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This Supplementary Material contains a review of the model-X knockoffs framework, the
proofs of Proposition 1 and Lemmas 1-2, and additional technical details and numerical

results. All the notation is the same as in the main body of the paper.

B Review of model-X knockoffs framework

The key idea of the model-X knockoffs framework is to construct the so-called model-X
knockoff variables, which concept was introduced originally in [15] and whose definition is

stated formally as follows for completeness.

Definition 1 (Model-X knockoff variables [15]) For a set of random variables x =
(X1,--+,Xp), a new set of random variables X = ()?1, e ,)Z'p) is called a set of model-

X knockoff variables if it satisfies the following properties:

1) For any subset S C {1,--- ,p}, we have [X, X]swap(s) 4 [x,X], where 2 denotes equal in

distribution and the vector [X,i]swap( s) is obtained by swapping X; and )Z'j for each

jes.
2) Conditional on x, the knockoffs vector x is independent of response Y.

An important consequence is that the null regressors {X; : j € S 11 can be swapped with their
knockoffs without changing the joint distribution of the original variables x, their knockoffs

X, and response Y. That is, we can obtain for any S C S*,

(1%, Mawap(s): Y) = (1, %], Y). (A1)



Such a property is known as the ezchangeability property using the terminology in [15]. For
more details, see Lemma 3.2 therein. Following [15], one can obtain a knockoffs matrix
X € R"%P given observed design matrix X.

Using the augmented design matrix [X, )NC] and response vector y constructed by stacking
the n observations, [15] suggested constructing knockoff statistics W; = w;([X, X],y), je
{1,---,p}, for measuring the importance of the jth variable, where w; is some function
that satisfies the property that swapping x; € R™ with its corresponding knockoff variable

x; € R" changes the sign of Wj; that is,

N wi((X,X],y), ¢S,
wj([xa X]swap(S)J’) = (A.2)

_wj([ijvan)7 ] €s.

The knockoff statistics constructed above W; = wj([X,)Ai],y) satisfy the so-called sign-flip
property; that is, conditional on |[W}|’s the signs of the null W;’s with j ¢ SO are i.i.d. coin
flips (with equal chance 1/2). For the examples on valid constructions of knockoff statistics,
see [15].

Let t > 0 be a fixed threshold and define & = {j : W; > t} as the set of discovered

variables. Then intuitively, the sign-flip property entails
[Sns L1 :w; < —0nS <5 Wy < ).

Therefore, the FDP function can be estimated (conservatively) as

1SS! _ Wy < -t

~ < ~ —. FDP
S| v 1 S|V 1

FDP

for each ¢. In light of this observation, [15] proposed to choose the threshold by resorting to

the above FDP. Their results are summarized formally as follows.

Result 1 ([15]) Let ¢ € (0,1) denote the target FDR level. Assume that we choose a



threshold T7 > 0 such that

) - < —t
lemin{t>0: A Wi < }| < }

- >4q
H{7: W=t} V1
orTy = 400 if the set is empty. Then the procedure selecting the variables S = {j:W; > T}

controls the mFDR in (4) to no larger than q. Moreover, assume that we choose a slightly

more conservative threshold Ty > 0 such that

1 i W < —t
ngmin{t>0: W, < H< }

{g:Wi=t}lvl =
or Ty = 400 if the set is empty. Then the procedure selecting the variables S = {j:W; > T}

controls the FDR in (3) to no larger than q.

It is worth noting that Result 1 was derived under the assumption that the joint distri-
bution of the p covariates is known. In our model setting (1) and (2), however there exist
unknown parameters that need to be estimated from data. In such case, it is natural to
construct the knockoff variables and knockoff statistics with estimated distribution of the p
covariates. Such a plug-in principle usually leads to breakdown of the exchangeability prop-
erty in Definition 1, preventing us from using directly Result 1. To address this challenging
issue, we will introduce our new method in the next section and provide detailed theoretical
analysis for it.

It is also worth mentioning that recently, [6] provided an elegant new line of theory which
ensures FDR control of model-X knockoffs procedure under the approximate exchangeability
assumption, which is weaker than the exact exchangeability condition required in Definition
1. However, the conditions they need on estimation error of the joint distribution of x
is difficult to be satisfied in high dimensions. [26] investigated the robustness of model-X
knockoffs procedure with respect to unknown covariate distribution when covariates x follow

a joint Gaussian distribution. Their procedure needs data splitting and their proofs rely



heavily on the Gaussian distribution assumption, and thus their development may not be
suitable for economic data with limited sample size and heavy-tailed distribution. For these

reasons, our results complement substantially those in [15], [26], and [6].

C Proofs of Proposition 1 and some key lemmas

C.1 Proof of Proposition 1

Observe that the second property of Definition 1 holds naturally since )~((90) is constructed
without using the information of y. Thus it remains to verify the first property of Definition
1. Since F? and E,o have i.i.d. rows, let us consider the case of a single observation and
show that [X,i(ﬂo)]swap(s) 4 [x,%(0%)] for any subset S C {1,---,p}. By Proposition 2 of

[15], it suffices to consider the case of S = {j} for an arbitrary j € {1,---,p}. It follows

from the definition of model (2) and the construction of x(8°) that

[, X(0")swap((5}) = [€” + €. €” + epolsuap((})
= [c” + 8, 0 + 89, (A.3)

770

where &) and ESO) are defined such that [e,e,0lswap({}) = [E(j),égg]. Since model (2)

assumes that e has i.i.d. components and e, is an independent copy of e, it holds that
69, 8%)) £ [e, e ). (A.4)
Therefore, in view of (A.3) and (A.4) and the independence between (e, e,0) and ¢, we have

~ d
[x, X(00>]swap({j}) = [CO + e, c + eno]

= [x,%(68°)],

which completes the proof of Proposition 1.



C.2 Proof of Lemma 1

For X fixed at Con~'/?logp and each given 8, W;(0) = wj([X,f((O)],y) depends only on
322(0) by the LCD construction. Moreover, the Lasso solution $2U8(8) satisfies the Karush—

Kuhn-Tucker (KKT) conditions:
v(0) —U(0)3%¢(0) = n~ ' \z, (A.5)

{sen(B))} it B; #0,
where z = (21, , 22,)7 with 2z; € for j=1,---,2p. (A.6)

L1 =0,
This means that 3°'8(8) depends on the data ([X,X(6)],y)) only through U(8) and v(8).
Thus using notation T(0) = vec(vech U(0),v(0)) with the fact that U(0) is symmetric,
we can reparametrize wj([X,f((O)],y) as w;j(T(@)) with a slight abuse of notation. Fur-
thermore, note that the thresholds T} and T3 are both completely determined by w;(T(@)).
Consequently, by the construction of S we can see that S depends only on T(0), which

completes the proof of Lemma 1.

