition 2 is standard while the iid assumption and bounded-
ness of f0

i are stronger compared to the existing literature (e.g.,
Bai and Ng (2002) and Bai (2003)). However, these conditions
are imposed mostly for technical simplicity. In fact, the bound-
edness condition on f0

i can be replaced with (unbounded) sub-
Gaussian or other heavier-tail assumption whenever concentra-
tion inequalities are available at the cost of slower convergence
rates and stronger sample size requirement. Our theory on FDR
control is based on that in Candès et al. (2018), which applies
only to the case of iid rows of design matrix X. This is the
main reason for imposing the iid assumption on εi and fi in
Conditions 1 and 2. However, we conjecture that similar results
can also hold in the presence of some sufficiently weak serial
dependence in εi and fi. Condition 4 introduces a sub-Gaussian
process eη with respect to η. The norm in (11) can be replaced
with any other norm since η is finite dimensional. In the specific
case when the components of E have Gaussian distribution
such that η is a scalar parameter representing variance, by the
reflection principle for the Wiener process (Billingsley (1995),
p.511), eη can be constructed as a Wiener process and the
inequality (11) can be satisfied. For more information on sub-
Gaussian processes, see, for example, Vizcarra and Viens (2007).
To understand why we need Condition 5, note from the proof
of Lemma 3 that the PC estimator (̂F, �̂) is only consistent for
(F0H, �0H−1), where H = (�0′

�0/p)(F0 ′̂F/n)V−1 with V
an r × r diagonal matrix of r largest eigenvalues of XX′/(np).
Condition 5 guarantees that F̂′F0/n is asymptotically unique
and invertible, which have been proved by Bai (2003), and the
fact is used in the proof of Lemma 6 in the supplementary
material. This ultimately ensures that C0 can be estimated well,
which in turn guarantees that η0 can be estimated accurately.

Recall that in the IPAD procedure, we first obtain the aug-
mented Lasso estimator β̂

aug
(θ ; λ) ∈ R

2p by regressing y
on [X, X̃(θ)]. Denote by Aaug(θ ; λ) = supp(β̂

aug
(θ ; λ)) ⊂

{1, . . . , 2p} the active set of the augmented Lasso regression
coefficient vector. Throughout this section, we content ourselves
with sparse estimates satisfying∣∣Aaug(θ ; λ)

∣∣ ≤ k/2 (12)

for some positive integer k which may diverge with n at an order
to be specified later; see, for example, Fan and Lv (2013) and Lv
(2013) for a similar constraint and justifications therein. This
can always be achieved since users have the freedom to choose
the size of the Lasso model.

3.2. FDR control

To develop the theory for IPAD, we consider the PC estimator Ĉ
for the realization C0 summarized in Section 2.2. The estimator
η̂ = (η̂1, . . . , η̂m)′ is constructed as η̂� = h�(Enp ê, . . . ,Enp êm)

with h�, 1 ≤ � ≤ m, introduced in Condition 4 and
Enpêk = (np)−1 ∑

1≤i≤n, 1≤j≤p êk
ij the empirical moments

of êij. Throughout our theoretical analysis, we consider the
regularization parameter fixed at λ = C0n−1/2 log p with
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C0 some large enough constant for all the Lasso procedures.
Therefore, we will drop the dependence of various quantities on
λ whenever there is no confusion. For example, we will write
Aaug(θ ; λ) and β̂

aug
(θ ; λ) as Aaug(θ) and β̂

aug
(θ), respectively.

Denote by U(θ) := n−1[X, X̃(θ)]′[X, X̃(θ)] and v(θ) :=
n−1[X, X̃(θ)]′y and define T(θ) := vec(vech U(θ), v(θ)) ∈ R

P

with P := p(2p+3). The following lemma states that the statistic
T(θ) plays a crucial role in our procedure.

Lemma 1. The set of variables Ŝ selected by Procedure 1
depends only on T(θ).

For any given θ , define the active set A∗(θ) := Aaug
1 (θ) ∪

Aaug
2 (θ) ⊂ {1, . . . , p}, where Aaug

1 (θ) := {j : j ∈ {1, . . . , p} ∩
Aaug(θ)} and Aaug

2 (θ) := {j−p : j ∈ {p+1, . . . , 2p}∩Aaug(θ)}.
That is, A∗(θ) is equal to the support of knockoff statistics
(W1(θ), . . . , Wp(θ))′ if there are no ties on the magnitudes of
the augmented Lasso coefficient vector β̂

aug
(θ).

We next focus on the low-dimensional structure of T(θ)

inherited from the augmented Lasso because it will be made
clear that this is the key to controlling the FDR without
sample splitting. For any subset A ⊂ {1, . . . , p}, define a
lower-dimensional expression of the vector as TA(θ) :=
vec(vech UA(θ), vA(θ)) with UA(θ) the principle submatrix
of U(θ) formed by columns and rows in A and vA(θ) the
subvector of v(θ) formed by components in A. Then it is easy to
see that UA(θ) = n−1[XA, X̃A(θ)]′[XA, X̃A(θ)] and vA(θ) =
n−1[XA, X̃A(θ)]′y. Motivated by Lemma 1, we define a family
of mappings indexed by A that describes the selection algorithm
of Procedure 1 with given dataset ([XA, X̃A(θ)], y) that forms
TA(θ). Formally, define a mapping SA : R|A|(2|A|+3) → 2A as
tA �→ SA(tA) for given TA(θ) = tA, where 2A refers to the
power set of A. That is, SA(tA) represents the outcome of first
restricting ourselves to the smaller set of variables A and then
applying IPAD to TA(θ) = tA to further select variables from
set A.

Lemma 2. Under Conditions 1–4, for any subset A ⊃ A∗(θ)

we have S{1,...,p}(T(θ)) = SA(TA(θ)).

