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This Supplementary Material contains a scalable HGSL algorithm with provable convergence in
Section A, the proofs of Theorems 2.1-3.1, Theorem A.1 and Propositions 2.1-2.3 in Section
C, as well as the proofs of key lemmas and additional technical details in Sections D and E,
respectively. Additional computational cost comparison with existing methods is provided in

Section B.

A Scalable HGSL algorithm with provable convergence

The tuning-free property of HGSL established in Section 3 provides a crucial step toward the
scalability of our THI framework when one needs to analyze a large number of networks with
massive number of nodes jointly. To further boost the scalability, we now introduce a new
computational algorithm to solve the convex program of HGSL problem in (30) in a simple
yet efficient fashion, which will be referred to as the HGSL algorithm hereafter for simplicity.
As is common in regularization problems, we rescale each column of Xg_l to have /5 norm
(n™)!/2 and denote by X! _; = diag{XS)_l, - Xfﬁl} the resulting new design matrix; that
1s, Xg,,l = Xg,lD; /2 with the scaling matrix D; given in Section 3. Let us consider another

HGSL optimization problem

A

k p
é? = arg minﬁoeR(p—l)k {Z Q2/2</B(t)) + A Z HB?[)H} ) (Al)
t=1 =2

where Q,(5) = HXS? — Xfi),lﬁ(t) 12/n©@ for 1 < t < k and the rest of the notation is defined
similarly as in (30). In fact, the new HGSL optimization problem in (A.1) is closely related

to the original HGSL optimization problem in (30), through a simple equation C? = DI2Co
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linking the minimizers of these two problems. Thus the problem of solving (30) reduces to that
of solving (A.1).
To ease the presentation, we slightly abuse the notation and rewrite the new HGSL opti-

mization problem (A.1) in a general form

k p
§ = arg mingeg {(n“”)” P IO =XO5O I+ |8 ||} SV ¥
t=1 =1

where Y® € R"” X®) ¢ R"”*? and B® € RP are the response vector, the design matrix, and
the regression coefficient vector, respectively, corresponding to the ¢th network for 1 <t < k
with the pk-dimensional vector 3 = ((3V)’,--- , (3®)) and §;) a k-dimensional subvector of
{3 formed by each [th component of 5) with 1 < ¢ < k. Similarly we define the p-dimensional
subvectors B(t) of B with 1 <t < k, and its k-dimensional subvectors B(l) with1 <[ <p.

So far our original HGSL optimization problem in (30) has been reduced to the general
HGSL optimization problem in (A.2) with the same tuning-free choice of the parameter A as
discussed in Section 3 and the relationship between the two minimizers elucidated above. To
solve the convex optimization problem in (A.2), we suggest a new scaled iterative thresholding
algorithm. Our HGSL algorithm is designed specifically for the HGSL problem with conver-
gence guarantees, motivated by the algorithm for the group square-root Lasso with homoge-
neous noises in [4] and a more general algorithm developed in [? ]. In practice, to reduce the
bias of the estimator B incurred by the regularization in (A.2) one can obtain the final estimate
by a refit on the support of the computed sparse B using the ordinary least-squares estimator.

Our HGSL algorithm consists of two main steps, with the first step for rescaling and the
second one for iteration. In the first step, we rescale the response vector, the design matrix, and

the regularization parameter as
YO/Ky =YW XO/Ky - XD NKy— X forl <t<k, (A.3)

where K, > 0 is some preselected sufficiently large scalar. Clearly the solution to the optimiza-
tion problem (A.2) remains the same after the rescaling specified in (A.3). Such step, however,
reduces the norm of the design matrix, which can guarantee the convergence of the iterative

algorithm as shown in Theorem A.l later. We again slightly abuse the notation and still use
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Y® X® and ) to denote the response vector, the design matrix, and the regularization param-
eter after rescaling hereafter. In particular, the choice of Ky = maxi<;< [|X®||s, with || - s,
denoting the spectral norm of a matrix, which is suggested by inequality (A.42) in the proof
of Theorem A.l in Section C.6 of the Supplementary Material, works well in our simulation
studies.

In the second step, we solve iteratively the general HGSL optimization problem in (A.2)
with the rescaled data matrix from the first step, and let 5(m) be the solution returned by the
mth iteration for each integer m > 0. For the initial value 5(0), we set it as the zero vector
in our numerical studies, which works well. Denote by 3(m)® and 8(m); the subvectors of
f(m) similarly as in (A.2). For the (m + 1)th iteration with input §(m), we define R(m) =
((RM)DY,- - (Rm)®Y)' € RP* with

R(m)(t) - (X(t))’ (X(t)ﬁ(m)(t) — y(t)) / [(n(O))lﬂ HX(t)ﬁ(m)(t) — y(t)m

for 1 <t < k, denote by R(m)(; a k-dimensional subvector of R(m) corresponding to the /th

group for 1 < I < p, and introduce a scaling factor A(m) = >°r_, [(n(@)Y2 | X®8(m)® — y @] -

Then we compute 3(m + 1) as

R(m)(l) . )\
A(m) 7 A(m)

Blm + 1)) = @(ﬁ(m)(l) _ ) for1 <1< p, (A4)

_>
where O is the multivariate soft-thresholding operator defined as
e o
©0;A) =0 and ©O(a;\) =aO(|lal]|;N\)/ |la]] fora#0 (A.5)

with ©(¢; ) = sgn(¢)(|t| — \) ;. representing the soft-thresholding rule. In practice, we stop the
iteration when the difference between the solutions from two consecutive iterates falls below a

prespecified small threshold for convergence.

Theorem A.l. Assume that X > 0 and min;<;<j infec ar ||X(t)§ — Y(t)H > ¢o with At =
{vB(m)® + (1 —v)B(m + 1)® : v € [0,1],m = 0,1,---} and ¢y > 0 some constant.
Then for large enough K, the sequence of computed solutions (m) converges to the global

optimum of the HGSL problem (A.1).



Theorem A.1 justifies formally that our suggested scalable HGSL algorithm indeed enjoys

provable convergence to the global optimum of our convex HGSL optimization problem. The

scalability of the HGSL algorithm is rooted in both the tuning-free property and the simple

iterative thresholding nature. It is also worth mentioning that a similar regularity condition to

the one assumed in Theorem A.1 was imposed in [4] to prove the convergence of their algorithm

for the group square-root Lasso with homogeneous noises. As mentioned before, in the end one

can further apply a refit using the support of the computed sparse solution to obtain a final

estimate with possibly reduced bias.

B Computational cost comparison with existing methods

We provide a comparison on the computational cost in Table 7 for simulation examples in

Section 4.1.2. Since the computational cost of THI-¢; is almost identical to that of THI-¢,,

only the results for the latter are reported.

Table 7: Average computational costs of different methods in seconds.

Setting 1 (x10°)

Setting 2 (x10%)

Setting 3 (x 10?)

THI MPE GGL FGL

THI MPE GGL FGL

THI MPE GGL FGL

Model 1
Model I1

72 5777 92 6438

181 69.8 18.2 444

2.1 8.7 26 135

3.0 100 35 287

39 36.7 3.7 182

6.8 386 59 231

C Proofs of main results

C.1 Proofs of Theorem 2.1 and Proposition 2.1

The proofs of Theorems 2.1-2.2 and Propositions 2.1-2.2 rely on two key sets of results in

Lemmas D.1 and D.2 in Sections D.1 and D.2, respectively, where we use the compact notation

[] to denote the set {1,--- , ¢} for any positive integer ¢/ whenever there is no confusion. Our




results are important consequences of Lemmas D.1 and D.2. Indeed, it holds that

Z n(t)obét%d)ﬁ (Tr(fl)c,l,z - Jy(ﬁc,m) - Vﬁfm <T+1,
t=1
where
k 1 n®
58 H® ) ®) () (®) ) (2)
= 21 ”(t)w2,2W1,1 ka2 = Ingaz — o) Zl (Ei,l E;, EE Em) ,
t= i=
k o0 40 t <t)
o= 3|ty S (EOEY -EBYEY),|.
(&) ~(t) E; B i
t=1 Wa,2W1 1
According to Lemma D.1, we have |d1jfj \ < ' log ’(ﬂo/fl) 4 S(kﬁ%;gp)) — o(1) with

probability at least 1 — 6p' =% — 24, uniformly for all ¢ € [k] and j = 1, 2. Therefore, Condition

()

2.1 implies that all w; ; are bounded from both below and above, which together with Lemma

D.2 and s (k + logp) /n® = o(1) leads to
1
T <c (W)

n(0)
with probability at least 1 — 12p'~° — 24,, where positive constant C' depends on constants
M, My, 6,C1, Cy, and Cs.