C.3 Proof of Lemma 2

We continue to use the same A and € as in Lemma 1 and its proof. Recall that S4(t4)
represents the outcome of first restricting ourselves to the smaller set of variables A and
then applying IPAD to T 4(0) = t4 to further select variables from A. Also recall that
A*(0) is the support of knockoff statistics W;(@). Thus the knockoff threshold T or T
depends only on W;(0) with j € A*(0).

On the other hand, when we restrict ourselves to A O A*(8) we solve the following KKT



conditions with respect to B := (Bl, e 7B2|A|)T e RZMI to get the Lasso solution:
B =(UA(0)UA0) ' (va(d) —n '\z), (A7)

{sen(B))} if B; #0,
where Z = (%1, , Zy4))" with Z; € for j=1,---,2|A|.
1,1 if B =0,
(A.8)
Since A is always fixed at the same value Con~/2logp, it is seen that the solution to the
above KKT conditions is identical to ,éi{’j(@), where the latter denotes the subvector of
3248(9) formed by stacking B;lug(e), j1 € A and B;igh (0), j2 € A all together. Therefore,
the Lasso solution to (A.7)—(A.8) and the Lasso solution to (A.5)—(A.6) have the identical
support (when viewed in the original 2p-dimensional space) and in addition, identical values

on the support. This guarantees that Sy ... ,3(T(0)) and S4(T4(0)) are identical and thus

concludes the proof of Lemma 2.

C.4 Lemma 3 and its proof

Lemma 3 Assume that Conditions 2-5 hold. Then with probability at least 1 — O(my,yp), the

estimator 6 = (vec(C)',7') lies in the shrinking set given by

@”p = {0 = (VGC(C)/,UI)/ : HC B COHmax + Hn B Tlo“max < O(Cnp)} ’
where cpp = (n~! log p)'/2 + (p~logn)/? and Top =D "+ 07",

Proof. We divide the proof into two parts. We prove the bound for H(A] — CY|jpax in Part 1
and then for ||9) — 7°||max in Part 2.

Part 1. Note that ||C — C%|pmax = max;; [é;; — c?j|, where the maximum is taken over

i€ {l,---,n}and j € {1,---,p}. We write ff = H'f? and A} = Hfl)\? with rotation



matrix H defined in Lemma 6 in Section D.1. From the definition of ¢;;, it holds that
G — o = (£ — £7) X5+ £1(N; — X\)).

From Lemma 6, we can assume ||[Hlj2 + [|[H |2 + |[|V]l2 + [[V~!|l2 < 1, which occurs with
probability at least 1 — O(p™"). We also have max;e(y.... n} ;]2 < 1 a.s. by the assumed
restriction F'F /n = I, as mentioned on p.213 of [3]. Hence, the triangle and CauchySchwarz

inequalities with Conditions 2 and 3 give

. |3 — cijl < max £ — £7 )2 max 1A512 + max Il max 1A = X3l

S max £ — £ 2 + max | &) — X (A.9)

Then it is sufficient to derive upper bounds for max; ||f; — f#||2 and max; ||A; — Aj|l2 that hold
with high probability. Using the decomposition of A.1 in [2] along with taking maximum

over i, € {1,--- ,n}, we can deduce

m?XHfi — £z

n p
< [Vl max (o2 /mllfilla+n7" D [IEell2 [P~ > (eejeis — Elegjess))
7=1

- ZHff H2 p_lz)\o% +n- IZHf(fO ”2 p IZ)\OGKJ

2
P
SO )+ max |p -1 Z egieij — Elegjeis])| + max pt Z Ageij
Jj=1 J=1 2

<OMm™Y + Ry + Ry, (A.10)

where we have used the boundedness of ||fy||2 discussed above and 1£2]]2 < rY2)|£2 ||l max < 1in

Condition 2 for the second inequality, and defined Ry = max; ¢ |p~! Z§:1 (erjei; — Elegjess])

-1 p

and Ry = max; |p =1

A e;i|. Similarly, the expression on p.165 of [2] with taking
ik~



maximum over ¢ € {1,--- ,n} and j € {1,--- ,p} leads to

max || - Xl

< ||HH2max n 1Zfoew

L] macx [ X1,
=1

2

SOk,
=1

2

+max nt Z ew
2
S mjax n=t Z fioeij + max | f; , m]aX (n—l Z e%-)
=1 2 =1
= Ry + max ||f; — £]|2(1 4+ Ry), (A.11)
(2

1/2
where Rs = max;;|n~' Y1, Z-(Leijb and R4 = max; (nfl Yoy e%) , and the Cauchy—
Schwarz inequality has been used to obtain the second inequality. To evaluate R4, we note

that

nlz

R2 < maer +max
J

The first term is bounded by 2C2. For the second term, Lemma 7(a) in Section D.2 with p
replaced by n and the union bound give
n
P(max nilz(ef - 2) >u) <pmaxIP’< >u>
J ;
=1

< 2pexp(—nu?/C)
for all 0 < u < ¢. Thus putting u = (C(v + 1)n"'logp)/? and using condition c¢,, <

Y@

=1

¢/ (r?M?C(v + 2))'/2, we obtain R} = O(1) + O((n"'logp)'/?) = O(1) with probability at
least 1 — O(p™"). This together with the observation from (A.9)-(A.11) yields
max |j — & S Rs + {R1 + Ro + O(n™ )} (1 + Ra)
irj

S Ry + Ry + Rs+ O(nil).

Hence the convergence rate of max; j |é;; — c%| is determined by the slowest term out of Ry,



Ry, R3, and O(n~!). We evaluate these terms by Lemma 7 in Section D.2 and the union
bound with condition ¢,, < ¢/(r?M2C(v + 2))'/? as above. First for Ry, Lemma 7(a) by

letting u; = (C'(v + 2)p~'logn)'/? results in

P(R; > uy) < 2n?exp {-p(v+ 2)p 'logn} =O(n™").
Next for Ry, Lemma 7(c) with ug = (2(v + 1)p~!logn)'/? gives

P(Ry > up) < 2rnexp {—p(v + 1)p 'logn} = O(n™").
Finally for Rz, Lemma 7(b) with putting uz = (C(v 4+ 1)n~"logp)'/? leads to

P(R3 > us) < 2rpexp {—n(v + 1)n 'logp} = O(p™").

