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Abstract

Based on a Gaussian mixture type model of K components, we derive eigen selection proce-

dures that improve the usual spectral clustering algorithms in high-dimensional settings, which

typically act on the top few eigenvectors of an affinity matrix (e.g., X>X) derived from the

data matrix X. Our selection principle formalizes two intuitions: (1) eigenvectors should be

dropped when they have no clustering power; (2) some eigenvectors corresponding to smaller

spiked eigenvalues should be dropped due to estimation inaccuracy. Our selection procedures

lead to new spectral clustering algorithms: ESSC for K = 2 and GESSC for K > 2. The newly

proposed algorithms enjoy better stability and compare favorably against canonical alternatives,

as demonstrated in extensive simulation and multiple real data studies.

KEY WORDS: clustering, eigen selection, low-rank models, high dimensionality, asymp-

totic expansions, eigenvectors, eigenvalues.

1. INTRODUCTION

Clustering is a widely-used unsupervised learning approach to divide observations into subgroups

without the guidance of labels. It is an obvious statistical and machine learning formulation when

there are no meaningful labels in the datasets, such as in customer segmentation and criminal

cyber-profiling applications. It is also a sensible approach when labels, in theory, do exist, but we

have solid reasons to believe that the labels in the datasets are far from accurate. For instance,

Medicare-Medicaid fraud detection cannot be formulated as a supervised learning problem, because
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although the labeled fraudulent transactions are real frauds, people believe that there are a large

number of undiscovered frauds in the record.

Over the last sixty years, many clustering approaches have been proposed. The most dominant

ones include k-means, hierarchical clustering, spectral clustering, and various variants [Hastie et al.,

2009, James et al., 2014]. The k-means algorithms [Bradley et al., 1999, Witten and Tibshirani,

2010] adopt a centroid-based clustering approach. Hierarchical clustering algorithms [Ward Jr,

1963] first seek to build a hierarchy of clusters and then make a cut at a hierarchical level. Spectral

clustering [Ng et al., 2002, Von Luxburg, 2007] clusters observations using the spectral information

of some affinity matrix derived from the original data matrix X for measuring the similarity among

observations.

Among the above mentioned main-stream clustering approaches, spectral clustering is partic-

ularly well suited for high-dimensional settings, which refers to the situations that the number of

features is comparable to or larger than the sample size. High-dimensional settings mainly emerged

with modern biotechnologies such as microarray and remain relevant due to the subsequent tech-

nological advances such as next-generation sequencing (NGS) technologies. Methodological and

theoretical questions in high-dimensional supervised learning (i.e., regression and classification)

have been attracting a great deal of attention in the statistics community over the last 20 years

(see the review paper Zou [2019] and references within). In contrast, high-dimensional unsuper-

vised problems have had far fewer works so far. It is a challenging problem mainly because effective

dimension reduction is difficult without the assistance of a response variable. Spectral clustering

alleviates the curse of dimensionality in high-dimensional clustering by consulting only a few less

noisy eigenvectors of an affinity matrix. For example, suppose that we would like to cluster n

observations into K groups, where K is the predetermined cluster number. Spectral clustering

algorithms usually first compute the top few eigenvectors of an affinity matrix (e.g., X>X which

we adopt in this work) and then perform a k-means step using just these eigenvectors.

The rationale behind the above spectral clustering method is that under a broad data matrix

generative model of low-rank mean matrix plus noise, the latent data label information is com-

pletely captured by the population eigenvectors corresponding to the top (i.e., spiked) eigenvalues

of IEX>IEX, which can be estimated by the eigenvectors corresponding to the spiked eigenvalues
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of the affinity matrix X>X. Thus, the eigenvectors corresponding to non-spiked eigenvalues can

be safely dropped and the purpose of noise reduction is achieved. However, there are some po-

tential issues in the common spectral clustering implementation. Taking K = 2 as an example.

It could be that (1) one of the top two eigenvectors can be useless either because its coordinates

are all equal or its corresponding population eigenvalue is 0; (2) even if both top eigenvectors are

useful in clustering, the noise matrix may introduce too much noise to the second eigenvector so

that it cannot be estimated accurately. Therefore, selecting the eigenvectors has a potential to

improve spectral clustering methods. Simulation results summarized in Tables 1-2 support intu-

itions (1)-(2), respectively, under models A and B (K = 2 for both), whose exact settings can

be found in Section S.1 in the Supplementary Material. Here the misclustering rate is defined as

infπ∈MK
1
n

∑n
i=1 1(π(Ŷi) = Yi), where Yi and Ŷi are the true label and estimated label respectively

with Yi ∈ NK , NK is the label set containing K different entries and MK is the collection of all

one-to-one and onto mappings from NK to itself. Loosely, model A has one (of top 2) eigenvector

with no clustering power, and model B has both top eigenvectors with clustering power but the

second one cannot be accurately estimated. These tables also suggest that the benefit of eigen

selection is more profound with higher dimensionality.

Table 1: Misclustering rates with standard error in parentheses for Model A

methods \ p 100 200 400 600 800

drop the useless eigenvector before k-means .01(.0006) .014(.0006) .02(.0008) .029(.0008) .04(.0015)
k-means on both eigenvectors .01(.0005) .014(.0006) .028(.0004) .064(.0108) .097(.0099)

Table 2: Misclustering rates with standard error in parentheses for Model B

methods \ p 100 200 400 600 800

k-means on the first eigenvector .01(.001) .011(.0011) .019(.0015) .025(.0014) .036(.0022)
k-means on both eigenvectors .023(.0016) .04(.003) .118(.0092) .182(.0104) .251(.0124)

In this paper, we first formalize the above intuitions by considering the special case of K = 2

and Gaussian distributions. Concretely, the data matrix follows the aforementioned structure of

low rank mean matrix plus noise defined as X = IEX + (X− IEX), where X is a p× n matrix and

n is the sample size. A natural and popular way is to construct the affinity matrix as X>X ∗. We

show that the top two eigenvectors of H := (IEX)>IEX, which can be understood as the noiseless

∗A comparison with one alternative affinity matrix construction is given in subsection 3.2
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version of the affinity matrix, completely capture the label information. We also identify scenarios

where exactly one of these two eigenvectors of H has clustering power. Note that the eigenvectors

of H are unavailable to us and any operation has to be applied to their sample counterparts, that

is, the eigenvectors of the affinity matrix X>X.

We propose an innovative eigen selection procedure in the usual spectral clustering algorithms

and name the resulting algorithm ESSC for K = 2. Our eigenvector selection step is guided by the

theoretical investigation of the top two eigenvectors of H, and justified by analysis on sample-level

eigen properties. Our theoretical development does not require a sparsity assumption on the data

generative model, such as those in Cai et al. [2013] and Jin and Wang [2016]. This suggests that our

procedure is potentially suitable for a wider range of applications. A by-product of our theoretical

development is an asymptotic expansion of the eigenvalues when the population eigenvalues are

close to each other (Proposition 1). This is a result of stand-alone interest.

