
Supplementary material to “Tuning-free Heterogeneous
Inference in Massive Networks”

Zhao Ren1, Yongjian Kang2, Yingying Fan2 and Jinchi Lv2

University of Pittsburgh1 and University of Southern California2

This Supplementary Material contains a scalable HGSL algorithm with provable convergence in

Section A, the proofs of Theorems 2.1–3.1, Theorem A.1 and Propositions 2.1–2.3 in Section

C, as well as the proofs of key lemmas and additional technical details in Sections D and E,

respectively. Additional computational cost comparison with existing methods is provided in

Section B.

A Scalable HGSL algorithm with provable convergence

The tuning-free property of HGSL established in Section 3 provides a crucial step toward the

scalability of our THI framework when one needs to analyze a large number of networks with

massive number of nodes jointly. To further boost the scalability, we now introduce a new

computational algorithm to solve the convex program of HGSL problem in (30) in a simple

yet efficient fashion, which will be referred to as the HGSL algorithm hereafter for simplicity.

As is common in regularization problems, we rescale each column of X0
∗,−1 to have `2 norm

(n(t))1/2 and denote by X̄0
∗,−1 = diag{X̄(1)

∗,−1, · · · , X̄
(k)
∗,−1} the resulting new design matrix; that

is, X̄0
∗,−1 = X0

∗,−1D̄
−1/2
1 with the scaling matrix D̄1 given in Section 3. Let us consider another

HGSL optimization problem

ˆ̄C0
1 = arg minβ0∈R(p−1)k

{
k∑
t=1

Q̄
1/2
t (β(t)) + λ

p∑
l=2

∥∥β0
(l)

∥∥} , (A.1)

where Q̄t(β
(t)) = ‖X(t)

∗,1− X̄
(t)
∗,−1β

(t)‖2/n(0) for 1 ≤ t ≤ k and the rest of the notation is defined

similarly as in (30). In fact, the new HGSL optimization problem in (A.1) is closely related

to the original HGSL optimization problem in (30), through a simple equation ˆ̄C0
1 = D̄

1/2
1 Ĉ0

1
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linking the minimizers of these two problems. Thus the problem of solving (30) reduces to that

of solving (A.1).

To ease the presentation, we slightly abuse the notation and rewrite the new HGSL opti-

mization problem (A.1) in a general form

β̂ = arg minβ∈Rpk

{
(n(0))−1/2

k∑
t=1

‖Y (t) −X(t)β(t)‖+ λ

p∑
l=1

∥∥β(l)

∥∥} , (A.2)

where Y (t) ∈ Rn(t) , X(t) ∈ Rn(t)×p, and β(t) ∈ Rp are the response vector, the design matrix, and

the regression coefficient vector, respectively, corresponding to the tth network for 1 ≤ t ≤ k

with the pk-dimensional vector β = ((β(1))′, · · · , (β(k))′)′ and β(l) a k-dimensional subvector of

β formed by each lth component of β(t) with 1 ≤ t ≤ k. Similarly we define the p-dimensional

subvectors β̂(t) of β̂ with 1 ≤ t ≤ k, and its k-dimensional subvectors β̂(l) with 1 ≤ l ≤ p.

So far our original HGSL optimization problem in (30) has been reduced to the general

HGSL optimization problem in (A.2) with the same tuning-free choice of the parameter λ as

discussed in Section 3 and the relationship between the two minimizers elucidated above. To

solve the convex optimization problem in (A.2), we suggest a new scaled iterative thresholding

algorithm. Our HGSL algorithm is designed specifically for the HGSL problem with conver-

gence guarantees, motivated by the algorithm for the group square-root Lasso with homoge-

neous noises in [4] and a more general algorithm developed in [? ]. In practice, to reduce the

bias of the estimator β̂ incurred by the regularization in (A.2) one can obtain the final estimate

by a refit on the support of the computed sparse β̂ using the ordinary least-squares estimator.

Our HGSL algorithm consists of two main steps, with the first step for rescaling and the

second one for iteration. In the first step, we rescale the response vector, the design matrix, and

the regularization parameter as

Y (t)/K0 → Y (t), X(t)/K0 → X(t), λ/K0 → λ for 1 ≤ t ≤ k, (A.3)

where K0 > 0 is some preselected sufficiently large scalar. Clearly the solution to the optimiza-

tion problem (A.2) remains the same after the rescaling specified in (A.3). Such step, however,

reduces the norm of the design matrix, which can guarantee the convergence of the iterative

algorithm as shown in Theorem A.1 later. We again slightly abuse the notation and still use
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Y (t), X(t), and λ to denote the response vector, the design matrix, and the regularization param-

eter after rescaling hereafter. In particular, the choice of K0 = max1≤t≤k ‖X(t)‖`2 with ‖ · ‖`2
denoting the spectral norm of a matrix, which is suggested by inequality (A.42) in the proof

of Theorem A.1 in Section C.6 of the Supplementary Material, works well in our simulation

studies.

In the second step, we solve iteratively the general HGSL optimization problem in (A.2)

with the rescaled data matrix from the first step, and let β(m) be the solution returned by the

mth iteration for each integer m ≥ 0. For the initial value β(0), we set it as the zero vector

in our numerical studies, which works well. Denote by β(m)(t) and β(m)(l) the subvectors of

β(m) similarly as in (A.2). For the (m + 1)th iteration with input β(m), we define R(m) =

((R(m)(1))′, · · · , (R(m)(k))′)′ ∈ Rpk with

R(m)(t) = (X(t))′
(
X(t)β(m)(t) − Y (t)

)
/
[
(n(0))1/2

∥∥X(t)β(m)(t) − Y (t)
∥∥]

for 1 ≤ t ≤ k, denote by R(m)(l) a k-dimensional subvector of R(m) corresponding to the lth

group for 1 ≤ l ≤ p, and introduce a scaling factorA(m) =
∑k

t=1

[
(n(0))1/2

∥∥X(t)β(m)(t) − Y (t)
∥∥]−1.

Then we compute β(m+ 1) as

β(m+ 1)(l) =
−→
Θ
(
β(m)(l) −

R(m)(l)

A(m)
;

λ

A(m)

)
for 1 ≤ l ≤ p, (A.4)

where
−→
Θ is the multivariate soft-thresholding operator defined as

−→
Θ(0;λ) = 0 and

−→
Θ(a;λ) = aΘ(‖a‖ ;λ)/ ‖a‖ for a 6= 0 (A.5)

with Θ(t;λ) = sgn(t)(|t| −λ)+ representing the soft-thresholding rule. In practice, we stop the

iteration when the difference between the solutions from two consecutive iterates falls below a

prespecified small threshold for convergence.

Theorem A.1. Assume that λ > 0 and min1≤t≤k infξ∈At

∥∥X(t)ξ − Y (t)
∥∥ > c0 with At =

{vβ(m)(t) + (1 − v)β(m + 1)(t) : v ∈ [0, 1],m = 0, 1, · · · } and c0 > 0 some constant.

Then for large enough K0, the sequence of computed solutions β(m) converges to the global

optimum of the HGSL problem (A.1).
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Theorem A.1 justifies formally that our suggested scalable HGSL algorithm indeed enjoys

provable convergence to the global optimum of our convex HGSL optimization problem. The

scalability of the HGSL algorithm is rooted in both the tuning-free property and the simple

iterative thresholding nature. It is also worth mentioning that a similar regularity condition to

the one assumed in Theorem A.1 was imposed in [4] to prove the convergence of their algorithm

for the group square-root Lasso with homogeneous noises. As mentioned before, in the end one

can further apply a refit using the support of the computed sparse solution to obtain a final

estimate with possibly reduced bias.

B Computational cost comparison with existing methods

We provide a comparison on the computational cost in Table 7 for simulation examples in

Section 4.1.2. Since the computational cost of THI-φ1 is almost identical to that of THI-φ2,

only the results for the latter are reported.

Table 7: Average computational costs of different methods in seconds.

Setting 1 (×100) Setting 2 (×101) Setting 3 (×102)

THI MPE GGL FGL THI MPE GGL FGL THI MPE GGL FGL

Model I 7.2 57.7 9.2 64.8 2.1 8.7 2.6 13.5 3.9 36.7 3.7 18.2

Model II 18.1 69.8 18.2 44.4 3.0 10.0 3.5 28.7 6.8 38.6 5.9 23.1

C Proofs of main results

C.1 Proofs of Theorem 2.1 and Proposition 2.1

The proofs of Theorems 2.1–2.2 and Propositions 2.1–2.2 rely on two key sets of results in

Lemmas D.1 and D.2 in Sections D.1 and D.2, respectively, where we use the compact notation

[`] to denote the set {1, · · · , `} for any positive integer ` whenever there is no confusion. Our
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results are important consequences of Lemmas D.1 and D.2. Indeed, it holds that
k∑
t=1

∣∣∣∣√n(t)ω̂
(t)
2,2ω̂

(t)
1,1

(
T

(t)
n,k,1,2 − J

(t)
n,k,1,2

)
− V ∗(t)n,k,1,2

∣∣∣∣ ≤ T1 + T2,

where

T1 =
k∑
t=1

√
n(t)ω̂

(t)
2,2ω̂

(t)
1,1

∣∣∣∣∣∣T (t)
n,k,1,2 − J

(t)
n,k,1,2 −

1

n(t)

n(t)∑
i=1

(
E

(t)
i,1E

(t)
i,2 − EE(t)

i,1E
(t)
i,2

)∣∣∣∣∣∣ ,
T2 =

k∑
t=1

∣∣∣∣∣∣1−
√√√√ ω̂

(t)
2,2ω̂

(t)
1,1

ω
(t)
2,2ω̃

(t)
1,1

∣∣∣∣∣∣
∣∣∣∣∣∣
√
ω

(t)
2,2ω̃

(t)
1,1

n(t)

n(t)∑
i=1

(
E

(t)
i,1E

(t)
i,2 − EE(t)

i,1E
(t)
i,2

)∣∣∣∣∣∣ .
According to Lemma D.1, we have |ω̂(t)

j,j − ω
(t)
j,j | ≤ C ′(

√
log(k/δ1)

n(0) + s (k+log p)

n(0) ) = o(1) with

probability at least 1− 6p1−δ − 2δ1 uniformly for all t ∈ [k] and j = 1, 2. Therefore, Condition

2.1 implies that all ω̂(t)
j,j are bounded from both below and above, which together with Lemma

D.2 and s (k + log p) /n(0) = o(1) leads to

T1 ≤ C

(
s
k + (log p)√

n(0)

)
with probability at least 1 − 12p1−δ − 2δ1, where positive constant C depends on constants

M,M0, δ, C1, C2, and C3.

It remains to upper bound term T2. Note that Lemma D.1 together with Condition 2.1

implies that ω̃(t)
1,1 is bounded. In addition, Condition 2.1 also implies that E(t)

i,1E
(t)
i,2 , i ∈ [n(t)] are

i.i.d. sub-exponential with bounded constant parameter. Consequently, Bernstein’s inequality

(see, e.g., Proposition 5.16, [35]) entails immediately that maxk |V ∗(t)n,k,1,2| <
√
C ′ log(k/δ1)

with probability at least 1 − 2δ1, where positive constant C ′ depends on M only. Therefore,

this fact and Lemma D.1 along with the union bound further yield with probability at least

1− 6p1−δ − 4δ1 that

T2 ≤
√
C ′ log(k/δ1)

k∑
t=1

∣∣∣∣∣∣1−
√√√√ ω̂

(t)
2,2ω̂

(t)
1,1

ω
(t)
2,2ω̃

(t)
1,1

∣∣∣∣∣∣
≤ C

√
log(k/δ1)

(
k∑
t=1

∣∣∣ω̃(t)
1,1 − ω̂

(t)
1,1

∣∣∣+
k∑
t=1

∣∣∣ω(t)
2,2 − ω̂

(t)
2,2

∣∣∣)

≤ C

(
k

√
log(k/δ1)

n(0)
+ s

(k + (log p))

n(0)

)√
log(k/δ1)

≤ C(s
k + (log p)√

n(0)
),
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where the second inequality follows from the fact that all ω̂(t)
j,j , ω̃

(t)
j,j , and ω(t)

j,j are bounded from

both below and above, the third inequality is due to Lemma D.1, and the last inequality follows

from our sample size assumptions log(k/δ1) = O(s(1 + (log p)/k)) as well as log(k/δ1) =

o(n(0)). The positive constant C above depends on constants M, δ, C1, C2, and C3.