Consequently, we obtain the first result ||(A} — CY|max = O(cnp), which holds with probability
at least 1 — O(mpyp).
Part 2. Next we derive the convergence rate of 7). It is sufficient to prove only the

case when 1" is a scalar (so that we write n° = 1?) since dimensionality m is fixed and ng’s

share the identical property thanks to Condition 4. Recall notation E,ye* = (np)~! D efj.
Letting 6;; = cgj—éij, we have é;; = x;;—C;j = e;;+0;;. For an arbitrary fixed k € {1,--- ,m},
the binomial expansion entails
E,pe® — Eek| = |Ep(e + 8)F — ]Eek’
k=l
— E k E k E f(sk‘ff
np(e e”) + npz()(E)e
k—1
< Enpe —]EB ‘-FZ( )max‘(szj‘ np|€’£
£=0
< [Enp(ef — Eek) ‘ +O <maX 52]1) ZEnp|e| (A.12)
For all k € {1,---,m}, the strong law of large numbers with Theorem 2.5.7 in [22] entails

IE,pef — Eek| = o((np)~'/?log(np)) a.s. under Condition 4. Furthermore, the second term



of (A.12) is O(cyp) with probability at least 1 — O(mpp) from Part 1 and the same law of

large numbers. Consequently, we obtain

Enpék —Eée* S Cnp-

Therefore by the construction of 77 and local Lipschitz continuity of hy in Condition 4, we

see that

|11 = nY| = |h1 (Enpé, -+ ,Eppé™) — hy (Ee, -+ ,Ee™)]

< max Enpék —Eé
ke{lazm}

with probability at least 1 — O(myyp). This completes the proof of Lemma 3.

C.5 Lemma 4 and its proof

Lemma 4 Assume that Conditions 1-4 hold. Then with probability at least 1 — O(my,yp), the

following statements hold

(a) sup  [|U4(6) — E[U4(68")]]

1/2~
—0 (k / cnp) ,
|A|<E,0€0,,

max

) s [[va®) = EVAO)]| e = O (5%
|A|<k, 0O,

where Oy, was defined in Lemma 3 and ¢,y = n~21logp + p~1/2logn. Consequently, we

have

sup || Ta(6) —E[T4(0%)]]| =0 ((k1/2 + 33/2) anp) .
|A|<k,0€0,),

Proof. To complete the proof of (a), we verify the following

(a=i)  sup  [[U(6) = U0, S K 2E0p,
|A|<k,0€0,,

(a-ii) [|U(6°) - E[U(8")]||,,,. < (n"logp)"/2.

max "~

10



From (a—¢) and (a—ii), we can conclude that

sup  ||U4(6) —E[UA(6")]]

|A|<k, €60, fmax

< sup [[Ua0) = U407, + sup |[Ua(6°) — E[U4(6°)]]]

A<k, 0€60,, |A|<k max

< sup  [[U4(8) — U6

A|<k,0€0 * HU(GO) - E[U(OO)]H

max max

S k1/25np7

which yields result (a).
We begin with showing (a—i); this is the uniform extension of Lemma 8(a) in Section
D.3 over |A| < k. In fact, the proof is almost the same, with the only difference that bound

(A.23) should be replaced with the bound derived in Lemma 9(c); that is,

-1/2g H <1v (kn 'logp)'/? A13
lrjllaéHn A, 3 (kn~'logp) ", (A.13)

which holds with probability at least 1 — O(p™"). Notice that (k:n_l log p) 1/2 < log'/?p.
Therefore, even if we use (A.13) instead of (A.23) in the proof of Lemma 8(a) we can still
derive the same convergence rate k'/2¢,, as in Lemma 8(a), and hence (a—i) holds with
probability at least 1 — O(mpp).

For (a—ii), we see that

|U(6°) —E[U0Y)]| .. <[ 'X'X - E[n~"X'X]|

+ Hn—li(eoyﬁ(e% - E[n—li(eﬂ)/i(eo)]‘
+2 anlx'fi(ao) - E[n*IX’f((OO)]‘ = Wy + Wy + 2Ws, (A.14)

We derive the bounds for each of these terms. First, W7 is bounded as

Wi

IN

e EE - EnEE], 2

Hn—lco’c0 - E[n—lco’co]‘

= Wi1+ Wig+ Wys.

11



Under Condition 3, we deduce

lel =  ImnaX Z >‘k>‘€m _12 fzm_E k’fzm)

j7£€{17 7p} k m= 1
n

12 (}CO)

=1

<rM? max
j’ge{l"" ’p}

From Lemma 7(d) with Condition 2 and the union bound, we have
! Z fzk zom)

e

n_l Z (fz(}cfzm - Efkfzm)

=1

P max
jvee{lv"' 7p}

<p? max P
]766{17717}

u) < 2p? exp (—nu2/0) .

Hence, letting u = (C(v 4 2)n~ " log p)'/? above yields the bound Wy ; < (n~'logp)'/? with

probability at least 1 —O(p~"). Next for W 2, we can find from Lemma 7(a) with p replaced

>u>

Letting u = (C(v + 2)n"!logp)'/? and using n~'logp < ¢?/(C(v + 2)), we obtain Wi <

by n and the union bound that

n
-1
Z eijeic — Eeijeir)

P(|n"E'E-En 'E'E|_ >u)<p max[P’(
i=1

< 2p% exp (—nuz/C) )

(n~'log p)'/? with probability at least 1 — O(p~*). Next for Wi 3, the union bound gives

T n
n! Z Z eij [ Ao| > U)

P <Hn*1E’F0A0'

> u) =P max
max jvze{lv"'vp}

k=11i=1
<P|(r max -1 e \ > u
- ( gL, 7p}ke{1 ; i | [k )
<r max max Pl nt e 0l s w/rdn) |

Lemma 7(b) states that for all 0 < u/(rM) < ¢/(rM) it holds that

‘

Therefore, if we put v = rM(C(v + 1)n~'logp)'/? using n~'logp < 2/(r?M>*C(v + 1)),

n
—1 0
n E eijfik

=1

> u/(rM)) < 2exp {—nu?/(Cr*M?)} .

12



the upper bound of the probability is further bounded by 2rp™". Thus we obtain Wiz <

(n~'logp)'/? with probability at least 1 — O(p~—"). Consequently, the bound of W7 is
W1 < Wig+Wis+Wis < (nlogp)'/?

with probability at least 1 — O(p~™"). Note that we have the same result for Wj since it has

the same distribution as Wj. Finally, W3 is bounded as

+ H’rl_lE,EnoH

max max

W < Hn—lco’co - E[n_ICOICO]‘

+ Hn_lEICOHmaX + Hn_lE%oCOH = Wi1+Wsz1+ Wiz + Wao.
max

The upper bound of W31 turns out to be O((n~!log p)'/?) that holds with probability at

least 1 —O(p~"). We check this claim. Using the union bound and the inequality of Lemma

7(a) with p replaced by n and putting u = (C(v 4 2)n~" logp)'/? yield
n
P (Hn_lE/ETlOHmax > u) < p? Hjl%X]PJ ( nt Z (eijeno,w) > u) <2p7".
' i=1

Finally, W3 3 is found to have the same bound as Wj 3 because E,o is an independent copy

of E. Consequently, with probability at least 1 — O(p™"), we obtain

|U(8°) ~ E[U@O")]]|,,,, < (0 logp)/2.

max "~

This completes the proof of (a) since p™" /7y, = O(1).

