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S.1 Toy examples

Here we present the setting of the toy examples that correspond to Tables 1-2.

Model A: µ1 = (µ>11,µ
>
12)>, µ2 = −(µ>31,µ

>
11,µ

>
32)>, where µ31 is an (l/2)-dimensional vec-

tor in which all entries are 0, µ32 is a (p − 3l/2)-dimensional vector in which all entries are 0, p ∈
{100, 200, 400, 600, 800}, l = 8. The covariance matrix Σ = r2I, r = 2. In this model, we also let

n1 = n2 = n/2 = 100. In this model, it is easy to see that the entries of the second right singular vector

of IEX are all equal and thus it does not have clustering power.

Model B: µ1 = 2(µ>11,µ
>
12)>, µ2 = (µ>12,µ

>
11)>, where µ11 is an l-dimensional vector in which all

entries are 1, µ12 is a (p − l)-dimensional vector in which all entries are 0, p ∈ {100, 200, 400, 600, 800},
l = 24. The covariance matrix Σ = r2I, r = 2. In this model, we also let n1 = n2 = n/2 = 50. Then we

have d2 = d1/2.

With Models A and B, we compare the k-means approach that acts on û1 with the k-means approach

that acts on both û1 and û2, which are eigenvectors of X>X. We simulate for 100 times from these

models and calculate the average misclustering rates and the corresponding standard error in Tables 1-2.

S.2 The properties of the spectrum of H

Because

rank((IEX)>) ≤ rank(a1µ
>
1 ) + rank(a2µ

>
2 ) = 2 , (S.1)

there exist at most two n-dimensional orthogonal unit vectors u1 and u2 such that

H = d21u1u
>
1 + d22u2u

>
2 , where d21 ≥ d22 ≥ 0 . (S.2)

Here, d21 and d22 are the top two eigenvalues of H and u1 and u2 are the corresponding (population)

eigenvectors. Under our model setting, we have d21 > 0 because otherwise µ1 = µ2 = 0, contradicting

with the model assumption. For simplicity, in the following, we use u = (u(1), . . . ,u(n))> to denote

either u1 or u2 and d2 to denote its corresponding eigenvalue. By the definition of eigenvalue,

Hu = d2u . (S.3)
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Note that H has a block structure by suitable permutation of rows and columns. For example, when

a1 = (1, 0, 1, 0)>, a2 = (0, 1, 0, 1)>, substituting a1 and a2 into (2), we have

H =


c11 c12 c11 c12

c12 c22 c12 c22

c11 c12 c11 c12

c12 c22 c12 c22

 .

By exchanging the 2nd and 3rd rows and columns of H simultaneously, we can get the following matrix

with a clear block structure

H̃ =


c11 c11 c12 c12

c11 c11 c12 c12

c12 c12 c22 c22

c12 c12 c22 c22

 .

The eigenvalues of H and H̃ are the same and the eigenvectors are the same up to proper permutation

of their coordinates. Inspired by the block structure of H after proper permutation, we can see that (2)

and (S.3) imply

c11
∑

a1(i)=1

u(i) + c12
∑

a1(i)=0

u(i) = d2u(j), for j such that a1(j) = 1 , (S.4)

c22
∑

a1(i)=0

u(i) + c12
∑

a1(i)=1

u(i) = d2u(j), for j such that a1(j) = 0 . (S.5)

From (S.4) and (S.5), we conclude that if d2 > 0, then

a1(i) = a1(j) =⇒ u(i) = u(j) . (S.6)

S.3 Proof of Theorem 1

We use u = (u(1), . . . ,u(n))> to denote either u1 or u2 and d2 to denote its corresponding eigenvalue,

unless specified otherwise.

Because a1 only takes two values, by (S.6), there are at most two values of u(i), i = 1, . . . , n. We

denote these values by v1 and v2. By (S.4) and (S.5), the number of v1’s in u is either n1 or n2. Without

loss of generality, we assume the number of v1’s in u is n1 and the number of v2’s in u is n2.

Then it follows from (S.4) and (S.5) that

n1c11v1 + n2c12v2 = d2v1 , and n1c12v1 + n2c22v2 = d2v2 . (S.7)

These equations are equivalent to

(d2 − n1c11)v1 = n2c12v2 , (S.8)

n1c12v1 = (d2 − n2c22)v2 . (S.9)

In view of (S.8) and (S.9), we have both d21 and d22 solve the equation

(d2 − n2c22)(d2 − n1c11) = n1n2c
2
12 . (S.10)

Then (3) and (4) follows from (S.10) directly. Now let us prove (a)-(d) of Theorem 1 one by one.
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(a) When c212 = c11c22, by (3) and (4) we have d21 = n1c11 + n2c22 and d22 = 0. Then u2 does not have

clustering power. Substituting d21 = n1c11 + n2c22 into (S.8) and (S.9), we obtain that u1 ∝ 1 if and

only if c11 = c12 = c22, which is equivalent to µ1 = µ2. This is a contradiction to the condition that

µ1 6= µ2 in this paper. Therefore u1 has clustering power.

(b) When c12 = 0, c212 6= c11c22 and n1c11 = n2c22, by (3) and (4) we conclude that d21 = d22 = n1c11.

Since u>1 u2 = 0, it is easy to see that at least one of u1 and u2 has clustering power.

(c) When c12 = 0, c212 6= c11c22 and n1c11 6= n2c22, then it follows from (3) and (4) that d21 =

max{n1c11, n2c22} and d22 = min{n1c11, n2c22}. Moreover, by 0 = c212 6= c11c22 we have c11, c22 > 0,

which implies that d22 > 0. Combining these with (S.8) and (S.9), we have both u1 and u2 have

clustering power. Moreover, both u1 and u2 contain zero entries in view of (S.7).

(d) When c12 6= 0 and c212 6= c11c22. By (3) and (4) we have d21, d
2
2 6= n1c11 6= 0, by (S.8) we have

v1 =
n2c12

d2 − n1c11
v2 . (S.11)

Therefore if n2c12/(d
2−n1c11) 6= 1, the corresponding eigenvector u has clustering power. Moreover,

in case (d), n2c12/(d
2 − n1c11) = 1 is equivalent to d2 = n1c11 + n2c12 = n1c12 + n2c22 by (S.8) and

(S.9). Moreover, the corresponding eigenvector u has all entries equal to the same value and thus has

no clustering power. Since u1 and u2 are orthogonal, when n1c11 + n2c12 = n1c12 + n2c22, exactly

one of u1 and u2 has clustering power. If n1c11 +n2c12 6= n1c12 +n2c22, then n2c12/(d
2
1−n1c11) 6= 1

and n2c12/(d
2
2 − n1c11) 6= 1 and thus both u1 and u2 have clustering power.

S.4 The upper bound of t̂1 − t̂2
Equations (15) and (18) imply that

t̂1 − t̂2 =
{

(g11(t1) + g22(t1))
2 − 4

(
g11(t1)g22(t1)− g212(t1)

)} 1
2

+ op(1) . (S.12)

To bound the main term in (S.12), we calculate the variance and covariance of v>i Wvj , 1 ≤ i, j ≤ 2, as

follows.

var(v>i Wvi) = 4w>i Σwi, i = 1, 2 , (S.13)

var(v>1 Wv2) = w>1 Σw1 + w>2 Σw2, i = 1, 2 ,

cov(v>i Wvi,v
>
1 Wv2) = 2w>1 Σw2, i = 1, 2 ,

where wi is the last p entries of vi. Also note that

IEW2 = diag(nΣ, (trΣ)I) . (S.14)

Hence, v>1 IEW2v1 − v>2 IEW2v2 = n(w1Σw1 − w2Σw2) and v>1 IEW2v2 = nw1Σw2. By Lemma 3 in

the Supplementary Material and (10), we have

v>1 IEW2v1 =
1

2
(nw>1 Σw1 + trΣ) ∼ σ2

n . (S.15)

By (S.14) and Assumption 1 on Σ, for M1 and M2 with finite columns and spectral norms, we have

‖R(M1,M2, t1) +

2∑
l=0, l 6=1

t
−(l+1)
1 M>

1 IEWlM2‖ = O

(
σ3
n

t41

)
. (S.16)
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Then (S.15), (S.16), Assumption 1 and the definition of g(z) together imply that∣∣∣∣gij(t1)− t21
di

+ vTi Wvj + t1 +
vTi IEW2vj

t1

∣∣∣∣ = O

(
σ3
n

t21

)
� vT1 IEW2v1

t1
. (S.17)

By Lemma 1 we have t1 = d1 +O(
σ2
n

d2
), (S.17) suggests that we have with probability tending to 1,

{
(g11(t1) + g22(t1))

2 − 4
(
g11(t1)g22(t1)− g212(t1)

)} 1
2

(S.18)

≤

{(
t21(d1 − d2)

d1d2
+

v>1 IEW2v1 − v>2 IEW2v2

t1
+ v>1 Wv1 − v>2 Wv2

)2

+ 4

(
v>1 IEW2v2

t1
+ v>1 Wv2

)2
} 1

2

(S.19)

+ ε
v>1 IEW2v1

t1
,

for any positive constant ε. Through (S.13) and (S.15), we see that on both sides of (S.18), the information

of Σ plays an important role. Therefore, a good thresholding procedure on t̂1 − t̂2 would involve an

accurate estimate of Σ, which is difficult to obtain in the absence of label information.