When restricting on set A, we can apply Procedure 1 to a
lower-dimensional dataset ([XA, X̃A(θ)], y) that forms TA(θ)

to further select variables from A. The previous two lemmas
ensure that this gives us a subset of A that is identical to
S{1,...,p}(T(θ)). Note that the lower-dimensional problem based
on TA(θ) can be easier compared to the original one. We also
would like to emphasize that the dimensionality reduction to a
smaller model A is only for assisting the theoretical analysis and
our Procedure 1 does not need any knowledge of such set A.

It is convenient to define t0 = ET(θ0) ∈ R
P. Denote by

I := {
t ∈ R

P : ‖t − t0‖max ≤ anp := C1(k1/2 + s3/2)c̃np
}

,
(13)

where C1 is some positive constant and c̃np = p−1/2 log n +
n−1/2 log p. For any subset A ⊂ {1, . . . , p}, let IA be the
subspace of I when taking out the coordinates corresponding
to ETA(θ0). Thus, IA ⊂ R

|A|(2|A|+3). In addition to Condi-
tions 1–5, we need an assumption on the algorithmic stability of
Procedure 1.

Condition 6 (Algorithmic stability). For any subset A ⊂
{1, . . . , p} that satisfies |A| ≤ k ≤ n ∧ p, there exists a positive
sequence ρnp → 0 as n ∧ p → ∞ such that

sup
|A|≤k

sup
t1,t2∈IA

∣∣SA(t2)�SA(t1)
∣∣

|SA(t1)| ∧ |SA(t2)| = O(ρnp),

where � stands for the symmetric difference between two sets.

Intuitively the above condition assumes that the knockoffs
procedure is stable with respect to a small perturbation to the
input t in any lower-dimensional subspace IA. Under these
regularity conditions, the asymptotic FDR control of our IPAD
procedure can be established.

Theorem 1 (Robust FDR control). Assume that Conditions 1–6
hold. Fix an arbitrary positive constant ν. If (s, k, n, p) satisfies
s ∨ k ≤ n ∧ p, cnp ≤ c/[r2M2C(ν + 2)]1/2, and (k1/2 +
s3/2)c̃np → 0 as n ∧ p → ∞ with c and C some positive
constants defined in Lemma 7 in the supplementary material,
then the set of variables Ŝ obtained by Procedure 1 (IPAD) with
the LCD knockoff statistics controls the FDR (3) to be no larger
than q + O

(
ρnp + n−ν + p−ν

)
.

Recall that by definition, the FDR is a function of T(θ̂) and
can be written as E FDP(T(θ̂)) while the FDR computed with
the oracle knockoffs,E FDP(T(θ0)), is perfectly controlled to be
no larger than q. This observation motivates us to first establish
asymptotic equivalence of T(θ̂) and T(θ0) with large probability.
Then a natural idea is to show that E FDP(T(θ̂)) converges to
E FDP(T(θ0)) in probability, which turns out to be highly non-
trivial because of the discontinuity of FDP(·) (the convergence
would be straightforward via the Portmanteau lemma if FDP(·)
were continuous). Condition 6 above provides a remedy to this
issue by imposing the algorithmic stability assumption.

3.3. Power Analysis

We have established the asymptotic FDR control for our IPAD
procedure in Section 3.2. We now look at the other side of the
coin—the power (5). Recall that in IPAD, we apply the knockoffs
inference procedure to the knockoff statistics LCD, which are
constructed using the augmented Lasso in (9). Therefore, the
final set of variables selected by IPAD is a subset of variables
picked by the augmented Lasso. For this reason, the power of
IPAD is always upper bounded by that of Lasso. We will show
in this section that there is in fact no power loss relative to the
augmented Lasso in the asymptotic sense.

Condition 7 (Signal strength I). For any subset A ⊂ S0 that
satisfies |A|/s > 1 − γ for some γ ∈ (0, 1], it holds that
‖βA‖1 > bnpsn−1/2 log p for some positive sequence bnp → ∞.

Condition 8 (Signal strength II). There exists some constant
C2 ∈ (2(qs)−1, 1) such that |S2| ≥ C2s with S2 = {j : |βj| �
(s/n)1/2 log p}.

Condition 7 requires that the overall signal is not too
weak, but is weaker than the conventional beta-min condition
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minj∈S0 |βj| � n−1/2 log p. Under Condition 8, we can show
that |Ŝ| ≥ C2s with probability at least 1 − O(p−ν + n−ν) using
similar techniques to those of Lemma 6 in Fan et al. (2019). The
intuition is that given s → ∞, for a variable selection procedure
to have high power it should select at least a reasonably large
number of variables. The result |Ŝ| ≥ C2s will be used to derive
the asymptotic order of threshold T, which is in turn crucial to
establish the theorem below on power.

Theorem 2 (Power guarantee). Assume that Conditions 1–5
and 7–8 hold. Fix an arbitrary positive constant ν. If (s, k, n, p)

satisfies 2s ≤ k ≤ n ∧ p, cnp ≤ c/(r2M2C(ν + 2))1/2, and
sk1/2c̃np → 0 as n ∧ p → ∞ with c and C some positive
constants defined in Lemma 7, then both the Lasso procedure
based on (X, y) and our IPAD procedure (Procedure 1) have
power bounded from below by γ − o(1) as n ∧ p → ∞. In
particular, if γ = 1 IPAD has no power loss compared to Lasso
asymptotically.

4. Simulation Studies

We have shown in Section 3 that IPAD can asymptotically
control the FDR in high-dimensional setting and there can
be no power loss in applying the procedure. We next move
on to numerically investigate the finite-sample performance of
IPAD using synthetic datasets. We will compare IPAD with
the knockoff filter in Barber and Candès (2015) (BCKnockoff)
and the high-dimensional knockoff filter in Barber and Candès
(2016) (HD-BCKnockoff). In what follows, we will first explain
in detail the model setups and simulation settings, then discuss
the implementation of the aforementioned methods, and finally
summarize the comparison results.