Combining the bounds of T1 and T2 above, we deduce that the following inequality holds

with probability at least 1− 12p1−δ − 4δ1,

k∑
t=1

∣∣∣∣√n(t)ω̂
(t)
2,2ω̂

(t)
1,1

(
T

(t)
n,k,1,2 − J

(t)
n,k,1,2

)
− V ∗(t)n,k,1,2

∣∣∣∣ ≤ C

(
s
k + log p√

n(0)

)
, (A.6)

where constant C > 0 depends only on M,M0, δ, C1, C2, and C3.

Aided with the key result in (A.6) above, the analysis of Theorem 2.1 is straightforward.

Indeed we have ∣∣∣∣∣∣
(

k∑
t=1

n(t)ω̂
(t)
2,2ω̂

(t)
1,1

(
T

(t)
n,k,1,2 − J

(t)
n,k,1,2

)2
)1/2

− U∗n,k,1,2

∣∣∣∣∣∣
≤

[
k∑
t=1

(√
n(t)ω̂

(t)
2,2ω̂

(t)
1,1

(
T

(t)
n,k,1,2 − J

(t)
n,k,1,2

)
− V ∗(t)n,k,1,2

)2
]1/2

≤
k∑
t=1

∣∣∣∣√n(t)ω̂
(t)
2,2ω̂

(t)
1,1

(
T

(t)
n,k,1,2 − J

(t)
n,k,1,2

)
− V ∗(t)n,k,1,2

∣∣∣∣
≤ Cs

k + (log p)√
n(0)

,

where the last inequality is due to (A.6). The remaining part of the proof for Theorem 2.1

follows easily.

Note that the chi distribution U∗n,k,1,2 always has constant level standard deviation. Hence

Proposition 2.1 follows from the fact that the error bound of |Un,k,1,2 − U∗n,k,1,2| is o(1) with

significant probability under the sample size assumption, which completes the proofs.

C.2 Proofs of Theorem 2.2 and Proposition 2.2

Theorem 2.2 is an immediate consequence of (A.6) established in Section C.1, since the left-

hand side of (A.6) is an upper bound of the left-hand side of (20) regardless of what sign vector

is picked.
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Note that V ∗n,k,1,2(ξ) follows distributionN(0, k). The error bound of |Vn,k,1,2(ξ)−V ∗n,k,1,2(ξ)|

is negligible compared to the standard deviation of V ∗n,k,1,2(ξ) with significant probability under

the sample size assumption, that is, s(k+(log p))/
√
n(0) = o(k1/2), which concludes the proofs

of both Theorem 2.2 and Proposition 2.2.

C.3 Proof of Theorem 2.3

The first part of the analysis serves as a general tool for both the lower bound arguments in

Theorem 2.3 and the proof of Theorem 2.4. It suffices to assume without loss of generality

that the sample sizes of all k graphs are identical, that is, n(1) = · · · = n(k) = n(0), noting

that Condition 2.2 is valid under this setting. Consider a least favorable finite subset G =

{Ω0
1, · · · ,Ω0

m} ⊂ A in the alternative sets, where A = Al2(s, c′
√
k1/2/n(0)) for Theorem 2.3

(1), A = Al1(s, c′
√
k/n(0), ξ) for Theorem 2.3 (2), and A = Al1(s, c

√
k/n(0), ξ) for Theorem

2.4. In addition, we consider one element in Ω0
0 ∈ N (s). The choice of G and Ω0

0 will be

determined later.

Recall that each index denotes each of the k graphs, that is, Ω0
h = {Ω(t)

h }kt=1 for h =

0, · · · ,m. Let Ph ≡ PΩ0
h

denote the joint distribution of the observations when the true param-

eter is Ω0
h. In other words, Ph is the joint distribution of n(0) copies of k graphs

∏k
t=1 g

(t)
h (xt),

where g(t)
h (·) is the density of N(0, (Ω

(t)
h )−1) for t ∈ [k]. We use Ev and fh to denote the expec-

tation under Pv and the density function under Ph, respectively. Moreover, let P̄ = 1
m

∑m
h=1 Ph

be the average measure of these joint distributions indexed by elements in G. For any test ψ0,

we have

sup
v∈G

(E0ψ0 + Ev(1− ψ0)) ≥ inf
ψ

(
sup
v∈G

E0ψ + Ev(1− ψ)

)
≥ inf

ψ

(
E0ψ + Ē(1− ψ)

)
=

∥∥P0 ∧ P̄
∥∥ ,

where ‖P0 ∧ P̄‖ is the total variation affinity between two measures. Therefore, if ψ0 has

significance level α it holds that

inf
v∈A

Pv(ψ0 rejects H0,12) ≤ inf
v∈G

Ev(ψ0) ≤ 1 + α−
∥∥P0 ∧ P̄

∥∥ . (A.7)
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To show that for any given β > α and some constant c > 0, no test of significance level α

satisfies (26), it is sufficient to prove that ‖P0 ∧ P̄‖ > 1− (β−α)/2, which together with (A.7)

implies that

inf
v∈A

Pv(ψ0 rejects H0,12) ≤ β − (β − α)/2.

We will use this fact in the lower bound arguments in Theorem 2.3 and the proof of Theorem

2.4 with different constructions of G and Ω0
0, and constant c > 0.

C.3.1 Proof of Theorem 2.3 (1)

To show that εn =
√
k1/2/n(0) is the separating rate, we first establish the lower bound (27)

and then prove that our test φ2 satisfies (26) with A = Al2(s, c
√
k1/2/n(0)). With the aid of

(A.7), it suffices to show that for fixed β > α, there exists some constant c′ > 0 such that

‖P0 ∧ P̄‖ > 1 − (β − α)/2 with appropriate choices of G ⊂ A = Al2(s, c′
√
k1/2/n(0)) and

Ω0
0 ∈ N (s).

We define

Ω0
0 = {Ω(t)

0 }kt=1 such that Ω
(1)
0 = · · · = Ω

(k)
0 = I. (A.8)

For simplicity, assume that τ
√
k is an integer with some small constant τ > 0 to be determined

later. Otherwise, τ
√
k can be replaced by its floor function bτ

√
kc in the analysis below. Then

we construct a subset

G =
{

Ω0 = {Ω(t)}kt=1 : there exists some T ⊂ [k] with |T | = τ
√
k such that

Ω(t) = I for t /∈ T and (Ω
(k)
0 )−1 = I + (n(0))−1/2e12 for t ∈ T

}
, (A.9)

where e12 is the matrix with the (1, 2)th and (2, 1)th entries being one and all other entries being

zero. Therefore, there are
(

k
τ
√
k

)
distinct elements in G and thus m =

(
k

τ
√
k

)
. It is easy to check

that Ω0
0 ∈ N (s) and G ⊂ Al2(s, c′

√
k1/2/n(0)) with c′ ≡ 2

√
τ , by noting that for each element

in G, ‖ω0
h,12‖ = 1

1−1/n(0)

√
τk1/2/n(0). Hence we omit the details here. Lemma D.3 in Section

D.3 helps us finish the proof of the lower bound, that is, (27).

It remains to show that the proposed chi-based test φ2 satisfies (26), that is, with a suffi-
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ciently large c > 0, A(c) = Al2(s, c
√
k1/2/n(0)), and n(0), we have

inf
v∈A(c)

Pv
(
Un,k,1,2 > zl2k (1− α)

)
≥ β. (A.10)

We show this fact in three steps. During the first two steps, we reduce the goal in (A.10) to a

relatively simple one so that during the third step we are able to apply Chebyshev’s inequality

to finish our proof. Hereafter we use C > 0 to denote a generic constant. Before proceeding,

note that under the assumptions of Proposition 2.1, including δ > 1 and δ1 = o(1), the last

inequality of Lemma D.1 and Condition 2.1 entail that with probability 1− o(1),

max
t∈[k],j=1,2

{∣∣∣∣ω(t)
j,j

(
ω̂

(t)
j,j

)−1

− 1

∣∣∣∣} ≤ C

(
s

(k + log p)

n(0)
+

√
log(k/δ1)

n(0)

)
, (A.11)

J
(t)
n,k,1,2/

(
ω

(t)
1,2/

(
ω

(t)
1,1ω

(t)
2,2

))
∈ (−1.1,−0.9) , (A.12)

where the second expression (A.12) follows from (A.11) and the definition of J (t)
n,k,1,2 in (10).

Define Ū2
n,k,1,2 ≡

∑k
t=1 n

(t)ω
(t)
2,2ω

(t)
1,1(T

(t)
n,k,1,2)2. Comparing Ū2

n,k,1,2 with the definition of

U2
n,k,1,2 in (11), we obtain that with probability 1− o(1),

Ū2
n,k,1,2

U2
n,k,1,2

≤ max
t∈[k]

ω
(t)
1,1

ω̂
(t)
1,1

ω
(t)
2,2

ω̂
(t)
2,2

≤ 1 + C

(
s

(k + log p)

n(0)
+

√
log(k/δ1)

n(0)

)
≡
(
1 + ηl21

)2
,

where the second inequality follows from (A.11). Note that according to our assumptions, it

holds that ηl21 ≤ C(s (k+log p)

n(0) +
√

log(k/δ1)

n(0) ) = o(1). Therefore, due to the union bound argument,

to prove (A.10) it is sufficient to show

inf
v∈A(c)

Pv
(
Ūn,k,1,2 >

(
1 + ηl21

)
· zl2k (1− α)

)
> β. (A.13)

We further reduce (A.13) in the second step. Denote by V̄ ∗(t)n,k,1,2 =

√
ω
(t)
2,2ω

(t)
1,1

n(t)

∑n(t)

i=1(E
(t)
i,1E

(t)
i,2−

EE(t)
i,1E

(t)
i,2 ) with EV̄ ∗(t)n,k,1,2 = 0. Lemma D.2 implies that with probability 1− o(1),∣∣∣∣∣∣Ūn,k,1,2 −

(
k∑
t=1

[√
n(t)ω

(t)
2,2ω

(t)
1,1J

(t)
n,k,1,2 + V̄

∗(t)
n,k,1,2

]2
)1/2

∣∣∣∣∣∣
≤

k∑
t=1

√
n(t)ω

(t)
2,2ω

(t)
1,1

∣∣∣∣∣∣T (t)
n,k,1,2 − J

(t)
n,k,1,2 −

1

n(t)

n(t)∑
i=1

(
E

(t)
i,1E

(t)
i,2 − EE(t)

i,1E
(t)
i,2

)∣∣∣∣∣∣
≤ C

(
s
k + (log p)

n(0)

)
≡ ηl22 .
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Therefore, by the union bound argument again, to show (A.13) it is sufficient to prove that

inf
v∈A(c)

Pv

(
k∑
t=1

[√
n(t)ω

(t)
2,2ω

(t)
1,1J

(t)
n,k,1,2 + V̄

∗(t)
n,k,1,2

]2

>
[(

1 + ηl21
)
· zl2k (1− α) + ηl22

]2)
> β.