S.5 Proof of Proposition 1

The main idea for proving Proposition 1 is to carefully construct a matrix whose eigenvalue is t̂k − t1,

then using similar idea for proving Lemma 1 by analysing the resolvent entries of the matrices such as

(W − zI)−1, we can get the desired asymptotic expansions.

By the conditions in Proposition 1, for sufficiently large n, there exists some positive constant L such

that
σLn
dL1

<
1

2d41
, (S.20)

and in the sequel we fix this L. Indeed,
σL
n

d
3L/4
1

� 1 and therefore (S.20) holds for L = 16.

Assumption (12) implies that

d1
d2

= 1 + o(1). (S.21)

It follows from d2 � σn and (S.21) that

an
d2

= 1 + o(1) and
bn
d1

= 1 + o(1) . (S.22)

Moreover, it follows from (S.21) and Assumption 1 that

σn
an
≤ 1

2nε
, for some positive constant ε . (S.23)

Throughout the proof, (S.23) will be applied in every Op(·), op(·), O(·) and o(·) terms without explicit

quotation. We define a Green function of W (defined in (9)) by

G(z) = (W − zI)−1, z ∈ C, |z| > ‖W‖ . (S.24)

By Weyl’s inequality, we have |t̂k − dk| ≤ ‖W‖, k = 1, 2. Thus, by (S.22) and Lemma 4, with

probability tending to 1,

min{t̂2, an} � ‖W‖ . (S.25)
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Therefore, G(z), z ∈ [an, bn], G(t̂1) and G(t̂2) are well defined and nonsingular with probability

tending to 1. Since we only need to show the conclusions of Proposition 1 hold with probability tending

to 1, in the sequel of this proof, we will assume the existence and nonsingularity of G(t̂k).

By the decomposition of IEZ in (8) and definition of W in (9), we have Z = VDV>−V−DV>−+W.

Then it can be calculated that

0 = det
(
Z − t̂kI

)
= det

(
W − t̂kI + VDV> −V−DV>−

)
= det

(
G−1(t̂k) + (VDV> −V−DV>−)

)
= det

(
G−1(t̂k)

)
det
(
I + G(t̂k)(VDV> −V−DV>−)

)
, k = 1, 2 .

Since G(t̂k) is a nonsingular matrix, det[G−1(t̂k)] 6= 0, which leads to

det
(
I + G(t̂k)(VDV> −V−DV>−)

)
= 0.

Notice that (VDV> −V−DV>−) = (V,V−)

 D 0

0 −D

 (V,V−)>. Combining this with the identity

det(I + AB) = det(I + BA) for any matrices A and B, we have

0 = det[I + G(t̂k)(VDV> −V−DV>−)] = det

I +

 D 0

0 −D

 (V,−V−)>G(t̂k)(V,−V−)

 .
Since D > 0, it follows from the equation above that

det

 D−1 0

0 −D−1

+ (V,−V−)>G(t̂k)(V,−V−)

 = 0 , for k = 1, 2 . (S.26)

To analyze (S.26), we prove some properties of G(z) and the related expressions. First of all, by

Lemma 1, we have

tk − dk = O

(
σ2
n

an

)
, k = 1, 2 . (S.27)

Therefore the distance of tk and dk is well controlled and will be used later in this proof. Now we turn

to analyse t̂k, k = 1, 2. By (S.25), we have

G(z) = (W − zI)−1 = −
∞∑
i=0

Wi

zi+1
, (S.28)

and

G′(z) = −(W − zI)−2 =

∞∑
i=0

(i+ 1)Wi

zi+2
, z ∈ [an, bn] . (S.29)

By (S.20), (S.28), (S.29), Lemmas 3 and 4, for any z ∈ [an, bn] we have

M>
1 G(z)M2 = M>

1 (W − zI)−1M2 = −
∞∑
i=0

1

zi+1
M>

1 WiM2

= R(M1,M2, z)− z−2M>
1 WM2 −

L∑
i=2

1

zi+1
M>

1 (Wi − IEWi)M2 + ∆̃n1

= R(M1,M2, z)− z−2M>
1 WM2 + ∆n1 , (S.30)

5



and

M>
1 G′(z)M2 = M>

1 (W − zI)−2M2 =

∞∑
i=0

i+ 1

zi+2
M>

1 WiM2

= R′(M1,M2, z) + 2z−3M>
1 WM2 +

L∑
i=2

i+ 1

zi+2
M>

1 (Wi − IEWi)M2 + ∆̃n

= R′(M1,M2, z) + 2z−3M>
1 WM2 + ∆n , (S.31)

where ‖∆n1‖ = Op(
σn

a3n
), ‖∆̃n1‖ = Op(

1
a3n

), ‖∆n‖ = Op(
σn

a4n
) and ‖∆̃n‖ = Op(

1
a4n

). Notice that

R′(M1,M2, z) =
M>

1 M2

z2
+

M>
1 IEW2M2

z4
+

L∑
i=3

i+ 1

zi+2
x>IEWiy .

It follows from Lemma 3 and (10) that for all z ∈ [an, bn]∥∥R(M1,M2, z) + z−1M>
1 M2

∥∥ = O(σ2
n/a

3
n) , (S.32)

and ∥∥R′(M1,M2, z)− z−2M>
1 M2

∥∥ = O(σ2
n/a

4
n) . (S.33)

By (S.30) and Lemma 3, we can conclude that for all z ∈ [an, bn]∥∥V>G(z)V−
∥∥ = a−2n Op(1) + a−3n Op(σ

2
n) , (S.34)

and ∥∥M>
1 G(z)M2 −R(M1,M2, z)

∥∥ =
∥∥z−2M>

1 WM2

∥∥+Op

(
σn
a3n

)
= Op

(
1

a2n

)
. (S.35)

By (S.32) and (S.35), we have∥∥∥ (−D−1 + V>−G(z)V−
)−1 − (−D +R(V−,V−, z))

−1
∥∥∥

≤
∥∥V>−G(z)V− −R(V−,V−, z)

∥∥∥∥∥(−D−1 + V>−G(z)V−
)−1∥∥∥∥∥∥(−D +R(V−,V−, z))

−1
∥∥∥

= Op(1), z ∈ [an, bn] . (S.36)

Moreover, by (S.32), (S.33) and (S.35) we have∥∥∥ [(−D−1 + V>−G(z)V−
)−1 − (−D +R(V−,V−, z))

−1
]′ ∥∥∥ (S.37)

=
∥∥∥ (−D−1 + V>−G(z)V−

)−1
V>−G′(z)V−

(
−D−1 + V>−G(z)V−

)−1
− (−D +R(V−,V−, z))

−1R′(V−,V−, z) (−D +R(V−,V−, z))
−1
∥∥∥

= O

{∥∥V>−G′(z)V− −R′(V−,V−, z)
∥∥∥∥∥(−D−1 + V>−G(z)V−

)−1∥∥∥2}
+O

{∥∥∥[−D−1 + V>−G(z)V−
]−1 − (−D +R(V−,V−, z))

−1
∥∥∥

·
(∥∥∥(−D−1 + V>−G(z)V−

)−1∥∥∥+
∥∥∥(−D−1 + V>−G(z)V−

)−1∥∥∥) ‖R′(V−,V−, z)‖}
= Op

(
1

an

)
+Op

(
σn
a2n

)
,
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and ∥∥∥{(−D +R(V−,V−, z))
−1
}′ ∥∥∥ (S.38)

=
∥∥∥(−D +R(V−,V−, z))

−1R′(V−,V−, z) (−D +R(V−,V−, z))
−1
∥∥∥

= O(1), z ∈ [an, bn] .