4.1. Simulation Designs and Settings

In all simulations, the design matrix X ∈ R
n×p is generated from

the factor model

X = F0(�0)′ + √
rθE = C0 + √

rθE, (14)

where F0 = (f0
1 , . . . , f0

n)′ ∈ R
n×r is the matrix of latent factors,

�0 = (λ0
1, . . . , λ0

p)
′ ∈ R

p×r is the matrix of factor loadings,
E ∈ R

n×p is the matrix of model errors, and θ is a constant
controlling the signal-to-noise ratio. The term

√
r is used to

single out the effect of the number of factors in calculating the
signal-to-noise ratio in factor model (14). We then rescale each
column of X to have �2-norm one and simulate the response
vector y = (y1, . . . , yn)′ from the following model

yi = f (xi) + √
cεi, i = 1, . . . , n, (15)

where f : R
p → R is the link function which can be linear

or nonlinear, c > 0 is a constant controlling the signal-to-noise
ratio, and ε = (ε1, . . . , εn)′ is the vector of model error. We next
explain the four different designs of our simulation studies.

4.1.1. Design 1: Linear Model With Normal Factor Design
Matrix

The elements of F0, �0, E, and ε are drawn independently from
N (0, 1). The link function takes a linear form, that is, y =

Xβ +√
cε, where the coefficient vector β = (β1, . . . , βp)′ ∈ R

p

is generated by first choosing s random locations for the true
signals and then setting βj at each location to be either A or
−A randomly with A some positive value. The remaining p − s
components of β are set to zero.

4.1.2. Design 2: Linear Model With Fat-tail Factor Matrix and
Serial Dependence

The elements of E are generated as

eij =
(

ν − 2
χ2

ν,j

)
uij, (16)

where uij∼iid N (0, 1) for all i = 1, . . . , n and j = 1, . . . , p,
and χ2

ν,j, j = 1, . . . , p are iid random variables from chi-square
distribution with ν = 8 degrees of freedom. The rest of the
design is the same as in Design 1. It is worth mentioning that
in this case, the entries of matrix E have fat-tail distribution
with serial dependence in each column because of the common
factor χ2

ν,j. This design is used to check the robustness of IPAD
method with respect to the serial dependence and the fat-tail
distribution of E.

4.1.3. Design 3: Linear Model With Misspecified Design
Matrix

To evaluate the robustness of IPAD procedure to the misspecifi-
cation of the factor model structure (14), we set � = 0, rθ = 1
and simulate the rows of matrix E independently from N (0, �)

with � = (σij), σij = ρ|i−j| for ≤ i, j ≤ p. The remaining design
is the same as in Design 1. It is seen that our assumption on the
independence of the entries of E is violated. This design is used
to test the robustness of IPAD to misspecification of the factor
model structure of X.

4.1.4. Design 4: Nonlinear Model With Normal Factor Design
Matrix

Our last design is used to evaluate the performance of IPAD
method when the link function f is nonlinear. To be more
specific, we assume the following nonlinear model between the
response and covariates

y = sin(Xβ) exp(Xβ) + √
cε,

where the coefficient vector β , design matrix X, and model error
ε are generated similarly as in Design 1.

4.1.5. Simulation Settings
The target FDR level is set to be q = 0.2 in all simulations.
For Design 1 and Design 2, we set n = 2000, p = 2000,
A = 4, s = 50, c = 0.2, r = 3, and θ = 1. To evaluate
the sensitivity of our method to the dimensionality p and the
model sparsity s, we also explore the settings of p = 1000, 3000
and s = 100, 150. In Design 3, we set r = 0 and ρ =
0, 0.5. In Design 4, since the model is nonlinear, we use the
nonparametric method of random forest Breiman (2001) to fit
the model and consider lower-dimensional settings of p = 50,
250, and 500. We also decrease the number of observations to
n = 1000 and number of true variables to s = 10. Moreover,
we set θ = 1, 2 and c = 0.1, 0.2, 0.3 to test the effects of signal-
to-noise ratio on the performance of IPAD procedure in Design
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4. The implementation details for the estimation procedure of
IPAD are provided in Section E.1 of the supplementary material.

4.2. Simulation Results

For each method, we use 100 simulated datasets to calculate
its empirical FDR and power, which are the average FDP and
TDP (true discovery proportion as in (5)) over 100 repetitions,
respectively. Two different thresholds, knockoff and knockoff+
(T1 and T2 in Result 1 in the supplementary material, respec-
tively), are used in the knockoffs inference implementation. It
is worth mentioning that as shown in Candès et al. (2018) and
summarized in Result 1, knockoff+ controls FDR (3) exactly
while knockoff controls only the modified FDR (4).

Tables 1 and 2 summarize the results from Designs 1 and 2,
respectively. As shown in Table 1, all approaches can control
empirical FDR at the target level (q = 0.2) and knockoff+,
which is more conservative, reduces power negligibly. It is worth
mentioning that even for Design 2, in which the design matrix
X is drawn from fat-tail distribution with serial dependence,
we still have FDR under control with decent level of power.
This suggests that the no serial correlation assumption in our
theoretical analysis could just be technical. Compared to the
results by BCKnockoff and HD-BCKnockoff, we see that using
the extra information from the factor structure in constructing
knockoff variables can help with both FDR and power. Table 2
also shows the effects of model sparsity on the performance of
various approaches. It can be seen that when the number of true
signals is increased from 50 to 150, the FDR is still under control
and the empirical power of IPAD remains steady.