We denote Ξt ≡ (
√
n(t)ω

(t)
2,2ω

(t)
1,1J

(t)
n,k,1,2 + V̄

∗(t)
n,k,1,2)2, t ∈ [k] to simplify our notation. Then it

suffices to show

inf
v∈A(c)

Pv

(
k∑
t=1

(Ξt − EΞt) >
[(

1 + ηl21
)
· zl2k (1− α) + ηl22

]2 − k∑
t=1

EΞt

)
> β. (A.14)

In the third step, we need a careful analysis of both sides of (A.14). We first calculate

the right-hand side term. According to the third result in Lemma E.1 in Section E with z =√
2 log(1/α)/k, it holds that zl2k (1 − α) ≤

√
k(1 +

√
2 log(1/α)/k). By our sample size as-

sumption s2 (k + log p)2 = o(n(0)) and the definitions of ηl21 and ηl22 , we deduce that s (k+log p)

n(0) ≤

C
(
n(0)
)−1/2, which further yields

[(
1 + ηl21

)
· zl2k (1− α) + ηl22

]2
≤

(
√
k(1 +

√
2 log(1/α)/k)

(
1 + C

√
log(k/δ1)

n(0)

)
+ C

(
n(0)
)−1/2

)2

≤

(
√
k(1 +

√
2 log(1/α)/k)

(
1 + C

√
log(k/δ1)

n(0)

))2

+ C

√
k

n(0)

≤
(
k + 3

√
2k log(1/α)

)(
1 + C

√
log(k/δ1)

n(0)

)
≤ k + 4

√
2k log(1/α). (A.15)

Next we calculate a lower bound of
∑k

t=1 EΞt. By the definition of V̄ ∗(t)n,k,1,2 and the joint Gaus-

sianity of E(t)
i,1 and E(t)

i,2 , we have E(V̄
∗(t)
n,k,1,2)2 = 1 + (ω

(t)
1,2)2/(ω

(t)
2,2ω

(t)
1,1). This fact together with

(A.12) results in

k∑
t=1

EΞt =
k∑
t=1

E
[√

n(t)ω
(t)
2,2ω

(t)
1,1J

(t)
n,k,1,2 + V̄

∗(t)
n,k,1,2

]2

≥
k∑
t=1

E
(
V̄
∗(t)
n,k,1,2

)2

+ Cn(0)

k∑
t=1

(
ω

(t)
1,2

)2

ω
(t)
2,2ω

(t)
1,1

≥ k + Cn(0)
∥∥ω0

1,2

∥∥2
. (A.16)
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We can further upper bound the variance of
∑k

t=1 (Ξt − EΞt) by the joint Gaussianity of

E
(t)
i,1 and E(t)

i,2 ,

var

(
k∑
t=1

(Ξt − EΞt)

)
≤ C

(
k + n(0)

∥∥ω0
1,2

∥∥2
)
. (A.17)

Expressions (A.15) and (A.16) imply that under alternative A(c) = Al2(s, c
√
k1/2/n(0)) with a

sufficiently large c > 0, the right-hand side of (A.14) is negative, that is,

[(
1 + ηl21

)
· zl2k (1− α) + ηl22

]2 − k∑
t=1

EΞt

< −Cn(0)
∥∥ω0

1,2

∥∥2
+ 4
√

2k log(1/α)

≤ −cC
√
k + 4

√
2k log(1/α) < 0. (A.18)

Therefore, by Chebyshev’s inequality we obtain that for any v ∈ A(c),

Pv

(
k∑
t=1

(Ξt − EΞt) ≤
[(

1 + ηl21
)
· zl2k (1− α) + ηl22

]2 − k∑
t=1

EΞt

)

≤ var

(
k∑
t=1

(Ξt − EΞt)

)
/
(
Cn(0)

∥∥ω0
1,2

∥∥2
)2

< 1− β,

where the first inequality follows from (A.18) and the last inequality follows from (A.17) and a

large constant c > 0. Thus (A.14) is an immediate consequence, which completes the proof for

the first part of Theorem 2.3.

C.3.2 Proof of Theorem 2.3 (2)

To prove that εn =
√
k/n(0) is the separating rate, we first show the lower bound (27) and

then establish that the proposed linear functional-based test φ1 satisfies (26). Without loss of

generality, assume that the sign vector ξ = (1, · · · , 1)′ and denote by Al1(s, c′
√
k/n(0)) ≡

Al1(s, c′
√
k/n(0), ξ) for short. Facilitated with (A.7), it suffices to show that for fixed β > α,

there exists some constant c′ > 0 such that ‖P0 ∧ P̄‖ > 1− (β −α)/2 with appropriate choices

of G ⊂ A = Al1(s, c′
√
k/n(0)) and Ω0

0 ∈ N (s).

The constructions of G and Ω0
0 are straightforward. There is only one element in G, that

is, m = 1 and P̄ = P1. We define Ω0
0 = {Ω(t)

0 }kt=1 such that Ω
(1)
0 = · · · = Ω

(k)
0 = I and set

Ω0
1 = {Ω(t)

1 }kt=1 such that (Ω
(1)
0 )−1 = · · · = (Ω

(k)
0 )−1 = I + (τ/

√
n(0)k)e12, where τ > 0

11



is some small constant to be determined later and e12 is the matrix with all but two entries

being zero and the (1, 2)th and (2, 1)th entries being one. It is easy to see that Ω0
0 ∈ N (s). In

addition, it is easy to check that all eigenvalues of Ω0
1 are in [M−1,M ], and thus Ω0

1 ∈ F(s)

since τ/
√
n(0)k = o(1). Note that

∥∥ω0
1,12

∥∥
1

= τ
1−τ2/(n(0)k)

√
k/n(0). Therefore, we have shown

that Ω0
1 ∈ Al1(s, c′

√
k/n(0)) with c′ ≡ 2τ , where we have used τ 2/(n(0)k) < 1/2.

To finish the lower bound (27), it remains to prove ‖P0 ∧ P1‖ > 1 − (β − α)/2. A similar

argument to that in the proof of Lemma D.4 in Section D.4 (see expression (A.68)) implies

that it is sufficient to show that the χ2 divergence between P0 and P1 is small enough, that is,

∆ =
∫
f 2

1 /f0 − 1 < (β − α)2. By the simple constructions of Ω0
0 and Ω0

1, together with the

χ2 divergence of two Gaussian distributions (see expression (A.69)), it can be easily checked

that ∆ = (1 − τ 2/(n(0)k))−n
(0)k − 1. Since τ 2/(n(0)k) < 1/2, we can further bound the χ2

divergence as

∆ ≤ (1 + 2τ 2/(n(0)k))n
(0)k − 1 ≤ exp(2τ 2)− 1.

Therefore, by picking τ small enough we deduce that ∆ < (β − α)2 and thus ‖P0 ∧ P1‖ >

1− (β − α)/2, which finishes the proof of (27).

It remains to show that the proposed linear functional-based test φ1 satisfies (26), that is,

with a sufficiently large c > 0, A(c) = Al1(s, c
√
k/n(0)), and n(0), it holds that

inf
v∈A(c)

Pv
(
Vn,k,1,2(ξ)√

k
< z(α)

)
≥ β.

Observe that under the assumptions of Proposition 2.2, including δ > 1 and δ1 = o(1),

the last three inequalities of Lemma D.1 and Condition 2.1 lead to the following two facts:

(i) ω(t)
1,1(ω̂

(t)
1,1)−1 = 1 + o(1) and ω

(t)
2,2(ω̂

(t)
2,2)−1 = 1 + o(1) uniformly over t ∈ [k], and (ii)∑k

t=1 |(ω
(t)
1,1)1/2 − (ω̃

(t)
1,1)1/2| = o(1) with probability 1 − o(1), which will be used later in our

analysis.

With bound (20) in Theorem 2.2 and the definition of Vn,k,1,2(ξ) in (19), along with a union

bound argument, we see that it suffices to prove that as n(0) →∞,

inf
v∈A(c)

Pv
(
V ∗n,k,1,2√

k
< z(α)− ηl11 −Ψ

)
> β, (A.19)

where Ψ ≡
∑k

t=1 ξt(n
(t)ω̂

(t)
2,2ω̂

(t)
1,1)1/2J

(t)
n,k,1,2/

√
k and ηl11 ≡ Cs (k + log p) /

√
n(0)k. To deal with

the bias issue of V ∗n,k,1,2, we define V̄ ∗n,k,1,2 =
∑k

t=1 ξt(
ω
(t)
2,2ω

(t)
1,1

n(t) )1/2
∑n(t)

i=1(E
(t)
i,1E

(t)
i,2 − EE(t)

i,1E
(t)
i,2 )

12



and reduce the problem of showing (A.19) to that of showing

inf
v∈A(c)

Pv

(
V̄ ∗n,k,1,2√

k
< z(α)− ηl11 − ηl12 −Ψ

)
> β, (A.20)

where ηl12 ≡ (V ∗n,k,1,2 − V̄ ∗n,k,1,2)/
√
k.

We claim that ηl11 + ηl12 = oP (1) and z(α) − Ψ < 0 under alternative v ∈ A(c) with a

sufficiently large constant c > 0. Note that by definition EV̄ ∗n,k,1,2 = 0. Hence according to

Chebyshev’s inequality and the union bound argument, it suffices to prove that

var(V̄ ∗n,k,1,2/
√
k)/ |z(α)−Ψ|2 < (1− β) /2

under alternative v ∈ A(c). We finish the proof by showing ηl11 +ηl12 = oP (1), var(V̄ ∗n,k,1,2/
√
k) ≤

2 and that Ψ < 0 can be arbitrarily small under alternative v ∈ A(c) by picking a suffi-

ciently large constant c > 0, respectively. Indeed, assuming that the latter two facts hold,

var(V̄ ∗n,k,1,2/
√
k)/ |z(α)−Ψ|2 < (1− β) /2 follows as an immediate consequence, which will

finish our proof.

In particular, fact (i) above entails that J (t)
n,k,1,2 = (−1 + o(1))ω

(t)
1,2/(ω

(t)
1,1ω

(t)
2,2) uniformly over

t ∈ [k], following from the definition of J (t)
n,k,1,2 in (10). Since the sign vector of ω0

1,2 is encoded

in ξ, the boundedness of ω(t)
1,1ω

(t)
2,2 and (ω̂

(t)
2,2ω̂

(t)
1,1)1/2 for t ∈ [p] (due to Condition 2.1 and fact (i)

above) further implies that with some constant C > 0,

Ψ ≤ −C
√
n(0)

k

∥∥ω0
1,2

∥∥
1
≤ −Cc,

under alternativeA(c) = Al1(s, c
√
k/n(0)). Therefore, with a sufficiently large constant c > 0,

Ψ < 0 is smaller than any pre-determined negative constant.

Note that by the independence and joint Gaussianity ofE(t)
1,1 andE(t)

1,2, we have var(V̄ ∗n,k,1,2/
√
k) =

k−1
∑k

t=1 var(E
(t)
1,1E

(t)
1,2)ω

(t)
2,2ω

(t)
1,1 ≤ 2. Thus it remains to show that ηl11 + ηl12 = oP (1). It is easy

to see that ηl11 = Cs (k + log p) /
√
n(0)k = o(1) by our sample size assumption. In addition,

13



we have with probability at least 1− 2δ−10
1 ,

∣∣ηl12 ∣∣ =

∣∣∣∣∣∣
k∑
t=1

ξt√
k
·

√
ω

(t)
2,2

n(t)

n(t)∑
i=1

(
E

(t)
i,1E

(t)
i,2 − EE(t)

i,1E
(t)
i,2

)(√
ω

(t)
1,1 −

√
ω̃

(t)
1,1

)∣∣∣∣∣∣
≤ 1√

k
max
t∈[k]

∣∣∣∣∣∣
√
ω

(t)
2,2

n(t)

n(t)∑
i=1

(
E

(t)
i,1E

(t)
i,2 − EE(t)

i,1E
(t)
i,2

)∣∣∣∣∣∣ ·
k∑
t=1

∣∣∣∣√ω
(t)
1,1 −

√
ω̃

(t)
1,1

∣∣∣∣
< C

√
log(k/δ1)

k
·

k∑
t=1

∣∣∣∣√ω
(t)
1,1 −

√
ω̃

(t)
1,1

∣∣∣∣ , (A.21)

where the first inequality is due to Hölder’s inequality and the second one follows from Bern-

stein’s inequality (see, e.g., Proposition 5.16, [35]). It follows from fact (ii) above and inequality

(A.21) that ηl12 = oP (1), in view of δ1 = o(1). Therefore, we have shown (A.20), which further

entails that φ1 satisfies (26) with a sufficiently large constant c > 0. This concludes the proof

for the second part of Theorem 2.3.