It remains to upper bound term 7,. Note that Lemma D.1 together with Condition 2.1
implies that oﬁgt% is bounded. In addition, Condition 2.1 also implies that Ez(tl) EZ(Z), i € [n®)] are
1.1.d. sub-exponential with bounded constant parameter. Consequently, Bernstein’s inequality
(see, e.g., Proposition 5.16, [35]) entails immediately that max;, [V, 53172| < +/C"log(k/6y)
with probability at least 1 — 247, where positive constant C’ depends on M only. Therefore,
this fact and Lemma D.1 along with the union bound further yield with probability at least
1 — 6p'~° — 44, that

k
TQ S C’log k:/(51 Z

t=1

k k
B ( s wéf%—Aéf%)
t=1 t=1
log(k/d1) = (k+ (logp))
< C (k‘ 0 + s o) log(k/d1)
k + (logp)
< (C(s———==~



()(

W; 5 and w are bounded from

where the second inequality follows from the fact that all w;
both below and above, the third inequality is due to Lemma D.1, and the last inequality follows
from our sample size assumptions log(k/01) = O(s(1 + (logp)/k)) as well as log(k/01) =
o(n(o)). The positive constant C' above depends on constants M, d, C'y, Cs, and Cs.

Combining the bounds of 77 and 75 above, we deduce that the following inequality holds

with probability at least 1 — 12p' =% — 44,

k
[ (#) () A (8) (n(?) (t)
Z nll W22W <Tnk12_Jnk12>_Vn§le

t=1
where constant C' > 0 depends only on M, My, d, Cy, Cy, and Cs.

k+logp
<C|s——= A.6
( o) > ; (A.6)

Aided with the key result in (A.6) above, the analysis of Theorem 2.1 is straightforward.

Indeed we have
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where the last inequality is due to (A.6). The remaining part of the proof for Theorem 2.1
follows easily.

Note that the chi distribution U, , , always has constant level standard deviation. Hence
Proposition 2.1 follows from the fact that the error bound of |Uy, k12 — Uy 15| is o(1) with

significant probability under the sample size assumption, which completes the proofs.

C.2 Proofs of Theorem 2.2 and Proposition 2.2

Theorem 2.2 is an immediate consequence of (A.6) established in Section C.1, since the left-
hand side of (A.6) is an upper bound of the left-hand side of (20) regardless of what sign vector
is picked.



Note that V7, | ,(§) follows distribution N (0, k). The error bound of [V}, 1..1.2(§) =V, 1 1 2(6)]
is negligible compared to the standard deviation of V", , ,(§) with significant probability under
the sample size assumption, that is, s(k+ (log p))/vn©® = o(k'/?), which concludes the proofs
of both Theorem 2.2 and Proposition 2.2.

C.3 Proof of Theorem 2.3

The first part of the analysis serves as a general tool for both the lower bound arguments in
Theorem 2.3 and the proof of Theorem 2.4. It suffices to assume without loss of generality
that the sample sizes of all k graphs are identical, that is, n(V) = ... = n(® = o) noting
that Condition 2.2 is valid under this setting. Consider a least favorable finite subset G =
{Q9,---,Q%} C A in the alternative sets, where A = A(s, ¢/\/k/2/n(©) for Theorem 2.3
(1), A= A (s, \/k/n©, €) for Theorem 2.3 (2), and A = A" (s, ¢\/k/n©®, £) for Theorem
2.4. In addition, we consider one element in Q) € N(s). The choice of G and Qf) will be
determined later.

Recall that each index denotes each of the k graphs, that is, ) = {Qg)}f:l for h =
0,---,m. Let P, = Pqo denote the joint distribution of the observations when the true param-
eter is 9. In other words, [P}, is the joint distribution of n(”) copies of k graphs Hle g}(f)(a:t),
where gﬁf)( ) is the density of N (0, (Qg))_l) for t € [k]. We use E, and fj, to denote the expec-
tation under P, and the density function under P, respectively. Moreover, let P = % S Py
be the average measure of these joint distributions indexed by elements in G. For any test g,

we have

veEG veEG

> inf (Boy +E(1 - ¢))

= [[Po AP,

sup (Egtoo + E, (1 — 1)) > iﬁf <Sup Eop + E, (1 — ¢))

where ||Py A P|| is the total variation affinity between two measures. Therefore, if 1, has

significance level « it holds that
inf P, (o rejects Hoo) < Inf By(¢o) < 1+a — |Po APP|. (A7)
ve ve
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To show that for any given 3 > « and some constant ¢ > 0, no test of significance level «
satisfies (26), it is sufficient to prove that [Py AP|| > 1 — (8 — «)/2, which together with (A.7)
implies that

inﬂPv(wo rejects Hy10) < f— (6 — a)/2.
ve

We will use this fact in the lower bound arguments in Theorem 2.3 and the proof of Theorem

2.4 with different constructions of G and 9, and constant ¢ > 0.

C.3.1 Proof of Theorem 2.3 (1)

To show that ¢,, = \/m is the separating rate, we first establish the lower bound (27)
and then prove that our test ¢, satisfies (26) with A = A®(s, c\/m ). With the aid of
(A.7), it suffices to show that for fixed S > «, there exists some constant ¢ > 0 such that
IPo AP|| > 1 — (8 — a)/2 with appropriate choices of G € A = A(s,¢/\/kV/2/n©) and
Qf € N(s).
We define
Q) = (N | suchthat Q) =--- = QF = T. (A.8)

For simplicity, assume that 7v/k is an integer with some small constant 7 > 0 to be determined
later. Otherwise, 7v/k can be replaced by its floor function LT\/E in the analysis below. Then

we construct a subset

g = {QO = {QW}F_| . there exists some T C [k] with |T'| = 7V/k such that

OO = Ifort ¢ Tand (Q) ' =T+ (n®@)"2e, fort € T}, (A.9)

where e is the matrix with the (1, 2)th and (2, 1)th entries being one and all other entries being
zero. Therefore, there are (") distinct elements in G and thus m = (*7). Itis easy to check
that Q) € NV (s) and G C A"(s,/\/k1/2/n©®) with ¢ = 2./7, by noting that for each element
in G, [|wp ol = mxmkl/?/n(o). Hence we omit the details here. Lemma D.3 in Section

D.3 helps us finish the proof of the lower bound, that is, (27).

It remains to show that the proposed chi-based test ¢, satisfies (26), that is, with a suffi-



ciently large ¢ > 0, A(c) = A”(s, ¢y/k/2/n(@), and n(¥, we have

ir}\f(’ )IP’U (Upgn2 > 22 (1—a)) > B. (A.10)
ve c

We show this fact in three steps. During the first two steps, we reduce the goal in (A.10) to a
relatively simple one so that during the third step we are able to apply Chebyshev’s inequality
to finish our proof. Hereafter we use C' > 0 to denote a generic constant. Before proceeding,
note that under the assumptions of Proposition 2.1, including 6 > 1 and d; = o(1), the last

inequality of Lemma D.1 and Condition 2.1 entail that with probability 1 — o(1),

 (~O\ " (k + logp) log(k/d1)
teﬁ?’fl,z{%(ﬂJ 1‘} = C<S o T\ e ) A

TOal (0 (w082)) € (-11,-09), (A12)

where the second expression (A.12) follows from (A.11) and the definition of JSL’LQ in (10).
Define U2 ,,, = = Y nf w%wg) (Té ,)c 1.2)°. Comparing Uy, | , with the definition of

U? .12 in (11), we obtain that with probability 1 — o(1),
)
2 (k+1logp)  [log(k/d1) | _ 12)?
§1+C(s R ) = (1+n7)",

where the second inequality follows from (A.11). Note that according to our assumptions, it

holds that {2 < C(s"=2er) 4, [loel01) — 5(1). Therefore, due to the union bound argument,

to prove (A.10) it is sufficient to show

inf P, (Uniae > (L+07) - 22(1 —a)) > B. (A.13)
veAlc

. Se(t) [t §mn® () ()
We further reduce (A.13) in the second step. Denote by V, ;") , = \/ =27 D> (B By —

IEEZ(tl)E(t) ) with EV*(" k12 = 0. Lemma D.2 implies that with probability 1 — o(1),

k 2\ /2
_ t *(t
tossa = (35 [Vrellath 0] )

t=1

n®

k
1
t t t t t t t t
S V0wl [0, H0a - = 3 (EQED — BEQES)

=1 =1

IN



Therefore, by the union bound argument again, to show (A.13) it is sufficient to prove that

vEA(c)

k 2

. 2

g 7 (3 [Vl ] > () 2000 ) =
t=1

We denote =; = ( n(t)wégwg J,(:;C’LQ + ‘_/,:7%7)1’2)2, t € [k] to simplify our notation. Then it
suffices to show
k k
i% P (Z (Z: —E=) > [(1+0?) - 22(1 — a) + 0] ZEHJ > 6. (A.14)
veEA(C
t=1
In the third step, we need a careful analysis of both sides of (A.14). We first calculate

the right-hand side term. According to the third result in Lemma E.1 in Section E with z =

\/2log(1/a)/k, it holds that z12(1 — a) < VE(1 4+ y/2log(1/a)/k). By our sample size as-
sumption s (k + log p)* = o(n'?) and the definitions of /2 and 72, we deduce that s(k’;l(—%)gp) <

C (n(O)) -1 ? which further yields

(L+0?) - 2201 =) + 5]

VE(1+ /2log(1/a)/k) (1 —loggfo/fl)) +C (nO) 2)

IN
/\/—\'ﬁ

2
/— log(k/d1) k

<

k + 31/2k log( 1/a> ( bgi#)
+4y/2k log(1/a). (A.15)

T

<

Next we calculate a lower bound of Zle [EZ;. By the definition of V*%)LQ and the joint Gaus-
sianity of El(tl) and Ez(tz) we have E(V:}g}w)? =1+ (w%) / (wé %wﬁ) This fact together with
(A.12) results in

k k

2
ZEEt = ZE [\/ n(® W22W11J7(1t212 +Vnk12:|
t=1

(A.16)



We can further upper bound the variance of Zt | (¢ —EZ,) by the joint Gaussianity of
E) and EY,

k
var (Z (2, — EEQ) <C <k: +n® ngz\f) , (A.17)

t=1
Expressions (A.15) and (A.16) imply that under alternative A(c) = A”(s, ¢\/k'/2/n©®) with a

sufficiently large ¢ > 0, the right-hand side of (A.14) is negative, that is,

r—‘
—
_4

M?r

[(L+72) 221 - a) + 2]

t—1
< —Cn® lezH + 44/2klog(1/a
< —cCVE +4y/2klog(1/a) < 0. (A.18)

Therefore, by Chebyshev’s inequality we obtain that for any v € A(c),

k k
P, (Z (2 —EZy) < [(1+9?) - 22(1 — o) + 1] ZE%)

t=1

k
< var (Z (= — ]EEJ) / (C’n(o) Hw%’f)z <1-4,

t=1
where the first inequality follows from (A.18) and the last inequality follows from (A.17) and a
large constant ¢ > 0. Thus (A.14) is an immediate consequence, which completes the proof for

the first part of Theorem 2.3.