The intuition of eigenvector selection in the case of multiple clusters (K ≥ 3) is slightly different

in the sense that a useful eigenvector may only have partial clustering power because some clusters

can collapse along the direction of that eigenvector. Thus, the second intuition discussed above of

dropping eigenvectors with less estimation accuracy is over-weighted by including all eigenvectors

with clustering power. For this reason, we recommend to only practice the first intuition, i.e.,

screening out eigenvectors without any clustering power, which include those corresponding to the

non-spiked eigenvalues and those whose coordinates are equal. Based on this, we propose a new

algorithm GESSC, in which “G” stands for “generalized.”

We provide extensive simulation studies, and observe that in a vast array of settings, the newly

proposed clustering algorithms ESSC and GESSC compare favorably in terms of stability and mis-

clustering rates against the spectral clustering algorithm without the eigen selection step. Although

our theoretical analysis is conducted under a Gaussian distribution assumption, the general idea

of eigenvector selection extends to other settings and other high-dimensional clustering problems

such as community detection using network data.

Although the eigen selection idea for spectral clustering, minus the common practice of dropping

eigenvectors corresponding to the non-spiked eigenvalues, is mostly absent in the statistics commu-

nity, it was practiced in one previous work in the computer science literature. Indeed, Xiang and
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Gong [2008] proposed an EM algorithm to select the eigenvectors of an affinity matrix. But their

approach is a heuristic practice and lacks theoretical analysis for the eigenvalues and eigenvectors

to support the method.

There is relatively recent literature on theoretical and methodological developments on high-

dimensional clustering. For instance, Ng et al. [2002] proposed a symmetric-Laplacian-matrix-based

spectral clustering approach and prove the corresponding consistency. Cai et al. [2019] proposed a

clustering procedure based on the EM algorithm for a high-dimensional Gaussian mixture model

and proved consistency and minimax optimality for the procedure. Jin and Wang [2016] proposed

a Kolmogorov-Smirnov (KS) score based feature selection approach (IF-PCA) to first reduce the

feature dimension before implementing spectral clustering on a centered version of the data. The

feature selection idea for clustering was also considered in other works including Chan and Hall

[2010] and Azizyan et al. [2013]. None of these aforementioned works select eigenvectors. In this

sense, our method and theory complement the existing literature by providing a way to stabilize

and improve the performance of existing spectral clustering methods.

The rest of the paper is organized as follows. We introduce the statistical model and key no-

tations in Section 2. In Section 3, we present the main algorithm ESSC for K = 2 and detailed

rationale that leads to it. Section 4 includes the theoretical results regarding ESSC. Section 5

introduces a multi-cluster (i.e., K > 2) extension GESSC together with its theoretical backing.

Simulation study and real data analysis are conducted in Sections 6 and 7 respectively, followed by

a short discussion. Technical lemmas, proofs and further discussion are relegated to the Supple-

mentary Material.

2. MODEL SETTING AND NOTATIONS

In the methodological development and theoretical analysis, we consider the following sampling

scheme. We assume that the data matrix X = (x1, . . . ,xn) is generated from

xi = Yiµ1 + (1− Yi)µ2 + wi, i = 1, . . . , n , (1)

where {wi}ni=1 are i.i.d. from p-dimensional Gaussian distribution N (0,Σ), µ1, and µ2 are two

p-dimensional non-random vectors, and Y1, . . . , Yn ∈ {0, 1} are deterministic latent class labels. As

5



such, Yi = 1 means that the ith observation xi is from class 1, and Yi = 0 means that xi is from

class 2. The parameters µ1, µ2 and Σ are assumed to be unknown. Without loss of generality, we

assume that µ1 6= µ2 and µ2 6= 0. The main objective is to recover the latent labels Yi’s from the

data matrix X. If {Yi}ni=1 were i.i.d Bernoulli random variables, model (1) would be a Gaussian

mixture model. Our analysis can extend to that setting but we opt for considering fixed Yi’s to

focus on our attention to the eigen selection principle.

We introduce some notations that will be used throughout the paper. For a matrix B, denote

by σk(B) the k-th largest singular value of B and and by ‖B‖ its spectral norm. For any vector

x, x(i) represents the i-th coordinate of x. For any random matrix (or vector) A, we use IEA to

denote its expectation. We define c11 = ‖µ1‖22, c22 = ‖µ2‖22 and c12 = µ>1 µ2, where ‖ · ‖2 is the

L2 norm of a vector. For any positive sequences un and vn, if there exists some positive constant

c such that un ≥ cvn for all n ∈ N, then we denote un & vn. We denote the i-th largest eigenvalue

of a square matrix A by λi(A). Finally, we denote σ2n = ‖Σ‖2(n+ p).

3. ESSC FOR K = 2

Based on Model 1, we develop a novel eigen selection procedure that improves the widely used

spectral clustering algorithms. We start our reasoning from the noiseless case. The entire logic

flow of the development process is presented before we introduce the final eigen-selected spectral

clustering algorithm (ESSC).

3.1 Motivation if the signal were known

When people believe there are two clusters, a common spectral clustering practice is to perform

k-means on the top K = 2 eigenvectors of X>X. We offered in the introduction some intuitions

and numerical evidence about why this might be improvable. We will formalize these intuitions in

this section.

For notational convenience, denote a1 = y = (Y1, . . . , Yn)> and a2 = 1 − y. Let n1 = ‖a1‖22

and n2 = ‖a2‖22, then n1 and n2 are the numbers of non-zero components of a1 and a2 respectively,

and n1 + n2 = n. A noiseless counterpart of X>X is H = (IEX)>IEX. By Model 1, H can be

decomposed by

H = a1a
>
1 c11 + a2a

>
2 c22 + a1a

>
2 c12 + a2a

>
1 c12 ≥ 0 . (2)
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Let d1 and d2 be the top two singular values of IEX, and u1 and u2 be the corresponding right

singular vectors. Then d2i and ui are the corresponding eigenvalue and eigenvector of H, i = 1, 2.

By the discussions in Section S.2 of the Supplementary Material, the eigenvector u corresponding

to a nonzero eigenvalue d2 > 0 takes at most two distinct values in its components. Moreover,

if d2 > 0 and u takes two distinct values in its components, then these values have a one-to-

one correspondence with the cluster labels. We also notice that when d2 = 0, u would not be

informative for clustering. Given these observations, we introduce the following definition for ease

of presentation.

Definition 1. A population eigenvector u of H is said to have clustering power if its corresponding

eigenvalue d2 is positive and its coordinates take exactly two distinct values.

Theorem 1. The top two eigenvalues of H can be expressed as

d21 =
1

2

(
n1c11 + n2c22 + (n21c

2
11 + n22c

2
22 + 4n1n2c

2
12 − 2n1n2c11c22)

1
2

)
, (3)

and

d22 =
1

2

(
n1c11 + n2c22 − (n21c

2
11 + n22c

2
22 + 4n1n2c

2
12 − 2n1n2c11c22)

1
2

)
. (4)

Moreover, we conclude the following regarding the clustering power of u1 and u2.

(a) When c212 = c11c22, the problem is degenerate with d21 = n1c11 +n2c22 and d22 = 0, and only the

eigenvector u1 has clustering power.