C.4 Proof of Theorem 2.4

The general tool established in (A.7) of Section C.3 plays a key role in our analysis. We need

to show that for any fixed β > α and c > 0, there is no test of significance level α satisfying

(26) with A = Al1(s, c
√
k/n(0), ξ). In light of (A.7), it is sufficient to show that as long as

s2k−1(k + log p) > Cn(0) for some sufficiently large positive constant C depending on M1, µ,

and c, we have

‖P0 ∧ P̄‖ > 1− (β − α)/2

with appropriate choices of G ⊂ Al1(s, c
√
k/n(0), ξ) and Ω0

0 ∈ N (s). Since the lower bound

does not depend on the choice of the sign vector ξ, hereafter we assume ξ = (1, · · · , 1)′ without

loss of generality.

To construct G and Ω0
0, it suffices to assume that the k precision matrices are identical for

each Ω0
h, h = 0, · · · ,m, that is, Ω

(1)
h = · · · = Ω

(k)
h . Therefore, we only need to construct Ω

(1)
h

for each h. The element in null is defined as Ω
(1)
0 = I which gives

Ω0
0 = {Ω(t)

0 }kt=1 with Ω
(1)
0 = · · · = Ω

(k)
0 = I. (A.22)
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Besides, we construct a subset

G =
{

Ω0 = {Ω(t)}kt=1 : Ω(1) = · · · = Ω(k) = (I + aH)−1for some H ∈ H
}

(A.23)

with a =
√
τ 1+(log p)/k

n(0) and τ > 0 some small constant to be determined later. HereH is the set

containing the collection of all p × p symmetric matrices with exactly s − 1 elements equal to

1 between the third and the last elements of the first and second rows (and hence columns by

symmetry) and the rest all zeros. We also assume that for each H ∈ H, the supports of the first

row and the second row are identical. Clearly, there are
(
p−2
s−1

)
distinct elements in G and thus

m =
(
p−2
s−1

)
. To finish the proof, we need to show two claims: (i) G ⊂ Al1(s, c

√
k/n(0), ξ) and

Ω0
0 ∈ N (s) and (ii) ‖P0 ∧ P̄‖ > 1− (β − α)/2.

The desired result in claim (ii) is established in Lemma D.4 in Section D.4. Thus it remains

to prove the desired result in claim (i). It is easy to see that Ω0
0 ∈ N (s) since all k precision

matrices are identity matrices and particularly ω0
0,12 = 0. For each Ω0

h ∈ G, we can check that

Ω0
h satisfies the sparsity assumption maxa

∑
b 6=a 1{ω0

h,ab 6= 0} ≤ s. Moreover, the largest and

smallest eigenvalues of Ω
(1)
h are

λmax(Ω
(1)
h ) =

1 +
√

2(s− 1)a2

1− 2(s− 1)a2
, λmin(Ω

(1)
h ) =

1−
√

2(s− 1)a2

1− 2(s− 1)a2
,

respectively, with all remaining eigenvalues being ones. Under the assumption that s(1 +

(log p)/k)/n(0) = o(1), we see that 2(s − 1)a2 is sufficiently small and hence all eigenvalues

are bounded between 1/M and M , which satisfies Condition 2.1. Therefore, we have shown

that G ⊂ F(s).

Finally, some elementary algebra implies that for each Ω0
h ∈ G, we always have ω(1)

h,12 =

(s−1)a2

1−2(s−1)a2
. As a result, it holds that

∥∥ω0
h,12

∥∥
1

=
k(s− 1)a2

1− 2(s− 1)a2
≥ 2k(s− 1)τ

(
1 + (log p)/k

n(0)

)
> c

√
k

n(0)
,

where the first inequality follows from 2(s−1)a2 < 1/2 and the last inequality is due to the main

assumption of Theorem 2.4, that is, s2k−1(k + log p)2 > Cn(0) with C ≡ (c/τ)2. Therefore,

we have shown G ⊂ Al1(s, c
√
k/n(0), ξ), which completes the proof.

15



C.5 Proof of Theorem 3.1

Without loss of generality, we only prove the results for the case of j = 1. This is because by

symmetry, the results remain valid for any j ∈ [p]. Hereafter, we follow the same notation for

any vector u ∈ R(p−1)k as defined for C0
1 , that is, u(t) denotes its subvector corresponding to

the tth class and u(l) represents its subvector corresponding to the lth group. The purpose of

normalization diagonal matrices D̄(t)
1 for our method HGSL defined in (30) is to obtain a tight

universal regularization parameter λ by normalizing each column of X
(t)
∗,−1 such that its `2 norm

is
√
n(t), that is, X̄

(t)
∗,−1 = X

(t)
∗,−1(D̄

(t)
1 )−1/2.

Define C̄(t)
1 = (D̄

(t)
1 )1/2C

(t)
1 and ˆ̄C

(t)
1 = (D̄

(t)
1 )1/2Ĉ

(t)
1 , and correspondingly C̄0

1 and ˆ̄C0
1 . Then

the right-hand side of (29) becomes X̄0
∗,−1C̄

0
1 + E0

∗,1 and the method HGSL in (30) becomes

ˆ̄C0
1 = arg minβ0∈Rk(p−1)

{
k∑
t=1

Q̄
1/2
t (β(t)) + λ

p∑
l=2

∥∥β0
(l)

∥∥}

with Q̄t(β
(t)) = 1

n(0)‖X
(t)
∗,1 − X̄

(t)
∗,−1β

(t)‖2. Our main results involve the difference ∆ = Ĉ0
1 −

C0
1 . In what follows, we establish all results in terms of ∆̄ = ˆ̄C0

1 − C̄0
1 =

(
D̄0

1

)1/2
∆. It is

worth mentioning that this does not affect our results much. Indeed, our Condition 2.1 and the

fact of X
(t)′
∗,l X

(t)
∗,l/σ

(t)
ll ∼ χ2(n(t)), together with an application of Lemma E.1 and the union

bound, entail that with probability at least 1 − 2pk exp(−n(0)/32), all diagonal entries of D̄0
1

are bounded from below by M/2 and from above by 3M/2 simultaneously. Therefore, ∆ and

∆̄ are of the same order componentwise and globally. To make it rigorous, define an event

Escale =
{

X
(t)′
∗,l X

(t)
∗,l/n

(t) ∈ [1/(2M), 3M/2] for all t ∈ [k], l ∈ [p]
}

and it holds that P{Escale} ≥ 1− 2pk exp(−n(0)/32).

We begin with introducing the group-wise restricted eigenvalue (gRE) condition proposed

by [? ] and [22], which is needed to establish our main results. Recall that the true coefficient

vector C0
1 is a group sparse vector. Denote by T = {l : C̄0

1(l) 6= 0}. By the definition of the

maximum node degree given in (14) and the relationship between C̄(t)
1 and Ω(t), we deduce that

|T | ≤ s, where |·| stands for the cardinality of a set.
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Definition C.1. The group-wise restricted eigenvalue (gRE) condition holds on the design ma-

trix X̄0
∗,−1 if

gRE(ξ, T ) ≡ inf
u6=0

{∥∥X̄0
∗,−1u

∥∥
√
n(0) ‖u‖

: u ∈ Ψ(ξ, T )

}
> 0,

where Ψ(L, T ) = {u ∈ R(p−1)k :
∑

j∈T c ‖u(j)‖ ≤ L
∑

j∈T ‖u(j)‖} is a cone.

The above gRE condition is an extension of the restricted eigenvalue (RE) condition for

the regular Lasso proposed in [? ], in which the `1 norm is replaced by the group-wise `1

norm. It was also assumed in [22] to tackle the usual group Lasso as a direct condition. [? ]

derived the gRE condition based on some incoherence condition. However, to the best of our

knowledge, there is no existing result for the random design matrix satisfying the gRE condition

in the literature. In this paper, we first establish that the gRE condition is satisfied with large

probability as a consequence of our assumptions in Lemma D.5 presented in Section D.5.

We would like to mention that other commonly used conditions on the design matrix X̄0
∗,−1,

including the group-wise compatibility condition [4] and the group-wise cone invertibility fac-

tor condition [27], can also be applied here. In fact, the group-wise compatibility condition

κ(ξ, T ) > 0 is a natural consequence of the gRE condition thanks to the Cauchy-Schwarz

inequality, since

κ(ξ, T ) ≡ inf
u6=0

{ √
|T |
∥∥X̄0
∗,−1u

∥∥
√
n(0)

∑
l∈T

∥∥u(l)

∥∥ : u ∈ Ψ(ξ, T )

}

≥ inf
u6=0


∥∥X̄0
∗,−1u

∥∥
√
n(0)

(∑
l∈T

∥∥u(l)

∥∥2
)1/2

: u ∈ Ψ(ξ, T )


≥ inf

u6=0

{∥∥X̄0
∗,−1u

∥∥
√
n(0) ‖u‖

: u ∈ Ψ(ξ, T )

}
= gRE(ξ, T ). (A.24)

In particular, on the event E1,gRE defined in Lemma D.5 it holds that

κ(ξ, T ) > min
l,t
{(n(t)/X

(t)′
∗,l X

(t)
∗,l)

1/2}/(2M)1/2.

As discussed in Section 3, the analysis of Theorem 3.1 relies critically on the event B1

defined in (31), which guides us to pick a sharp parameter λ. Lemma D.6 in Section D.6

implies that our explicit choice of λ is indeed feasible. Thus with the aid of Lemmas D.5 and

D.6, we are now ready to establish our main results in the following two steps.
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Step 1. It follows from the definition that

k∑
t=1

(
Q̄

1/2
t ( ˆ̄C

(t)
1 )− Q̄1/2

t (C̄
(t)
1 )
)
≤ λ

p∑
l=2

(∥∥C̄0
1(l)

∥∥− ∥∥∥ ˆ̄C0
1(l)

∥∥∥)
≤ λ

(∑
l∈T

∥∥∆̄(l)

∥∥−∑
l∈T c

∥∥∆̄(l)

∥∥) . (A.25)

Observe that ∂Q̄
1/2
t (C̄

(t)
1 )

∂β(t) = −1√
n(0)

X̄
(t)′
∗,−1E

(t)
∗,1

‖E(t)
∗,1‖

. By the convexity of Q̄1/2
t (·), we have

k∑
t=1

(
Q̄

1/2
t ( ˆ̄C

(t)
1 )− Q̄1/2

t (C̄
(t)
1 )
)
≥ − 1√

n(0)

k∑
t=1

∆̄(t)′X̄
(t)′
∗,−1E

(t)
∗,1∥∥∥E(t)

∗,1

∥∥∥
≥ −

(
p∑
l=2

∥∥∆̄(l)

∥∥) · max
2≤l≤p

∥∥∥D̄−1/2
E1 X̄0′

∗,(l)E
0
∗,1

∥∥∥
√
n(0)

≥ −λξ − 1

ξ + 1

p∑
l=2

∥∥∆̄(l)

∥∥ , (A.26)

where the last inequality follows from Lemma D.6. Combining inequalities (A.25) and (A.26),

we obtain

−λξ − 1

ξ + 1

p∑
l=2

∥∥∆̄(l)

∥∥ ≤ λ

(∑
l∈T

∥∥∆̄(l)

∥∥−∑
l∈T c

∥∥∆̄(l)

∥∥) ,
which entails that ∑

l∈T c

∥∥∆̄(l)

∥∥ ≤ ξ
∑
l∈T

∥∥∆̄(l)

∥∥ .