C.3.2 Proof of Theorem 2.3 (2)

To prove that €, = \/W is the separating rate, we first show the lower bound (27) and
then establish that the proposed linear functional-based test ¢, satisfies (26). Without loss of
generality, assume that the sign vector & = (1,---,1)" and denote by A''(s,¢/\/k/n©) =
All(s, \/W ,&) for short. Facilitated with (A.7), it suffices to show that for fixed § > «,
there exists some constant ¢ > 0 such that ||Py AP|| > 1 — (8 — ) /2 with appropriate choices
of G C A= A"(s,d\/k/n©®) and Q) € N (s).

The constructions of G and 2 are straightforward. There is only one element in G, that
is, m = 1and P =P,. We define Q) = {Q"}*_, such that Q" = --- = Q") = I and set
00 = {1 such that (QS))! = -+ = (Q)! = I + (7/VnOk)e,, where 7 > 0
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is some small constant to be determined later and e is the matrix with all but two entries
being zero and the (1,2)th and (2, 1)th entries being one. It is easy to see that Q) € N (s). In
addition, it is easy to check that all eigenvalues of Q) are in [M !, M], and thus Qf € F(s)
since 7/vn©k = o(1). Note that HW?,12H1 = m\/m . Therefore, we have shown
that Q9 € A" (s, ¢//k/n©@) with ¢ = 27, where we have used 72/(nOk) < 1/2.

To finish the lower bound (27), it remains to prove ||Py APy|| > 1 — (8 — «)/2. A similar
argument to that in the proof of Lemma D.4 in Section D.4 (see expression (A.68)) implies
that it is sufficient to show that the y* divergence between P, and PP; is small enough, that is,
A= [f/fo—1 < (B — «a)* By the simple constructions of 2 and 2}, together with the
x? divergence of two Gaussian distributions (see expression (A.69)), it can be easily checked
that A = (1 — 72/(n@k))™“% — 1. Since 72/(n®k) < 1/2, we can further bound the >
divergence as

A< (14 272/ (nOr)"F =1 < exp(272) — 1.
Therefore, by picking 7 small enough we deduce that A < (8 — «)? and thus |Py A Py|| >
1 — (8 — «)/2, which finishes the proof of (27).
It remains to show that the proposed linear functional-based test ¢, satisfies (26), that is,

with a sufficiently large ¢ > 0, A(c) = A" (s, cy/k/n©®), and n(®), it holds that

. LCLKIQ(é)
velglzc) P, (—\/E < z(a)) > .

Observe that under the assumptions of Proposition 2.2, including 6 > 1 and §; = o(1),
the last three inequalities of Lemma D.1 and Condition 2.1 lead to the following two facts:
(1) wl l(wl 1) 1'= 1+ 0(1) and wn(wé %) "= 1+ o(1) uniformly over ¢ € [k], and (ii)
S (! )1/2 (~§2)1/2‘ = o(1) with probability 1 — o(1), which will be used later in our
analysis.

With bound (20) in Theorem 2.2 and the definition of V}, ;. 1 2(£) in (19), along with a union

bound argument, we see that it suffices to prove that as n©® — oo,

‘/r*kzl 2 :)
inf P, | =2 < z(a) =it =0 ) > 3, A.19
(7222 < s() o 5 (A19)

where U = 328 &,(n®S ) . (t))1/2J(tk 1o/VEandpf! = Css (k: +logp) /VnOk. To deal with
the bias issue of V', | ,, we define V;,k,m Zt L gt(% 241 )12 Z”m (Eftl)Ez(tQ) — IEEftl)EZ(Q))

n(t)

12



and reduce the problem of showing (A.19) to that of showing

vEA(c) \/E

where 77? = (V:,k,m - V;k,l,Q)/\/E'

We claim that ! + 9l = op(1) and 2(a) — ¥ < 0 under alternative v € A(c) with a

V*
inf P, ( mhL2 < () — gt =l — xp) > B, (A.20)

sufficiently large constant ¢ > 0. Note that by definition EVT: k12 = 0. Hence according to

Chebyshev’s inequality and the union bound argument, it suffices to prove that
var(Vyiy 10/ VE)/ |2(a) = 0" < (1 - 8) /2

under alternative v € .A(c). We finish the proof by showing nf'+n! = op(1), var(V,5, | ,/Vk) <
2 and that U < 0 can be arbitrarily small under alternative v € .A(c) by picking a suffi-
ciently large constant ¢ > 0, respectively. Indeed, assuming that the latter two facts hold,
var(Vyy 1o/ VE)/|z(a) = U)* < (1 — ) /2 follows as an immediate consequence, which will
finish our proof.

t

In particular, fact (i) above entails that Jf&m =(—1+ 0(1))w§2 / (wg %wg%) uniformly over

t € [k], following from the definition of J,(:L’LQ in (10). Since the sign vector of w! , is encoded
in £, the boundedness of wﬁw% and (@%@Y})l/ 2 for t € [p] (due to Condition 2.1 and fact (i)

above) further implies that with some constant C' > 0,

n(0)
v <oy el < —ce

under alternative A(c) = Al (s, c\/m ). Therefore, with a sufficiently large constant ¢ > 0,
W < 0 1is smaller than any pre-determined negative constant.

Note that by the independence and joint Gaussianity of Eﬁ and E%, we have var(V, | ,/Vk) =
kLS Var(Eg Eit%)wgwit% < 2. Thus it remains to show that 7! + ni' = op(1). It is easy

to see that n}' = C's (k +logp) /Vn®k = o(1) by our sample size assumption. In addition,

13



we have with probability at least 1 — 207 10,

k t) n®
& Wa 9 t) A (t t) 1 (t t ~(t
1 = (34 3 (e - ) (ol] - )
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VEk e |\ nt

i=1
k
log(k/o
< oy R S - e
t=1

where the first inequality is due to Holder’s inequality and the second one follows from Bern-

) (A.21)

stein’s inequality (see, e.g., Proposition 5.16, [35]). It follows from fact (ii) above and inequality
(A.21) that ni! = op(1), in view of d; = o(1). Therefore, we have shown (A.20), which further
entails that ¢, satisfies (26) with a sufficiently large constant ¢ > 0. This concludes the proof

for the second part of Theorem 2.3.

C.4 Proof of Theorem 2.4

The general tool established in (A.7) of Section C.3 plays a key role in our analysis. We need
to show that for any fixed § > « and ¢ > 0, there is no test of significance level « satisfying
(26) with A = Al (s, c\/m ,€). In light of (A.7), it is sufficient to show that as long as
s2k~1(k + logp) > Cn'® for some sufficiently large positive constant C' depending on My, /i,
and ¢, we have

IPo AP > 1= (8 —a)/2

with appropriate choices of G C A" (s, c\/k/n©@, &) and QY € N(s). Since the lower bound
does not depend on the choice of the sign vector &, hereafter we assume = (1,--- , 1)’ without
loss of generality.

To construct G and €Y, it suffices to assume that the k precision matrices are identical for
each Q%, h=20,---,m, thatis, QS) = ... = ng). Therefore, we only need to construct lel)

for each h. The element in null is defined as Q(()l) = [ which gives

Q9 = {0V with QY =... =P =T. (A.22)
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Besides, we construct a subset

G={Q={QNF QW =...= Q¥ = (I 4+ aH) 'for some H € H} (A.23)

with a = TH(LO(—%)”Wand 7 > 0 some small constant to be determined later. Here H is the set

containing the collection of all p x p symmetric matrices with exactly s — 1 elements equal to
1 between the third and the last elements of the first and second rows (and hence columns by
symmetry) and the rest all zeros. We also assume that for each H € H, the supports of the first
row and the second row are identical. Clearly, there are (’S’:f) distinct elements in G and thus
m = (?_?). To finish the proof, we need to show two claims: (i) G C A" (s, c/k/n©®, ¢) and
09 € N(s)and (ii) [Py AP|| > 1 — (8 — «a)/2.