Next we show (b) by verifying the following

(bii) Sup HVA(B) - VA(GO)HmaX 5 53/2614):
|A|<k, 8€O,,

(b-ii) |[v(8°) —E[v(8")] . < s(n ' logp)'/2.

max "~

Similar to the proof of (a), we need to modify the proof of Lemma 8(b) in Section D.3 for
obtaining the uniform bound with respect to A, but the obtained result is already uniform

over the choice of A. Thus the same upper bound holds and (b—i) follows. Next we show

13



(b—ii). It holds that

HV(OO) —Ev(6) H

max

< Hn_lX'y - En_lX'yHmaX + "n_li(OO)'y —En"'X(68%)y

max

<[P X'X-En'X'X) 8| .. +|[n'X'e —En"'Xe||

max max

+ H (n1X(6°)X — E[n~'X(6°X]) 5‘

n Hn—li(eoys - E[n‘li(OO)’E]\

max max

=: 21+ Zo + Z3 + Zy.
These terms can be bounded by the results obtained in the proof of (a—ii). We see that

Z1 < s'/? HnilX’Xso — EnilX’XsonaX 1Bsolly S sW1 S s(n! log p)'/?

~

with probability at least 1 — O(p~"). Next we deduce

+ |In'Ee||

max max

oy < HnilAOFO/sl

The first and second terms can be bounded by the same ways as Wy 3 and W3 1 in the proof
of (a) above with E and E, o replaced by €, respectively. Then the first term dominates the
second and hence Zy < (n~!logp)'/? with probability at least 1 — O(p~"). Similarly, we can

obtain

Zy < s/2 anli(eo)’xso “En1X(0%) X0

. 1Bsolly S sW3 < s(n™'logp)'/?

with probability at least 1 —O(p~"). Note that Z4 has the same bound as Z5. Consequently,

collecting terms leads to the result, Z1 +--- 4+ Z4 < s(n™! logp)l/2 with probability at least

1 —O(p™"). This proves (b-ii) and concludes the proof of Lemma 4.

14



C.6 Lemma 5 and its proof

Lemma 5 Assume that all the conditions of Theorem 2 hold. Then with probability at least

1 — O(mpp), the Lasso solution in (19) satisfies

sup || 47E(0) — 8[| = O(s/2),
0€O 2

sup ||875(6) — 5| = O(s)),
€0, 1

where A = ¢1nt/? log p with c1 some positive constant.

Proof. Let 8(:= 8(0)) := 3°"8(0) — B3°"8. We start with introducing two inequalities

sup Hnil[X,i(e)]’s <271\, (A.15)
06, max
: ! 2 > 2 )
ooty SV 3]3 = 021+ o(1)). (A16)

1/2

where A = c;n™ "/ log p for some positive constant ¢; and

V={8cR?: |55 < 3|ds0llr, I6]l0 < k. (A.17)

It is well known that the rate of convergence of the Lasso estimator can be obtained provided
that (A.15) and (A.16) hold. Thus we show that these two inequalities actually hold with
high probability in Step 1, and then derive the convergence rate using (A.15) and (A.16) in
Step 2.

Step 1. We check whether (A.15) and (A.16) actually hold with high probability. We

first verify (A.15). By the proofs of Lemmas 8 and 4, we have

sup Hn_l [X,X(0)]e

max

< HnilX’f-:H + sup Hn*1}~((0)’5 —n1X(8%e

6O,

- + [ 1X(0%e

max max

The first and third terms can both be upper bounded by O(nil/ 2log p) with probability at

15



least 1 —O(p~"), following the same lines for deriving bound for Zs in the proof of Lemma 4.
To evaluate the second term, we can use the argument about V5 and its upper bound (A.24)
in the proof of Lemma 8. That bound still holds with the same rate O(n~'/?logp) even if
we take A = {1,--- ,p}. Thus we conclude that (A.15) is true for the given \ by choosing
an appropriate positive large constant ¢;, with probability at least 1 — O(my,).

Next to verify (A.16), we derive the population lower bound first and then show that the

difference is negligible. From the construction, we have

E[n'X(6°)X(6°)] = E[n'X'X] = A°%,;AY + 021,

E[n'X(6°)'X] = E[n 'X'X(6°)] = A°% ;A"
Using these equations, we obtain the lower bound

e . . [ A oL, AOS A ,
inf &'E [U(6°)] §/]d]l> = jnf & /1161l

ocv
A0S A AOS A + 620,

11

. /
= (%161%,5' ® A'SsAY + 021, 5 6/)6]13

> o2, (A.18)

Because § € V is sparse and satisfies |B| < k for B := supp(d), it holds that §'U(0°)6 =
05UB(6°)63 and 6'E [U(0°)] 6 = 03 E [Ug(0°)] 5. Hence from Lemma 4 together with

the condition on dimensionality, we obtain

sup  ||Up(8) —E[Uz(8")]

=0 (K'%)
|B|<k,0€0O.),

max

=o(s7h) (A.19)

16



with probability at least 1 — O(my,). Thus using (A.19), we have for any d € V,

§'E[U(6°)]6 — 6'U(0)8 = 63 {E[Up(6°)] — Up(0)} o5

<8I} sup |Us(0) —E[Us(0)]]|,... = (6solls + [18s1]1)* o(s ™)
|B|<k,0€0,,

S 10s0llfo(s™) < |80 30(1) < [[8]130(1).
Rearranging the terms with (A.18) yields

. / 2 > / 0 2 > 2 _
i §'U(0)5/18]3 = i 8 E[U@)8/ 18] ~ o{1)] = o2 o(1),

resulting in (A.16). In consequence, two inequalities (A.15) and (A.16) hold with probability
at least 1 — O(mpyp).
Step 2. This part is well known in the literature (e.g., [33]) so we briefly give the proof

omitting the details. Because the objective function is given by

A~ ~ 2
G4(6) = axg min n~ |y — X, X(O)]b| + b,
beR2P 2

the global optimality of the Lasso estimator implies

~ ~ 2
2n)~! ||y - X, X(0)]8™%(9) | + 2|

()|

1

< n) |y - x. @187+ Al187

where the true parameter vector 32" was defined in the proof of Theorem 2. Note that
SUPgeo,, 10(8)]lo < k by the assumption. Expanding the inequality and collecting terms

with (A.15) yield
2716'U(0)8 < ||n X XO)]| (18]l +AlSlly < (3/2A181. (A20)

On the other hand, applying Lemma 1 of [33] to our model reveals that § € V. Thus we can
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use (A.16), (A.20), and (A.17) to get
18113(02 + 0(1)) < 3X/|8]l1 = 3A (151l + [[0s0l1) < 12A[[50]l1-

Since |S°| = s and [|dg0l1 < s7/2||ds0]|2, it holds that ||§]s < 125Y/2X/(02 + o(1)). Since
|ds0ll2 < ||8]|2, we obtain the desired bound ||d]|; < 48s\/(c2 + o(1)). This bound holds

uniformly over 8 € ©,,,, which completes the proof of Lemma 5.