Hence, we have shown that ∆̄ ∈ Ψ(ξ, T ).

Step 2. We will make use of the following facts with ζt = Q̄
1/2
t ( ˆ̄C

(t)
1 ) + Q̄

1/2
t (C̄

(t)
1 )

Q̄t(
ˆ̄C

(t)
1 )− Q̄t(C̄

(t)
1 ) =

∥∥∥X̄(t)
∗,−1∆̄(t)

∥∥∥2

n(0)
−

2∆̄(t)′X̄
(t)′
∗,−1E

(t)
∗,1

n(0)
, (A.27)

Q̄t(
ˆ̄C

(t)
1 )− Q̄t(C̄

(t)
1 ) =

(
Q̄

1/2
t ( ˆ̄C

(t)
1 )− Q̄1/2

t (C̄
(t)
1 )
)
· ζt, (A.28)∑

l∈T

∥∥∆̄(l)

∥∥ ≤ √
s
∥∥X̄0
∗,−1∆̄

∥∥
√
n(0)κ(ξ, T )

, (A.29)

k∑
t=1

∆̄(t)′X̄
(t)′
∗,−1E

(t)
∗,1

n(0)ζt
≤

(
p∑
l=2

∥∥∆̄(l)

∥∥) max
2≤l≤p

∥∥∥D̄−1/2
E1 X̄0′

∗,(l)E
0
∗,1

∥∥∥
√
n(0)

·max
t∈[k]

∥∥∥E(t)
∗,1

∥∥∥
ζt
√
n(0)

,(A.30)

where the first two facts are due to some elementary algebra and the third one follows from the

definition of κ(ξ, T ) in (A.24) and the fact of ∆̄ ∈ Ψ(ξ, T ) proved in Step 1. It follows from
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(A.27) and (A.28) that

k∑
t=1

(Q̄
1/2
t ( ˆ̄C

(t)
1 )− Q̄1/2

t (C̄
(t)
1 )) =

k∑
t=1


∥∥∥X̄(t)
∗,−1∆̄(t)

∥∥∥2

n(0)ζt
−

2∆̄(t)′X̄
(t)′
∗,−1E

(t)
∗,1

n(0)ζt

 .

Therefore, by (A.30), Lemma D.6, and the fact of maxt∈[k](
‖E(t)
∗,1‖

ζt
√
n(0)

) ≤ 1, we further deduce that

k∑
t=1

∥∥∥X̄(t)
∗,−1∆̄(t)

∥∥∥2

n(0)ζt
≤

k∑
t=1

(
Q̄

1/2
t ( ˆ̄C

(t)
1 )− Q̄1/2

t (C̄
(t)
1 )
)

+ 2λ
ξ − 1

ξ + 1

(
p∑
l=2

∥∥∆̄(l)

∥∥)

≤ λ

(∑
l∈T

∥∥∆̄(l)

∥∥−∑
l∈T c

∥∥∆̄(l)

∥∥)+ 2λ
ξ − 1

ξ + 1

(
p∑
l=2

∥∥∆̄(l)

∥∥)

= λ

(
3ξ − 1

ξ + 1

∑
l∈T

∥∥∆̄(l)

∥∥+
ξ − 3

ξ + 1

∑
l∈T c

∥∥∆̄(l)

∥∥)

≤ λ

(
3ξ − 1

ξ + 1
+ ξ

(ξ − 3)+

ξ + 1

)∑
l∈T

∥∥∆̄(l)

∥∥
≤
√
s
∥∥X̄0
∗,−1∆̄

∥∥
√
n(0)κ(ξ, T )

λ

(
3ξ − 1

ξ + 1
+ ξ

(ξ − 3)+

ξ + 1

)
, (A.31)

where the second inequality is due to (A.25) and the last one follows from the definition of

κ(ξ, T ) in (A.24).

Lemma D.7 presented in Section D.7 provides a natural constant level upper bound for the

fitted prediction error. Then we can lower bound the left-hand side of (A.31) according to

Lemma D.7 on the event E1,up as

k∑
t=1

∥∥∥X̄(t)
∗,−1∆̄(t)

∥∥∥2

n(0)ζt
≥ 1√

6MM0

k∑
t=1

∥∥∥X̄(t)
∗,−1∆̄(t)

∥∥∥2

n(0)
.

Thus combining (A.31) with the above inequality leads to∥∥X̄0
∗,−1∆̄

∥∥
√
n(0)

≤
√
s

κ(ξ, T )
λ

(
3ξ − 1

ξ + 1
+ ξ

(ξ − 3)+

ξ + 1

)√
6MM0.

In summary, by (A.24) and with our well specified λ, on the event Escale∩E1,up∩B1∩E1,gRE

there exists some constant C > 0 such that

k∑
t=1

∥∥∥X(t)
∗,−1

(
Ĉ

(t)
1 − C

(t)
1

)∥∥∥2

n(0)
=

k∑
t=1

∥∥∥X̄0
∗,−1

(
ˆ̄C

(t)
1 − C̄

(t)
1

)∥∥∥2

n(0)
≤ Cs

k + log p

n(0)
.
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Moreover, since ˆ̄C0
1 − C̄0

1 = ∆̄ ∈ Ψ(ξ, T ), by the definitions of κ(ξ, T ) in (A.24) and the gRE

condition in Definition C.1 we can derive the following two inequalities from the expression

above

p∑
l=2

∥∥∥Ĉ0
1(l) − C0

1(l)

∥∥∥ ≤ √
2M

p∑
l=2

∥∥∥ ˆ̄C0
1(l) − C̄0

1(l)

∥∥∥ ≤ Cs

(
k + log p

n(0)

)1/2

,

∥∥∥Ĉ0
1 − C0

1

∥∥∥ ≤ √
2M

∥∥∥ ˆ̄C0
1 − C̄0

1

∥∥∥ ≤ C

(
s
k + log p

n(0)

)1/2

,

noting that conditional on the event Escale, ∆ is less than or equal to
√

2M∆̄ componentwise.

Finally we conclude the proof by an application of the union bound argument using Lemmas

D.5–D.7.

C.6 Proof of Theorem A.1

The main idea of the proof consists of two parts. First we prove that our suggested algorithm in

Section A has a unique guaranteed point of convergence β∗. Then we show that such a point is

the global optimum of the HGSL optimization problem (A.1).

Step 1: Convergence of β(m). Let us denote by

F (β) = (n(0))−1/2

k∑
t=1

‖Y (t) −X(t)β(t)‖+ λ

p∑
l=1

‖β(l)‖ (A.32)

the objective function in (A.2) which is a reformulation of (A.1) in simplified notation. To

prove the desired result, we first construct a surrogate function and show that the updating rule

optimizes the surrogate function. Then we characterize the relationship between the objective

function and the surrogate function, which entails that the limit of β(m) from the mth iteration

of the algorithm is in fact optimal for our objective function.

We begin with introducing a surrogate function

G(β, γ) =
k∑
t=1

∥∥Y (t) −X(t)β(t)
∥∥

√
n(0)

+
1

2

k∑
t=1

1√
n(0) ‖Y (t) −X(t)β(t)‖

‖γ − β‖2 + λ

p∑
l=1

∥∥γ(l)

∥∥
+

k∑
t=1

1√
n(0) ‖Y (t) −X(t)β(t)‖

(γ(t) − β(t))′(X(t))′(X(t)β(t) − Y (t)), (A.33)
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where γ(t) and γ(l) are the subvectors of γ defined similarly as β(t) and β(l), respectively. It is

easy to see that

F (β) = G(β, β). (A.34)

Denote byR(t) = (n(0))−1/2(X(t))′(X(t)β(t)−Y (t))/‖Y (t)−X(t)β(t)‖ andR = ((R(1))′, · · · , (R(k))′)′.

Then we can rewrite the last term in (A.33) as
k∑
t=1

1√
n(0) ‖Y (t) −X(t)β(t)‖

(γ(t) − β(t))′(X(t))′(X(t)β(t) − Y (t)) = (γ − β)′R.

Thus given a fixed β, minimizing the above surrogate function G over γ is equivalent to min-

imizing the following objective function formed by the last three terms of G in (A.33) with

respect to γ
1

2
A ‖γ − β‖2 + λ

p∑
l=1

∥∥γ(l)

∥∥+ (γ − β)′R,

where we denote by A =
∑k

t=1(n(0))−1/2‖Y (t)−X(t)β(t)‖−1. The optimization problem above

is further equivalent to minimizing the following objective function with respect to γ

1

2

∥∥∥∥γ − β +
R

A

∥∥∥∥2

+
λ

A

p∑
l=1

∥∥γ(l)

∥∥ . (A.35)

Combining the above results yields that for any given β, the minimizer of the objective function

G(β, γ) defined in (A.33) with respect to γ is the same as that of the objective function given in

(A.35).

We now set β = β(m) and correspondingly define the vector R(m) and the scalar A(m)

similarly as R and A, respectively, with β(m) in place of β. We update β(m + 1) as the

minimizer of the objective function (A.35) with respect to γ given β = β(m). Thus β(m+1) is

also the minimizer of G(β(m), γ) with respect to γ. Since the optimization problem in (A.35)

is separable, it can be rewritten in the following form
p∑
l=1

{
1

2

∥∥∥β(l) −
R(l)

A
− γ(l)

∥∥∥2

+
λ

A

∥∥γ(l)

∥∥} . (A.36)

In view of (A.36), the optimization problem in (A.35) can be solved componentwise by mini-

mizing each of the p summands above. In particular, the resulting solution admits an explicit

form and we obtain by Lemmas 1 and 2 in [? ] that β(m+ 1) is given by

β(m+ 1)(l) =
−→
Θ

(
β(m)(l) −

R(m)(l)

A(m)
;

λ

A(m)

)
, l ∈ [p], (A.37)
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where R(m)(l) is a subvector of R(m) defined in a similar way to β(l) as a subvector of β and
−→
Θ(·; ·) is the multivariate soft-thresholding operator introduced in (A.5). Thus, it follows from

(A.34) that

G(β(m), β(m+ 1)) ≤ G(β(m), β(m)) = F (β(m)). (A.38)

Let us consider the function (n(0))−1/2
∥∥Y (t) −X(t)γ(t)

∥∥ with respect to γ(t). Some routine

calculations show that its gradient is given by

(n(0))−1/2
∥∥Y (t) −X(t)γ(t)

∥∥−1
(X(t))′(X(t)γ(t) − Y (t)) (A.39)

and its Hessian matrix is

(n(0))−1/2
∥∥Y (t) −X(t)γ(t)

∥∥−1
(X(t))′X(t) − (n(0))−1/2

∥∥Y (t) −X(t)γ(t)
∥∥−3

· (X(t))′(X(t)γ(t) − Y (t))(X(t)γ(t) − Y (t))′X(t)

≤ (n(0))−1/2
∥∥Y (t) −X(t)γ(t)

∥∥−1
(X(t))′X(t), (A.40)

where≤means that the difference between the matrices on the right-hand side and the left-hand

side of the inequality is positive semidefinite. Thus for any given β and γ, an application of the

Taylor expansion of the function (n(0))−1/2
∥∥Y (t) −X(t)γ(t)

∥∥ at the point β(t) to the first order

with the Lagrange remainder, together with (A.39)–(A.40), results in

k∑
t=1

∥∥Y (t) −X(t)β(t)
∥∥

√
n(0)

+
k∑
t=1

1√
n(0) ‖X(t)β(t) − Y (t)‖

(γ(t) − β(t))′(X(t))′(X(t)β(t) − Y (t))

−
k∑
t=1

∥∥Y (t) −X(t)γ(t)
∥∥

√
n(0)

≥
k∑
t=1

−(γ(t) − β(t))′(X(t))′X(t)(γ(t) − β(t))

2
√
n(0) ‖X(t)ξ(t) − Y (t)‖

, (A.41)

where ξ(t) lies on the line segment connecting β(t) and γ(t) for each t ∈ [k].
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For now set β = β(m) and γ = β(m+ 1). Then it follows from (A.33) and (A.41) that

F (β(m))− F (β(m+ 1)) ≥ G(β(m), β(m+ 1))− F (β(m+ 1))

≥
k∑
t=1

−(β(m+ 1)(t) − β(m)(t))′(X(t))′X(t)(β(m+ 1)(t) − β(m)(t))

2
√
n(0) ‖X(t)ξ(t) − Y (t)‖

+
1

2
A(m) ‖β(m+ 1)− β(m)‖2

=
k∑
t=1

(β(m+ 1)(t) − β(m)(t))′

(
A(m)

2
I − (X(t))′X(t)

2
√
n(0) ‖X(t)ξ(t) − Y (t)‖

)
· (β(m+ 1)(t) − β(m)(t))

≥
k∑
t=1

1

2
√
n(0)

(
1

‖X(t)β(m)(t) − Y (t)‖
−

∥∥X(t)
∥∥2

`2

2 ‖X(t)ξ(t) − Y (t)‖

)
·
∥∥β(m+ 1)(t) − β(m)(t)

∥∥2
, (A.42)

where I stands for the identity matrix and ‖X‖`2 denotes the spectral norm of matrix X.