The desired result in claim (ii) is established in Lemma D.4 in Section D.4. Thus it remains
to prove the desired result in claim (i). It is easy to see that ) € N (s) since all k precision
matrices are identity matrices and particularly wg’m = 0. For each Q% € G, we can check that
Q) satisfies the sparsity assumption max, » , ta H{w) 4, # 0} < s. Moreover, the largest and
smallest eigenvalues of QS) are

)\maX(ngl)> = Lt 2(8 — 1)a2,)\min(QS)) = L= 2(8 — 1)a27
1—-2(s—1)a? 1—2(s —1)a2

respectively, with all remaining eigenvalues being ones. Under the assumption that s(1 +
(logp)/k)/n® = o(1), we see that 2(s — 1)a? is sufficiently small and hence all eigenvalues
are bounded between 1/M and M, which satisfies Condition 2.1. Therefore, we have shown

that G C F(s).

Finally, some elementary algebra implies that for each Q) € G, we always have wfﬂz =
(s—1)a?

T D" As a result, it holds that

k(s —1)a? 1+ (logp)/k k
0 _
HW}L,IQH1 - 1— 2(8 _ 1)@2 Z 2]{:(8 - ]_)T (T > c W’

where the first inequality follows from 2(s—1)a? < 1/2 and the last inequality is due to the main
assumption of Theorem 2.4, that is, 2k~ (k + logp)? > Cn® with C = (¢/7)2. Therefore,
we have shown G C A (s, cy/k/n) | €), which completes the proof.
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C.5 Proof of Theorem 3.1

Without loss of generality, we only prove the results for the case of 7 = 1. This is because by
symmetry, the results remain valid for any j € [p]. Hereafter, we follow the same notation for
any vector u € RP~D* a5 defined for C?, that is, u® denotes its subvector corresponding to
the tth class and wu;) represents its subvector corresponding to the /th group. The purpose of
normalization diagonal matrices Dﬁt) for our method HGSL defined in (30) is to obtain a tight

universal regularization parameter A by normalizing each column of Xff)_l such that its /5 norm

is Vn®, that is, X" | = X\ (D{")-1/2,
Define C\” = (D{")1/2¢") and é(t) = (D12 and correspondingly C? and é’f Then
the right-hand side of (29) becomes X9 _,CY + E?, and the method HGSL in (30) becomes

p
C’O = arg mlnﬁoeRk<p 1) {Z Q1/2 + )‘Z HB?l)H}
1=2

with Q,(8") = || X ,Et{ — X 3®]|12. Our main results involve the difference A = C? —

*7

C9. In what follows, we establish all results in terms of A = €0 — (9 = (D?)l/ ?

A. Ttis
worth mentioning that this does not affect our results much. Indeed, our Condition 2.1 and the
fact of X / x?(n®), together with an application of Lemma E.I and the union
bound, entail that with probability at least 1 — 2pk exp(—n(?) /32), all diagonal entries of DY
are bounded from below by M /2 and from above by 31//2 simultaneously. Therefore, A and

A are of the same order componentwise and globally. To make it rigorous, define an event
Eucate = { XX} /0 € [1/(200),3M /2] forall ¢ € [K], 1 € [p]}

and it holds that P{&,...} > 1 — 2pk exp(—n( /32).

We begin with introducing the group-wise restricted eigenvalue (gRE) condition proposed
by [? ] and [22], which is needed to establish our main results. Recall that the true coefficient
vector CY is a group sparse vector. Denote by T' = {I : é?(z) # 0}. By the definition of the
maximum node degree given in (14) and the relationship between C\"” and Q®, we deduce that

|T| < s, where |-| stands for the cardinality of a set.
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Definition C.1. The group-wise restricted eigenvalue (gRE) condition holds on the design ma-
trix )_(27_1 if

v 0
gRE(E,T) = inf M:UE\IJ(S,T) >0,
o | Vi

where W(L,T) = {u € ROVF - 3 ugy | < Lo llugyI} is a cone.

The above gRE condition is an extension of the restricted eigenvalue (RE) condition for
the regular Lasso proposed in [? ], in which the ¢; norm is replaced by the group-wise ¢,
norm. It was also assumed in [22] to tackle the usual group Lasso as a direct condition. [? ]
derived the gRE condition based on some incoherence condition. However, to the best of our
knowledge, there is no existing result for the random design matrix satisfying the gRE condition
in the literature. In this paper, we first establish that the gRE condition is satisfied with large
probability as a consequence of our assumptions in Lemma D.5 presented in Section D.5.

We would like to mention that other commonly used conditions on the design matrix ng_l,
including the group-wise compatibility condition [4] and the group-wise cone invertibility fac-
tor condition [27], can also be applied here. In fact, the group-wise compatibility condition
k(&,T) > 0 is a natural consequence of the gRE condition thanks to the Cauchy-Schwarz

inequality, since

VIS,
V@37 H“(l) H

X2 1]

u#0

k(& T) = inf{ uE\IJ(ﬁ,T)}

2 mf IS \I](faT)
. 1/2
7 v (ZZET [ Hz)
v 0
YN LU U(E,T) S = gRE(E, T). (A.24)
0\ Vol ]

In particular, on the event & 4 defined in Lemma D.5 it holds that

A6, T) > min{ (n® /XX 2}/ (200)'12.

As discussed in Section 3, the analysis of Theorem 3.1 relies critically on the event B;
defined in (31), which guides us to pick a sharp parameter A. Lemma D.6 in Section D.6
implies that our explicit choice of A is indeed feasible. Thus with the aid of Lemmas D.5 and

D.6, we are now ready to establish our main results in the following two steps.
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Step 1. It follows from the definition that

k
t=1 1=2
< (Z 0~ H%H) e
leT leTe
Observe that Z;Eg(t)) = \/2(170) X(It;(tE“it)l By the convexity of Q;’ ?(+), we have
i ( 1/2 71/2(6(15))) > _ 1 i A(t)/Xif)llEit%
p t 1 — n([)) = Eig
LN HDE}/QXB/U)ES 1
> - (S8l s
1<,
> 7Y Bl (.20
1=2

where the last inequality follows from Lemma D.6. Combining inequalities (A.25) and (A.26),

we obtain

—A£+1ZHA1)H<>\<ZHA(1 1= 2_ 112 H)

leT leTe
which entails that

Do lBall <€ 2wl

leTe leT
Hence, we have shown that A € ¥ (¢, T)).

Step 2. We will make use of the following facts with ¢; = Q;’ 2( N+ Q% (CMy

e |®LAG| ek B0
QuUCH) - QuC) = - ot (A.27)
n(0) n(0)
QUM - Q) = (@) - @i E™)) - . (A28)
A Vs || X2 LA
2ol < =5 , (A.29)
leT n H(gvT)
kA () P D_l/QXOI EO ) HE(t)
AOX® "B _ H B1 N 1
Z < (D [[Ap ]| ) max Y - max (A.30)
— n(O)Q — 2<1<p n0) telk] (,v/n(®

where the first two facts are due to some elementary algebra and the third one follows from the

definition of (£, T') in (A.24) and the fact of A € W(¢,T) proved in Step 1. It follows from
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(A.27) and (A.28) that

k k X A® AOr O )
S1/20 Ay A2 A H 2 180
Z( t (Cl ) - Qt (Cl )) - Z O)Ct o n(O)Ct

t=1 t=1

(t
15,11 ) < 1, we further deduce that

Therefore, by (A.30), Lemma D.6, and the fact of max;c ) (C NAO)

k *)_ Al k

t=1

< A (Z 1An ] =Y 1A H) % (Z HA(l)H>
leT leTe =
) A<f+1 ;” H+f+1leZTcH H)
= A<§+_1 £+1 )lEZT”
e e e

where the second inequality is due to (A.25) and the last one follows from the definition of
k(&,T) in (A.24).

Lemma D.7 presented in Section D.7 provides a natural constant level upper bound for the
fitted prediction error. Then we can lower bound the left-hand side of (A.31) according to

Lemma D.7 on the event &, ,,;, as

k ® Al

HX*,,IA Lk H "
>

Z n(O)Ct — /67\{M0; n(O)

Thus combining (A.31) with the above inequality leads to

HXEv—lAH< Vs >\<3£_1 (5_3)+> 6M M.

W0~ R(ET) cr1 S Ex

In summary, by (A.24) and with our well specified A, on the event Ecqre NE1,up NB1NEI grE
there exists some constant C' > 0 such that

& (A0 A0V STONEOMNIE
et (e - _ IR (-0

n(o) o n(o) - n(o)
t=1 t=1
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Moreover, since é’? —CY = A € U(£,T), by the definitions of x(¢,T) in (A.24) and the gRE
condition in Definition C.1 we can derive the following two inequalities from the expression

above

n(0)

p 0 0 p QO o k + logp 1/2
. cho - Cl(l)H < VM) HCl(l) - Cl(l)” <Cs (—> :
=2 =2

n(0)

HO?—C?H < \/WH(}?—C?HSC(SMY”’

noting that conditional on the event .4, A is less than or equal tov/2M A componentwise.
Finally we conclude the proof by an application of the union bound argument using Lemmas

D.5-D.7.