Table 3 is devoted to the case of Design 3, where the rows of
matrix X are generated independently from multivariate normal
distribution with AR(1) correlation structure. This is a setting
where the factor model structure in X is misspecified. Since
BCknockoff and HD-BCknockoff make no use of the factor
structure in generating knockoff variables, in both low- and
high-dimensional examples both methods control FDR exactly
at the target level. IPAD based methods have empirical FDR
slightly over the target level, which may be caused by the mis-
specification of the factor structure. On the other hand, IPAD-
based approaches have much higher empirical power than com-
parison methods.

Table 4 corresponds to Design 4 in which response y is related
to X nonlinearly. Since BCKnockoff and HD-BCKnockoff are
designed for linear models, only the results from IPAD method
are reported. It can be seen form Table 4 that IPAD approach can
control FDR with reasonably high power even in the nonlinear
setting. We also observe that in nonlinear setting, the power of
IPAD deteriorates faster as dimensionality p increases compared
to the linear setting due to the use of the fully nonparametric
approach for estimation.

5. Empirical Analysis

Our simulation results in Section 4 suggest that IPAD is a power-
ful approach with asymptotic FDR control. We further examine
the application of IPAD to the quarterly data on 109 macroeco-
nomic variables from the third quarter of year 1960 (1960Q3)
to the fourth quarter of year 2008 (2008Q4) in the United
States discussed in Stock and Watson (2012). These variables are

Table 1. Simulation results for Designs 1 and 2 of Section 4.1 with different values of dimensionality p.

Design 1 Design 2

FDR Power FDR+ Power+ R2 FDR Power FDR+ Power+ R2

p = 1000

IPAD 0.195 0.991 0.180 0.990 0.659 0.199 0.961 0.180 0.960 0.652
BCKnockoff 0.207 0.942 0.192 0.938 0.659 0.172 0.887 0.152 0.885 0.653

p = 2000

IPAD 0.194 0.979 0.179 0.979 0.649 0.199 0.935 0.183 0.933 0.656
HD-BCKnockoff 0.142 0.706 0.127 0.691 0.649 0.136 0.607 0.113 0.581 0.644

p = 3000

IPAD 0.191 0.964 0.176 0.963 0.652 0.188 0.913 0.171 0.911 0.658
HD-BCKnockoff 0.172 0.668 0.149 0.658 0.652 0.125 0.559 0.099 0.524 0.651

Note that FDR+ and Power+ are the values of FDR and Power corresponding to the knockoff+ threshold T2.

Table 2. Simulation results for Designs 1 and 2 of Section 4.1 with different sparsity levels s.

Design 1 Design 2

FDR Power FDR+ Power+ R2 FDR Power FDR+ Power+ R2

s = 50

IPAD 0.194 0.979 0.179 0.979 0.649 0.199 0.935 0.183 0.933 0.656
HD-BCKnockoff 0.142 0.706 0.127 0.691 0.649 0.136 0.607 0.113 0.581 0.644

s = 100

IPAD 0.191 0.978 0.183 0.977 0.783 0.181 0.937 0.174 0.936 0.789
HD-BCKnockoff 0.152 0.703 0.140 0.698 0.787 0.106 0.583 0.097 0.573 0.778

s = 150

IPAD 0.183 0.973 0.178 0.972 0.842 0.188 0.935 0.182 0.935 0.848
HD-BCKnockoff 0.139 0.660 0.130 0.654 0.858 0.115 0.578 0.106 0.570 0.843
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Table 3. Simulation results for Design 3 of Section 4.1.

ρ = 0 ρ = 0.5

FDR Power FDR+ Power+ R2 FDR Power FDR+ Power+ R2

p = 1000

IPAD 0.204 0.995 0.189 0.995 0.444 0.226 0.984 0.216 0.984 0.446
BCKnockoff 0.188 0.919 0.172 0.917 0.444 0.137 0.827 0.117 0.821 0.445

p = 2000

IPAD 0.203 0.993 0.189 0.993 0.447 0.220 0.982 0.202 0.980 0.445
HD-BCKnockoff 0.151 0.630 0.126 0.603 0.449 0.115 0.522 0.090 0.467 0.442

p = 3000

IPAD 0.225 0.988 0.205 0.987 0.445 0.219 0.979 0.206 0.978 0.443
HD-BCKnockoff 0.150 0.589 0.126 0.560 0.446 0.092 0.439 0.064 0.381 0.447

Table 4. Simulation results for Design 4 of Section 4.1.

θ = 1 θ = 2

FDR Power FDR+ Power+ R2 FDR Power FDR+ Power+ R2

p = 50

c = 0.1 0.109 0.839 0.081 0.720 0.707 0.110 0.943 0.061 0.858 0.707
c = 0.2 0.137 0.847 0.068 0.726 0.547 0.097 0.920 0.061 0.837 0.547
c = 0.3 0.137 0.765 0.091 0.582 0.451 0.123 0.907 0.076 0.774 0.451

p = 250

c = 0.1 0.189 0.740 0.104 0.504 0.702 0.174 0.876 0.139 0.788 0.702
c = 0.2 0.218 0.666 0.131 0.522 0.552 0.209 0.831 0.118 0.660 0.552
c = 0.3 0.200 0.569 0.101 0.361 0.451 0.224 0.766 0.141 0.599 0.451

p = 500

c = 0.1 0.243 0.661 0.169 0.497 0.702 0.223 0.831 0.173 0.740 0.702
c = 0.2 0.204 0.507 0.111 0.266 0.543 0.216 0.749 0.126 0.594 0.543
c = 0.3 0.247 0.478 0.128 0.299 0.451 0.241 0.691 0.156 0.550 0.451

transformed by taking logarithms and/or differencing following
Stock and Watson (2012). Our real data analysis consists of two
parts. In the first part, we focus on the performance of IPAD
method in terms of empirical FDR and power. To save space,
the numerical results for the real data-based simulation study
are presented in Section E.2 of the supplementary material. In
the second part, the forecasting performance of IPAD method
will be evaluated.