(b) When c212 6= c11c22, c12 = 0 and n1c11 = n2c22, we face the problem of multiplicity (i.e.,

d21 = d22 = n1c11) and at least one of u1 and u2 have clustering power.

(c) When c212 6= c11c22, c12 = 0 and n1c11 6= n2c22, we have d21 = max{n1c11, n2c22} and d22 =

min{n1c11, n2c22} > 0, and both u1 and u2 have clustering power.

(d) When c212 6= c11c22 and c12 6= 0, if n1c11 + n2c12 = n2c22 + n1c12, exactly one eigenvector has

clustering power, and if n1c11 +n2c12 6= n2c22 +n1c12, both eigenvectors have clustering power.

We note that similar results to (b)–(d) of Theorem 1 were proved for Degree Corrected Stochastic

Block Model in Lemma 1.1 of Jin [2015], with the difference that Jin [2015] considered data matrix
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with 0/1 values that are independent on and above the diagonals. Theorem 1 implies that under our

model described in equation (1), at least one of u1 and u2 have clustering power. More importantly,

this theorem indicates that even in the noiseless setting (i.e., when H is known), there are cases

in which only one eigenvector has clustering power and that this eigenvector could be either u1 or

u2. This suggests the potential importance of eigenvector selection in spectral clustering and we

propose Oracle Procedure 1 below to select a set U of important eigenvectors under the noiseless

setting.

Algorithm 1 [Oracle Procedure 1]

1: Set U = ∅.
2: Check whether u1 has two distinct values in its components. If yes, add u1 to U and go to Step

3; If no, add u2 to U and go to Step 5.
3: Check whether d22 > 0. If no, go to Step 5; If yes, go to Step 4.
4: Check whether u2 has two distinct values in its components. If yes, add u2 to U and go to Step

5; if no, go to Step 5.
5: Return U .
6: Use the eigenvector(s) in U for clustering.

Despite its simple form, Oracle Procedure 1 is difficult to implement at the sample level. To

elaborate, note that in practice we will have to estimate the eigenvalues and eigenvectors (d2i ,ui),

i = 1, 2. Without loss of generality, assume that d1 ≥ d2 ≥ 0. Note that d1 and d2 are the top

two singular values of IEX, which can be naturally estimated by the top two singular values of X.

Further note that u1 and u2 are the top two right singular vectors of IEX, which can be naturally

estimated by û1 and û2, the top two right singular vectors of X, respectively. One useful technique

in the literature for obtaining these sample estimates is to consider the linearization matrix

Z =

 0 X>

X 0

 ,

which is a symmetric random matrix with low-rank mean matrix. It can be shown that the top

two singular values of X are the same as the top two eigenvalues of Z, and the corresponding right

singular vectors of X, after rescaling, are subvectors of the top two eigenvectors of Z.

It has been proved in the literature that for random matrices with expected low rank structure,

such as Z, the estimation accuracy of spiked eigenvectors largely depends on the magnitudes
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of the corresponding eigenvalues. Specifically, as shown in Abbe et al. [2020+], the entrywise

estimation error for each spiked eigenvector is of order inversely proportional to the magnitude of

the corresponding eigenvalue. Thus, a dense eigenvector may be estimated very poorly unless the

corresponding eigenvalue has a large magnitude (e.g., highly spiked). The results in Abbe et al.

[2020+] apply to a large Gaussian ensemble matrix with independent entries on and above the

diagonal. Similar conclusions can be found in Fan et al. [2020+] and Bao et al. [2020+] under

Wigner or generalized Wigner matrix assumption.

Since spectral clustering is applied to estimated eigenvectors, the above-mentioned existing re-

sults suggest that in a high-dimensional two-class clustering, one should drop the second eigenvector

in spectral clustering if the corresponding eigenvalue is not spiked enough, unless it is critical to

include it, when, for example, the first spiked population eigenvector has no clustering power.

On the other extreme, if the two spiked eigenvalues are the same, that is, in the case of multi-

plicity, by part (b) of Theorem 1, at least one of u1 and u2 has clustering power. We argue that

in this situation, at the sample level it is better to use both spiked eigenvectors in clustering for at

least two reasons. First, by Proposition 1 to be presented in Section 4 and the remark after it, each

di, i = 1, 2, can only be estimated with accuracy Op(1). Therefore, detecting the exact multiplicity

can be challenging. Second, the two spiked population eigenvectors are not identifiable. The two

spiked sample eigenvectors estimate some rotation of (u1,u2), each with estimation accuracy of

order inversely proportional to d1 (or d2) [Abbe et al., 2020+]. Thus, even in the worst case where

exactly one eigenvector is useful, including both in clustering will not deteriorate the clustering

result much because the additional estimation error caused by the useless eigenvector is in the

same order as caused by the useful eigenvector. In view of the discussions above, we update the

oracle procedure as follows. Our implementable algorithm will mimic this oracle procedure.

Algorithm 2 [Oracle Procedure 2]

1: Set U = ∅.
2: Check whether d21/d

2
2 < 1+cn, where cn > 0 is some threshold depending on n (to be specified).

If yes, add both u1 and u2 to U and go to Step 4; If no, go to Step 3.
3: Check whether u1 has two distinct values in its components. If yes, add u1 to U and go to Step

4; If no, add u2 to U and go to Step 4.
4: Return U .
5: Use eigenvector(s) in U for clustering.
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In step 2 of Oracle Procedure 2, a positive sequence cn is to help check whether d21 and d22 are

close enough. We include a buffer cn because, in implementation, d1 and d2 are estimated with

errors. As discussed above, the rationale behind step 3 is that when the second eigenvalue is much

smaller than the first one, and so the estimated second eigenvector can be too noisy to be included

for clustering, we use the estimated second eigenvector only when the first one is not usable. Oracle

Procedure 2 prepares us to introduce our final practical selection procedure.

3.2 Comparison with a centering procedure

We digress here to discuss an existing procedure that drops an eigenvector. Concretely, a few works,

such as IF-PCA, employ a step to first subtract the mean from the data. As will be demonstrated

next, this approach reduces the second largest eigenvalue to 0 under our model, and thus always

only uses the leading eigenvector for clustering. This can be advantageous under special conditions.

However, we will also provide examples where our approach is superior. For this reason, we choose

not to consider the centering procedure in detail in our paper.

Let x̄ = 1
n

∑n
i=1 xi and recall Model 1. By subtracting the expectation IEx̄ =

n1µ1
n +

n2µ2
n , the

model becomes

xi − IEx̄ = Yi
n2(µ1 − µ2)

n
+ (1− Yi)

n1(µ2 − µ1)

n
+ wi, i = 1, . . . , n , (5)

from which we can derive that

rank(C) := rank
(

(IEX− (IEx̄)1>n )(IEX− (IEx̄)1>n )>
)

= rank
(n1n2

n
(µ1 − µ2)(µ1 − µ2)

>
)

= 1 .

Hence, the second eigenvalue of C is always 0, and the first eigenvalue, denoted by d21(C), is

d21(C) =
n1n2‖µ1 − µ2‖22

n
. (6)

Comparing (6) with (3) and (4), we see that the effect of the demean step can be complicated.