By (S.31)–(S.37), we have the following expansions

V>F(z)V = V>G(z)V−
(
−D−1I + V>−G(z)V−

)−1
V>−G(z)V (S.39)

= R(V,V−, z)
(
−D−1I +R(V−,V−, z)

)−1R(V−,V, z) + ∆n2 ,

and

V>F′(z)V = 2V>G′(z)V−
(
−D−1 + V>−G(z)V−

)−1
V>−G(z)V (S.40)

+ V>G(z)V−

{(
−D−1 + V>−G(z)V−

)−1}′
V>−G(z)V

= 2R′(V,V−, z) (−D +R(V−,V−, z))
−1R(V−,V, z)

+R(V,V−, z)
{

(−D +R(V−,V−, z))
−1
}′
R(V−,V, z)

+ ∆n3 ,

where ‖∆n2‖ = Op(
σ2
n

a4n
) and ‖∆n3‖ = Op(

1
a4n

) +Op(
σ3
n

a6n
).

Now we turn to (S.26). By (S.30), (S.32) and (S.35), we can see that ‖V>G(t̂k)V−‖ = Op(
1
a2n

),

|v1G(t̂k)v2| = Op(
1
a2n

) and |v−1G(t̂k)v−2| = Op(
1
a2n

). In other words, the off diagonal terms in the

determinant (S.26) are all Op(
1
a2n

).

The 3rd diagonal entry in the determinant (S.26) is v>−1G(t̂k)v−1− 1
d1

. By (S.30), (S.32) and (S.35),

we have v>−1G(t̂k)v−1 = − 1
dk

+ op(
1
an

). i.e. v>−1G(t̂k)v−1 − 1
d1

= − 1
dk
− 1

d1
+ op(

1
an

). Similarly, the 4th

diagonal entry is v>−2G(t̂k)v−2 − 1
d2

= − 1
dk
− 1

d2
+ op(

1
an

). Therefore the matrix V>−G(t̂k)V− −D−1 is

invertible with probability tending to 1. Recalling the determinant formula for block structure matrix

that

det

 A B>

B C

 = det(C) det(A−B>C−1B) ,

for any invertible matrix C and setting C = V>−G(t̂k)V− −D, we have with probability tending to 1,

det(V>(G(t̂k)− F(t̂k))V + D−1) = 0 , (S.41)

where F(z) = G(z)V−
(
−D−1 + V>−G(z)V−

)−1
V>−G(z).

The three equations (S.31), (S.33) and (S.40) lead to

‖V> (G′(z)− F′(z)) V − 1

z2
P̃−1z − 2z−3V>WV‖ = Op

(
σn
a4n

)
, (S.42)

for z ∈ [an, bn], where

P̃−1z = z2
(
AV,z

z

)′
,

and

AV,z =
{
tR(V,V, z)− zR(V,V−, z) (−D +R(V−,V−, z))

−1R(V−,V, z)
}>

. (S.43)
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Further, recalling the definition in (S.43), it holds that

1

z2
P̃−1z =

(
AV,z

z

)′
= R′(V,V, z)− 2R′(V,V−, z) (−D +R(V−,V−, z))

−1

×R(V−,V, z)−R(V,V−, z)
{

(−D +R(V−,V−, z))
−1
}′
R(V−,V, z) . (S.44)

By (S.32), (S.33) and (S.38), we have

‖P̃−1z − I‖ = O

(
σ2
n

a2n

)
.

Plugging this into (S.42) and by Lemmas 3, we have for all z ∈ [an, bn],

‖V> (G′(z)− F′(z)) V − z−2I− 2z−3V>WV‖ = a−4n Op(σ
2
n) . (S.45)

Hence there exists a 2× 2 random matrix B such that

V> (G′(z)− F′(z)) V = z−2B(z), (S.46)

where ‖B(z)− I‖ = Op(a
−1
n + a−2n σ2

n).

Further, in light of expressions (S.30) and (S.39), we can obtain the asymptotic expansion

‖I + DV> (G(z)− F(z)) V − f(z) + z−2DV>WV‖ = Op(a
−2
n σn) , (S.47)

for all z ∈ [an, bn], where f(z) is defined in (11).

In view of (S.47) and the definition of tk, we have∥∥I + DV> (G(tk)− F(tk)) V − f(tk) + t−2k DV>WV
∥∥ = Op

(
σn
a2n

)
, k = 1, 2 . (S.48)

By (S.41), (S.46) and (S.48), an application of the mean value theorem yields

0 = det(I + DV>
(
G(t̂k)− F(t̂k)

)
V) = det(I + DV> (G(t1)− F(t1)) V

+ DB̃(t̂k − t1)) , k = 1, 2 , (S.49)

where B̃ = (B̃ij(t̃ij)), t̃
2
ijB̃ij(t̃ij) = δij + Op(a

−1
n + a−2n σ2

n) by (S.46) and t̃ij is some number between t1

and t̂k. By (S.47), similar to (S.110)–(S.115), we can show that

|t̂k − t1| = Op

(
1 +

σ2
n

an

)
+ |d1 − dk| . (S.50)

(S.49) can be rewritten as

0 = det(I + DV>
(
G(t̂k)− F(t̂k)

)
V) = det(I + DV> (G(t1)− F(t1)) V

+ t−21 DC(t̂k − t1)) , k = 1, 2 , (S.51)

where

‖C− I‖ = Op

(
a−1n + a−2n σ2

n +
d1 − d2
an

)
. (S.52)

We know that t̂k−t1, k = 1, 2 are the eigenvalues of t21C
−1D−1

(
I + DV> (G(t1)− F(t1)) V

)
. Combining

(S.27) with the definition of g(z) in (17), we have gij(tk) = O(
σ2
n

an
+ d1 − d2) +Op(1), 1 ≤ i, j, k ≤ 2. The

asymptotic expansions in (S.48), (S.52) and Lemma 5 together with the condition (12) and (S.22) imply

that

t21C
−1D−1

(
I + DV> (G(t1)− F(t1)) V

)
= g(t1) + ∆n4 , (S.53)
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where ∆n4 is a symmetric matrix with ‖∆n4‖ = op(1). By (S.53), we can rewrite (S.51) as follows,

det(g(t1) + ∆n4 + (t̂k − t1)I) = 0, k = 1, 2 . (S.54)

Moreover, by (17), the eigenvalues of g(t1) are

1

2

[
−g11(t1)− g22(t1)±

{
(g11(t1) + g22(t1))

2 − 4
(
g11(t1)g22(t1)− g212(t1)

)} 1
2

]
. (S.55)

Combining (S.54)–(S.55) with Weyl’s inequality and noticing that t̂1 > t̂2, we have the following expan-

sions

t̂1− t1 =
1

2

[
−g11(t1)− g22(t1) +

{
(g11(t1) + g22(t1))

2 − 4
(
g11(t1)g22(t1)− g212(t1)

)} 1
2

]
+ op(1) , (S.56)

and

t̂2 − t1 =
1

2

[
−g11(t1)− g22(t1)−

{
(g11(t1) + g22(t1))

2 − 4
(
g11(t1)g22(t1)− g212(t1)

)} 1
2

]
+ op(1). (S.57)

Expanding the determinant at t2 in (S.49) and repeating the process from (S.49)–(S.47), we also have

t̂2 − t2 =
1

2

[
−g11(t2)− g22(t2)−

{
(g11(t2) + g22(t2))

2 − 4
(
g11(t2)g22(t2)− g212(t2)

)} 1
2

]
+ op(1). (S.58)

S.6 More discussion of Proposition 1

In this section we show that the major terms at the right hand sides of (15) and (16) are meaningful, as

shown in the following lemma.

Lemma 2.

1

2

[
−g11(t1)− g22(t1) +

{
(g11(t1) + g22(t1))

2 − 4
(
g11(t1)g22(t1)− g212(t1)

)} 1
2

]
= Op(1) , (S.59)

and

1

2

[
−g11(t2)− g22(t2)−

{
(g11(t2) + g22(t2))

2 − 4
(
g11(t1)g22(t2)− g212(t2)

)} 1
2

]
= Op(1) . (S.60)

Proof. The proofs of (S.59) and (S.60) are the same, so we only prove (S.59).