C.6 Proof of Theorem A.1

The main idea of the proof consists of two parts. First we prove that our suggested algorithm in
Section A has a unique guaranteed point of convergence 3*. Then we show that such a point is

the global optimum of the HGSL optimization problem (A.1).

Step 1: Convergence of 5(m). Let us denote by

k p
F(B) = (n@)72 Y YW —XO50 + A (160 (A.32)
t=1 =1

the objective function in (A.2) which is a reformulation of (A.1) in simplified notation. To
prove the desired result, we first construct a surrogate function and show that the updating rule
optimizes the surrogate function. Then we characterize the relationship between the objective
function and the surrogate function, which entails that the limit of §(m) from the mth iteration
of the algorithm is in fact optimal for our objective function.

We begin with introducing a surrogate function

k k
LYo —x0s0| 1 ! PR
G _; V) +§; Vno v —xwgo) O +A;HW”H

k
1
_l’_
; Val [y ®) — X040

(,y(t) _ ﬁ(t))’(X(t))’(X(t)B(t) _ Y(t)), (A.33)
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where 7*) and () are the subvectors of v defined similarly as 3 ®) and By, respectively. It is

easy to see that

F(B) = G(5,5). (A.34)
Denote by R = (n(0)=1/2(X®)(X® 30y ®) /||y —XO3® || and R = (RV)',---  (R®)Y,

Then we can rewrite the last term in (A.33) as

F 1

; Va0 [y — X80

Thus given a fixed 3, minimizing the above surrogate function GG over 7 is equivalent to min-

(Y = AUy (XOY(XIFO =Y = (v - B R.

imizing the following objective function formed by the last three terms of GG in (A.33) with

respect to -y
1 p
54 Iy = BI7 + 2> ol + (v = B)R,
I=1
where we denote by A = S5 (n(0)~1/2||y® — X® 31|~ The optimization problem above
is further equivalent to minimizing the following objective function with respect to vy
1

R
o (T

2 A p
+ 52 hall- (A.35)
=1

Combining the above results yields that for any given (3, the minimizer of the objective function
G(3, ) defined in (A.33) with respect to +y is the same as that of the objective function given in
(A.35).

We now set 5 = [(m) and correspondingly define the vector R(m) and the scalar A(m)
similarly as R and A, respectively, with 3(m) in place of 5. We update (m + 1) as the
minimizer of the objective function (A.35) with respect to y given § = $(m). Thus S(m+1) is
also the minimizer of G((m), ) with respect to y. Since the optimization problem in (A.35)

is separable, it can be rewritten in the following form

~ /1 R 2\
;{5“6‘”_7_7@“ +zH%z>H}~ (A.36)

In view of (A.36), the optimization problem in (A.35) can be solved componentwise by mini-
mizing each of the p summands above. In particular, the resulting solution admits an explicit

form and we obtain by Lemmas 1 and 2 in [? ] that §(m + 1) is given by

Blm+1)q) = 6 (5(7”)(1) - Rj?;igl); A(Am)) , lelp, (A.37)
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where R(m)( is a subvector of R(m) defined in a similar way to (3;) as a subvector of 3 and
—
© (+; ) is the multivariate soft-thresholding operator introduced in (A.5). Thus, it follows from

(A.34) that
G((m), B(m +1)) < G(B(m), B(m)) = F(B(m)). (A.38)

Let us consider the function (n(®)~1/2 |[Y® — X®1] with respect to 7. Some routine

calculations show that its gradient is given by

(n()~1/2 ”y(t) — X®H® Hfl (XD (X0 _ y®) (A.39)
and its Hessian matrix is

(nO)-1/2 Hy(t) H_ XOyXO — (p0)=1/2 ||y(t) _ X(t)v(t)H_g
(XOY(XOAO —yO)(XOA O _y Oy x®

< (n(0)=1/2 Hy(t) — X®H® Hfl (X®)yxX®, (A.40)
where < means that the difference between the matrices on the right-hand side and the left-hand
side of the inequality is positive semidefinite. Thus for any given 5 and -, an application of the

Taylor expansion of the function (n(®)~1/2 ||y} — X4 || at the point 3 to the first order

with the Lagrange remainder, together with (A.39)—(A.40), results in

Z (s

X(t) 5

Z ||X(t —vo (v — gOY XDy (XBH —y 1)

Z ||Y(t) ’Y(t) H

b0 (t))/(X<t>)/X<t>(7<t>_5<t>)
D T

, (A.41)

where ¢®) lies on the line segment connecting 3% and v for each t € [k].
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For now set § = 5(m) and v = S(m + 1). Then it follows from (A.33) and (A.41) that

=

=

E
|

F(B(m+1)) = G(B(m), B(m +1)) — F(f(m +1))

S i _(Bm+ 1Y = Bm)) (XOYXO(B(m + 1) — f(m)®)
B 2v/n0 || X — Y|

A(m) s (X(t))/X(t)
24/ n,0) Hx(t)g(t) — Y(t)H

2
i 1 1 XL
= 22 570 \ TXOB(m)® — YO ~ 2[X0¢0 — v

: (A.42)

where [ stands for the identity matrix and || X[|,, denotes the spectral norm of matrix X.

To show the descent property of our algorithm and thus the convergence of the sequence
f(m) due to the nonnegativity of the objective function F'(3) in (A.32), we need to prove that
the right-hand side of (A.42) is positive. At the initial step m = 0, it is easy to see that this
can be achieved by picking a large enough scalar K; > 0 in the scaling step (A.3) as long as
[X®e® — VO] # 0. This fact and the regularity condition assumed in Theorem A.l can
guarantee that F'(3(m)) is monotonically decreasing. To see this, set By = (n(?)/2F(5(0))
and recall that || X®W¢® — Y || > ¢, by assumption. It suffices to show that [|X®||2 < ¢y/B,.

From the definition of By, this claim is equivalent to
IXWIEFB0) < (n@) e (A.43)

In light of the rescaling step for Y!), X(®)and ) in (A.3), we see that the term on the left-hand
side of (A.43) scales down with a factor of K 3. This entails that as long as Ky > 0 is chosen
large enough, inequality (A.43) can be easily satisfied and thus the above claim ||X®||? <
¢o/ Bo holds.

Moreover, we can use the induction later to prove

|XOB(m) -y < By and F(8(m)) < F(8(0)) (A.44)
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for all t and m. Combining the above inequalities (A.44),

X(UHZ < ¢/ By, and HX(t)g(t) _
Y(t)|| > ¢g results in

2
i XV 1
[XOB(m)®O — YO 2[XOO —YO| = 2B,

which along with (A.42) entails that

F(B(m)) ~ F(B(m +1)) > 3 (n®) /B! ; [Bm + DO = Bm)[*. (A45)

This shows that F'(5(m)) > F(5(m + 1)). Since F(f(m)) is always bounded from below
by zero, it follows that lim,,, ., F'(6(m)) exists and lim,, . |F'(5(m + 1)) — F(8(m))| = 0.

Thus in view of (A.45), we have
lim [[5(m +1) = B(m)|| = 0. (A.46)

Observe that for each m > 0,

8m)l < 3 |3 < TED < FEO),
=1

which means that all 5(m) lie in a compact subset of R*?. This fact entails that the sequence
£(m) has at least one point of convergence. Furthermore, (A.46) ensures that 3(m) has a unique
limit point 5*, which is a fixed point of the soft-thresholding rule given in (A.37).

It now remains to establish the results in (A.44) using induction. When m = 0, it is easy
to verify that || X®3(m)® — Y®|| < By and F(8(m)) < F(B(0)). Let us assume that the
inequalities || X® 3(m)® —Y®| < Byand F(8(m)) < F(3(0)) in (A.44) hold for all m < T.

Then it follows that

2
1 xR
XOBT)O — VO]~ 2[XO0 — YO = 25,

which together with (A.42) leads to

FBT+1)) < F(B(T)) < F(5(0)).

We can also obtain || X® (T +1) — YO | < (nO)2F(B(T+1)) < (nO)Y2F(B(0)) = Bo.
Thus (A.44) also holds for m = T" + 1. This completes the proof of (A.44) for all m and ¢ and

also concludes the proof of the first step.
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Step 2: Global optimality. To conclude the proof, we need to show that the unique point
of convergence 3* of our algorithm established in Step 1 is the global optimum of the HGSL
optimization problem (A.1). Since F'(/3) defined in (A.32) is the sum of two convex functions
of (3, it follows that F'(/3) is also a convex function. Thus a vector 3 is a global minimizer of

the objective function F'(-) if and only if it satisfies the Karush-Kuhn-Tucker (KKT) conditions

(O30 - Y<t>>> "
Y f 0, AA4T
Vo xege—ve) a0 e
Oy (X @) (*)
(X)) (X 5 -Y >>\ <N forfy -0, (A.48)

VX050 — YO =
where the subscript [ in both expressions represents the /th component of a vector.
Recall that we have shown in Step 1 that 3* is the fixed point of the soft-thresholding rule
in (A.37), that is, .
5y =B (- ) e
where ;) and A" are defined similarly as R(m)() and A(m) in (A.37) with 3(m) replaced by
(5*. Let us first consider the case when (3 *z = 0. Then by the definition of the soft-thresholding
rule, we have || Rf;) /A*[| < A/A", which entails that || R{, || < A. Thus it holds that
(XY (XO© — YOy,
VO || X® gt — y )|

for ﬁz‘l) = 0, which verifies the second KKT condition (A.48) for the fixed point 5*.