For one example, if µ1 = −µ2 and n1 = n2, then d21 = nc11, IEx̄ = 0 and d21(C) = nc11 = d21.

In this case the demean approach is appropriate. On the other hand, if c12 = 0, then d21 =

max{n1c11, n2c22} and d22 = min{n1c11, n2c22}, whereas (6) becomes d21(C) = n1n2(c11+c22)
n , which
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lies between d21 and d22. Therefore in this case, the demean approach shrinks the first eigenvalue,

reducing the signal strength (cf. the discussion after Oracle Procedure 1).

3.3 Eigen Selection Algorithm

The two oracle procedures discussed in Subsection 3.1 assume the knowledge of H. In practice, we

observe X instead of H. Next, we will elevate our reasoning on H to that on X and propose an

implementable algorithm for eigenvector selection. Denote by û1 and û2 the eigenvectors of the

matrix

Ĥ := X>X ,

corresponding to the two largest eigenvalues t̂21 and t̂22 (t̂1 ≥ t̂2 ≥ 0) of Ĥ, respectively. As discussed

after Oracle Procedure 1, t̂1 and t̂2 are the top singular values of X, and d1 and d2 are the top

singular values of IEX. Thus, t̂21 and t̂22 estimate d21 and d22, respectively. Also, recall that û1 and û2

are the top two right singular vectors of X, while u1 and u2 are the top two right singular vectors

of IEX. Under some conditions, when d21/d
2
2 6= 1, i.e., no multiplicity, we have û1(i) ≈ u1(i) and

û2(i) ≈ u2(i). Moreover, when d21 = d22, it is only possible for us to show that (û1, û2) ≈ (u1,u2)Û

(e.g., by Davis-Kahan Theorem), where Û is some 2 × 2 orthogonal matrix. Spectral clustering

clusters xi’s into two groups by dividing the coordinates of û1 (and\or û2) into two groups via the

k-means algorithm. In some scenarios, d2 is small (compared to d1) and û2 is significantly disturbed

by the noise matrix X − IEX; in these scenarios, û2 is likely not good enough to distinguish the

memberships. Putting these observations together, Oracle Procedure 2 can be implemented by

replacing (di,ui) with the sample version (t̂i, ûi), i = 1, 2.

Based on the discussions above, we propose Algorithm 3: Eigen-Selected Spectral Clustering

Algorithm (ESSC). Let τn and δn be two diminishing positive sequences (i.e., τn + δn = o(1)) and

1n be an n-dimensional vector in which all entries are 1. In numerical implementation, we choose

τn = log−1(n+ p) and δn = log−2(n+ p), which are guided by Theorems 2–3. Moreover, let

fk = n−1/2|1>n ûk| − 1 . (7)

Note that if all entires of the unit vector u1 are equal, then n−1/2|1>nu1| = |u2
1(1)+ . . .+u2

1(n)| = 1.
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Hence, checking whether |f1| is small enough (e.g., |f1| < δn) is a reasonable substitute for checking

whether u1 has all equal entries.

Algorithm 3 [Eigen-Selected Spectral Clustering (ESSC)]

1: Set Û = ∅.
2: Calculate t̂1 and t̂2 and the corresponding eigenvectors û1 and û2 from Ĥ.
3: Check whether t̂1/t̂2 < 1 + τn. If yes, add both û1 and û2 to Û and go to Step 5; if no, go to

Step 4.
4: Check if |f1| ≥ δn. If yes, add û1 to Û and go to Step 5; if no, add û2 to Û and go to Step 5.
5: Return Û .
6: Apply the k-means algorithm to vector(s) in Û to cluster n instances into two groups.

4. THEORY OF ESSC

In this section, we derive a few theoretical results that support the steps 3 and 4 of Algorithm

3. We first prove in Proposition 1 asymptotic expansions for eigenvalues t̂1 and t̂2. In addition to

motivating our handling of multiplicity as discussed in the previous section, these results potentially

allow us to design a thresholding procedure on either t̂1 − t̂2 or t̂1/t̂2 to detect the multiplicity of

eigenvalues. Indeed, our proposition fully characterizes the behavior of t̂1 and t̂2, so that we

can derive an expansion for t̂1 − t̂2, but this expansion depends on the covariance matrix Σ (see

Section S.4 in the Supplementary Material), which is not easy to estimate without the class label

information. Similarly, an expansion of t̂1/t̂2 would involve Σ. These concerns motivate us to resort

to a less accurate but empirically feasible detection rule for eigenvalue multiplicity. Concretely, we

derive concentration results regarding t̂1/t̂2, which do not rely on estimates of Σ and they give

rise to step 3 of Algorithm 3. Theorems 2–3 provide a guarantee for using diminishing positive

sequences τn and δn as thresholds for steps 3 and 4 in Algorithm 3. We adopt the following

assumption in the theory section.

Assumption 1. (i) The eigenvalues of Σ are bounded away from 0 and ∞. (ii) n1/C ≤ p ≤ nC

for some constant C > 0.

Before presenting Proposition 1, we will introduce population quantities t1 and t2, which are

asymptotically equivalent to population eigenvalues d1 and d2. We will establish below that t1 and

t2 are indeed the asymptotic means of t̂1 and t̂2, respectively. As we work on Z, a linearization of
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Ĥ, we will investigate IEZ and Z − IEZ. By Lemma 6 in the Supplementary Material, ±d1 and

±d2 are the eigenvalues of IEZ, and the vector consisting of the first n entries of the eigenvector of

IEZ corresponding to dk equals uk√
2
, k = 1, 2. Let the eigen decomposition of IEZ be

IEZ =
[
d1(v1v

>
1 − v−1v

>
−1) + d2(v2v

>
2 − v−2v

>
−2)
]
,

in which v1 and v2 are the unit eigenvectors corresponding to d1 and d2, v−1 and v−2 are the unit

eigenvectors corresponding to −d1 and −d2.

Define V = (v1,v2), V− = (v−1,v−2) and D = diag(d1, d2). Then the eigen decomposition of

IEZ can be written as

IEZ = VDV> −V−DV>− . (8)

Moreover, let

W = Z − IEZ =

 0 (X− IEX)>

X− IEX 0

 . (9)

For complex variable z, and any matrices (or vectors) M1 and M2 of suitable dimensions, we define

the following notations.

R(M1,M2, z) = −
L∑

l=0, l 6=1

z−(l+1)M>
1 IEWlM2 , (10)

and

f(z) =

 f11(z) f12(z)

f21(z) f22(z)

 = I+D
(
R(V,V, z)−R(V,V−, z)

(
−D+R(V−,V−, z)

)−1R(V−,V, z)
)
.

(11)

Note that f(z) is a crucial term to determine the locations of the eigenvalues t̂1 and t̂2. Indeed,

f(z) is the asymptotic non-random terms of the eigenvalue function (S.47) in the Supplementary

Material.

Lemma 1. Denote by an = d2 − σn and bn = d1 + σn. Assume that

d1 − d2 = o(
√
d2) and d2 � σ4/3n , (12)
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then we have the following conclusions

1. The equation

det(f(z)) = 0 , (13)

in which f(z) is defined in (11), has at most two solutions in [an, bn]. We denote these

solutions by t1 and t2 with t2 ≤ t1.