By Lemma 3, we have gij(t1) =
t21
di
fij(t1) +Op(1). Therefore it suffices to show that

1

2

[
− t

2
1

di
f11(t1)− t21

d2
f22(t1) +

{
(g11(t1) + g22(t1))

2 − 4
(
g11(t1)g22(t1)− g212(t1)

)} 1
2

]
= Op(1) .

By Lemma 3, for any ε > 0, there exists a constant M0 such that

IP
(
‖V>WV‖ ≥M0

)
≤ ε .

Now we consider the inequality constraint on the event {‖V>WV‖ ≤ M0}. Let h1 =
t21
d1
f11(t1) +

t21
d2
f22(t1). It follows from the definition of t1, (S.94), (S.109) and (S.110) that

f11(t1) ≥ 0 , and f22(t1) ≥ 0 .

Let

h2 = 2h1(v>1 Wv1+v>2 Wv2)−4
t21
d1
f11(t1)v>2 Wv2−4

t21
d2
f22(t1)v>1 Wv1+4t21

(
f12(t1)

d1
+
f21(t1)

d2

)
v>1 Wv2 ,

9



and

h3 = (v>1 Wv1 − v>2 Wv2)2 + 4(v>1 Wv2)2 .

By the definition of g and the above equations, we have

(g11(t1) + g22(t1))2 − 4
(
g11(t1)g22(t1)− g212(t1)

)
= h21 + h2 + h3 .

Note that |h2| ≤ M1|h1| and |h3| ≤ M2, where M1 and M2 are polynomial functions of M0 (depending

on M0 only). Now we consider two cases:

1. |h3| ≤ |h1|, then we have |h2 + h3| ≤ (M2 + 1)|h1|. Then∣∣∣∣− t21d1 f11(t1)− t21
d2
f22(t1) +

{
(g11(t1) + g22(t1))

2 − 4
(
g11(t1)g22(t1)− g212(t1)

)} 1
2

∣∣∣∣
= | − h1 + (h21 + h2 + h3)

1
2 | = |h2 + h3|

h1 + (h21 + h2 + h3)
1
2

≤M2 + 1 .

2. |h3| ≥ |h1|, then∣∣∣∣− t21d1 f11(t1)− t21
d2
f22(t1) +

{
(g11(t1) + g22(t1))

2 − 4
(
g11(t1)g22(t1)− g212(t1)

)} 1
2

∣∣∣∣ (S.61)

= | − h1 + (h21 + h2 + h3)
1
2 | ≤ (M2 + 1)2 +M1M2 .

Combining the two cases, we have shown that given ‖V>WV‖ ≤M0, there exists M3 depending on M0

only such that∣∣∣∣12
[
−g11(t1)− g22(t1) +

{
(g11(t1) + g22(t1))

2 − 4
(
g11(t1)g22(t1)− g212(t1)

)} 1
2

]∣∣∣∣ ≤M3 .

In other words,

1

2

[
−g11(t1)− g22(t1) +

{
(g11(t1) + g22(t1))

2 − 4
(
g11(t1)g22(t1)− g212(t1)

)} 1
2

]
= Op(1) .

This concludes the proof of Lemma 2.

S.7 Proof of Theorem 2

By Lemma 4 and weyl’s inequality |t̂k − dk| ≤ ‖W‖, k = 1, 2, we have

IP
(
t̂2 ≥ d2 − C0 max{n 1

2 , p
1
2 }
)
≥ 1− n−2 ,

and

IP
(
t̂1 ≤ d1 + C0 max{n 1

2 , p
1
2 }
)
≥ 1− n−2 ,

for some positive constant C0 and sufficiently large n. Combining the above two equations with d1 � σn,

and d1/d2 ≤ 1 + n−c, we have

IP

(
t̂1

t̂2
≥ 1 + C

(
σn
d1

+
1

nc

))
→ 0 ,

where C is some positive constant.

10



S.8 Proof of Theorem 3

By Lemma 4, there exists a constant C > 0 such that

IP
(
‖W‖ ≥ C max{n 1

2 , p
1
2 }
)
≤ n−D. (S.62)

By Weyl’s inequality, we have

max
i=1,2

|t̂i − di| ≤ ‖W‖ . (S.63)

By (S.63) and the condition that d1 ≥ (1 + c)d2, we have

t̂1

t̂2
≥ d1 − ‖W‖
d2 + ‖W‖

≥
1 + c− ‖W‖d2

1 + ‖W‖
d2

. (S.64)

If d2 ≥ c
c+4C max{n 1

2 , p
1
2 }, by (S.62) and (S.64), we have

IP

(
t̂1

t̂2
≤ 1 +

c

2

)
≤ IP

(
1 + c− ‖W‖d2

1 + ‖W‖
d2

≤ 1 +
c

2

)
≤ n−D

If d2 <
c
c+4C max{n 1

2 , p
1
2 }, by the condition that d1 � σn, (S.62) and (S.64), for sufficiently large n we

have

IP

(
t̂1

t̂2
≤ 1 +

c

2

)
≤ n−D . (S.65)

This together with the assumption that d1/d2 ≥ 1 + c implies (20). Now we turn to (21). Let û1 =
√

2(v̂1(1), . . . , v̂1(n))> and û1 =
√

2(v̂1(n + 1), . . . , v̂1(n + p))>. Notice that v̂1 is the unit eigenvector

of Z corresponding to d̂1. By the definition of Z, we know that û1 is the unit eigenvector of X>X

corresponding to d̂21 and û1 is the unit eigenvector of XX> corresponding to d̂21. Similarly, by the

condition that all of the entries of u1 are equal, we imply that the first entries of v1 are equal to (2n)−1/2.

By the second inequality of Theorem 10 in the supplement of Cai et al. (2013), we obtain that

2− 2(v>1 v̂1)2 ≤ ‖W‖
d1 − d2 − ‖W‖

. (S.66)

Since d1/d2 ≥ 1 + c, we have

d1 − d2 ≥ c(1 + c)−1d1 . (S.67)

Let C0 = max{c(1 + c)−1, C}− 1, where C is given in (S.62). By (S.62), (S.66) and (S.67), we imply that

IP
(

2− 2(v>1 v̂1)2 ≤
(C0 + 1)(σn

d1
)2/3

C0

)
≥ 1− n−D .

IP
(
|v>1 v̂1| ≥ 1−

√
σn
d1

)
≥ 1− n−D , (S.68)

where n ≥ n0(ε,D). Notice that û1 is a unit vector, we have

|v>1 v̂1| ≤
1√
2n
|1>n û1|+

1

2
.

This together with (S.68) implies that

IP

(∣∣∣∣∣
(

1

n

) 1
2

|1>n û1| −
(

1

2

) 1
2

∣∣∣∣∣ ≥
√
σn
d1

)
≤ n−D . (S.69)

This completes the proof.
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S.9 Proof of Theorem 4

Let ûk =
√

2(v̂k(1), . . . , v̂k(n))> and ûk =
√

2(v̂k(n + 1), . . . , v̂k(n + p))>. Notice that v̂k is the unit

eigenvector of Z corresponding to d̂k. By the definition of Z, we know that ûk is the unit eigenvector

of X>X corresponding to d̂2k and ûk is the unit eigenvector of XX> corresponding to d̂2k. By the second

inequality of Theorem 10 in the supplement of Cai et al. (2013), we obtain that

‖V̂V̂> −VV>‖F ≤
√

2K0‖W‖
dK0
− ‖W‖

. (S.70)

By Lemma 2.4 of Jin et al. (2016), there exists an orthogonal matrix O = (o1, . . . ,o2K0
) such that

‖V̂ −VO‖F ≤ ‖V̂V̂> −VV>‖F .

Combining this with (S.70), we have

‖V̂ −VO‖F ≤
√

2K0‖W‖
dK0
− ‖W‖

. (S.71)

By Lemma 4 and (S.71), we have

IP

(
max

1≤k≤K0

‖vk −Vok‖ ≥
√

σn
dK0

)
≤ n−D . (S.72)

The proof is completed by Cauchy-Schwarz inequality that

|x>(uk −Uok)| ≤
√

2‖x‖‖vk −Vok‖ = ‖vk −Vok‖ .