=R,V < Ry < A (A.49)

We next consider the case when Ba) # 0. It follows from the soft-thresholding rule that

b — = ‘ (. By AS0
‘ RY ﬁ(l) oA ) (A.50)

By — 2
Taking the ¢, norm on both sides of the above equation leads to || || = (|57 — Rf) /A™|| —

5{1) - ’

A/A*. Moreover, equation (A.50) can be rewritten as

Mg B _ Lol o
— B )= ||Po— ||
which along with the above fact results in
Ay = By 1P = 2 || — 77 ) = B 15 (A.51)
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The representation in (A.51) further entails that

o _ (XOYXO50 —y)), "

= — )\t
L Ve X0 -y I ol
for B(*z) # 0, which establishes the first KKT condition (A.47) for the fixed point 5*. Combining

(A.52)

(A.49) and (A.52), we conclude that 3*) is indeed a global minimizer of the HGSL optimization

problem (A.1), which completes the proof of Theorem A.1.

C.7 Proof of Proposition 2.3

The support recovery property of our THI estimator £ given in (28) follows from the proofs of
Theorems 2.1 and 2.3 (1) in Sections C.1 and C.3.1, in view of the conditions of Proposition

2.1 and the assumption that the minimum signal strength min, p)ce [|wS, || is above the value

of C'v/[(klogp)'/2 + log p] /n(). Specifically, we need a refined technical analysis in the proof
of Theorem 2.3 (1) in Section C.3.1 through replacing Chebyshev’s inequality used in the third
step by an accurate coupling inequality such as Proposition KMT in [? ], which was also used in
Theorem 2 (iii) of [30] for support recovery in the setting of a single Gaussian graphical model.

We omit the details here for simplicity.

D Key lemmas and their proofs

D.1 Lemma D.1 and its proof

Lemma D.1. Assume that Conditions 2.1-2.2 hold and max{log p,log k} = o(n®). Let C? =
(C’;l)/, s C’;k)/)’ be any estimator satisfying working assumptions (15)—(17) for a fixed j € [p).

Then there exists some positive constant C' depending on constants M,0, Cy, and C5 such that

k n(®)
1 NO . 1 )% 1+ (logp)/k 1-6
Plex|(e0) - (E) | 2o mm ] < »'
1 NO N o\t log(k/d1) = 1+ (logp)/k 1-6
P(13](e) " - () 2o (VIR e LR ) <
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as long as log(6;1) = o(n?)). Moreover, whenever max{ loggféal) k;l(zfgp } = o(1), there

exists some positive constant C' depending on M,o, C, and Cs such that

-1

te(k]

k n®)
1 ~(t) , (1+ (logp)/k) 1-6
P E;w“ an( w) > Cls < 3ptd,
k
1 RO log(k/d1) =~ (1+ (logp)/k) 1-5
P (E ; wj,j — wj,j Z O/ n(o) + ’I’L(O) S 3p + 617
NORNCG log(k/d1)  (k+logp) 1-6
P (max ‘wm wji| > C’ ( 0 + s ) < 3p 7 + 4.

Proof. Observe that — Z?(J(E( )) (c&](t]))_l For each j € [p], in view of EAZ(? =

Ez(t]) + Xl.(fl'j(C’;t) — é](t)) we deduce that

n(® n®
1 A 2 1 2 A
() _ () )~ (1) ®) (®)
e > (Eu) = O { > (Eu +2E,5X. (0 = C57)
i=1 i=1
H(C — EOYXY X0 (o cg@)}. (A.53)

Thus we have

INA
N o
=

We will consider the above two terms 77 and 75 separately.

For the second term 75, we can bound it by our working assumption (17) as

M_ (A.55)

C< Oy (0

‘X(t) (C (t) C(t )
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The first term 77 can be bounded with probability at least 1 — 3p'~? as

nos 2y y P

I#j t=1

k () 1 (t) 1/2 k 1/2
1 B X 1 .

2 (E 2w >2> (z (G ~ Cﬁ))Z)
15 t=1

L& B X® N
m(k Eal) Y L)

t=1

. ( aogp)/k) ; (1 + <1ogp>/k)“{ (A.56)

n(0) n(0)

t
o _ A

jJ al

IN

IN

-

IN

where the last inequality is due to working assumption (16) and Lemma E.2 in Section E with ¢;
some positive constant depending only on 9, M, and C;. Thus we have shown the first desired
result.

Let us further bound the difference between the oracle estimator ZZ 1 (E(t)) /nt®) and its

mean ( J(])) !, Indeed, it holds that Z"U

(E; ))Q(wj(’; ) ~ x%(n®). This representation entails
that as long as log(6; ') = o(n(?), by Lemma E.1 and n(®) < n® we have

n(®) n(®

1 )’ m_ 1 ) ) log(k/61)
@ > (Eu> —1/wi| = n® > (Eu> —E (Ew> S Cm o A7)
i=1 i=1
with probability at least 1 — d;/k, where ¢, is some positive constant depending only on M.

Combining inequalities (A.54)—(A.57) with the union bound argument, we obtain the second

desired result that with probability at least 1 — 3p'=% — 6,

k - —
%2‘@]&;) 1—(@2) 1 gC( log(/lc/él)Jr 1—|—(10gp)/k>’
t=

n(0) n(0)
where C' is some positive constant that depends on M, ¢, C, and C}.

Note that whenever max{ log:fo/fl) .5 (kj;l(‘;)g D} = o(1), it follows from inequalities (A.54)—

(A.57) and the union bound argument that with probability at least 1 — 3p' =% — 6,

<c ( log(k/d1) +Sk‘+logp> | (A.58)

n(0) n(0)

~ (t) (®)

()

which is sufficiently small for large n(?). Consequently, we see that w; ; 1s uniformly bounded

from above by some positive constant for all ¢ € [k], since w 1s bounded from above by M
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by Condition 2.1. Therefore, in light of |cZ)J(tJ) - w](t])] = |1 /ofzj(tj) -1 /w ]w] i J( J) the last three
desired inequalities follow from the first two established above and inequality (A.58), which

concludes the proof.

D.2 Lemma D.2 and its proof

Lemma D.2. Assume that Conditions 2.1-2.2 hold, working assumptions (15)—(17) are valid
for i = 1,2, and max{logp,logk} = o(n?)). Then there exists some positive constant C
depending only on constants M, 9, Cy, Cy, and Cs such that

k n(®

1
E Z T7(Lfl)€,1,2 - JS?@,IQ t) Z (E ) E “ Ez(tl)Ez(t2)>
t=1
14 (1 k 1+ (1 k
n(0) n(0)

holds with probability at least 1 — 6p' .

n®

Proof. At a high level, the first term Ly IS B tl) Eftz /n®|in T, 412 is constructed

n(®

to approximate Ly Z L E; tl) Ez(2) /n®|, but some bias appears in the approximation. The

remaining two terms Z ( Z(t1))202 1/n® and 2 ( )201,2/71 in each TT(%,)%L2 serve as

the remedy to correct the bias when the null W1,2 = 0 is true. In view of El(tj) = Eftj) +

X0 — 1Y), we can deduce

=] J

n(®

(t) ()
t) ZE El?

~+

Eal e
||M»

E
—_

1 1 1 . . At
= B[P Xl - ¢t
1 t t t ~(t
L EYXO () — )
1 t ~(t t t t ~(t
b (O = COPXY XY () - 6fY)

(A.60)

I
| =
]~

)H{“ + 1 + 1 + 1Y

il
I
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The main term H above enjoys the following property

n(®) n®

1
MY = S e mem s S (R0 - mel)
=1
w“) )
. 12 (t) (1) () (1)
- 0,0 t>Z( [ - BELED). (aob
11

We can bound the last term Ztﬂ |H"|/k in (A.60) as
k

1Y <
Sl < 15

1 Z 1 R ) A 2
t=1

1+ (logp)/k
n©®

et - ] [t - )|

e

S 038

where the last inequality follows from our working assumption (17).