To show the descent property of our algorithm and thus the convergence of the sequence

β(m) due to the nonnegativity of the objective function F (β) in (A.32), we need to prove that

the right-hand side of (A.42) is positive. At the initial step m = 0, it is easy to see that this

can be achieved by picking a large enough scalar K0 > 0 in the scaling step (A.3) as long as

‖X(t)ξ(t) − Y (t)‖ 6= 0. This fact and the regularity condition assumed in Theorem A.1 can

guarantee that F (β(m)) is monotonically decreasing. To see this, set B0 = (n(0))1/2F (β(0))

and recall that ‖X(t)ξ(t)−Y (t)‖ > c0 by assumption. It suffices to show that ‖X(t)‖2
`2
< c0/B0.

From the definition of B0, this claim is equivalent to

‖X(t)‖2
`2
F (β(0)) < (n(0))−1/2c0. (A.43)

In light of the rescaling step for Y (t), X(t), and λ in (A.3), we see that the term on the left-hand

side of (A.43) scales down with a factor of K−3
0 . This entails that as long as K0 > 0 is chosen

large enough, inequality (A.43) can be easily satisfied and thus the above claim ‖X(t)‖2
`2
<

c0/B0 holds.

Moreover, we can use the induction later to prove

∥∥X(t)β(m)(t) − Y (t)
∥∥ ≤ B0 and F (β(m)) ≤ F (β(0)) (A.44)
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for all t and m. Combining the above inequalities (A.44), ‖X(t)‖2
`2
< c0/B0, and ‖X(t)ξ(t) −

Y (t)‖ > c0 results in

1

‖X(t)β(m)(t) − Y (t)‖
−

∥∥X(t)
∥∥2

`2

2 ‖X(t)ξ(t) − Y (t)‖
≥ 1

2B0

,

which along with (A.42) entails that

F (β(m))− F (β(m+ 1)) ≥ 1

4
(n(0))−1/2B−1

0

k∑
t=1

∥∥β(m+ 1)(t) − β(m)(t)
∥∥2
. (A.45)

This shows that F (β(m)) ≥ F (β(m + 1)). Since F (β(m)) is always bounded from below

by zero, it follows that limm→∞ F (β(m)) exists and limm→∞ |F (β(m + 1))− F (β(m))| = 0.

Thus in view of (A.45), we have

lim
m→∞

‖β(m+ 1)− β(m)‖ = 0. (A.46)

Observe that for each m ≥ 0,

‖β(m)‖ ≤
p∑
l=1

∥∥β(m)(l)

∥∥ ≤ F (β(m))

λ
≤ F (β(0))

λ
,

which means that all β(m) lie in a compact subset of Rkp. This fact entails that the sequence

β(m) has at least one point of convergence. Furthermore, (A.46) ensures that β(m) has a unique

limit point β∗, which is a fixed point of the soft-thresholding rule given in (A.37).

It now remains to establish the results in (A.44) using induction. When m = 0, it is easy

to verify that ‖X(t)β(m)(t) − Y (t)‖ ≤ B0 and F (β(m)) ≤ F (β(0)). Let us assume that the

inequalities ‖X(t)β(m)(t)−Y (t)‖ ≤ B0 and F (β(m)) ≤ F (β(0)) in (A.44) hold for all m ≤ T .

Then it follows that

1

‖X(t)β(T )(t) − Y (t)‖
−

∥∥X(t)
∥∥2

`2

2 ‖X(t)ξ(t) − Y (t)‖
≥ 1

2B0

,

which together with (A.42) leads to

F (β(T + 1)) ≤ F (β(T )) ≤ F (β(0)).

We can also obtain ‖X(t)β(T +1)(t)−Y (t)‖ ≤ (n(0))1/2F (β(T +1)) ≤ (n(0))1/2F (β(0)) = B0.

Thus (A.44) also holds for m = T + 1. This completes the proof of (A.44) for all m and t and

also concludes the proof of the first step.
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Step 2: Global optimality. To conclude the proof, we need to show that the unique point

of convergence β∗ of our algorithm established in Step 1 is the global optimum of the HGSL

optimization problem (A.1). Since F (β) defined in (A.32) is the sum of two convex functions

of β, it follows that F (β) is also a convex function. Thus a vector β is a global minimizer of

the objective function F (·) if and only if it satisfies the Karush-Kuhn-Tucker (KKT) conditions

((X(t))′(X(t)β(t) − Y (t)))l√
n(0) ‖X(t)β(t) − Y (t)‖

= −λ β
(t)
l∥∥ β(l)

∥∥ for β(l) 6= 0, (A.47)∣∣((X(t))′(X(t)β(t) − Y (t)))l
∣∣

√
n(0) ‖X(t)β(t) − Y (t)‖

≤ λ for β(l) = 0, (A.48)

where the subscript l in both expressions represents the lth component of a vector.

Recall that we have shown in Step 1 that β∗ is the fixed point of the soft-thresholding rule

in (A.37), that is,

β∗(l) =
−→
Θ
(
β∗(l) −

R∗(l)
A∗

;
λ

A∗

)
, l ∈ [p],

where R∗(l) and A∗ are defined similarly as R(m)(l) and A(m) in (A.37) with β(m) replaced by

β∗. Let us first consider the case when β∗(l) = 0. Then by the definition of the soft-thresholding

rule, we have ‖R∗(l)/A∗‖ ≤ λ/A∗, which entails that ‖R∗(l)‖ ≤ λ. Thus it holds that∣∣((X(t))′(X(t)β∗(t) − Y (t)))l
∣∣

√
n(0) ‖X(t)β∗(t) − Y (t)‖

= |R∗(t)l | ≤ ‖R
∗
(l)‖ ≤ λ (A.49)

for β∗(l) = 0, which verifies the second KKT condition (A.48) for the fixed point β∗.

We next consider the case when β∗(l) 6= 0. It follows from the soft-thresholding rule that

β∗(l) =

∥∥∥β∗(l) − R∗
(l)

A∗

∥∥∥− λ
A∗∥∥∥β∗(l) − R∗

(l)

A∗

∥∥∥
(
β∗(l) −

R∗(l)
A∗

)
. (A.50)

Taking the `2 norm on both sides of the above equation leads to ‖β∗(l)‖ = ‖β∗(l) − R∗(l)/A∗‖ −

λ/A∗. Moreover, equation (A.50) can be rewritten as

− λ

A∗

(
β∗(l) −

R∗(l)
A∗

)
=
R∗(l)
A∗

∥∥∥∥β∗(l) − R∗(l)
A∗

∥∥∥∥ ,
which along with the above fact results in

λβ∗(l) = R∗(l)

(∥∥∥∥β∗(l) − R∗(l)
A∗

∥∥∥∥− λ

A∗

)
= R∗(l)

∥∥β∗(l)∥∥ . (A.51)

25



The representation in (A.51) further entails that

R
∗(t)
l =

(
(X(t))′(X(t)β∗(t) − Y (t))

)
l√

n(0) ‖X(t)β∗(t) − Y (t)‖
= −λ β

(t)
l∥∥ β(l)

∥∥ (A.52)

for β∗(l) 6= 0, which establishes the first KKT condition (A.47) for the fixed point β∗. Combining

(A.49) and (A.52), we conclude that β(∗) is indeed a global minimizer of the HGSL optimization

problem (A.1), which completes the proof of Theorem A.1.

C.7 Proof of Proposition 2.3

The support recovery property of our THI estimator Ê given in (28) follows from the proofs of

Theorems 2.1 and 2.3 (1) in Sections C.1 and C.3.1, in view of the conditions of Proposition

2.1 and the assumption that the minimum signal strength min(a,b)∈E ‖ω0
a,b‖ is above the value

of C
√

[(k log p)1/2 + log p]/n(0). Specifically, we need a refined technical analysis in the proof

of Theorem 2.3 (1) in Section C.3.1 through replacing Chebyshev’s inequality used in the third

step by an accurate coupling inequality such as Proposition KMT in [? ], which was also used in

Theorem 2 (iii) of [30] for support recovery in the setting of a single Gaussian graphical model.

We omit the details here for simplicity.

D Key lemmas and their proofs

D.1 Lemma D.1 and its proof

Lemma D.1. Assume that Conditions 2.1–2.2 hold and max{log p, log k} = o(n(0)). Let Ĉ0
j =

(Ĉ
(1)′
j , · · · , Ĉ(k)′

j )′ be any estimator satisfying working assumptions (15)–(17) for a fixed j ∈ [p].

Then there exists some positive constant C depending on constants M ,δ, C1, and C3 such that
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))
≤ 3p1−δ + δ1
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as long as log(δ−1
1 ) = o(n(0)). Moreover, whenever max{

√
log(k/δ1)

n(0) , s (k+log p)

n(0) } = o(1), there

exists some positive constant C ′ depending on M ,δ, C1, and C3 such that
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Proof. Observe that 1
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i=1(Ê
(t)
i,j )2 = (ω̂

(t)
j,j )
−1. For each j ∈ [p], in view of Ê(t)
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j ) we deduce that
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. (A.53)

Thus we have

1
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≡ T1 + T2. (A.54)

We will consider the above two terms T1 and T2 separately.

For the second term T2, we can bound it by our working assumption (17) as

T2 =
1

k

k∑
t=1

1
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∥∥∥X(t)
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(t)
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. (A.55)
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The first term T1 can be bounded with probability at least 1− 3p1−δ as

T1 ≤
2

k
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, (A.56)

where the last inequality is due to working assumption (16) and Lemma E.2 in Section E with cδ

some positive constant depending only on δ, M , and C1. Thus we have shown the first desired

result.

Let us further bound the difference between the oracle estimator
∑n(t)

i=1(E
(t)
i,j )2/n(t) and its

mean (ω
(t)
j,j )
−1. Indeed, it holds that

∑n(t)

i=1(E
(t)
i,j )2(ω

(t)
j,j ) ∼ χ2(n(t)). This representation entails

that as long as log(δ−1
1 ) = o(n(0)), by Lemma E.1 and n(0) ≤ n(t) we have∣∣∣∣∣∣ 1
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(A.57)

with probability at least 1 − δ1/k, where cM is some positive constant depending only on M .

Combining inequalities (A.54)–(A.57) with the union bound argument, we obtain the second

desired result that with probability at least 1− 3p1−δ − δ1,

1

k

k∑
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)−1
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,

where C is some positive constant that depends on M , δ, C1, and C3.