2.

tk − dk = O

(
σ2n
d2

)
, k = 1, 2 . (14)

Equation (12) is a signal strength assumption requiring that the top two eigenvalues should be

spiked enough, and that the second eigenvalue cannot be much smaller than the top eigenvalue. In

fact, (12) implies that d1/d2 → 1, that is, close to multiplicity. Under such conditions, Lemma 1

guarantees the existence of t1 and t2. Moreover, this lemma provides a guarantee that t1
d1

and t2
d2

are asymptotically close to 1. The following proposition is established by carefully analyzing the

behavior of t̂k around tk, k = 1, 2.

Proposition 1. Under Assumption 1 and (12), we have

t̂1 − t1 =
1

2

[
−g11(t1)− g22(t1) +

{
(g11(t1) + g22(t1))

2 − 4
(
g11(t1)g22(t1)− g212(t1)

)} 1
2

]
+ op(1) ,

(15)

t̂2 − t2 =
1

2

[
−g11(t2)− g22(t2)−

{
(g11(t2) + g22(t2))

2 − 4
(
g11(t2)g22(t2)− g212(t2)

)} 1
2

]
+ op(1) ,

(16)

where g11, g12, g21 and g22 are defined in

g(z) =

 g11(z) g12(z)

g21(z) g22(z)

 = z2D−1f(z)−V>WV . (17)
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For t̂2, we also have an alternative expression

t̂2 − t1 =
1

2

[
−g11(t1)− g22(t1)−

{
(g11(t1) + g22(t1))

2 − 4
(
g11(t1)g22(t1)− g212(t1)

)} 1
2

]
+ op(1) .

(18)

By the arguments before Lemma 1 and (S.54), g(z) is the matrix to determine t̂k − t1, k =

1, 2. Concretely, t̂k − t1 can be approximated by the eigenvalues of g(z). Proposition 1 provides

asymptotic expansions of t̂k around tk (k = 1, 2) that are not achievable by routine application of

the Weyl’s inequality. Indeed, Proposition 1 implies that the fluctuations of t̂k around tk is Op(1)

(cf., Lemma 2 in the Supplementary Material), while the Weyl’s inequality gives |t̂k − dk| ≤ ‖W‖,

which, combined with Lemma 4 in the Supplementary Material, implies that the fluctuation of

t̂1 − t̂2 around d1 − d2 is Op(σn). On the other hand, Proposition 1 also suggests that designing

a statistical procedure by thresholding t̂1 − t̂2 would be a difficult task, as explained in detail in

Section S.4 of the Supplementary Material.

Similar to the asymptotic expansion for t̂1 − t̂2, an asymptotic expansion for t̂1/t̂2 would also

involve the covariance matrix Σ. Nevertheless, the latter has better concentration property com-

pared to the former, which motivates us to consider a non-random thresholding rule on t̂1/t̂2. The

concentration properties of t̂1/t̂2 under different population scenarios are summarized in Theorem

2 and the first part of Theorem 3, respectively, with the former corresponding to the case close to

multiplicity and the latter corresponding to the case away from multiplicity. Moreover, the second

part of Theorem 3 validates the step 4 of ESSC. We would like to emphasize that Theorem 3 does

not require d2 to be spiked and thus can be applied even when d2 = 0.

Theorem 2. In addition to Assumption 1, further assume that d1 � σn, d1/d2 ≤ 1 + n−c for all

n ≥ n0, where c and n0 are positive constants, then there exists a positive constant C such that as

n→∞,

IP

(
t̂1

t̂2
≥ 1 + C

(
1

nc
+
σn
d1

))
→ 0 . (19)

Theorem 3. In addition to Assumption 1, further assume that d1 � σn and d1/d2 ≥ 1 + c for
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some positive constant c. Then for any positive constant D, we have

IP

(
t̂1

t̂2
≥ 1 +

c

2

)
≥ 1− n−D , (20)

for all n ≥ n0, where n0 is some constant that only depends on the constant D. Moreover, if all

the entries of u1 are equal, we have for all n ≥ n0,

IP

(∣∣∣∣∣
(

1

n

) 1
2

|1>n û1| − 1

∣∣∣∣∣ ≤
√

2σn
d1

)
≥ 1− n−D . (21)

We note that Theorems 2 and 3 require d1 � σn, which is weaker than the condition for d1

in Proposition 1. Indeed, the weaker conditions in Theorems 2 and 3 are the sufficient conditions

for our eigen selection procedure to work. By Theorems 2 and 3, we can choose τn and δn for

Algorithm 3 such that C(n−c + σn/d1) ≤ τn ≤ c/2 and δn ≥
√

2σn/d1 . In our simulation, we let

τn = log−1(n+p) and δn = log−2(n+p). These choices were reasonable when log−4(n+p) ≥ 2σn/d1

for sufficiently large n and p.

We next discuss that when p ∼ n, the results in Theorems 2–3 apply as long as clustering is

possible. Concretely, note that both these theorems require that d1, a measure of the difficulty

in clustering, to satisfy d1 � σn, which reduces to d1 �
√
n when p ∼ n. In the Supplementary

Material, we establish the clustering lower bound in Theorem 5 by showing that if d1 �
√
n,

then clustering is impossible regardless of what method to use; see the Supplementary Material

for specific assumptions. We further prove in Theorem 6 and Corollary 1 in the Supplementary

Material that when d1 ≥
√

2(1 + ε0)n log n for any positive constant ε0, a simple clustering method

based on the signs of selected eigenvector can perfectly recover the class labels with probability

tending to 1 (i.e., exact recovery). Our exact recovery result is similar to Theorem 3.1 of Abbe

et al. [2020+], which studied symmetric random matrices with independent entries on and above

diagonals and low expected rank. Moreover, in related papers working on different models such

as Z2-synchronization [Bandeira et al., 2017] and stochastic block model [Abbe et al., 2020+], it

is shown that when d1(A) is at least of order
√
n log n, there exists an exact recovery approach to

identify the memberships, where A is the data matrix in the respective context.
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5. GESSC: EXTENSION TO MULTIPLE CLUSTERS

In this section, we consider K clusters with K > 2 and given. Suppose x follows a Gaussian mixture

type model that has K different populations means:

xi =
K∑
j=1

1I(Yi = j)µj + wi , i = 1, . . . , n ,

where 1I(·) is the indicator function, wi follows the assumptions in (1), and {Yi}ni=1 are deterministic

latent class labels taking values in {1, 2, . . . ,K}. Similar to the K = 2 scenario, we define n-

dimensional latent vectors ak, k = 1, 2, . . . ,K, whose components are either 1 or 0. Concretely,

ak(i) = 1 if and only if xi ∼ N(µk,Σ), k = 1, 2, . . . ,K .

Moreover, we denote nk = ‖ak‖22 and ckl = µ>k µl, 1 ≤ k, l ≤ K. Similar to the definition of H in

(2), we define

H := (IEX)>IEX =
∑

1≤k,l≤K
aka

>
l ckl ≥ 0 . (22)

Note that rank(H) is not necessarily equal to K because the cluster centers µk, k = 1, · · · ,K may

be linearly dependent. Throughout this section, we denote rank(H) = K0 ≤ K.