S.10 Proof of Theorem 5

This proof idea is similar to the proof of Theorem 6 in Fan et al. (2020), where Σ̂ = 1
n

∑n
i=1 wiw

>
i . First

of all, by Assumptions 1(i), 2–3 and similar proof as Lemma 1 in Fan et al. (2020), we have

‖diag(Φ̂)diag(Φ)−1 − I‖∞ = op(1) . (S.73)

Therefore, similar to the proof of Theorem 2 in the supplement of Fan et al. (2020), we can show that

max
K0+1≤j≤p

|λj(R̂)− λj(diag(Φ)−1/2Φ̂diag(Φ)−1/2)| = op(1) . (S.74)

Combining this with Weyl’s inequality, we have

λK0+1(R̂) ≤ λ1(diag(Φ)−1/2Σ̂diag(Φ)−1/2) + op(1) . (S.75)

By similar arguments as Lemma S.6 in Fan et al. (2020), we can show that

λ1(diag(Φ)−1/2Σ̂diag(Φ)−1/2) ≤ λ1(diag(Φ)−1Σ)(1 +

√
p

n
)ψ(λ1(diag(Φ)−1Σ)(1 +

√
p

n
)) + op(1) , (S.76)

where ψ(x) = 1 + p
n

∫
t

x−tdH(t). By (24) of Fan et al. (2020), (S.74), we have a similar result as the last

formula on page S36 of Fan et al. (2020) that

ψ(m(λj(R̂)))− ψ(mn,j(λj(R̂))) = op(1), j ∈ [K0 + 1,K] . (S.77)

It follows from (S.76), (S.77), and the monotonicity of xψ(x) (x > 1 +
√
p/n) that

λCK0+1(R̂) ≤ 1 +
√
p/n+ op(1) ,
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which implies that

IP(K̂0 ≤ K0)→ 1 .

Moreover, by (S.73), we have

λCK0
(R̂) ≥ (1 + op(1))λK0(diag(Φ)−1/2Φ̂diag(Φ)−1/2). (S.78)

Notice that we have the linearization matrices of diag(Φ)−1/2Φ̂diag(Φ)−1/2 and R, which are 0 1√
n

diag(Φ)−1/2X>

1√
n
Xdiag(Φ)−1/2 0

 and

 0 1√
n

diag(Φ)−1/2IEX>

1√
n

IEXdiag(Φ)−1/2 0

 ,

we have 0 1√
n

diag(Φ)−1/2X>

1√
n
Xdiag(Φ)−1/2 0

−
 0 1√

n
diag(Φ)−1/2IEX>

1√
n

IEXdiag(Φ)−1/2 0


=

 0 1√
n

diag(Φ)−1/2W>

1√
n
Wdiag(Φ)−1/2 0

 .

Therefore, by weyl’s inequality and (S.76), we have

|λK0
(diag(Φ)−1/2Φ̂diag(Φ)−1/2)− λK0

(R)| = Op(
√
λK0

(R)).

This together with Assumption 2, we have

|λK0
(diag(Φ)−1/2Φ̂diag(Φ)−1/2)

λK0
(R)

− 1| = op(1). (S.79)

By (S.78) and (S.79), it is easy to see that with probability tending to 1,

λCK0
(R̂)→∞ ,

which implies that

IP(K̂0 ≥ K0)→ 1 .

Combining the above two probabilities together, the proof of the first statement of Theorem 5 is com-

pleted. Now we move on to the second statement. By the properties of conditional probability, we

have

P

(
max

1≤k≤K̂0

|x> (ûk −Uok) | ≤
√

2σn
dK̂0

)
= P

(
max

1≤k≤K̂0

|x> (ûk −Uok) | ≤

√
2σn
dK0

∣∣∣K̂0 = K0

)
P
(
K̂0 = K0

)
+ P

(
max

1≤k≤K̂0

|x> (ûk −Uok) | ≤
√

2σn
dK̂0

∣∣∣K̂0 6= K0

)
P
(
K̂0 6= K0

)
= P

(
max

1≤k≤K̂0

|x> (ûk −Uok) | ≤

√
2σn
dK0

∣∣∣K̂0 = K0

)
P
(
K̂0 = K0

)
+ o (1)

= P

(
max

1≤k≤K̂0

|x> (ûk −Uok) | ≤

√
2σn
dK0

∣∣∣K̂0 = K0

)
P
(
K̂0 = K0

)
+ P

(
max

1≤k≤K̂0

|x> (ûk −Uok) | ≤

√
2σn
dK0

∣∣∣K̂0 6= K0

)
P
(
K̂0 6= K0

)
+ o (1)

= P

(
max

1≤k≤K̂0

|x> (ûk −Uok) | ≤

√
2σn
dK0

)
+ o (1) = 1− o (1) . (S.80)

Then the proof of Theorem 5 is completed.
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S.11 Technical Lemmas and their proofs

Lemma 3. Take (i) in Assumption 1. For X we considered in this paper and any positive integer l, there

exists a positive constant Cl (depending on l) such that

IE|x>(Wl − IEWl)y|2 ≤ Clσl−1n , (S.81)

and IEx>Wy = 0 and

|IEx>Wly| ≤ Clσln , for l ≥ 2. (S.82)

where x and y are two unit vectors (random or not random) independent of W.

Proof. Let Y = Σ−
1
2 (X− IEX). Recall that X = (X1, . . . , Xn) is defined in (1) by

Xi = Yiµ1 + (1− Yi)µ2 +Wi, i = 1, . . . , n ,

where {Wi}ni=1 are i.i.d. from N (0,Σ). The entries of Y are i.i.d. standard normal random variables.

Moreover, we decompose W defined in (9) by

W =

 I 0

0 Σ
1
2

 0 Y>

Y 0

 I 0

0 Σ
1
2

 .

Let the eigen decomposition of Σ be UΛU>. Since the entries of Y are i.i.d. standard normal random

variables, we have Y d
= UY. Then W can be written as

W
d
=

 I 0

0 U

 0 Y>Λ

ΛY 0

 I 0

0 U>

 .

Therefore

x>Wly = x>

 I 0

0 U

 0 Y>Λ

ΛY 0

L I 0

0 U>

y .

Let x̃ =

 I 0

0 U>

x, ỹ =

 I 0

0 U>

y and W̃ =

 0 Y>Λ

ΛY 0

, then we have

x>Wly = x̃>W̃lỹ , (S.83)

where above diagonal entries of W̃ = (w̃ij)1≤i,j≤n are independent normal random variables such that

for any positive integer r,

max
1≤i,j≤n

IE|w̃ij |r ≤ ‖Σ‖rcr , (S.84)

where cr is the r-th moment of standard normal distribution. Actually, if {w̃ij}1≤i,j≤n were bounded

random variables with

max
1≤i,j≤n

|w̃ij | ≤ 1 , (S.85)

then Lemmas 4 and 5 of Fan et al. (2020+) imply that there exists a positive constant cl depending on l

such that

IE|x̃>(W̃l − IEW̃l)ỹ|2 ≤ clσl−1n , (S.86)

and

|IEx̃>W̃lỹ| ≤ clσln . (S.87)
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To establish Lemma 3, it remains to relax the bounded restriction (S.85). In other words, we need to

replace the condition (S.85) by the condition of w̃ij , 1 ≤ i, j ≤ n in (S.84). We highlight the difference of

the proof. Expanding IE(x̃>W̃lỹ − Ex̃>W̃lỹ)2 yields

IE|x>(Wl − IEWl)y|2 = IE(x̃>W̃lỹ − IEx̃>W̃lỹ)2 (S.88)

=
∑

1≤i1,··· ,il+1,j1,··· ,jl+1≤n,

is 6=is+1, js 6=js+1, 1≤s≤l

IE
( (
x̃i1w̃i1i2w̃i2i3 · · · w̃ilil+1

ỹil+1
− IEx̃i1w̃i1i2w̃i2i3 · · · w̃ilil+1

ỹil+1

)
×
(
x̃j1w̃j1j2w̃j2j3 · · · w̃jljl+1

ỹjl+1
− IEx̃j1w̃j1j2w̃j2j3 · · · w̃jljl+1

ỹjl+1

) )
.