Note that whenever max{
√

log(k/δ1)

n(0) , s (k+log p)

n(0) } = o(1), it follows from inequalities (A.54)–

(A.57) and the union bound argument that with probability at least 1− 3p1−δ − δ1,
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, (A.58)

which is sufficiently small for large n(0). Consequently, we see that ω̂(t)
j,j is uniformly bounded

from above by some positive constant for all t ∈ [k], since ω(t)
j,j is bounded from above by M
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by Condition 2.1. Therefore, in light of |ω̂(t)
j,j − ω

(t)
j,j | = |1/ω̂(t)

j,j − 1/ω
(t)
j,j |ω

(t)
j,j ω̂

(t)
j,j the last three

desired inequalities follow from the first two established above and inequality (A.58), which

concludes the proof.

D.2 Lemma D.2 and its proof

Lemma D.2. Assume that Conditions 2.1–2.2 hold, working assumptions (15)–(17) are valid

for j = 1, 2, and max{log p, log k} = o(n(0)). Then there exists some positive constant C

depending only on constants M, δ, C1, C2, and C3 such that
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holds with probability at least 1− 6p1−δ.

Proof. At a high level, the first term 1
k
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The main term H
(t)
1 above enjoys the following property
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We can bound the last term
∑k

t=1 |H
(t)
4 |/k in (A.60) as
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where the last inequality follows from our working assumption (17).

The second term H
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2 in (A.60) can be further decomposed as

H
(t)
2 =

1

n(t)

(
E

(t)′
∗,1X

(t)
∗,1(C

(t)
2,1 − Ĉ

(t)
2,1) + E

(t)′
∗,1 X

(t)
∗,{1,2}c(C

(t)
2,−1 − Ĉ
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We can bound
∑k

t=1 |H
(t)
2,1|/k such that with probability at least 1− 3p1−δ,
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where the last inequality is due to working assumption (16) and Lemma E.2. Observe that

similar decomposition, notation, and analysis apply to term H
(t)
3 as well. Hence, it holds that

with probability at least 1− 3p1−δ,
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Let us decompose term H
(t)
2,0 in (A.62) as
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Now we control the two terms
∑k
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As for the term H
(t)
2,0,2 in (A.64), we can show that with probability at least 1− 3p1−δ,
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where the second inequality follows from expressions (A.53)–(A.56) in the earlier proof of

Lemma D.1 in Section D.1 and the last inequality follows from our working assumption (15).

Note that similar decomposition, notation, and analysis also apply to termH
(t)
3,0. Thus combining

the above expressions (A.63)–(A.66) yields that with probability at least 1− 3p−δ − 3p1−δ,
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We finally correct the bias in H(t)
2,0,0 and H(t)

3,0,0 induced from Ĉ2,1. To this end, we take the
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(t)
∗,2/n

(t) and two terms Ê(t)′
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with C ′′ some positive constant. Keeping track of all relevant constants, we see that the positive

constant C ′′ depends only on M, δ, C1, C2, and C3, which completes the proof.

D.3 Lemma D.3 and its proof

Lemma D.3. With G and Ω0
0 chosen as in (A.9) and (A.8), we have ‖P0 ∧ P̄‖ > 1 − 1

2
(β − α)

with some sufficiently small constant τ > 0 depending only on β − α.

Proof. A similar argument to that used in the later proof of Lemma D.4 in Section D.4 (see
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1, together with the χ2 divergence of two Gaussian distributions in (A.69), we can

deduce that for any h1, h2 ∈ [m],∫
fh1fh2
f0

=

(∫ ∏h

t=1
g

(t)
h1
g

(t)
h2
/g

(t)
0

)n(0)

=
(
1− 1/n(0)

)−J̇(h1,h2)n(0)

≤
(
1 + 2/n(0)

)J̇(h1,h2)n(0)

≤ exp(2J̇(h1, h2)),
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where we have used 1/n(0) < 1/2 in the second to last inequality and J̇ = J̇(h1, h2) is the

cardinality of Th1 ∩ Th2 with the index sets Thi ⊂ [k] denoting those graphs with non-identity

precision matrices in (A.9) for i = 1, 2. In other words, J̇(h1, h2) is the number of overlapping

non-identity precision matrices between two sets of k precision matrices indexed by Ω0
h1

and

Ω0
h2

. It is easy to see that integer J̇ = J̇(h1, h2) ∈ [0, · · · , τ
√
k].

Recall that m =
(

k
τ
√
k

)
. Thus we have

∆ =
1

(m)2

∑
0≤j≤τ

√
k

∑
J̇(h1,h2)=j

(
exp(2J̇(h1, h2))− 1

)
≤ 1

(m)2

∑
1≤j≤τ

√
k

(
k

τ
√
k

)(
τ
√
k

j

)(
k − j

τ
√
k − j

)
exp(2j)

=
∑

1≤j≤τ
√
k

(
τ
√
k

j

)(
k − j

τ
√
k − j

)
/

(
k

τ
√
k

)
· exp(2j)

≤
∑

1≤j≤τ
√
k

1

j!

(
τ 2k exp(2)

k − τ
√
k

)j
≤ exp(λ)P(Z > 0) = exp(λ)− 1,

where in the last inequality we bounded the sum using a Poisson random variable Z with pa-

rameter λ = τ 2k exp(2)/(k − τ
√
k). Finally, we can conclude the proof by picking a small

enough constant τ depending on β − α to obtain ∆ ≤ (β − α)2.

D.4 Lemma D.4 and its proof

Lemma D.4. With G and Ω0
0 specified in (A.23) and (A.22), it holds that ‖P0∧P̄‖ > 1− 1

2
(β−α)

with some sufficiently small constant τ > 0 depending only on M1 and µ.

Proof. Recall that the densities of distributions Ph and N(0, (Ω
(1)
h )−1) are denoted as fh and

gh, respectively, for each 0 ≤ h ≤ m. By Jensen’s inequality we have

‖P0 ∧ P̄‖ =

∫
(f0 ∧ f̄) ≥ 1− 1

2
(

∫
f̄ 2

f0

− 1)1/2 = 1−
√

∆/2.

Thus it suffices to show that the χ2 divergence is small enough

∆ =

∫ (
1
m

∑m
h=1 fh

)2

f0

− 1 =
1

m2

m∑
h1,h2=1

(∫
(
fh1fh2
f0

)− 1

)
< (β − α)2, (A.68)
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which yields the desired bound ‖P0 ∧ P̄‖ > 1− 1
2
(β − α).

The following representation of the χ2 divergence of two Gaussian distributions∫
g1g2

g0

= [det(I − Σ−1
0 (Σ1 − Σ0)Σ−1

0 (Σ2 − Σ0))]−1/2, (A.69)

with gi the density of N(0,Σi) for i = 0, 1, 2, is helpful to our analysis. By our construction of

Ph and (A.69), some algebra results in∫
fh1fh2
f0

=

(∫ ∏h

t=1
g

(t)
h1
g

(t)
h2
/g

(t)
0

)n(0)

=
(
1− 2Ja2

)−n(0)k
,

where J = J(h1, h2) is the number of overlapping a between the first rows of (Ω
(1)
h1

)−1 and

(Ω
(1)
h2

)−1. Hence it follows that

∆ =
1

m2

∑
0≤j≤s−1

∑
J(h1,h2)=j

((
1− 2ja2

)−n(0)k − 1
)

=
1

m2

∑
1≤j≤s−1

(
p− 1

s− 1

)(
s− 1

j

)(
p− s

s− 1− j

)((
1− 2ja2

)−n(0)k − 1
)
.

Observe that since 2ja2 ≤ 2(s− 1)a2 < 1/2 and k ≤M1 log p, we have(
1− 2ja2

)−n(0)k ≤
(
1 + 4ja2

)n(0)k ≤ exp(4ja2n(0)k) = exp(4jτ(k + log p))

≤ (p)4(1+M1)τj.

Moreover, it can be checked that with m =
(
p−1
s−1

)
,

1

m2

(
p− 1

s− 1

)(
s− 1

j

)(
p− s

s− 1− j

)
≤
(

s2

p− s

)j
.

Therefore, combining the three expressions above we can complete the proof by noting that

∆ ≤
∑

1≤j≤s−1

(
s2p4(1+M1)τ

p− s

)j
→ 0,

where we have used p > sµ for some µ > 2 and picked a small enough constant τ depending

on µ and M1.

D.5 Lemma D.5 and its proof

Lemma D.5. For any fixed ξ, under Conditions 2.1–2.2 and the assumption of s < Cξn
(0)/ log p

with some sufficiently small constantCξ > 0 depending on ξ,M , andM0, we have P{E1,gRE} >
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1− 2k exp(−cn(0)), where E1,gRE = {gRE(ξ, T ) > minl,t{(n(t)/X
(t)′
∗,l X

(t)
∗,l)

1/2}/(2M)1/2} and

c > 0 is some constant depending on ξ, M , and M0.

Proof. The proof of the group-wise restricted eigenvalue (gRE) condition follows from a

similar reduction principle to that developed in [? ] and [? ] for dealing with the regular

restricted eigenvalue (RE) condition. First of all, due to the normalization constant, that is,

X̄0
∗,−1 = X0

∗,−1(D̄1)−1/2, it suffices to show that with probability at least 1− 2k exp(−cn(0)),

inf
u6=0

{∥∥X0
∗,−1u

∥∥
√
n(0) ‖u‖

: u ∈ Ψ(ξ, T )

}
≥ (2M)−1/2 . (A.70)

To further reduce the condition in (A.70), we note that

u′X0′
∗,−1X

0
∗,−1u

n(0) ‖u‖2 =
u′E

(
X0′
∗,−1X

0
∗,−1

)
u

n(0) ‖u‖2 +
u′
(
X0′
∗,−1X

0
∗,−1 − E

(
X0′
∗,−1X

0
∗,−1

))
u

n(0) ‖u‖2

and the first term above is lower bounded by M−1, that is,

u′E
(
X0′
∗,−1X

0
∗,−1

)
u

n(0) ‖u‖2 =
k∑
t=1

u(t)′Σ
(t)
−1,−1u

(t)

‖u(t)‖2 · n
(t)

n(0)
≥ 1

M
,

where the last inequality follows from Conditions 2.1–2.2. Thus it remains to prove that with

probability at least 1− 2k exp(−cn(0)),∣∣∣∣∣u′
(
X0′
∗,−1X

0
∗,−1 − E

(
X0′
∗,−1X

0
∗,−1

))
u

n(0) ‖u‖2

∣∣∣∣∣ ≤ 1

2M
for all u ∈ Ψ(ξ, T ). (A.71)

Before proceeding, let us introduce some notation. Let

K(m) = {u ∈ Rk(p−1) :

p∑
l=2

1{u(l) 6= 0} ≤ m}

be the group-wise m-sparse set. The proof of (A.71) is comprised of two steps. In the first step

we prove that the following inequality holds with probability at least 1− 2k exp(−cn(0)) for all

u ∈ K(2s), ∣∣∣∣∣u′
(
X0′
∗,−1X

0
∗,−1 − E

(
X0′
∗,−1X

0
∗,−1

))
u

n(0) ‖u‖2

∣∣∣∣∣
=

∣∣∣∣∣
k∑
t=1

u(t)′(X
(t)′
∗,−1X

(t)
∗,−1/n

(t) − Σ
(t)
−1,−1)u(t)

‖u(t)‖2 · n
(t)

n(0)

∣∣∣∣∣
≤ 1

6(2 + ξ)2M
, (A.72)
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while the second step shows that (A.72) entails (A.71) deterministically.

The inequality (A.72) can be established by the standard δ-net argument for each of the

design matrices X
(t)
∗,−1 and a union bound argument. Denote by

K(t)(m) =

{
u(t) ∈ R(p−1) :

p∑
l=2

1{u(t)
l 6= 0} ≤ m

}
.

Then an application of Lemma 15 in [? ] implies that there exists some absolute constant c0 > 0

such that

P

 sup
u(t)∈K(t)(2s)

∣∣∣∣∣∣
u(t)′

(
X

(t)′
∗,−1X

(t)
∗,−1/n

(t) − Σ
(t)
−1,−1

)
u(t)

‖u(t)‖2

∣∣∣∣∣∣ > x


≤ 2 exp(−c0n

(t) min{x2/M2, x/M}+ 4s log p).