The second term Hét)

1 A .
B = L (BN - C + BYX 0, 60)

= HY)+ HY. (A.62)

in (A.60) can be further decomposed as

We can bound Zle |H2(t{ | /k such that with probability at least 1 — 3p'~¢,

L&k o 1 k
po ] < o

=3
P k ) 1)\ /2 k 1/2
1 B X 1 (t) (t
(i) (inen- oy
j t=1

EYXO N 1
—H % § — Ao/
) = VE H 2(5) H

< C (M) (M)m’

*,1 *,7

t
. ‘C’éj) _

IN

[\
=
e
>
VR
| =
]~
S
&

n(0) n(0)
where the last inequality is due to working assumption (16) and Lemma E.2. Observe that
similar decomposition, notation, and analysis apply to term H. ét) as well. Hence, it holds that

with probability at least 1 — 3p'~°

—

n®

k
1 A lh) A
> U BNES - (B + B+ H )| < O (50 + (ogp)/R) . (A63)
t=1 i=1

x| =

-
Il
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Let us decompose term . ét()) in (A.62) as

(A.64)

Il
=
o
o

_|_
I
o
=

_|_
S5
o
[N

Now we control the two terms Zle |H. ét())1| /k and Zle |H. é%a |/k separately, and leave H2(f()),o

as the main term. By Lemma E.2 and working assumption (16), we obtain that with probability

atleast 1 — 3p~9,

k ko gty (t () 1/2 k 1/2
1 1 N X 101 1 .
ol = (o) (Fe - e)
t=1 t=1 t=1
14 (1 k 14+ B\ V2
< O( +(<z§i)p)/ ) (S +(<z§)p)/) ' (A.65)
n n

As for the term H. 2(%?2 in (A.64), we can show that with probability at least 1 — 3p'—?,

E k
1 1 ) - (t () >
Eo [ = X[y - By RSl - o
—1 t=1
11 2N ?
At t t it
< T (B) - X0 (#) )] max it - 4]
t=1 i=1 =1
1 + (logp)/k
< CST'IH?XHAl(t)”
1 + (logp)/k 1+ (logp)/k )"
< COs n(0) G n(0) ’ (400

where the second inequality follows from expressions (A.53)—(A.56) in the earlier proof of
Lemma D.1 in Section D.1 and the last inequality follows from our working assumption (15).
Note that similar decomposition, notation, and analysis also apply to term H. ét()] Thus combining
the above expressions (A.63)—(A.66) yields that with probability at least 1 — 3p~° — 3p'~°,

n®

k
1 t t t
%Z n® ZE( ( ()WLH;()),OWLH:;()),O)
t=1

< C (i)(l + (1ogp)/k;)> (1 + (ksH(gz—ffWW) . (A.67)

n0
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We finally correct the bias in Hét()) o and Hé% o induced from C‘z 1. To this end, we take the

sumoff?it1 /n and two terms E*ti E! 1C'2 1/n®, *16’1 o/n® outoflETQOOandH300
as the statistic TTE ,)C 1o~ The remaining terms in H. 2( 00 and H. é ()] o together with the first term of
decomposition of H in (A.61) form J k.12 defined in (10), in light of 02 | = —w§f; / wét; and
Cg = —wm / le. Therefore, the desired result follows from (A.67), that is, with probability

atleast 1 — 3p~0 — 3p' 9,

N ()

1 . ¢ 1 t) (t t) (¢

T Z T?E,I)c,l,Q - JT(L,L,LQ L0 Z (El(l)Ef?) B EEZ(I)E’(2)>
t=1 =1

< C”( (0)(1+(10gp)//€))< (’“ST

with C” some positive constant. Keeping track of all relevant constants, we see that the positive

constant C” depends only on M, d, C, Cs, and C'3, which completes the proof.

D.3 Lemma D.3 and its proof

Lemma D.3. With G and X} chosen as in (A.9) and (A.8), we have |[Py AP|| > 1 — (8 — a)

with some sufficiently small constant T > 0 depending only on  — c.

Proof. A similar argument to that used in the later proof of Lemma D.4 in Section D.4 (see
inequality (A.68)) entails that it is sufficient to show that the y? divergence between P, and P

is small enough, that is,

Z/(%i::fh)z/fo—lz

Recall that g}(f) denotes the density of N (0, (Qg))_l) for h = 0,---,m. By our construction

> (fle) -y mp < (5 - a2

hi,ha=1 fo

of ) and Y, together with the x? divergence of two Gaussian distributions in (A.69), we can

deduce that for any hy, hy € [m],

n(0) .
= (] n(0)
% (/ Ht 1 th 9h2 ) ( _ /n(0)> J(hl,hg)
0 ]

J(hy,ha)n(®

< (1+42/n®)" < exp(2J (h, ha)),
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where we have used 1/n() < 1/2 in the second to last inequality and J = .J(hy, hy) is the
cardinality of 7, N 7T}, with the index sets 7}, C [k] denoting those graphs with non-identity
precision matrices in (A.9) for s = 1, 2. In other words, J (h1, hy) is the number of overlapping
non-identity precision matrices between two sets of k precision matrices indexed by Q?“ and
Qp, . Ttis easy to see that integer J = J(hy,hy) €0, 7V

Recall that m = (). Thus we have

A = (;)2 S (ep2i(hn b)) 1)

0<j<rvk J(h1,h2)=j

fg<$VKE;@(£¢)C§%>jSj)em@”
) ISJZS;\/E (TTY/E> (T\k}E_j j) / (T\k/E) ()
< TR

< exp(A)P(Z > 0) = exp(\) — 1,

where in the last inequality we bounded the sum using a Poisson random variable Z with pa-
rameter A\ = 72k exp(2)/(k — 7v/k). Finally, we can conclude the proof by picking a small

enough constant 7 depending on 3 — « to obtain A < (8 — ).

D.4 Lemma D.4 and its proof

Lemma D.4. With G and Q) specified in (A.23) and (A.22), it holds that | Py AP|| > 1—3(8—a)

with some sufficiently small constant T > 0 depending only on M, and p.

Proof. Recall that the densities of distributions P, and N (0, (Qél))_l) are denoted as f; and

gn, respectively, for each 0 < h < m. By Jensen’s inequality we have

£2
PonBl= [(hnfz1-3([ £ =1-vap

Thus it suffices to show that the x? divergence is small enough

A:/M—b# f: (/(M)—l)<(ﬁ—a)2, (A.68)

fo I fo
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which yields the desired bound [Py AP|| > 1 — 3(8 — «).

The following representation of the x? divergence of two Gaussian distributions

g;jQ = [det(I — X521 — Z0) 51 (e — o)) 2, (A.69)

with g; the density of N(0,%;) for i = 0, 1, 2, is helpful to our analysis. By our construction of

P, and (A.69), some algebra results in

fhlth e n R
- Ht 1gh1 gh2 - (1 —2Ja ) ’

where J = J(hy, hy) is the number of overlapping a between the first rows of (Q&))_l and
(9,212))*1. Hence it follows that

R 10 VD DI (R T R

0<j<s—1 J(h1,h2)=j

=, 2 () ()0 (e ),

1<j<s—1

Observe that since 2ja? < 2(s — 1)a* < 1/2 and k < M, log p, we have

_n(0) . n(0) . .
(1 — 2ja2) Ok < (1 + 4ja2) Vk < exp(4ja’nOk) = exp(457(k + logp))

IN

(p)4(1+M1)Tj

Moreover, it can be checked that with m = (i’j) ,

()00 =6G5)

Therefore, combining the three expressions above we can complete the proof by noting that

A(1+Mp)T\ 7
A< Y (W—) Lo,

— S
1<j<s—1 p

where we have used p > s* for some ;> 2 and picked a small enough constant 7 depending

on 4 and M;.

D.S Lemma D.5 and its proof

Lemma D.5. For any fixed &, under Conditions 2.1-2.2 and the assumption of s < C’gn(o) /logp

with some sufficiently small constant C¢ > 0 depending on &, M, and My, we have P{&, jrp} >
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1 — 2k exp(—cn®), where &, yrp = {gRE(E, T) > ming, {(n® /ng;'ng;wz} /(2M)Y2} and

¢ > 0 is some constant depending on &, M, and M.

Proof. The proof of the group-wise restricted eigenvalue (gRE) condition follows from a
similar reduction principle to that developed in [? ] and [? ] for dealing with the regular
restricted eigenvalue (RE) condition. First of all, due to the normalization constant, that is,

X9, =X?_,(Dy)7"2, it suffices to show that with probability at least 1 — 2k exp(—cn(?),

0
u {_”X*vl“” e w,T)} > (2M) 1. (A70)

To further reduce the condition in (A.70), we note that

u’ngﬂXg,flu o uvE (ngleg,A) u (ng,ng,fl —E (ngleg,,l)) u

O lul? n© [|u] n© [|u]

and the first term above is lower bounded by M !, that is,

u'E (Xi’f,lxg, 1) u iu ryl ) 1u(t) . n®) S 1
nO o 37

t=1

where the last inequality follows from Conditions 2.1-2.2. Thus it remains to prove that with
probability at least 1 — 2k exp(—cn®),

W (XX B (XE XD )

< for all v, T). ATl

Before proceeding, let us introduce some notation. Let

p

K(m) = {u € R*"™D 03 “1{ug) # 0} <m}

1=2
be the group-wise m-sparse set. The proof of (A.71) is comprised of two steps. In the first step

we prove that the following inequality holds with probability at least 1 — 2k exp(—cn(®)) for all

u € K(2s),
u’ (ngflxg,fl —E (ngng,fl)) u
n© HUH2
=1 ||U(” I” nl
1
< - A.72
62+ &)2M° ( )

35



while the second step shows that (A.72) entails (A.71) deterministically.
The inequality (A.72) can be established by the standard J-net argument for each of the

design matrices Xff)_l and a union bound argument. Denote by

p
K (m) = {u(t) c RV . Z 1{ul” £ 0} < m} :

1=2
Then an application of Lemma 15 in [? ] implies that there exists some absolute constant ¢y > 0
such that

ul® (X ( %, 9. /n Z(t1 —1) ul®
2
il

P sup
u® €K () (2s) ||U

>
< 2exp(—con' min{z?/M? x/M} + 4slogp).