Let i = (i1, . . . , il+1) and j = (j1, . . . , jl+1) with 1 ≤ i1, · · · , il+1, j1, · · · , jl+1 ≤ n, is 6= is+1, js 6=
js+1, 1 ≤ s ≤ l. We define an undirected graph Gi whose vertices represent i1, . . . , il+1 in i, and only is

and is+1, for s = 1, . . . , l, are connected in Gi. Similarly we can define Gj. By the definitions of Gi and

Gj, for each term

IE
( (
x̃i1w̃i1i2w̃i2i3 · · · w̃ilil+1

ỹil+1
− IEx̃i1w̃i1i2w̃i2i3 · · · w̃ilil+1

ỹil+1

)
×
(
x̃j1w̃j1j2w̃j2j3 · · · w̃jljl+1

ỹjl+1
− IEx̃j1w̃j1j2w̃j2j3 · · · w̃jljl+1

ỹjl+1

) )
,

there exists a one to one corresponding graph Gi ∪ Gj for {w̃isis+1
}ls=1 ∪ {w̃jsjs+1

}ls=1. If Gi and Gj are

not connected, w̃i1i2w̃i2i3 · · · w̃ilil+1
and w̃j1j2w̃j2j3 · · · w̃jljl+1

are independent, therefore we have

IE
( (
x̃i1w̃i1i2w̃i2i3 · · · w̃ilil+1

ỹil+1
− IEx̃i1w̃i1i2w̃i2i3 · · · w̃ilil+1

ỹil+1

)
(S.89)

×
(
x̃j1w̃j1j2w̃j2j3 · · · w̃jljl+1

ỹjl+1
− IEx̃j1w̃j1j2w̃j2j3 · · · w̃jljl+1

ỹjl+1

) )
= 0 .

Therefore we have

L.H.S. of (S.81) =
∑

i,j,Gi and Gj are connected,

is 6=is+1, js 6=js+1, 1≤s≤l,

IE
( (
x̃i1w̃i1i2w̃i2i3 · · · w̃ilil+1

ỹil+1
− IEx̃i1w̃i1i2w̃i2i3 · · · w̃ilil+1

ỹil+1

)
×
(
x̃j1w̃j1j2w̃j2j3 · · · w̃jljl+1

ỹjl+1
− IEx̃j1w̃j1j2w̃j2j3 · · · w̃jljl+1

ỹjl+1

) )
≤

∑
i,j,Gi and Gj are connected,

is 6=is+1, js 6=js+1, 1≤s≤l,

IE|x̃i1w̃i1i2w̃i2i3 · · · w̃ilil+1
ỹil+1

x̃j1w̃j1j2w̃j2j3 · · · w̃jljl+1
ỹjl+1

|

+
∑

i,j,Gi and Gj are connected,

is 6=is+1, js 6=js+1, 1≤s≤l,

IE|x̃i1w̃i1i2w̃i2i3 · · · w̃ilil+1
ỹil+1
|IE|x̃j1w̃j1j2w̃j2j3 · · · w̃jljl+1

ỹjl+1
| .

(S.90)

Notice that each expectation in the last two lines of (S.90) involves the product of independent

random variables and the dependency of w̃i1i2w̃i2i3 · · · w̃ilil+1
and w̃j1j2w̃j2j3 · · · w̃jljl+1

are from some

shared factors, say w̃m1

ab and w̃m2

ab respectively, m1,m2 ≥ 1. By Holder’s inequality that

IE|w̃ab|m1IE|w̃ab|m2 ≤ IE|w̃ab|m1+m2 ,

we have

(S.90) ≤ 2
∑

i,j,Gi and Gj are connected,

is 6=is+1, js 6=js+1, 1≤s≤l,

IE|x̃i1w̃i1i2w̃i2i3 · · · w̃ilil+1
ỹil+1

x̃j1w̃j1j2w̃j2j3 · · · w̃jljl+1
ỹjl+1

| . (S.91)

By (S.91), to prove (S.81), it suffices to calculate the upper bound of the expectations at the right hand

side of (S.91). By the independency of w̃ij , the upper bound of

IE|x̃i1w̃i1i2w̃i2i3 · · · w̃ilil+1
ỹil+1

x̃j1w̃j1j2w̃j2j3 · · · w̃jljl+1
ỹjl+1

|
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is controlled by the r-th moments of w̃ij with (S.84), r = 1, . . . , 2l. The topology of Gi and Gj are the

same as Lemma 4 of Fan et al. (2020+), the summation at the right hand side of (S.91) can be controlled

by exactly the same steps as in the proof of Lemma 4 in Fan et al. (2020+). Hence (S.81) can be proved

following the proof of Lemma 4 in Fan et al. (2020+). The proof of (S.82) is similar to that of Lemma 5

in Fan et al. (2020+) by the same modification.

The next Lemma follows directly from Theorem 2.1 in Bloemendal et al. (2014).

Lemma 4. Under Assumption 1, for any constant c > 1, we have for any ε, D > 0, there exists an

integer n0(ε,D) depending on ε and D, such that for all n ≥ n0(ε,D), it holds

IP
(
‖W‖ ≥ cmax{‖Σ‖, 1}(n 1

2 + p
1
2 )
)
≤ n−D .

Lemma 5. Suppose that c12 = 0. If n1c11 ≥ n2c22, then we have

d21 = n1c11, d
2
2 = n2c22 ,

otherwise

d21 = n2c22, d
2
2 = n1c11 ,

Proof. We prove this Lemma under the condition n1c11 ≥ n2c22 . Recall the definition of H in (2), if

c12 = 0, we have

H = a1a
>
1 c11 + a2a

>
2 c22.

Notice that a>1 a2 = 0, ‖a1‖22 = n1 and ‖a2‖22 = n2, we imply that a1

‖a1‖2 and a2

‖a2‖2 are the two eigenvectors

of H with corresponding eigenvalues n1c11 and n2c22. By the definition of d1 and d2 in (S.2) and the

condition that n1c11 ≥ n2c22, we have

d21 = n1c11, d
2
2 = n2c22 .

Lemma 6. Let A be a p×n matrix. Denote A =

 0 A>

A 0

. If λ2 is a non-zero eigenvalue of A>A,

then ±λ (λ > 0) are the eigenvalues of A. Moreover, assume that a and b are the unit eigenvectors of

A>A and AA> respectively corresponding to λ2, then

A

 a

b

 = λ

 a

b

 , A

 a

−b

 = −λ

 a

−b

 . (S.92)

Proof. By the definition of eigenvalue, any eigenvalue of A (denoted by x) satisfy the following formula

det(A− xI) = det

 −xI A>

A −xI

 = 0 . (S.93)

If x 6= 0, then (S.93) is equivalent to

det(A>A− x2I) = 0 .

Therefore the first conclusion that ±λ are the eigenvalues of A. By the definition of a and b, they are the

right singular vector and left singular vector of A respectively corresponding to singular value λ. Then

equations (S.92) follow.
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S.12 Proof of Lemma 1

The high level idea for proving (13) is to show that i) det(f(an)) > 0 and det(f(bn)) > 0, ii) the function

det(f(z)) is strictly convex in [an, bn], and iii) there exists some z ∈ (an, bn) such that det(f(z)) ≤ 0.

The result in (14) is then proved by carefully analyzing the behavior of the function det(f(z)) around d1

and d2.

We prove (13) first. By the definition of f(z) in (11), we have

det(f(z)) = f11(z)f22(z)− f12(z)f21(z) (S.94)

=
(

1 + d1

(
R(v1,v1, z)−R(v1,V−, z)

(
−D +R(V−,V−, z)

)−1R(V−,v1, z)
))

×
(

1 + d2

(
R(v2,v2, z)−R(v2,V−, z)

(
−D +R(V−,V−, z)

)−1R(V−,v2, z)
))

−d1d2
(
R(v1,v2, z)−R(v1,V−, z)

(
−D +R(V−,V−, z)

)−1R(V−,v2, z)
)2

.