Let U = (u1, . . . ,uK0 ,−u1, . . . ,−uK0), where uk is the unit right singular vector of IEX corre-

sponding to dk = σk(IEX). Further, let ûk be the unit right singular vector of X corresponding to

σk(X). We have the following theorem.

Theorem 4. Under the condition that dK0 � σn and Assumption 1, for any positive constant

D and n-dimensional unit vector x, there exists K0 orthogonal 2K0-dimensional unit vectors

(o1, . . . ,oK0) such that

IP

(
max

1≤k≤K0

|x>(ûk −Uok)| ≤

√
2σn
dK0

)
≥ 1− n−D. (23)

Moreover, for any 1 ≤ k ≤ K0, we have ok = ek or −ek if uk has multiplicity 1 and min{dk/dk+1, dk−1/dk}

is bounded away from 1 by some positive constant c, where d0 :=∞.

Take fk = n−1/2|1>n ûk| − 1 in (7). A small fk means |
(
1
n

)1/2
1>n ûk| is close to 1. Combining
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this with Theorem 4, a small fk implies the closeness between
(
1
n

)1/2 |1>nUok| and 1 with high

probability. This together with Cauchy-Schwarz inequality further implies that the entries of Uok

are close to each other with high probability, and thus ûk should be screened out because of no/low

clustering power. This motivates the following algorithm.

Algorithm 4 [Generalized Eigen-Selected Spectral Clustering (GESSC)]

Input: K0.

1: Set Û = ∅.
2: For 1 ≤ k ≤ K0, check if |fk| ≥ δn. If yes, add ûk to Û .
3: Return Û .
4: Apply the k-means algorithm to vector(s) in Û to cluster n instances into K groups.

Algorithm 4 is not immediately implementable because even though K is given, K0 is un-

known yet. Motivated by the rank estimation approach in Fan et al. [2020], we propose a sim-

ilar algorithm to estimate K0. Concretely, let Φ = 1
n

∑n
i=1 IExiIEx>i and Φ̂ = 1

n

∑n
i=1 xix

>
i .

Further define R̂ = diag(Φ̂)−1/2 Φ̂ diag(Φ̂)−1/2 and its corresponding population version R =

diag(Φ)−1/2 Φ diag(Φ)−1/2. Compared with Fan et al. [2020], we skipped the demean step in defin-

ing Φ, Φ̂, R and R̂. The intuition of this rank estimation approach is that the rank of Φ and R are

both equal to K0, which motivates us to estimate K0 by examining spiked eigenvalues of Φ̂ or R̂.

However, the magnitude of spiked eigenvalues of Φ̂ is not scale free and depends on the unknown

population parameters Σ. Thanks to the scaling step in R and R̂, the top K0 spiked eigenvalues can

be separated from the remaining ones by some threshold independent of the unknown population

parameter. The following algorithm is based on this intuition.

Algorithm 5 [Estimation of K0]

1: Let λCj (R̂) = −1/mn,j(λj(R̂)), where mn,j(z) = −(1 − (p − j)/n)z−1 + (p − j)/nmn,j(z) and

mn,j(z) =
(∑p

i=j+1(λi(R̂)− z)−1 + ((3λj(R̂) + λj+1(R̂))/4− z)−1
)
/(p− j).

2: K̂0 = max{j ∈ {1, . . . ,K} : λCj (R̂) > 1 +
√
p/n}}.

The term λCj (R̂) in Algorithm 5 is the bias-corrected version of the jth eigenvalue of R̂, and

the threshold that can separate the top K0 spiked eigenvalues from the rest is 1 +
√
p/n, which is

the same as the one proposed in Fan et al. [2020]. The consistency of K̂0 is ensured by Proposition

5 below.
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Assumption 2. ‖diag(Φ)−1/2 Σ‖ ≤ 1, λK0(R)→∞, p/n→ c for some positive constant c.

Assumption 3. The diagonal entries of Φ are bounded away from 0 and infinity. Moreover, the

limiting spectral distribution of diag(Φ)−1/2 Σ diag(Φ)−1/2 exists and we denote it by H(t).

Theorem 5. Let K̂0 be returned from Algorithm 5. Under Assumptions 1(i), 2–3, we have

IP(K̂0 = K0) = 1− o(1) .

Moreover, we have

IP

(
max

1≤k≤K̂0

|x>(ûk −Uok)| ≤
√

2σn
d
K̂0

)
= 1− o(1) , (24)

where ok is the same as Theorem 4.

Now we compare Algorithm 4 (K > 2) and Algorithm 3 (K = 2). The major distinction is

that Algorithm 3 screens out two types of eigenvectors: 1) the one without clustering power and

2) the one that cannot be estimated accurately, while Algorithm 4 only screens out the first type.

This is because when K = 2, a useful eigenvector has full clustering power. But when K > 2,

a useful eigenvector may only have partial clustering power in the sense that some clusters may

collapse along that eigenvector direction. Thus, despite that some eigenvectors may not be able to

be estimated accurately, including them can still be beneficial because they may carry important

information on certain clusters that are not provided by other eigenvectors.

6. SIMULATION STUDIES

In this section, we first compare our newly proposed eigen-selected spectral clustering (ESSC) with

k-means, Spectral Clustering, CHIME, IF-PCA and the oracle classifier (a.k.a, Bayes classifier)

under Models 1-5. Here k-means algorithm means that we directly apply the k-means to the

data {x1, . . . ,xn}. Recall that the oracle classifier to distinguish x|(Y = 1) ∼ N(µ1,Σ) from

x|(Y = 0) ∼ N(µ2,Σ) is

g(x) =


1, if (x− µ1+µ2

2 )>Σ−1(µ1 − µ2) ≥ log( π
1−π ) ,

0, if (x− µ1+µ2
2 )>Σ−1(µ1 − µ2) < log( π

1−π ) ,

(25)
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where π = IP(Y = 1). We generate n i.i.d. copies of x ∼ πN(µ1,Σ) + (1 − π)N(µ2,Σ) with

π = 0.5. We have also experimented with π = 0.4 and the results are very similar so omitted.

Throughout this section, we set µ1 = r(µ>11,µ
>
12)
>, where µ11 is an l-dimensional vector in which

all entries are 1, µ12 is a (p − l)-dimensional vector in which all entries are 0, and r is a scaling

parameter. Then under Model 6, we compare GESSC with other methods. The simulation models

are specified as follows.

• Model 1: µ2 = 0, n = 200, p ∈ {100, 200, 400, 600, 800, 1000, 1200}, l = 15 and r = 2. The

covariance matrix Σ = (σij) is symmetric with Σij = 0.8|i−j|.

• Model 2: µ2 = r(µ>12,µ
>
11)
>, n = 100, p ∈ {100, 200, 400, 600, 800, 1000, 1200}, l = 12 and

r = 2. The covariance matrix Σ = r2I.

• Model 3: µ2 = µ1/2, n = 200, p ∈ {100, 200, 400, 600, 800, 1000, 1200}, l = 60 and r = 1.