We now apply the IPAD approach to the real economic
dataset for forecasting. One-step ahead prediction is conducted
using rolling window of size 120. More specifically, one of the
109 variables is chosen as the response and the remaining 108
variables are treated as predictors. For each quarter between
1990Q3 and 2008Q4, we use the previous 120 periods for model
fitting and then one-step ahead prediction is conducted based
on the fitted model. We compare IPAD with the competing
methods of autoregression of order one (AR(1)), factor aug-
mented AR(1) (FAR), and Lasso, where each method is imple-
mented in the same way as IPAD for one-step ahead prediction;
see Section E.3 of the supplementary material for the implemen-
tation details of all the methods.

The number of factors r̂ is chosen by the PCp1 criterion in
Bai and Ng (2002). For the Lasso and IPAD, the regularization
parameter λ is selected with the tenfold cross-validation. Table 5
shows the root-mean-squared prediction error (RMSE) of these
methods. As can be seen, the RMSE of IPAD is very close
to those of comparison methods. To statistically compare the
relative prediction accuracy of IPAD versus other approaches,
we have used the Diebold–Mariano test Diebold and Mariano

Table 5. Root-mean-squared error of one-period ahead forecast of various macroe-
conomic variables.

AR FAR Lasso IPAD

RGDP 2.245 1.929 2.070 2.106
CPI-ALL 1.526 1.552 1.579 1.571
Imports 7.549 5.871 6.595 6.993
IP: cons dble 9.683 8.353 8.424 9.175
Emp: TTU 1.112 0.989 1.167 1.100
U: mean duration 0.573 0.487 0.502 0.494
HStarts: South 0.074 0.071 0.076 0.074
NAPM new ordrs 4.800 4.378 4.659 4.673
PCED-NDUR-ENERGY 31.927 32.121 33.546 32.164
Emp. Hours 2.102 1.899 2.080 1.944
FedFunds 0.421 0.396 0.406 0.392
Cons credit 2.573 2.537 2.648 2.580
EX rate: Canada 10.132 10.139 10.122 10.113
DJIA 23.117 23.997 24.585 23.398
Consumer expect 6.496 6.888 6.681 6.661

(1995), where the square of one-step ahead prediction error is
used as the loss function. Table 6 reports the test results. The
results indicate that one-step ahead prediction accuracy of IPAD
is comparable to other approaches.

It is worth mentioning that one main advantage of IPAD is its
interpretability and stability. Using IPAD for forecasting, we not
only enjoy the same level of accuracy as other methods but also
obtain the information on variable importance with stability.
Recall that for each one-step ahead prediction, we apply IPAD
100 times and obtain 100 sets of selected variables. Thus, we can
calculate the selection frequency of each variable in each one-
step ahead prediction. Figure 1 depicts the frequencies of top five
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Table 6. Diebold–Mariano test for comparing prediction accuracy of IPAD against
other procedures.

IPAD vs. AR IPAD vs. FAR IPAD vs. Lasso

RGDP −0.780 1.160 0.462
CPI-ALL 0.521 0.394 −0.218
Imports −0.976 2.631∗∗ 1.464
IP: cons dble −1.026 1.567 2.487∗
Emp: TTU −0.140 1.692 −1.845
U: mean duration −3.383∗∗∗ 0.672 −0.505
HStarts: South 0.096 0.821 −0.766
NAPM new ordrs −0.517 1.814 0.076
PCED-NDUR-ENERGY 0.753 0.049 −1.759
Emp. Hours −1.200 0.297 −2.063∗
FedFunds −0.971 −0.134 −0.625
Cons credit 0.207 0.359 −0.661
EX rate: Canada −0.466 −0.138 −0.037
DJIA 0.585 −0.959 −1.428
Consumer expect 1.212 −1.038 −0.277

selected variables in predicting real GDP growth before and after
year 2000, where the variable importance is ranked according to
the aggregated frequencies over the entire time period before or
after 2000. We have experimented with different cut-off years
around year 2000, and the top five-ranked variables stay the
same so only the results corresponding to cut-off year 2000
are reported. Changes in index of help wanted advertising in
newspapers, percentages of changes in real personal consump-
tion of services, and percentage of changes in real gross private
domestic investment in residential sector were the top three
important variables in predicting real GDP growth during the
whole period. It is interesting to see that percentage of changes
in residential price index was among top five important variables
in predicting GDP growth during the 1990s, and then starting
from year 2000 it was replaced by changes in index of consumer
expectations about stability of economy. Moreover, it is also seen
that the percentage of changes in industrial production of fuels
was of great importance for predicting real GDP growth during
some periods but not the others.

As a comparison, it is very difficult to interpret the results
of FAR. As for the Lasso-based method, there is no theoretical
guarantee on FDR control and in addition, Lasso usually gives
us models with much larger size. For instance, in predicting
real GDP growth, IPAD on average selects 5.42 macroeconomic
variables while Lasso on average selects 13.32 variables. To sum-
marize, our real data analysis indicates that IPAD is an applica-
ble approach for controlling FDR with competitive prediction
power and high interpretability and stability.