By Lemma 3 and the expansion (10), for any M1 and M2 with finite columns and spectral norms, we

have

∥∥R(M1,M2, z) + z−1M>
1 M2

∥∥ = ‖ −
L∑
l=2

z−(l+1)M>
1 IEWlM2‖ = O(σ2

n/a
3
n), z ∈ [an, bn] , (S.95)

and

∥∥R′(M1,M2, z)− z−2M>
1 M2

∥∥ = ‖
L∑
l=2

(l + 1)z−(l+2)M>
1 IEWlM2‖ = O(σ2

n/a
4
n) . (S.96)

Substituting z = an into f , by (S.95), for large enough n we have

|R(v1,v2, an)| = O

(
σ2
n

a3n

)
(S.97)

‖
(
−D +R(V−,V−, z)

)−1‖ = O(bn) z ∈ [an, bn] . (S.98)

By (S.97) and (S.98) we have

|R(vi,V−, z)
(
−D +R(V−,V−, z)

)−1R(V−,vj , z)| = O

(
σ4
n

a5n

)
, 1 ≤ i, j ≤ 2, z ∈ [an, bn] . (S.99)

By Assumption 1 on Σ, there exists a constant c such that Σ ≥ cI, therefore we have

σ2
n ≥ max{v>1 IEW2v1,v

>
2 IEW2v2} ≥ min{v>1 IEW2v1,v

>
2 IEW2v2} ≥ cσ2

n. (S.100)

By (S.100) and Lemma 3, for large enough n we have

1 + d1R(v1,v1, an) = 1− d1
an
−

L∑
i≥2

d1v
>
1 IEWiv1

ai+1
n

= 1− d1
an
− d1v

>
1 IEW2v1

a3n
+O(

σ3
n

a4n
) ≤ an − d1

2an
− cσ2

n

2a2n
,

and

1 + d2R(v2,v2, an) ≤ an − d2
2an

− cσ2
n

2a2n
. (S.101)

Substituting (S.97)–(S.101) into (S.94), we have

det(f(an)) > 0 . (S.102)
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Similar to the proof from (S.94) to (S.102), we imply that

det(f(bn)) > 0 . (S.103)

Moreover, by (S.94) and Lemma 3, we imply that(
det(f(z))

)′′
= −2d1

z3
− 2d2

z3
+

6d1d2
z4

+ o

(
d1d2
a4n

)
> 0, z ∈ [an, bn] . (S.104)

Therefore det(f(z)) is a strictly convex function and has at most two solutions to the equation det(f(z)) =

0, z ∈ [an, bn]. By (S.95) and (S.96), we have

f ′11(z)

d1
= R′(v1,v1, z)− 2R′(v1,V−, z)

(
−D +R(V−,V−, z)

)−1R(V−,v1, z) (S.105)

−R(v1,V−, z)
((
−D +R(V−,V−, z)

)−1)′R(V−,v1, z) > 0, z ∈ [an, bn] .

Therefore f11(z) is a monotonic function in [an, bn]. Moreover, by the definitions of an, bn, σn and Lemma

3, we have

f11(an) < 0, f11(bn) > 0.

Hence we conclude that there is a unique point t̃1 ∈ [an, bn] such that

f11(t̃1) = 0.

By similar arguments and

f ′22(z)

d2
= R′(v2,v2, z)− 2R′(v2,V−, z)

(
−D +R(V−,V−, z)

)−1R(V−,v2, z) (S.106)

−R(v2,V−, z)
((
−D +R(V−,V−, z)

)−1)′R(V−,v2, z) > 0, z ∈ [an, bn] ,

there exists t̃2 ∈ [an, bn] such that

f22(t̃2) = 0.

Without loss of generality, we assume that

t̃1 ≥ t̃2 . (S.107)

It follows from (S.94) that

det(f(t̃1)) ≤ 0 and det(f(t̃2)) ≤ 0 . (S.108)

Therefore the existence of t1 and t2 are ensured by (S.102), (S.103), (S.108) and the convexity of det(f(z)),

z ∈ [an, bn] (t1 is allowed to be equal to t2). Furthermore, by the definition of t1, t2 and (S.107) we have

bn ≥ t1 ≥ t̃1 ≥ t̃2 ≥ t2 ≥ an . (S.109)

Hence we complete the proof of (13) and now we turn to (14). Calculating the first derivative of fii, by

Lemma 3, (S.105) and (S.106) we have

f ′ii(z) =
di
z2

+O

(
σ2
n

d2i

)
∼ 1

di
, z ∈ [an, bn] , i = 1, 2 . (S.110)

Let si = di +
IEv>1 W2v1

di
, for f11, by Lemma 3 we have

f11(s1) = 1− d1
(

1

s1
+

v>1 IEW2v1

s31

)
+O

(
σ3
n

d31

)
= O

(
σ3
n

d31

)
.
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Combining this with (S.110), we imply that

t̃1 = d1 +
v>1 IEW2v1

d1
+O

(
σ3
n

d21

)
. (S.111)

Similarly, we also have

t̃2 = d2 +
v>2 IEW2v2

d2
+O

(
σ3
n

d22

)
. (S.112)

Finally, by Lemma 3 and (S.94), similar to the arguments of (S.102) and (S.103), we have

det

(
f

(
d1 +

2v>1 IEW2v1

d1
+

2v>2 IEW2v2

d2

))
> 0 , (S.113)

and

det

(
f

(
d2 −

2v>1 IEW2v1

d1
− 2v>2 IEW2v2

d2

))
> 0 . (S.114)

By (S.113) and (S.114) and the convexity of det(f(z)), we have

d2 −
2v>1 IEW2v1

d1
− 2v>2 IEW2v2

d2
≤ t2 ≤ t1 ≤ d1 +

2v>1 IEW2v1

d1
+

2v>2 IEW2v2

d2

Combining this with (S.109), (S.111) and (S.112), we imply that

tk − dk = O

(
σ2
n

dk

)
, k = 1, 2 , (S.115)

which implies Lemma 1 by (S.22).

S. DISCUSSION

In this section, we discuss two directions to generalize our model. One is to allow non-gaussian distribution

random vectors, and the other is to discuss the clustering boundary of our model under some additional

restrictions in the last two sections.

S.1 Non-Gaussian distribution

Checking the proof of our main theorem carefully, we can see that the key tool is Lemma 3. As long

as Lemma 3 holds, then all of our theorems holds. Hence for non-gaussian distribution Z, it suffices to

show Lemma 3 holds for non-gaussian distribution. The proof is expected to be more complicated than

Lemmas 4 and 5 in Fan et al. (2020+) and is worthy for further investigation.

S.2 Clustering lower bound

In this section, we investigate the clustering lower bound for our model when p ∼ n. In addition, we

impose Prior distribution on Yi – assume that {Yi} are i.i.d., Yi ∼ Bernoulli(1/2), i = 1, . . . , n. In

addition, assume µ1 = −µ2. Let li = 2Yi − 1 ∈ {−1, 1} and l̂i be the estimator of li by some clustering

algorithm. Similar to Jin et al. (2017), we introduce the Hamming distance to measure the performance

of clustering:

Hammn =
1

n
inf

s∈{−1,1}

{ n∑
i=1

IP(l̂i 6= sli)
}
. (S.116)

The following theorem provides the clustering lower bound, below which clustering is impossible, regard-

less of what clustering method to use.

Theorem 5. If µT1 Σ−1µ1 → 0, then for any clustering approach, we have

lim inf
n→∞

Hammn ≥
1

2
. (S.117)
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Proof. The main idea of this proof largely follows from Theorem 1.1 of Jin et al. (2017). Notice that

under the conditions of this Theorem, the model (1) becomes

xi = liµ1 + wi, i = 1, . . . , n . (S.118)

For any 1 ≤ i ≤ n, we consider the testing problem that

H−1 : li = −1 vs H1 : li = 1 .

Let f
(i)
± be the joint density of X under H± respectively. By the property of total variation, it can be

derived that

1− ‖f1 − f−1‖TV ≤ IP(l̂i 6= li|li = 1) + IP(l̂i 6= li|li = −1) .

By the assumption that Yi ∼ Bernoulli(1/2) and ‖f1 − f−1‖TV = 1/2‖f1 − f−1‖1, we have

1/2− 1

4
‖f (i)1 − f

(i)
−1‖1 ≤ IP(l̂i 6= li) .

Therefore, in order to prove this theorem, it suffices to show that uniformly for all 1 ≤ i ≤ n, we have

‖f (i)1 − f
(i)
−1‖1 → 0 .