The covariance matrix Σ = I.

• Model 4: the same as Model 3 except for p ∈ {30, 50, 100, 200, 400, 600, 800} and l = 30.

• Model 5: µ2 = 1/r(µ>21,µ
>
22)
>, where µ21 is an (l/2)-dimensional vector in which all entries

are 1, µ22 is a (p − l/2)-dimensional vector in which all entries are 0, l = 20, p = 400,

n ∈ {200, 400, 600, 800, 1000} and r = 1. The covariance matrix Σ = r2I.

• Model 6: µ2 = µ1/2, µ3 = 0, n = 100, p ∈ {100, 200, 400, 600, 800, 1000, 1200}, l = 20 and

r = 2. The covariance matrix Σ = rI.

In Model 1, the covariance matrix Σ has non-zero off-diagonal entries. In Models 2–4, each

non-zero entry of µ1 and µ2 with magnitude not larger than r is covered by Gaussian noise with

variance r2. In Models 3–4, µ1 is parallel to µ2. With Model 5, we investigate how the trend of

the misclustering rate changes with n. Model 6 is the case of multiple clusters.

For CHIME , we use the Matlab codes uploaded to Github by the authors of Cai et al. [2013].

Since CHIME involves an EM algorithm, the initial value is very important. We use the default

initial values provided in the Matlab codes. We also need to provide the other initial values of

µ1, µ2, β0 = Σ−1(µ1 − µ2) and π denoted by µ̂1, µ̂2, β̂0 and π̂ respectively. Specifically, we
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set µ̂1 =

∑
1≤i≤n,Yi=1 xi

n1
and µ̂2 =

∑
1≤i≤n,Yi=0 xi

n2
, β̂0 = Σ−1(µ̂1 − µ̂2) and π̂ = 0.4. For Spectral

Clustering, there are a lot of variants. In the simulation part, we follow Ng et al. [2002] with

the common non-linear kernel k(x,y) = exp{−‖x−y‖
2
2

2p } to construct an affinity matrix. For IF-

PCA in Jin and Wang [2016], we directly apply the Matlab code provided by the authors without

modification.

We repeat 100 times for each model setting and calculate the average misclustering rate and

the corresponding standard error in Tables 3-8.

Table 3: The misclustering rate of several approaches for Model 1 with π = 0.5

p ESSC k-means Spectral Clustering CHIME IF-PCA Oracle

100 .067(.0017) .069(.0018) .071(.0017) .036(.0045) .14(.0112) .002(.0009)
200 .072(.0017) .074(.0019) .076(.0019) .071(.0097) .15(.0131) .002(.001)
400 .073(.0021) .079(.0022) .081(.0021) .088(.0125) .191(.0137) .002(.0009)
600 .078(.002) .088(.0022) .091(.0022) .067(.0105) .21(.0146) .002(.001)
800 .078(.0018) .1(.0055) .099(.0023) .036(.0047) .258(.0157) .002(.001)
1000 .084(.002) .117(.0063) .108(.0026) .024(.0046) .257(.0149) .002(.0009)
1200 .087(.0022) .12(.0053) .117(.003) .021(.005) .266(.0147) .002(.0009)

Table 4: The misclustering rate of several approaches for Model 2 with π = 0.5

p ESSC k-means Spectral Clustering CHIME IF-PCA Oracle

100 .012(.0011) .011(.001) .083(.013) .004(.0006) .224(.0139) .008(.0008)
200 .023(.0016) .024(.004) .169(.015) .002(.0004) .269(.0139) .007(.0008)
400 .042(.0029) .04(.0049) .298(.013) 0(0) .335(.0124) .009(.0009)
600 .068(.0034) .089(.0103) .352(.0096) 0(0) .373(.0107) .007(.0007)
800 .086(.0037) .122(.0121) .386(.0073) 0(0) .401(.0088) .006(.0007)
1000 .117(.0057) .211(.0145) .386(.0078) 0(0) .423(.0076) .008(.001)
1200 .16(.0084) .238(.0142) .398(.0069) 0(0) .407 (.0071) .006(.0009)

Table 5: The misclustering rate of several approaches for Model 3 with π = 0.5

p ESSC k-means Spectral Clustering CHIME IF-PCA Oracle

100 .028(.0012) .037(.0014) .038(.0014) .093(.0121) .203(.0096) .028(.0012)
200 .028(.0011) .047(.0014) .049(.0013) .438(.0117) .285(.0117) .026(.0012)
400 .027(.001) .085(.0075) .073(.0023) .446(.0106) .366(.0107) .026(.001)
600 .032(.0014) .137(.011) .1(.0023) .468(.0049) .393(.0088) .025(.0012)
800 .033(.0013) .193(.011) .134(.0034) .442(.0109) .41(.008) .029(.0012)
1000 .033(.0015) .269(.0127) .161(.004) .457(.0082) .424(.0066) .026(.0012)
1200 .037(.0013) .322(.0114) .196(.0059) .365(.0118) .425(.0071) .026(.0011)

In general, ESSC deteriorates much slower than k-means as p increases and is more stable than
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k-means. Tables 3–4 indicate that k-means is comparable to ESSC when p is small, while ESSC

works better than k-means when p is large. For Model 3 in Table 5, ESSC outperforms k-means.

Since the number of non-zero coordinates of µ1 and µ2 in Model 4 is much fewer than that in Model

3, the signal strength of the means in Model 4 is not strong enough to have large spiked singular

values. As such, the performance of ESSC in Table 6 is worse than that of k-means when p is smaller

(e.g., less than 200). However, since the misclustering rate of ESSC increases slowly as p increases,

when p passes 200, ESSC competes favorably against k-means. Comparing to Spectral Clustering,

ESSC excels in all models for almost all p and n. Tables 3–4 indicate that CHIME outperforms the

other approaches for Models 1–2. While for Models 3–4, the performance of CHIME is worse than

the others. We conjecture that such a phenomenon happens because the differences of µ1 and µ2

are small and µ1 − µ2 has more non-zero coordinates than that in Model 2, which does not cater

the sparse assumptions in CHIME very well. Table 7 for Model 5 indicates how the misclustering

rates change as n increases. When n is small, We also observe that ESSC performs better than

other methods. Since CHIME is designed for the case of two clusters and we do not run CHIME

in Table 8. Table 8 shows that GESSC outperforms the other approaches for Model 6.