6. Discussions

We have suggested in this article a new procedure IPAD for fea-
ture selection in high-dimensional linear models that achieves
asymptotic FDR control while retaining high power. Our model
setting involves a latent factor model that is motivated by appli-
cations in economics and finance. Our method falls into the
general model-X knockoffs framework in Candès et al. (2018),
but allows the unknown covariate distribution for the knockoff
variable construction. With the LCD knockoff statistics, we
have shown that the FDR of IPAD can be asymptotically under
control while the power can be asymptotically the same as that of
Lasso. Our simulation study and empirical analysis also suggest

Figure 1. Frequencies of top selected variables in predicting real GDP growth. The
set of selected variables are index of help-wanted advertising in newspapers (Help
wanted indx), real personal consumption expenditures - services (Cons-Serv), real
gross private domestic investment - residential (Res.Inv), residential price index (PFI-
RES), industrial production index - fuels (IP:fuels), and University of Michigan index
of consumer expectations (Consumer expect).

that IPAD has highly competitively performance compared to
many widely used forecasting methods such as Lasso and FAR,
but with much higher interpretability and stability.

Our work has focused on the scenario of static models.
It would be interesting to extend the IPAD procedure to
high-dimensional dynamic models with time series data. It
is also interesting to consider nonlinear models and more
flexible machine learning methods for forecasting as well as
more refined factor model structures on the covariates for
the knockoffs inference with IPAD, and develop theoretical
guarantees for the IPAD framework in these more general model
settings. These extensions are beyond the scope of the current
article and are interesting topics for future research.

Appendix: Proofs of Main Results

We provide the proofs of Theorems 1 and 2 in this appendix. The proofs
of Proposition 1 and Lemmas 1–2 and additional technical details are
included in the supplementary material.

To ease the technical presentation, let us introduce some nota-
tion. We denote by � the inequality up to some positive constant
factor. Restricting the columns of X and X̃(θ̂) to the variables in
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index set A such that |A| ≤ k, we obtain the n × k submatri-
ces XA and X̃A(θ̂), respectively. Moreover, we define TA(θ̂) :=
vec(vech UA(θ̂), vA(θ̂)) ∈ R

k(2k+3) with UA(θ̂) being the principle
submatrix of U(θ̂) formed by columns and rows in set A, and vA(θ̂)

the subvector of v(θ̂) formed by components in set A. Then it is easy
to see that UA(θ̂) = n−1[XA, X̃A(θ̂)]′[XA, X̃A(θ̂)] and vA(θ̂) =
n−1[XA, X̃A(θ̂)]′y. For the oracle factor loading matrix �0, with a
slight abuse of notation, we use �0

A to denote the row restricted to
the variables in A for notational convenience. Recall that ν > 0 is
a fixed positive number, cnp = (p−1 log n)1/2 + (n−1 log p)1/2, and
c̃np = p−1/2 log n + n−1/2 log p. We define πnp = n−ν + p−ν . Since λ

is fixed at C0n−1/2 log p, in all the proofs we will drop the dependence
of various quantities on λ whenever there is no confusion.

Proof of Theorem 1

Recall that for a given θ , A∗(θ) is the support of knockoff statistics
(W1(θ), . . . , Wp(θ))′. Define set Â(θ̂) := A∗(θ̂) ∪ A∗(θ0). It follows
from (12) that the cardinality of Â(θ̂) is bounded by k. Hereafter we
write Â(θ̂) as Â for notational simplicity.

By Lemmas 1–2 and the definition of the FDP, we know that
S{1,...,p}(T(θ̂)) = SÂ(TÂ(θ̂)) and thus the resulting FDR’s are the
same. Therefore, we can restrict ourselves to the smaller model Âwhen
studying the FDR of IPAD. The same arguments as above also hold
for the oracle knockoffs; that is, the FDR of IPAD applied to T(θ0) is
the same as that applied to TÂ(θ0). Note that all the FDR’s we discuss
here are with respect to the full model {1, . . . , p}. For this reason, in
what follows we will abuse the notation and use FDRÂ(TÂ(θ̂)) and
FDRÂ(TÂ(θ0)) to denote the FDR of IPAD based on TÂ(θ) and
TÂ(θ0), respectively. We want to emphasize that although we put a
subscript Â in FDRs, their values are still deterministic as argued above.
Summarizing the facts, we obtain

FDRÂ(TÂ(θ̂)) = FDR{1,...,p}(T(θ̂)),

FDRÂ(TÂ(θ0)) = FDR{1,...,p}(T(θ0)).

Meanwhile, by construction X̃(θ0) satisfies the two properties in
Definition 1 and is a valid model-X knockoffs matrix. Therefore, for any
value of the regularization parameter, the LCD statistics Wj(θ0) based
on ([X, X̃(θ0)], y) together with Result 1 in Supplementary Material
ensure the exact FDR control at some target level q ∈ (0, 1). Summariz-
ing this, we obtain that the FDR of IPAD applied to T(θ0) is controlled
at target level q.

Combining the arguments in the previous two paragraphs, we
deduce

FDRÂ(TÂ(θ0)) = FDR{1,...,p}(T(θ0)) ≤ q.

Thus, the desired results follow automatically if we can prove that
FDRÂ(TÂ(θ̂)) is asymptotically close to FDRÂ(TÂ(θ0)). We next
proceed to prove it.

Recall the definitions of I and IA as in (13). Define the event

Enp =
{

TÂ(θ̂) ∈ IÂ
}

∩
{

TÂ(θ0) ∈ IÂ
}

.

Lemma 3 in Section C.4 establishes θ̂ ∈ 	np with probability at least
1 − O(πnp) and θ0 ∈ 	np. Hence, Lemma 4 in Section C.5 guarantees
that

P

(
Ec

np
)

≤ 2P

⎛⎝ sup
|A|≤k, θ∈�np

∥∥∥TA(θ) − E[TA(θ0)]
∥∥∥

max
> anp

⎞⎠
= O(πnp), (A.1)

where anp = C1(k1/2 + s3/2)c̃np for some constant C1 > 0.
For a given deterministic set A ⊂ {1, . . . , p}, let FDPA(·) be the

FDP function corresponding to FDRA(·). By the definition of FDP
function, we have for any t1, t2 ∈ R

|A|(2|A|+3),

FDPA(t2) − FDPA(t1) = |S1 ∩ SA(t2)|
|SA(t2)| − |S1 ∩ SA(t1)|

|SA(t1)|
= |S1 ∩ SA(t2)| · (|SA(t1)| − |SA(t2)|)

|SA(t1)| · |SA(t2)|
+ |S1 ∩ SA(t2)| − |S1 ∩ SA(t1)|

|SA(t1)| .