D Additional technical lemmas and their proofs

D.1 Lemma 6 and its proof

Lemma 6 Denote by V. € R™" a diagonal matriz with its entries the r largest eigenval-
ues of (np) 'XX' and define H = (A A%/p)(FO'F/n)V~1. Assume that Conditions 2-5
hold. Then |H|z + |[H |2 + |[Vl2 + [[V~Yl2 is bounded from above by some constant with

probability at least 1 — O(p™").

Proof. Let A\¥[A] denote the kth largest eigenvalue of square matrix A throughout the proof.

Because ||[AYA%/plly < M and

IFE /nllz < |ln”"/2FOlolln~2F ]

L \1/2
< (?“n)l/2||n_1/2F0||max ()\l[n_lF’FD < 120
by Conditions 2-3, and F'F/n = I,., we have
) 0/ ~1 -1
Etlls < [AYAp | [FCB/m | [V, S VL

where ||[V~1||2 is equal to the reciprocal of the rth largest eigenvalue of (np) "' XX'. Similarly,

under Conditions 2—-3 we also have

JE ), < Ve [ /)| (A% )| s vl @ E
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where || V|2 is equal to the largest eigenvalue of (np) !XX’ and the inverse matrix in the
upper bound is well defined by [2]. To see if || (FYF/n)~! |2 is bounded from above, it suffices
to bound the minimum eigenvalue of FO'FE/FO /n? away from zero uniformly in n. Regarding
r eigenvalues of the matrix, Sylvester’s law of inertia (e.g., [31], Theorem 4.5.8) entails that
all the r eigenvalues are positive for all n. Moreover, by Proposition 1 of [2] we know that
the limiting matrix of F/FO /n is nonsingular under Conditions 2 and 5. Therefore, we can
conclude that lim inf,, . A" [F”FEF'F?/n2] > 0 a.s., and hence |[H™ |y < [|[V]|2 follows.

To complete the proof, it is sufficient to show that the maximum and rth largest eigen-
values of (np) XX’ are bounded from above and away from zero, respectively, for all large

n and p. By the definition of the spectral norm and triangle inequality, we have

O o 31 = o], < w2007 o8

< [nreee] Joeal], + o om],

By Conditions 2 and 3, the first term is a.s. bounded by a constant as discussed above. The
second term is O((n A p)~'/2) = o(1) with probability at least 1 — 2exp(—|O(n V p)|) by
Lemma 9(a) under Condition 4. Therefore, the largest eigenvalue of (np)~!XX’ is bounded
from above by some constant with probability at least 1 — 2exp(—|O(n V p)|).

Next we bound the rth largest eigenvalue of (np) XX’ away from zero. Since the matrix

is symmetric, Weyl’s inequality (e.g., [31], Theorem 4.3.1) yields

A [(np) I XX = A7 [(np)—1 {FOAO’AOFO’ n (EAOFO’ n FOAO’E’) n EE’}]
>\ [(np)*lFOAO'AOFO’} + A" [(np)*1 (EAOFO’ + FOAO’E’)] + A" [(np) 'EE/] .
(A.21)

The third term of lower bound (A.21) is obviously nonnegative. For the first term of

lower bound (A.21), let V denote a subspace of R™. Because FOAYAOFY g symmetric,
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the Courant-Fischer min-max Theorem (e.g., [31], Theorem 4.2.6) yields

IFOA0 A OO’
A" [(np)_lFOAOIAOFOI} = max min {(np)_lv - M
V:dim(V)=r veV\{0} v'v

/ / ’
>  max min n1 @ min p_1 VFOAY ARy
- Vidim(V)=r vev\{o} v'v ] Fo'vern\{0} v/ FOF0y

-\ [n_lFOFOI} A [p_lAO,AO] — N {n_lFO/FO] AT {p‘lAOIAO]
> N[BT [P AYAY] - [0 R -y

max

> X [N [ AYAY] [ O - |

In this lower bound, the first term is bounded away from zero by Conditions 2-3. Meanwhile,

to evaluate the second term we use Lemma 7(d) in Section D.2, which together with the union

>u>

for any 0 < u < ¢. Thus the second one turns out to be O((n~tlogp)'/?) = o(1) with

bound establishes

n

_ / _
IP’(Hn Lg0 Fo—zf‘ Y (S —Ef50)
i=1

> u) < r> max P
max k.e{l,,r}

< 2r? exp(—nu?/C)

1/2 and assume n! logp <

probability at least 1 — O(p~*) once we set u = (Cvn~!logp)
c?/(Cv) without loss of generality. Therefore, the first term of lower bound (A.21) is bounded

away from zero eventually. For the second term of (A.21), since the spectral norm gives the

upper bound of the spectral radius we have

A" [(np)*l (EAOFO’ + FOAO’E/)] ’ < H(np)*l (EAOFO’ + FOAO’E’)

.

<222, [y, e,

=0 ((nAp)2) 0(1)O(1) = 0(1),

which holds with probability at least 1 — 2exp(—|O(n V p)|) by Lemma 9(a) in Section D.4.

As a consequence, the desired result holds with probability at least 1 — O(p™) and this
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concludes the proof of Lemma, 6.

D.2 Lemma 7 and its proof

Lemma 7 Assume that Conditions 2—4 hold. Then there exist some positive constants c

and C' such that the following inequalities hold
(a) For allt,i € {1,---,n} and 0 < u < ¢, we have

Pl lp? (erjeij — Elegieis])| > u | < 2exp (—qu/C’) .

p
=1

J

(b) Forallke{1l,---,r}, je{l,---,p}, and 0 < u < ¢, we have

'

(c) Forallke {1,---,r},ie€{l,---,n}, and u >0, we have

n
—1 0
n E fik€ij

i=1

> u) < 2exp (—nu2/0) .