Table 6: The misclustering rate of several approaches for Model 4 with π = 0.5

p ESSC k-means Spectral Clustering CHIME IF-PCA Oracle

30 .19(.003) .105(.0023) .103(.002) .47(.0024) .235(.0055) .087(.0021)
50 .2(.0033) .112(.003) .111(.0026) .472(.0021) .301(.0083) .088(.0019)
100 .21(.003) .145(.0059) .133(.0029) .474(.002) .341(.009) .084(.0018)
200 .21(.0028) .24(.0107) .182(.0048) .474(.0022) .419(.0065) .086(.0018)
400 .23(.0031) .372(.008) .279(.0079) .471(.0019) .448(.0041) .086(.0019)
600 .241(.0034) .41(.006) .348(.0075) .47(.0023) .452(.004) .086(.002)
800 .255(.0034) .419(.0059) .349(.0071) .473(.0021) .46(.0026) .088(.002)

Table 7: The misclustering rate of several approaches for Model 5 with π = 0.5

n ESSC k-means Spectral Clustering CHIME IF-PCA Oracle

200 .04(.0015) .073(.0058) .347(.0096) .079(.0007) .384(.0108) .014(.0009)
400 .033(.0009) .042(.0012) .191(.0137) .016(.0006) .305(.0133) .015(.0006)
600 .03(.0007) .036(.0008) .062(.0067) .022(.0007) .288(.0139) .013(.0004)
800 .029(.0007) .032(.0007) .037(.0021) .029(.0006) .291(.0147) .013(.0004)
1000 .029(.0005) .031(.0005) .033(.0008) .034(.0006) .28(.0154) .014(.0004)
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Table 8: The misclustering rate of several approaches for Model 6

p GESSC k-means Spectral Clustering IF-PCA

100 .099(.0029) .239(.0076) .326(.0064) .481(.0075)
200 .108(.0035) .309(.0074) .343(.0053) .527(.0076)
400 .12(.0047) .339(.0063) .356(.0053) .547(.0073)
600 .138(.0061) .363(.0049) .357(.0044) .559(.0063)
800 .18(.0088) .399(.0065) .378(.0052) .567(.0061)
1000 .2(.0088) .416(.0065) .396(.0056) .575(.0058)
1200 .255(.0091) .436(.0067) .399(.0048) .584(.0049)

7. REAL DATA ANALYSIS

In this section, we run several real data sets in finance and biomedical diagnosis to compare the

newly proposed ESSC with the other clustering approaches.

7.1 Financial data

We consider a credit card dataset in ULB and Worldline [2018]. This dataset contains transactions

made by credit cards in September 2013 by European cardholders. Each instance in the data

contains 30 features and the data has labeled 492 frauds out of 284, 807 transactions. Among these

features, 28 are engineered features obtained from some original features (which are not revealed

for privacy concerns), while the other two features are ‘Time’ and ‘Amount’. We only use the

28 engineered features to do clustering. Clearly, the data set is highly imbalanced: the fraud

transactions account for 0.172% of all transactions. We choose the first 50 fraud transactions and

the first 5r normal transactions, where r ∈ {10, 11, . . . , 50}. Note that for r = 10, the fraud and

normal groups are balanced in size, and for r = 50, normal transactions are 5 times as many as the

fraud ones. On these data sets, we compare ESSC with IF-PCA and two other spectral clustering

methods. The first spectral method (SC1) directly applies k-means to the first n rows of (v̂1, v̂2)

and the second method (SC2) is the one that uses a non-linear kernel as described in the simulation

section. We do not report the performance of CHIME in real data analysis, as initializations on

parameters such as Σ are not communicated in the original paper and unlike simulation, there is no

obvious initialization choice for real data studies. Figure 1 demonstrates that ESSC is the preferred

approach for all r’s (i.e., imbalanced ratios), demonstrating the efficiency and stability of ESSC on

this financial data set.
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Figure 1: Misclustering rate of the Credit card data vs. different sample sizes n = 5(r + 10). The
red curve represents IF-PCA, the cyan curve represents SC1, the blue curve represents SC2 and
the black curve represents ESSC.

7.2 Biological data

We use several gene microarray data sets collected and processed by authors in Jin and Wang

[2016]. These data sets are canonical datasets analyzed in the literature such as in Dettling [2004],

Gordon et al. [2002] and Yousefi et al. [2009]. We use a processed version at www.stat.cmu.edu/ ji-

ashun/Research/software/GenomicsData. We apply the four approaches mentioned in the financial

data section. All the datasets considered in this section belong to the ultra-high-dimensional set-

tings. In each dataset, the number of features is about two orders of magnitude larger than the

sample size; see Table 9 for a summary. In supervised learning, when feature dimensionality and

sample size have such a relation, some independence screening procedure is usually beneficial before

implementing methods from joint modeling. We will adopt a similar two-step pipeline for cluster-

ing. As IF-PCA involves an independence screening step via normalized KS-statistic ((1.7) of Jin

and Wang [2016]), we also implement this screening step before calling other methods. Concretely

on each dataset, for each p ∈ {150, 151, 152, . . . , 300}, we keep the p features that have the largest

p normalized KS-statistic and construct a p × n matrix X. Then, since the dimension reduction

step is done, for IF-PCA we only apply the “PCA-2” step in Jin and Wang [2016]. Moreover, we

subsample each dataset so that the resulting datasets all have an average size of 60. Concretely,
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when a dataset has n instances, we keep each instance with a probability 60/n. For each dataset,

we repeat the subsampling procedure 10 times and report the average misclustering rates of the

clustering methods on the subsamples.

Table 9: Sample size and dimensionality of real data sets

Data Name Sample size Total number of features

Colon Cancer 62 2000
Breast Cancer 276 22215
Lung Cancer 1 203 12600
Lung Cancer 2 181 12533

Leukemia 72 3571
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Figure 2: Misclustering rate of the Colon Cancer data vs. different feature dimension p. The red
curve represents IF-PCA, the cyan curve represents SC1, the blue curve represents SC2, and the
black curve represents ESSC.

From Figures 2-6, we compare the methods as follows. ESSC and SC1 work better than IF-PCA

for the Colon Cancer and Leukemia data. For Lung Cancer 1 data, ESSC has a similar misclus-

tering rate with IF-PCA in general and outperforms the other two approaches. For Breast Cancer

data, SC2 outperforms the other approaches, SC1 works a little better than IF-PCA, and ESSC

has similar performance with SC1. For Lung Cancer 2 data, IF-PCA has the best performance
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Misclusering rate of Breast Cancer data
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Figure 3: Misclustering rate of the Breast Cancer data vs. different feature dimension p. The red
curve represents IF-PCA, the cyan curve represents SC1, the blue curve represents SC2 and the
black curve represents ESSC.
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Misclusering rate of Lung Cancer 1 data
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Figure 4: Misclustering rate of Lung Cancer 1 data vs. different feature dimension p. The red
curve represents IF-PCA, the cyan curve represents SC1, the blue curve represents SC2 and the
black curve represents ESSC.

and ESSC is the second best. Overall, ESSC belongs to the top two across all five datasets,

demonstrating its efficiency and stability.

8. DISCUSSION

In this work, with a Gaussian mixture type model, we propose a theory-backed eigen selection

procedures for spectral clustering. For future work, it would be interesting to study how an eigen

selection procedure might help spectral clustering when a non-linear kernel is used to create an

affinity matrix.
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Misclusering rate of Lung Cancer 2 data
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Figure 5: Misclustering rate of Lung Cancer 2 data vs. different feature dimension p. The red
curve represents IF-PCA, the cyan curve represents SC1, the blue curve represents SC2 and the
black curve represents ESSC.

Misclusering rate of Leukemia data
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Figure 6: Misclustering rate of the Leukemia data vs. different feature dimension p. The red curve
represents IF-PCA, the cyan curve represents SC1, the blue curve represents SC2 and the black
curve represents ESSC.
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