Further, note that

|S1 ∩ SA(t2)|/|SA(t2)| ≤ 1,
||SA(t2)| − |SA(t1)|| ≤ |SA(t2)�SA(t1)| ,∣∣∣|S1 ∩ SA(t2)| − |S1 ∩ SA(t1)|

∣∣∣ ≤
∣∣∣{SA(t2)�SA(t1)} ∩ S1

∣∣∣ .

Combining the results above yields

| FDPA(t1) − FDPA(t2)|

≤
∣∣|SA(t1)| − |SA(t2)|

∣∣
|SA(t1)| +

∣∣{SA(t2)�SA(t1)} ∩ S1∣∣
|SA(t1)|

≤ 2
∣∣SA(t2)�SA(t1)

∣∣
|SA(t1)| .

Similarly, we have

| FDPA(t1) − FDPA(t2)| ≤ 2
∣∣SA(t2)�SA(t1)

∣∣
|SA(t2)| .

Thus, it holds that

sup
|A|≤k

sup
t1,t2∈IA

| FDPA(t1) − FDPA(t2)|

≤ sup
|A|≤k

sup
t1,t2∈IA

∣∣SA(t2)�SA(t1)
∣∣

|SA(t1)| ∧ |SA(t2)| = O(ρnp), (A.2)

where the last two steps are due to Condition 6. Therefore, (A.1) and
(A.2) together with the fact that FDP(·) ∈ [0, 1] entail that∣∣∣FDRÂ(TÂ(θ̂)) − FDRÂ(TÂ(θ0))

∣∣∣
=

∣∣∣E FDPÂ(TÂ(θ̂)) − E FDPÂ(TÂ(θ0))
∣∣∣

≤ E

∣∣∣FDPÂ(TÂ(θ̂)) − FDPÂ(TÂ(θ0))
∣∣∣

≤ E

[∣∣∣FDPÂ(TÂ(θ̂)) − FDPÂ(TÂ(θ0))
∣∣∣ | Enp

]
P

(
Enp

) + 2P
(
Ec

np
)

≤ sup
|A|≤k

sup
t1,t2∈IA

|FDPA(t1) − FDPA(t2)| + O(πnp)

= O(ρnp) + O(πnp).

This completes the proof of Theorem 1.

Proof of Theorem 2

By the definition of the LCD statistics, we construct the augmented
Lasso estimator for each θ ∈ �np, which is defined as
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β̂
aug

(θ) = arg min
b∈R2p

∥∥y − [X, X̃(θ)]b∥∥2
2 + λ‖b‖1. (A.3)

The Lasso estimator of regressing y on only X is also given by

β̂ = arg min
b∈Rp

∥∥y − Xb
∥∥2

2 + λ‖b‖1, (A.4)

where λ = O(n−1/2 log p). According to the true model S0, the
underlying true parameter vector corresponding to β̂

aug
(θ) should be

given by βaug := (β ′, 0′)′ ∈ R
2p with β = (β ′

S0 , 0′)′ ∈ R
p and

|S0| = s for any θ ∈ �np. By Lemma 5 in Section C.6, with probability
at least 1 − O(πnp) the Lasso estimators satisfy

sup
θ∈�np

∥∥∥β̂
aug

(θ) − βaug
∥∥∥

1
= O(sλ),

∥∥∥β̂ − β

∥∥∥
1

= O(sλ),

where λ = O(n−1/2 log p).
We now prove that under Condition 7, the power of the augmented

Lasso (A.3) is bounded from below by γ ∈ [0, 1]; that is,

E

∣∣∣Ŝauglasso ∩ S0
∣∣∣ /s ≥ γ , (A.5)

where Ŝauglasso = {j : β̂
aug
j (θ) �= 0}. To this end, we first show that

with asymptotic probability one,

|Ŝc
auglasso ∩ S0|/s ≤ 1 − γ . (A.6)

The key is to use proof by contradiction. Suppose |Ŝc
auglasso ∩ S0|/s >

1 − γ . Then we can see that

sup
θ∈�np

∥∥∥β̂
aug

(θ) − βaug
∥∥∥

1
≥ sup

θ∈�np

∥∥∥∥β̂
aug
Ŝc

auglasso
(θ) − β

aug
Ŝc

auglasso

∥∥∥∥
1

=
∥∥∥∥β

aug
Ŝc

auglasso

∥∥∥∥
1

≥
∥∥∥∥β

aug
Ŝc

auglasso∩S0

∥∥∥∥
1

> bnpsn−1/2 log p,

where the last step is by Condition 7. However, by Lemma 5 with
probability at least 1−O(πnp), the left-hand side above is bounded from
above by O(sλ) with λ = O(n−1/2 log p). These two results contradict
with each other since bnp → ∞. Hence, (A.6) is proved. Therefore,
the result in (A.5) follows immediately since |Ŝauglasso ∩ S0| = s −
|Ŝc

auglasso ∩ S0| and

E

∣∣∣Ŝauglasso ∩ S0
∣∣∣ /s ≥ γ P

(
|Ŝauglasso ∩ S0|/s > γ

)
= γ P

(
|Ŝc

auglasso ∩ S0|/s ≤ 1 − γ
)

= γ (1 − O(πnp)).

Let Ŝlasso = {j : β̂j �= 0}. Using the same argument, we can show
that the power of the Lasso (A.4) is also bounded from below by γ (1 −
O(πnp)) under Condition 7. That is, we have

E

∣∣∣Ŝlasso ∩ S0
∣∣∣ /s ≥ γ (1 − O(πnp)).