Note that n® /n(®) < M, from Condition 2.2. Therefore, the union bound of the above in-
equality for all ¢ € [k], together with the choice z = (6(2 + £)*M M,)~* and our assumption
s < Cenl® /log p with some sufficiently small constant C¢ > 0 depending on &, M, and My,
yields that (A.72) holds with probability at least 1 — 2k exp(—cn(o)) for some positive constant
c depending on &, M, and M.

It remains to show that (A.72) in fact implies the desired result in (A.71). From now on,
denote by

I'= (ngflxg,fl - E(ngflxg,fl))/nm)'

In order to show (A.71), by the scaling property it suffices to establish
1
|u'Tu| < YV forall u € W(&,T) N By(1), (A.73)

me&uMHMmm@mmmRWﬂ.%mmemmﬂ@muwmwmmwmu
|u'T'u| < 537 for any u € cl(conv{K(s) N Ba(2 4+ )}), the closure of the convex hull covering
K(2s) N 32(2 + &), followed by an argument showing that (£, T) N By(1) C cl(conv{K(s) N
By(2+¢)}).

For any u € cl(conv{K(s) N By(2 + &)}), we can write u = > . a;u;, where u; € K(s),
luill| <2+¢& o > 0,and ), o = 1. Thus it follows from (A.72) and the fact of u; + u; €
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K(2s) for any ¢ and j that

|u'Tu| = (Z &iui)T(Z ;)| < Z ;o |uy Tl
p i i

1
= 5 Z OéiOéj |(UZ + uj)T(ui + Uj) — uiTuZ- — Uj,FUj|

IN

%m Zai@j 42+ +2+9"+(2+¢)%)

1 1
— ;0 = —,
QM £ T oM

17]

IN

where (A.72) has been applied in the second inequality. It remains to show that
U(E,T)N By(1) C cl(conv{K(s) N Ba(2+&)}).

We exploit a similar analysis to that designed for the regular sparse set (see Lemma 1,1 of [? ]).

To show that a set A belongs to a convex set B, it suffices to prove
da(z) < ¢p(z) forall z € RFP-D,

where ¢4(z) = sup,c4 (u, 2); see, e.g., Theorem 2.3.1 of [? ].

Hereafter we denote by A = W(£,T) N By(1) and B = cl(conv{K(s) N By(2 + £}). For
any z € R¥®=1 et the index set S consist of the top s groups of z in terms of the /5 norm.
Consequently, for any [ € S° we have ||z || < (3,5 Iz [1*)"/?/+/s. Now we upper bound

®4(z) by considering index sets S and S¢ separately,

¢a(z) < SUPZ<U >+SUPZ<UZ>> )

IGS ZESC
< QO lzlH" +max o[- D Juoll
les leSe
< O a2+ 1+ ovs/vs) = 2+ OO [lz0])2
lesS les

where we have used the fact that « is a unit vector and the Cauchy—Schwarz inequality in the

second inequality, and the third inequality follows from the fact that

> llugl <ZHU 1< @+ llugll < (1+E)Vs|ull

lese leT
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in light of u € W(&, T'). On the other hand, since B is a convex set we have

¢p(z) =sup (u,z) = (2+ &) max sup Z <u(l),z(l)> =(2+ §)(Z Hz(l)Hz)lﬂ,

ueB LiLl=s ueBa(1) 17 les

where we have used the definition of the index set S. Clearly, it holds that ¢p4(z) < ¢p(2) for

all z € R*®=1 which concludes the proof.

D.6 Lemma D.6 and its proof

Lemma D.6. With the choice of regularization parameter \ specified in Theorem 3.1, the event

B, defined in (31) holds with probability at least 1 — 3p~+1,
Proof. Throughout this proof we condition on XS,,I. For any fixed [ € [k], we have
= _1/2 d 1 AW
Dl(l)/ Xg:(l)ES,l ~ <N(07 n(l)/w§,1)>7 e 7N(O7 n(k)/w§,1)>> )

d . o . .
where ~ denotes equivalence in distribution and the k£ components on the right-hand side are

independent of each other. By the definition of D, we can further write

Dy "Dy X By A (1020 W20

where Z®, t € [k], are i.i.d. standard Gaussian and (T®)~2 £ y2(n®)/n®. Consequently,

we obtain
P 2
P (HD;}/ *Dy XY EY, ‘ > z) <P (m?g]; (TD)? x2(k) > z) . (A74)
9 b te
To control the term T'*), we apply Lemma E.1 with z = 7 = (8(§log p + log k) /n(0)1/2 =
o(1) to deduce that
1
P ((T“))2 > 1—) < 2k~ 1p~d, (A.75)
—T

where we have used the fact of n(®) < n®. Similarly, to control the term x?(k) an application

of Lemma E.1 with y = ¢ log p leads to

P (Xz(k) > k + 20 log p + 21/0k log p) <pd (A.76)
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Thus the union bound argument applied to inequalities (A.75) over ¢ € [k] and (A.76) yields

k4201 2y/0k1
P (max (T(t))2x2(k) > 20logp + 2V ng) < 3p°.

te(k) 1—17

Finally, we can apply another union bound argument over all 2 <! < p and (A.74) to obtain

P (2112[&<X k+ 20logp + 2y/0k logp> < 3yt
SISp

2
DDy * XY ) B2
which completes the proof by noting that the above conditional probability is free of Xg’fl.

D.7 Lemma D.7 and its proof
Lemma D.7. Under Conditions 2.1-2.2, for the event &, ., = { (; < /6 M M, simultaneously
for all t € [k]} it holds that P{E; ., } >1 — 4k exp(—n') /32).

Proof. Be definition, we have ¢, = Q’ 2( t)) + Q) 2(C(t)) Since é? is the solution to

the HGSL optimization problem (A.1), for the vector 5 = (0, C’f)', e ,é{k)/)/ with B(l) =
(0, 5}?,), . Ci*ff“,))’ it holds that

k
>0 23 [t < 81700+ T +23 ol
Note that Hé?(z) | > |8 || by our choice of 3(;. Thus we deduce that

12O < Q12(0) = | XD/ (n @),

By symmetry, for all ¢ € [k] we have with probability at least 1 — 4k exp(—n(?)/32),

HXQ +HE£'2 HXQ - ‘ES{ o)

G < <
n(0) n® n(0)

< 2/3M)2- /M,

where the last inequality follows from Conditions 2.1-2.2 and the facts of X,Eti/Xiti / 052 ~

x?(n®) and Ei y Ei 1(w§ )} ~ y2(n®). Specifically, the union bound for ¢ € [k] with an

application of Lemma E.1 using x = 1/2 yields
XS+ IELID/ ()2 < (3013/2)% + (3/2047) 2
with probability at least 1 — 4k exp(—n(?)/32), which concludes the proof.
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E Additional technical details

The following two technical lemmas are used throughout the paper from place to place.

Lemma E.1 ([18]). The chi-square distribution with n degrees of freedom satisfies the following

tail probability bounds

IN

(‘X /n—1| >x) 2exp(—nx(z A 1)/8) foranyx >0,
P (\*()/n—1>2/n+2/yn) < exp(-y) foranyy >0,

P <\/X2(n)/n -1> z) < exp(—nz?/2) forany z > 0.

Lemma E.2. Assume that Conditions 2.1-2.2 hold and max{log p,log k} = o(n'?)). Then for
any given constant § > 0, there exists some positive constant C depending only on M and §

such that for any fixed j,

k t t
b (e LS EAXS 1k own)
1#; k — nt) - n(0)

k )~z (1) (t)
1 B, X, 00 1+ (logp)/k 5
P (‘ E (T) > CT < 3p°.

Proof. Since E( )- ~ N(0,1 - (w")~1) is independent of Xif)_j for each t € [k], it holds that

]J

foreach [ # j, (E t)/X (t))( )1/ 2/ HXSI) | ~ N(0,1). In addition, these random variables are

independent among different ¢ € [k]. By Lemma E.1, we have

P li <t>( /HX >2>1+2,/510gp+2510gp < opf (A.77)
ko0 e = K T '

To control the term || X ftl) ||, we apply Lemma E.1 with X fl) ~ N(0,1- Uz(,tz)) to deduce that

2(6logp + logk
v (HX(tl) \orn® =1+ \/ ( g:@) ; >) <p kY,
(t)

where o, stands for the variance of X l(t). The union bound, together with the assumption of

max{log p, log k} = o(n(?), entails that

IX < 2000 ®)2 < (4Mn )1/ (A78)
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simultaneously for all ¢ € [k] with probability at least 1 — p~?.

We now condition on the event given by (A.78). Due to Conditions 2.1-2.2, we have

2

k (t) (1) k () (1) \ 2

Lyh o (B5XT) a0 1en (B

k J:J ‘X(t) = AM? k n® )
t=1 t=1

*,1

which along with (A.77) leads to

k
1 W), o\2 - AM? dlogp 28logp s
P(gZ(E*,jX*,l/n“) > o (142 2R+ =2 <3p0. (A79)

t=1

Thus we see that the first desired result follows immediately from (A.79) with a union bound for

alll # jand C' = 4M?(2+36), in view of 2((d log p)/k)'/? < 1+ (§1ogp)/k. Since XSLIC{”
(®)

. j» the second desired

has 1.1.d. Gaussian entries with bounded variance and is independent of £

result follows from a similar analysis as for (A.79), which completes the proof.
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