P
P|p! Z )\?keij >u | <2exp (—puz/C) .
j=1

(d) For all k., € {1,---,r} and 0 < u < ¢, we have

'

Proof. (a) To obtain the first result, we rely on the Hanson-Wright inequality. Let & =

- Z (515 —E[£5.£9)
i1

> u) < 2exp (—nu2/C) .

(&1, ,&m)" € R™ denote a random vector whose components are independent copies of

e ~ subG(C?). Then the inequality states that for any (nonrandom) matrix A € R™*™,

U

! ! ~ . u2
P (}S A -E¢ Aﬁ‘ > u) < 2exp {—CH min <K4HAH%’ KQIAH2> } , (A.22)

where K is a positive constant such that supy> E~Y/2(E |e]F)/* < K and Cy is a positive
constant. In our setting, we can take K = 3C2 (e.g., Lemma 1.4 of [34]). Using this

inequality, we first prove the case when £ = i. If we set m = p and A = diag(p~',--- ,p71),

21



then we have

iS]
hS]

€AE—EEAE] = |p Y (@ -E)| L |p 1Y (¢ - Eled))

j=1 j=1
for all i. Moreover, we obtain |A[|% = p~! and ||A|lz = p~! in this case. The assumed
condition 0 < u < 9C? = K? entails that u?/K* < u/K? so the result follows from (A.22)
with Cg replaced by Cy = 8103/5}1.
Similarly, we prove the case when ¢ # i. We set m = p+ 1 and A = (aj, -+ ,ap41),
where a; = (0,p~%,--- ,p~!) and aj =0 for j =2,---,p+ 1. That is, the entries of A are
-1

all zero except that the second to (p 4+ 1)th components in the first column vector are p

Under this setting, we observe that

pt+1 p
_ d| _
|EAE-EEAEL = p 1> &g = p "D ey
3=2 J=1
for all £ # i. Moreover, we obtain ||A[|% = ||Al|2 = p~! in this case. Therefore, the same

bound holds as in the case of £ = i from (A.22) again. Consequently, for any 0 < u < 9C?

we have
p
P | [p7" Y (egies; — Elegies])| > u | < 2exp (—pu®/Ch) .
=1

(b) We prove the second assertion by Bernstein’s inequality for the sum of a martingale
difference sequence (e.g., Theorem 3.14 in [11]). Fix ¥ = 1 and j = 1. Define F;_; as
the o-field generated from {f%, : £ = i,i — 1,---}. Then (f3en,F;) forms a martingale
difference sequence because E | fioleil\ < oo and E| fg€i1|ﬂ_1] = 0 under Conditions 2 and
4. Since the sub-Gaussianity of e;; implies Ee? < 4C? (e.g., Lemma 1.4 of [34]), we have
Vi=E fzolf 2| Fie 1] < 4C?M?, and hence Y. | Vi < 4nC?M? a.s. due to boundedness

|f9] < M as. On the other hand, by the sub-Gaussianity of e;; and boundedness of |f])|
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again we observe that for all p > 3 and i € {1,--- ,n},
E[(0V fhen)” | Fioa] < MP(2C2)PPpT(p/2) < pl(2C.M)P~?Vi /2,

where I' denotes the Gamma function and we have used the estimates pI'(p/2) < p! and
2r/2=2 < 9P=2/9 for p > 3 in the last inequality. Then an application of Theorem 3.14 in [11]
by putting x = u, y = 4M>2C?, and ¢ = 2MC, in their notation gives the one-sided result.

Making twice the bound yields

2
-1 nu
( Z Jikeis “) < 2exp <_8M203 + 4MCeu> '

For all 0 < u < MC?, the upper bound is further bounded by 2exp(nu?/(12M?C?)). We

set C; = 12M?C?. Consequently, for any 0 < u < MC? we have

'

(c) We prove the third inequality. Note that

n
—1 0
n E fik€ij

=1

> u) < 2exp (—nu2/01) .

2 2
0 u u
P(P‘jk@ij‘ >u) < 26XP{—2)\%03} < QGXP{_W}'

This implies that A?ke,-j is a sequence of i.i.d. subG(M?2C?). Thus the result is obtained
directly by Bernstein’s inequality for the sum of independent sub-Gaussian random variables.
Consequently, for any u > 0 putting C; = M?C? leads to

P
P(|p* Z A?keij >u | <2exp (*p’U?/CJ) .
j=1

(d) We show the last inequality. Note that for each k, (fi); ~ i.i.d. subG(M?) since

|f.] < M as. by Lemma 1.8 of [34] under Condition 2. Thus the remaining is the same as

(a). Set Cx = 81M4/C~’H here. Then for any 0 < u < 9M?, we have

(r

! Z fzf z ])

> u) < 2exp (—nu?/Ck) .
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Finally the obtained inequalities hold even if the constant in the upper bound is replaced
with arbitrary fixed constant C' such that C' > max{Cpy,Cr,Cy,Ck}. Similarly, we can also
restrict the range of u for each inequality to be 0 < u < ¢ for arbitrary fixed constant ¢ that

satisfies 0 < ¢ < min(9C?, M C?,9M?). This completes the proof of Lemma 7.

D.3 Lemma 8 and its proof

Lemma 8 Assume that Conditions 1-/ hold. Then for any set A satisfying |A| < k, the

following statements hold with probability at least 1 — O(myy)

(a) sup [[UA(8)— U6

max
9€@np

—0 (kl/%np) ,

(b) sup ||v.a(8) —va(6°)|

=0 (83/26n )
max P>
0€0Oy,

1/2 —-1/2

where Oy, was defined in Lemma 3 and Cpp = n~ logn. Consequently, we

logp + p

have

eselgip | T.4(6) — TA(GO)HmaX =0 ((k1/2 + 83/2) Enp> .

Proof. We first state some results that are useful in the proof. Since ||n~Y2F%||y = O(1) a.s.
by Condition 2 and ||k~*/2AY|]> = O(1) for any A such that |A] < k under Condition 3, we

first have
n_1/200 < n_1/2F0 k1/2 k'_l/2A0 < k1/2.
A 9 = 9 A 9 ™~
Next Lemma 9(b) in Section D.4 gives directly

Hn*/?EnoAHQ <1 (A.23)
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with probability at least 1 — O(p~™"). By Condition 4, we also deduce

(s 180 Bl ) < ooma? s fos e =)

< nprr;gx]? (\Z\ > u/(Ml/Zcrllé?))
< 2npexp (—u?/ (ccMeny))

for any v > 0. Thus setting u = ZCeMl/ZC%,2 log1/2(np) with some large enough positive

constant M, we obtain that with probability at least 1 — O((np)™"),

sup [|En — Epol| < enp log'/2(np) = O(&yp)-

ne@np max "~
We will use these results and Lemma 10 in Section D.5 in the proofs below.