Next, we show that our knockoffs procedure has at least the same
power as the augmented Lasso and hence the Lasso itself. Namely we
prove

E

∣∣∣Ŝ ∩ S0
∣∣∣ /s ≥ γ (A.7)

with threshold T2. Note that the same argument is still valid for T1.
Let |W(1)| ≥ · · · ≥ |W(p)| and define j∗ as |W(j∗)| = T2. Then
by the definition of T2, it holds that −T2 < Wj∗+1 ≤ 0. Here, we
have assumed that there are no ties on the magnitudes of Wj’s which
should be a reasonable assumption considering the continuity of the

Lasso solution. As in the proof of Theorem 3 in Fan et al. (2019), it is
sufficient to consider the following two cases.

Case 1. Consider the case of −T2 < W(j∗+1) < 0. In this case, from
the definition of threshold T2, we have

2 + |{j : W(j) ≤ −T2}|
|{j : W(j) ≥ T2}| > q.

Using the same argument as in Lemma 6 of Fan et al. (2019) together
with Lemma 5, we can prove from Condition 8 that |Ŝ| ≥ C2s with
probability at least 1 − O(πnp). This leads to |{j : W(j) ≤ −T2}| >

C2qs − 2 with the same probability. Now from the same argument as in
A.5 of Fan et al. (2019), we can obtain T2 = O(λ). On the other hand,
Lemma 5 and some algebra establish that

O(sλ) = ‖β̂aug
(θ̂) − βaug‖1 =

p∑
j=1

|β̂aug
j (θ̂) − βj| +

p∑
j=1

|β̂aug
j+p(θ̂)|

=
∑

j∈Ŝ∩S0

|β̂aug
j (θ̂) − βj| +

∑
j∈S1

|β̂aug
j (θ̂)|

+
∑

j∈Ŝc∩S0

|β̂aug
j (θ̂) − βj| +

p∑
j=1

|β̂aug
j+p(θ̂)|. (A.8)

We then consider the lower bound of the last term in (A.8). For any
j ∈ Ŝc, it holds that |β̂aug

j+p(θ̂)| > |β̂aug
j (θ̂)| − T2. Hence, we obtain

p∑
j=1

|β̂aug
j+p(θ̂)| ≥

∑
j∈Ŝ∩S0

|β̂aug
j+p(θ̂)| +

∑
j∈Ŝc∩S0

|β̂aug
j+p(θ̂)|

≥
∑

j∈Ŝ∩S0

|β̂aug
j+p(θ̂)|+

∑
j∈Ŝc∩S0

|β̂aug
j (θ̂)|−T2|Ŝc ∩ S0|.

(A.9)

Plugging (A.9) into (A.8) and applying the triangle inequality yield

O(sλ) ≥
∑

j∈Ŝ∩S0

|β̂aug
j (θ̂)−βj|+

∑
j∈S1

|β̂aug
j (θ̂)|+

∑
j∈Ŝc∩S0

|β̂aug
j (θ̂)−βj|

+
∑

j∈Ŝ∩S0

|β̂aug
j+p(θ̂)| +

∑
j∈Ŝc∩S0

|β̂aug
j (θ̂)| − T2|Ŝc ∩ S0|

≥
∑

j∈Ŝ∩S0

|β̂aug
j (θ̂) − βj| +

∑
j∈S1

|β̂aug
j (θ̂)|

+
∑

j∈Ŝc∩S0

|βj| +
∑

j∈Ŝ∩S0

|β̂aug
j+p(θ̂)| − T2|Ŝc ∩ S0|

≥
∑

j∈Ŝc∩S0

|βj| − T2|Ŝc ∩ S0| = ‖βŜc∩S0‖1 − T2|Ŝc ∩ S0|.

Since T2|Ŝc ∩ S0| = O(sλ) for λ = O(n−1/2 log p) due to the
discussion above, we obtain

‖βŜc∩S0‖1 = O(sn−1/2 log p). (A.10)

Suppose |Ŝc ∩ S0|/s > 1 − γ . Then Condition 7 gives ‖βŜc∩S0‖1 >

bnpsn−1/2 log p for some positive diverging sequence bnp; this contra-
dicts with (A.10). Thus, we obtain |Ŝc ∩S0|/s ≤ 1−γ with asymptotic
probability one, which leads to (A.7) by taking expectation.

Case 2. Consider the case of W(j∗+1) = 0. In this case, by the
definition of threshold T2

1 + |{j : W(j) < 0}|
|{j : W(j) > 0}| ≤ q. (A.11)
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If |{j : W(j) < 0}| > C3s for some constant C3 > 0, then from the
same argument as in A.5 of Fan et al. (2019), we can obtain T2 = O(λ),
and the rest of the proof is the same as in Case 1. On the other hand, if
|{j : W(j) < 0}| ≤ o(s) we have

|{j : W(j) �= 0} ∩ S0| = |{j : W(j) > 0} ∩ S0| + |{j : W(j) < 0} ∩ S0|
≤ |Ŝ ∩ S0| + o(s).

Now note that |{j : W(j) �= 0}| ≥ |{j : |β̂aug
j | �= 0, j = 1, . . . , p}|. Then

we can see that with asymptotic probability one,

|{j : W(j) �= 0} ∩ S0| ≥ |{j : β̂
aug
j �= 0, j = 1, . . . , p} ∩ S0|

= |Ŝauglasso ∩ S0| ≥ γ s(1 − o(1)).

Consequently, we obtain |Ŝ∩S0|/s ≥ γ (1−o(1)), which leads to (A.7)
by taking expectation. Combining these two cases concludes the proof
of Theorem 2.
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