Let l = (l1, . . . , ln)> − liei. Then we have

‖f (i)1 − f
(i)
−1‖1 = IE

∣∣∣ ∫ sinh(x>i Σ−1µ1)e−
‖Σ−1/2µ1‖

2
2

2 el
>X>Σ−1µ1−(n−1)

‖Σ−1/2µ1‖
2
2

2 dF (l)
∣∣∣

≤
∫

IE
∣∣∣sinh(x>i Σ−1µ1)e−

‖Σ−1/2µ1‖
2
2

2 el
>X>Σ−1µ1−(n−1)

‖Σ−1/2µ1‖
2
2

2

∣∣∣dF (l) , (S.119)

where IE is the expectation under the distribution of X = W. Therefore, it suffices for us to show that

IE
∣∣∣sinh(x>i Σ−1µ1)e−

‖Σ−1/2µ1‖
2
2

2 el
>X>Σ−1µ1−(n−1)

‖Σ−1/2µ1‖
2
2

2

∣∣∣→ 0 . (S.120)

Notice that xi is independent of l>X>, we have

IE
∣∣∣sinh(x>i Σ−1µ1)e−

‖Σ−1/2µ1‖
2
2

2 el
>X>Σ−1µ1−(n−1)‖µ1‖

2
2/2
∣∣∣

=IE
∣∣∣sinh(x>i Σ−1µ1)e−

‖Σ−1/2µ1‖
2
2

2

∣∣∣IE[e−
‖Σ−1/2µ1‖

2
2

2 el
>X>Σ−1µ1−(n−1)

‖Σ−1/2µ1‖
2
2

2 ]

=e−
‖Σ−1/2µ1‖

2
2

2 IE
∣∣∣sinh(x>i Σ−1µ1)

∣∣∣ . (S.121)

By the distribution of li we know that (S.121) is independent of i. Now we focus on IE
∣∣∣sinh(x>i Σ−1µ1)

∣∣∣.
Since the expectation is under the distribution that xi = wi, x>i Σ−1µ1 ∼ N(0, ‖Σ−1/2µ1‖22). For

simplicity, let z = x>i Σ−1µ1/‖Σ
−1/2µ1‖2 and σ = ‖Σ−1/2µ1‖2. Then

2IE
∣∣∣sinh(x>i Σ−1µ1)

∣∣∣ = 2IE
∣∣∣sinh(σz)

∣∣∣ = 2

∫
z≥0

eσz − e−σz√
2π

e−z
2/2dz (S.122)

∫
z≥0

eσz√
2π
e−z

2/2dz =
eσ

2/2

√
2π

∫
z≥0

e−(z−σ)
2/2dz = eσ

2/2IP(z ≥ −σ) . (S.123)∫
z≥0

e−σz√
2π
e−z

2/2dz =
eσ

2/2

√
2π

∫
z≥0

e−(z+σ)
2/2dz = eσ

2/2IP(z ≥ σ) . (S.124)

By (S.123) and (S.124), we imply that

IE
∣∣∣sinh(x>i Σ−1µ1)

∣∣∣ = eσ
2/2(IP(z ≥ −σ)− IP(z ≥ σ)) = eσ

2/2(IP(−σ ≤ z < σ) . (S.125)

By (S.121), (S.125) and the condition that ‖Σ−1/2µ1‖2 → 0, we finish our proof. we finish our proof.
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S.3 Exact recovery

In this section, we consider a special case that µ1 = −µ2. By Theorem 1, it is corresponding to the case

that d2 = 0 and d21 = n1c11 + n2c22 = nc11. We prove that for a little bigger ‖µ1‖, we have the following

theorem and Corollary 1 for exact recovery.

Theorem 6. Assume that Σ = I, µ1 = −µ2, ‖µ1‖∞ = O( 1
n1/4 ), n = O(n1) = O(n2) and p ∼ n, if

there exists a positive constant ε such that c11 ≥ 2(1 + ε) log n, then there exists s ∈ {±1} such that with

probability tending to 1, we have

√
n min

1≤i≤n
{sliû1(i)} ≥ 1− 1√

1 + ε
− C√

log n
, (S.126)

for some positive constant C.

Proof. We prove this theorem by considering the linearization matrix Z and v̂1. The idea of the proof

follows from the proof of Theorem 3.1 of Abbe et al. (2020+). Concretely, we prove that A1–A4 of

Abbe et al. (2020+) hold and apply Theorem 1.1 of Abbe et al. (2020+) to show our result. Substituting

d21 = nc11 and c11 = c22 = −c12 into (S.8) and (S.9), without loss of generality, assume u1 has two

different values v1 and v2 such that

v1 = −v2 =
1√
n
,

where v1 is corresponding to Yi = 1 and v2 is corresponding to Yi = 0. Then we have

liu1(i) =
1√
n
, i = 1, . . . , n . (S.127)

By Lemma 4, for any positive constant c > 1, D and sufficiently large n we have

IP
(
‖W‖ ≥ c(

√
n+
√
p)
)
≤ n−D .

Setting γ = max{‖µ1‖∞√
logn

, 1√
n
} → 0, we have

max{
√
c11, ‖µ1‖∞

√
n} ≤ γd1 . (S.128)

Notice that Z and IEZ are corresponding to A and A∗ of Abbe et al. (2020+). Let ∆∗ = d1, by (S.128),

A1 of Abbe et al. (2020+) holds. Moreover, A2 follows from the assumption that Σ = I. By Lemma 4,

it is easy to see that A3 of Abbe et al. (2020+) holds by (S.127). Similar to the proof of Theorem 3.1

in Abbe et al. (2020+), A4 holds by setting φ(x) = x. By Theorem 1.1 of Abbe et al. (2020+), with

probability tending to 1, there exists a positive constant C such that

min
s∈{±1}

‖sv̂1 −
Zv1

d1
‖∞ = min

s∈{±1}
‖sv̂1 − v1 −

(Z − IEZ)v1

d1
‖∞ ≤ Cγ‖v1‖∞ , (S.129)

where v1 is the eigenvector of IEZ corresponding to d1. By Lemma 6, we have v1 = 1√
2
(u>1 ,

µ>1
c11

)>.

Therefore by the conditions that ‖µ1‖∞ = O( 1
n1/4 ) and n = O(n1) = O(n2) = O(p), we have

γ‖v1‖∞ = O(
1√

n log n
) . (S.130)

Notice that each entry of
√

2(Z − IEZ)v1 follows a standard gaussian distribution. This implies that

IP( max
1≤i≤n

|e>i (Z − IEZ)v1| ≥
√

log n) = O(
1√

log n
) . (S.131)
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By (S.129)–(S.131), with probability tending to 1, there exists s ∈ {±1} and some positive constant C

such that
√
n max

1≤i≤n
{‖sv̂1(i)− v1(i)‖∞} ≤

C√
2n log n

+

√
log n√

2(1 + ε)n log n
. (S.132)

Notice that v1 = 1√
2
(u>1 ,

µ>1
c11

)> and the first n entries of v̂1 is 1√
2
û1, by (S.127) and (S.132), we have

√
n min

1≤i≤n
{sliû1(i)} ≥ 1− 1√

1 + ε
− C√

log n
. (S.133)

By Theorem 6, we have the following corollary to ensure the existence of exact recovery for the model.

Corollary 1. Under the conditions of Theorem 6, there exists one clustering approach such that

IP(Ŷi = Yi, i = 1 . . . , n) = 1− o(1) . (S.134)

Proof. The following clustering procedure suffices.

1. Calculate the eigenvector of Z corresponding to the largest eigenvalue, which is v̂1 as we defined

before.

2. Ẑi = sgn(v̂1(i))+1
2 , i = 1, . . . , n.

If
∑n
i=1(2Ẑi − 1)li > 0, we let Ŷi = Ẑi, otherwise Ŷi = −(Ẑi − 1). Without loss of generality, we

assume that
∑n
i=1(2Ẑi − 1)li > 0 and therefore Ŷi = Ẑi. By the definition of Ẑi and the condition that∑n

i=1(2Ẑi − 1)li > 0, Theorem 6 holds for s = 1. Hence

IP(Ŷi = Yi, i = 1 . . . , n|
n∑
i=1

(2Ẑi − 1)li > 0) = 1− o(1). (S.135)

By almost the same arguments, we can prove similarly that

IP(Ŷi = Yi, i = 1 . . . , n|
n∑
i=1

(2Ẑi − 1)li ≤ 0) = 1− o(1). (S.136)

Therefore, (S.134) follows from (S.135) and (S.136).

22



REFERENCES

Emmanuel Abbe, Jianqing Fan, Kaizheng Wang, and Yiqiao Zhong. Entrywise eigenvector analysis of

random matrices with low expected rank. The Annals of Statistics, page In print, 2020+.
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