To prove (a), we have

[UA0) — U] < anliA(o)’iA(e)) - n*liA(eo)’fiA(oO))

max

42 Hn—lx;lf(A(e) - n_IX;\}N(A(OO)‘

=: U1 4+ Us.

max

Observe that U; is further bounded as

U < Hn_IC;\CA — n_IC&/C&’

+ H?’L—IE,,,,IAE,,]A - n_lE{nOAEnOA‘

max max

=: U1 + U2 + Uss.

max

+2 anlE’,,AcA - n*lE;OACOA‘

By Lemma 10, it is easy to see that

Unn < anl (Ca— 094)/ (Ca- 094)’

+2n71CY (Ca- )

max max

<02 [Cot - OOl € Gl 2 2 1€t~ €O

2

max

SE2C = € + K2 [[C—

max

—0 (kl/QCip n k1/2cnp) —0 (k’l/anp) ’
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where the last estimate follows from Lemma 3. Similarly, we deduce

U2 < Hn_l (EnA - EnOA)/ (E"?.A - EnoA)‘

+ 2 Hn_lEfnoA (En/l - EUOA)‘

max max

< n-1/2 HEnA _ EnOAH HEnA — EnOAH2 +2 Hn_l/QE"’OAHQ HEnA - EnoAH

max max

S By = B+ By = B

=0 (K23, + éuy)
and

Ura < |0 (Bna = Egpa)' (Ca = C%)

max

+ Hn—lEgoA (Ca— 094)’

_ /
et (e e

max max

< KBy = By, [C - €

max max

e~ e+ 78 -2

max

= O (K" 2enpnp + cap + K20) = O (K26 )
Combining these bounds of Uy1-Usy3, we have
Uy < Uy + Ung + Uz S kY26,

This holds uniformly in 6 € ©,,, with probability at least 1 — O(my,) by Lemma 3 and the

discussion above. Next we obtain

Uz < ||jn~'CY (Ca - COA))

+ anlcOA’(EnA - EnoA)‘

max max

+ [0 EL(Ca = C) | + 2 B (Bra — Eqo )|

max max

< [l 104 = Clly + €% [Ba ~ B

Hmax max

+ Hn_1/2En0AH2 HCA - C(./)éleaX + Hn_l/ZEnOAHQ HEW - E’?OHmax

=0 (kl/anp + kl/QEnp + Cnp + énp)

=0 (K"%).
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This also holds uniformly in 6 € ©,,, with probability at least 1 — O(my;) by Lemma 3 and

the discussion above. Consequently, it holds that

sup |[UA(0) — U0, . <K,

0cO,, max "~
with probability at least 1 — O(mp,).

To prove (b), we have

[VaA(6) = VA6 < || KAO)'y — 07 K A(6%)'y

ax —

max

< [n1Xa0yXB - 1K a(6")X 8

+ Hn—lfi A(0)e —n~1X 4(0°)e

max max

=Vi+W.
First, because X3 = X 0350 we see that

V1 < s1/? HniliA(O)/XSo — nflfiA(OO)’Xso

1Bsoll,
max

<s Hn—liA(e)'xSo X (%) X o

max

Recall that |SY| = s and s < n A p. By a similar bound of Us, the norm just above can be

bounded further as

e

€A = Cl| + [ 72C

9 HEWA - EnOA”

max

+ HTL71/2E,,'030

NGt = Clll o + [ 2B

max

Baa— B

5 51/2 HC o COHmaX + 81/2 HE" - ETIOHmaX + HC o COHmaX + HEn o Enoumax

=0 (sl/anp + sl/Qénp + Cnp + Enp) =0 (sl/zénp> .
Thus we have

1 < ssl/zénp = 53/25np
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with probability at least 1 — O(my,). Next the same procedure yields

Ve < ||Xa(6) - X(6°))

e,

max

SNC = C| e + 1B = o e S G (A.24)

max max "~

where ||n!/2e||ly = (E&2)Y/2 + 0(1) a.s. by the law of large numbers for independent random

variables. Since the results hold uniformly in 6 € ©,,,, combining them leads to

sup |[[va(0) — va(8°)]|,.. < s¥%np

max "~
ee(")np

with probability at least 1 — O(myyp). This concludes the proof of Lemma 8.

D.4 Lemma 9 and its proof

Lemma 9 Assume that Condition 4 holds. Then the following statements hold

(a) We have
P(|[nvp)2E| £ 1) 21— 2exp(=00 v p))
(b) For any fized set A with |A| < k <n, we have
(e, <1) 21
(¢) For all k < n, we have

P H -1/2g H <1v(nklogp) ) >1-2p7,

where v > 0 is a predetermined constant.

Proof. Result (a) is obtained by Theorem 5.39 of [40]. Moreover, by the same theorem there

exist some positive constants ¢ and C such that for any A with |A| <k < n and every t > 0,
P <a;1Hn*1/2EAHz >1+C+ n*l/Qt) < 2exp (—ct?),
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where 02 = Ee?. Therefore, result (b) is immediately obtained by putting t? = ¢ lvlogp
since n~1/2t = o(1) and exp (—ct?) = p~" in this case.

For (c), taking the union bound leads to

P ( o' max n71/2EA 2>14+C+ n~ 12t
e
A<k

< (p> max P (U;lHnil/2E_AH2 >1+C+ nil/Qt) < 2p% exp (—ct?).
k) A<k
Set t2 = ¢! (v + k) log p in this inequality. Then we have n='/2t = O ((nilklogp)lﬂ) and
2pF exp (—ct2) < 2pFexp (—(v+ k) logp) = 2p~7,

which gives result (c) and completes the proof of Lemma 9.

D.5 Lemma 10 and its proof

Lemma 10 For matrices A € R\ and B € R™*2 we have | AB||max < 77/2(|All2]|B||max

and || AB lmax < n'/?||Allmax|Bl|2.

Proof. For any matrix M = (m;;) € R¥*™ let | M||,00 denote the induced £oo-norm. First,

we have

MV [max IMv]l2 [lvil2

< n'/?|[M]2.

HMHOO,oo:: sup
veR™\{0} ||V||max veR”\{0} ||VH2 HVHmaX

Therefore, by a simple calculation we see that

|AB|lmax = || vec(AB)|lmax = [|(Ir, ® A) vec(B)||max

I, ® A) vec(B)|lmax
= I T ()
max

< Tk, ® Allocooll vee(B) [lmax = | Alloo,c0lBllmax < '/ All2]|Bllmax-

The second assertion follows from applying this inequality to B’A’. This concludes the proof

of Lemma 10.
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E Additional numerical details and results

E.1 Estimation procedure

In implementing the IPAD algorithm suggested in Section 2, we use the PC) criterion
proposed in [3] to estimate the number of factors ». With an estimated number of factors
7, we use the principle component method discussed in Section 3.2 to obtain an estimate C
of matrix C°. Denote by E = (éi5) = X — C. Recall that in the construction of knockoff
variables, the distribution of E needs to be estimated. Throughout our simulation studies,
we misspecify the model and treat the entries of E as i.i.d. Gaussian random variables.
Under this working model assumption, the only unknown parameter is the variance which
can be estimated by the following maximum likelihood estimator

n o p

)Y

i=1 j=1
Then the knockoffs matrix X is constructed using (8) with the entries of E; drawn indepen-
dently from A(0,5?). For the two comparison methods BCKnockoff and HD-BCKnockoff,
we follow the implementation in [4] and [5], respectively. Thus it is seen that neither BC-
Knockoff nor HD-BCKnockoff uses the factor structure in X when constructing the knockoff
variables.

In Designs 1-3, with the constructed empirical knockoffs matrix X we apply the Lasso
method to fit the model with y the response vector and [X, }A(] the augmented design matrix.
The value of the regularization parameter A is chosen by the tenfold cross-validation. Then
the LCD discussed in Section 2.2 is used in the construction of knockoff statistics. In Design
4, we assume the nonlinear relationship between the response and the covariates. In this
case, random forest is used for estimation of the model. To construct the knockoff statistics,
we use the variable importance measure of mean decrease accuracy (MDA) introduced in

[14]. This measure is based on the idea that if a variable is unimportant, then rearranging its
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values should not degrade the prediction accuracy. The MDA for the jth variable, denoted
as mj, measures the amount of increase in prediction error when the values of the jth
variable in the out-of-sample prediction are permuted randomly. Then intuitively, @j

will be small and around zero if the jth variable is unimportant in predicting the response.

For each original variable x;, we compute W; statistic as |ﬁD\AJ\ — |mj+p|, j=1,--.p.

E.2 Simulation study

To evaluate the performance of IPAD approach in terms of empirical FDR and power with
real economic data, we set up one additional Monte Carlo simulation study. In this design,
we use the transformed macroeconomic variables described above as the design matrix X,
but simulate response y from the model in Design 1 in Section 4.1. We set the number
of true signals, the amplitude of signals, and the target FDR level to s = 10, A = 4, and
q = 0.2, respectively.

Table 7 shows the results for IPAD and HD-BCKnockoff approaches. As expected, HD-
BCKnockoff can control FDR but suffers from lack of power. On the other hand, IPAD has
empirical FDR slightly higher than the target level (¢ = 0.2) while its power is reasonably
high. These results are consistent with our theory in Section 3 because IPAD only controls
FDR asymptotically. Additional reason for having slightly higher FDR than the target
level can be deviation of the design matrix from our factor model assumption. Overall
this simulation study indicates that IPAD can control FDR at around the target level with
reasonably high power when we use the macroeconomic data set. In the next section, using
the same data set we will compare the forecasting performance of IPAD with that of some

commonly used forecasting methods in the literature.
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E.3

Table 7: Real data simulation results with (n,p) = (195, 109)

FDR  Power FDRy  Powery R?

c=0.2
IPAD 0.278 0.812 0.223 0.796 0.747
HD-BCKnockoff  0.096 0.009 0.010 0.002 0.758
c=0.3
IPAD 0.280 0.757 0.221 0.723 0.665
HD-BCKnockoff  0.149 0.121 0.027 0.036 0.678
c=0.5
IPAD 0.286 0.661 0.215 0.571 0.560

HD-BCKnockoff  0.119  0.009 0.008 0.001 0.554

Methods of comparison in empirical analysis

We compare the following different methods in the empirical analysis presented in Section

5, where each method is implemented in a same way as IPAD for one-step ahead prediction.

)

Autoregression of order one (AR(1)). Assume that

Yt = Qo + pYi—1 + €t

where y; is regressed on y;—1, and ap and p are the AR(1) coefficients that need to
be estimated. With the ordinary least squares estimates & and p, the one-step ahead

prediction based on this model is gry1 = &g + pyr.

Factor augmented AR(1) (FAR). We first extract m factors fy,--- ,f,, form the 109
transformed macroeconomic variables by principal component analysis (PCA). Denote
by f; € R™ the factor vector at time ¢ extracted from the rows of matrix [fy,--- ,£,] €

R™ ™ Then we regress y; on y;_1 and ft—l and fit the following model

Yt = o + pYs—1 + 'Y/ft—l + &¢

with v € R™. The number of factors m is determined using the PC); criterion in [3].

Similar to AR(1) model, one-step ahead forecast of y; at time 7' is

Jr41 = Go + pyr +¥'fr.
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Lasso method. The y; is regressed on y;_1, f't_l, and the 108 transformed macroeco-

nomic variables z;_; € R198 at time ¢t — 1
Yt = oo + pyr—1 + 'Y/ft—l + 8’241 + &,

where f; is the same as in the FAR(1) model, and ag, p, and § € R'%® are regression
coefficients that need to be estimated. The coefficients are estimated by Lasso method
with regularization parameter chosen by the cross-validation. With the estimated Lasso

coefficient vector ﬁLaSSO, one-step ahead forecast of y; at time T is
gTJrl = ﬂiassoxT7
where x7 is the augmented predictor vector at time 7T

IPAD method. We regress y; on the augmented vector (y;—1,2,_;)’. The lagged variable
yt—1 is assumed to be always in the model. To account for this, we implement IPAD
in three steps. First, we regress y; on y;—1 and obtain the residuals e, ;. Second, we
regress each of the 108 variables in z;_; on y;—1 and obtain the residual vector e, ;1.
At last, we fit model (1)—(2) using the IPAD approach by treating e, ; as the response
and e, ;1 as predictors, which returns us a set of selected variables (a subset of the
108 macroeconomic variables). With the set of variables S selected by IPAD, we fit

the following model by the least-squares regression
ye = oo+ pye—1 +0'z,_y g+ e, (A.25)

where z, ¢ stands for the subvector of z; corresponding to the set of variables S selected
by IPAD at time t. Since S from IPAD is random due to the randomness in generating
knockoff variables, we apply the IPAD procedure 100 times and compute the average

of these 100 one-step ahead predictions based on (A.25) and use the mean value as the
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final predicted value of yr1.
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