Note that n(t)/n(0) ≤ M0 from Condition 2.2. Therefore, the union bound of the above in-

equality for all t ∈ [k], together with the choice x = (6(2 + ξ)2MM0)−1 and our assumption

s < Cξn
(0)/ log p with some sufficiently small constant Cξ > 0 depending on ξ, M , and M0,

yields that (A.72) holds with probability at least 1− 2k exp(−cn(0)) for some positive constant

c depending on ξ, M , and M0.

It remains to show that (A.72) in fact implies the desired result in (A.71). From now on,

denote by

Γ = (X0′
∗,−1X

0
∗,−1 − E(X0′

∗,−1X
0
∗,−1))/n(0).

In order to show (A.71), by the scaling property it suffices to establish

|u′Γu| ≤ 1

2M
for all u ∈ Ψ(ξ, T ) ∩B2(1), (A.73)

where B2(1) is the unit `2 ball in Rk(p−1). To finish our proof, given (A.72) we show that

|u′Γu| ≤ 1
2M

for any u ∈ cl(conv{K(s) ∩B2(2 + ξ)}), the closure of the convex hull covering

K(2s)∩B2(2 + ξ), followed by an argument showing that Ψ(ξ, T )∩B2(1) ⊂ cl(conv{K(s)∩

B2(2 + ξ)}).

For any u ∈ cl(conv{K(s) ∩ B2(2 + ξ)}), we can write u =
∑

i αiui, where ui ∈ K(s),

‖ui‖ ≤ 2 + ξ, αi > 0, and
∑

i αi = 1. Thus it follows from (A.72) and the fact of ui + uj ∈
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K(2s) for any i and j that

|u′Γu| =

∣∣∣∣∣(∑
i

αiui)
′Γ(
∑
i

αiui)

∣∣∣∣∣ ≤∑
i,j

αiαj |ui′Γuj|

=
1

2

∑
i,j

αiαj |(ui + uj)
′Γ(ui + uj)− ui′Γui − uj ′Γuj|

≤ 1

2

1

6(2 + ξ)2M

∑
i,j

αiαj
(
4(2 + ξ)2 + (2 + ξ)2 + (2 + ξ)2

)
≤ 1

2M

∑
i,j

αiαj =
1

2M
,

where (A.72) has been applied in the second inequality. It remains to show that

Ψ(ξ, T ) ∩B2(1) ⊂ cl(conv{K(s) ∩B2(2 + ξ)}).

We exploit a similar analysis to that designed for the regular sparse set (see Lemma 1,1 of [? ]).

To show that a set A belongs to a convex set B, it suffices to prove

φA(z) ≤ φB(z) for all z ∈ Rk(p−1),

where φA(z) = supu∈A 〈u, z〉; see, e.g., Theorem 2.3.1 of [? ].

Hereafter we denote by A = Ψ(ξ, T ) ∩ B2(1) and B = cl(conv{K(s) ∩ B2(2 + ξ}). For

any z ∈ Rk(p−1), let the index set S consist of the top s groups of z in terms of the `2 norm.

Consequently, for any l ∈ Sc we have ‖z(l)‖ ≤ (
∑

l∈S ‖z(l)‖2)1/2/
√
s. Now we upper bound

φA(z) by considering index sets S and Sc separately,

φA(z) ≤ sup
u∈A

∑
l∈S

〈
u(l), z(l)

〉
+ sup

u∈A

∑
l∈Sc

〈
u(l), z(l)

〉
≤ (

∑
l∈S

∥∥z(l)

∥∥2
)1/2 + max

l∈Sc

∥∥z(l)

∥∥ ·∑
l∈Sc

∥∥u(l)

∥∥
≤ (

∑
l∈S

∥∥z(l)

∥∥2
)1/2(1 + (1 + ξ)

√
s/
√
s) = (2 + ξ)(

∑
l∈S

∥∥z(l)

∥∥2
)1/2,

where we have used the fact that u is a unit vector and the Cauchy–Schwarz inequality in the

second inequality, and the third inequality follows from the fact that

∑
l∈Sc

‖u(l)‖ ≤
p∑
l=2

‖u(l)‖ ≤ (1 + ξ)
∑
l∈T

‖u(l)‖ ≤ (1 + ξ)
√
s‖u‖
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in light of u ∈ Ψ(ξ, T ). On the other hand, since B is a convex set we have

φB(z) = sup
u∈B
〈u, z〉 = (2 + ξ) max

L:|L|=s
sup

u∈B2(1)

∑
l∈L

〈
u(l), z(l)

〉
= (2 + ξ)(

∑
l∈S

∥∥z(l)

∥∥2
)1/2,

where we have used the definition of the index set S. Clearly, it holds that φA(z) ≤ φB(z) for

all z ∈ Rk(p−1), which concludes the proof.

D.6 Lemma D.6 and its proof

Lemma D.6. With the choice of regularization parameter λ specified in Theorem 3.1, the event

B1 defined in (31) holds with probability at least 1− 3p−δ+1.

Proof. Throughout this proof we condition on X0
∗,−1. For any fixed l ∈ [k], we have

D̄
−1/2
1(l) X0′

∗,(l)E
0
∗,1

d∼
(
N(0, n(1)/ω

(1)
1,1), · · · , N(0, n(k)/ω

(k)
1,1)
)′
,

where d∼ denotes equivalence in distribution and the k components on the right-hand side are

independent of each other. By the definition of D̄E1, we can further write

D̄
−1/2
E1 D̄

−1/2
1(l) X0′

∗,(l)E
0
∗,1

d∼
(
T (1)Z(1), · · · , T (k)Z(k)

)′
,

where Z(t), t ∈ [k], are i.i.d. standard Gaussian and (T (t))−2 d∼ χ2(n(t))/n(t). Consequently,

we obtain

P
(∥∥∥D̄−1/2

E1 D̄
−1/2
1(l) X0′

∗,(l)E
0
∗,1

∥∥∥2

> z

)
≤ P

(
max
t∈[k]

(
T (t)
)2
χ2(k) > z

)
. (A.74)

To control the term T (t), we apply Lemma E.1 with x = τ = (8(δ log p+ log k)/n(0))1/2 =

o(1) to deduce that

P
((
T (t)
)2
>

1

1− τ

)
≤ 2k−1p−δ, (A.75)

where we have used the fact of n(0) ≤ n(t). Similarly, to control the term χ2(k) an application

of Lemma E.1 with y = δ log p leads to

P
(
χ2(k) > k + 2δ log p+ 2

√
δk log p

)
≤ p−δ. (A.76)
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Thus the union bound argument applied to inequalities (A.75) over t ∈ [k] and (A.76) yields

P
(

max
t∈[k]

(
T (t)
)2
χ2(k) >

k + 2δ log p+ 2
√
δk log p

1− τ

)
≤ 3p−δ.

Finally, we can apply another union bound argument over all 2 ≤ l ≤ p and (A.74) to obtain

P
(

max
2≤l≤p

∥∥∥D̄−1/2
E1 D̄

−1/2
1(l) X0′

∗,(l)E
0
∗,1

∥∥∥2

>
k + 2δ log p+ 2

√
δk log p

1− τ

)
≤ 3p−δ+1,

which completes the proof by noting that the above conditional probability is free of X0
∗,−1.

D.7 Lemma D.7 and its proof

Lemma D.7. Under Conditions 2.1–2.2, for the event E1,up = { ζt ≤
√

6MM0 simultaneously

for all t ∈ [k]} it holds that P{E1,up} ≥1− 4k exp(−n(0)/32).

Proof. Be definition, we have ζt = Q̄
1/2
t ( ˆ̄C

(t)
1 ) + Q̄

1/2
t (C̄

(t)
1 ). Since ˆ̄C0

1 is the solution to

the HGSL optimization problem (A.1), for the vector β̌ = (0, ˆ̄C
(2)′
1 , · · · , ˆ̄C

(k)′
1 )′ with β̌(l) =

(0, ˆ̄C
(2)
1,l , · · · , ˆ̄C

(k)
1,l )′ it holds that

k∑
t=1

Q̄
1/2
t ( ˆ̄C

(t)
1 ) + λ

p∑
l=2

∥∥∥ ˆ̄C0
1(l)

∥∥∥ ≤ Q̄
1/2
1 (0) +

∑
t6=t0

Q̄
1/2
t ( ˆ̄C

(t)
1 ) + λ

p∑
l=2

∥∥β̌(l)

∥∥ .

Note that ‖ ˆ̄C0
1(l)‖ ≥ ‖β̌(l)‖ by our choice of β̌(l). Thus we deduce that

Q̄
1/2
1 ( ˆ̄C

(1)
1 ) ≤ Q̄

1/2
1 (0) = ‖X(1)

∗,1‖/(n(0))1/2.

By symmetry, for all t ∈ [k] we have with probability at least 1− 4k exp(−n(0)/32),

ζt ≤

∥∥∥X(t)
∗,1

∥∥∥+
∥∥∥E(t)
∗,1

∥∥∥
√
n(0)

≤

∥∥∥X(t)
∗,1

∥∥∥+
∥∥∥E(t)
∗,1

∥∥∥
√
n(t)

√
n(t)

√
n(0)

≤ 2
√

3M/2 ·
√
M0,

where the last inequality follows from Conditions 2.1–2.2 and the facts of X(t)′
∗,1 X

(t)
∗,1/σ

(t)
1,1 ∼

χ2(n(t)) and E
(t)′
∗,1E

(t)
∗,1(ω

(t)
1,1) ∼ χ2(n(t)). Specifically, the union bound for t ∈ [k] with an

application of Lemma E.1 using x = 1/2 yields

(‖X(t)
∗,1‖+ ‖E(t)

∗,1‖)/(n(t))1/2 ≤ (3σ
(t)
1,1/2)1/2 + (3/2ω

(t)
1,1)1/2

with probability at least 1− 4k exp(−n(0)/32), which concludes the proof.
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E Additional technical details

The following two technical lemmas are used throughout the paper from place to place.

Lemma E.1 ([18]). The chi-square distribution with n degrees of freedom satisfies the following

tail probability bounds

P
(∣∣χ2(n)/n− 1

∣∣ > x
)
≤ 2 exp(−nx(x ∧ 1)/8) for any x > 0,

P
(
χ2(n)/n− 1 > 2y/n+ 2

√
y/n

)
≤ exp(−y) for any y > 0,

P
(√

χ2(n)/n− 1 > z
)
≤ exp(−nz2/2) for any z > 0.

Lemma E.2. Assume that Conditions 2.1–2.2 hold and max{log p, log k} = o(n(0)). Then for

any given constant δ > 0, there exists some positive constant C depending only on M and δ

such that for any fixed j,

P

(
max
l 6=j

1

k

k∑
t=1

(
E

(t)′
∗,j X

(t)
∗,l

n(t)
)2 ≥ C

1 + (log p)/k

n(0)

)
≤ 3p1−δ,

P

(
1

k

k∑
t=1

(
E

(t)′
∗,j X

(t)
∗,−jC

(t)
j

n(t)
)2 ≥ C

1 + (log p)/k

n(0)

)
≤ 3p−δ.

Proof. Since E(t)
∗,j ∼ N(0, I · (ω(t)

j,j )
−1) is independent of X

(t)
∗,−j for each t ∈ [k], it holds that

for each l 6= j, (E
(t)′
∗,j X

(t)
∗,l )(ω

(t)
j,j )

1/2/‖X(t)
∗,l ‖ ∼ N(0, 1). In addition, these random variables are

independent among different t ∈ [k]. By Lemma E.1, we have

P

(
1

k

k∑
t=1

ω
(t)
j,j

(
E

(t)′
∗,j X

(t)
∗,l /
∥∥∥X(t)
∗,l

∥∥∥)2

≥ 1 + 2

√
δ log p

k
+

2δ log p

k

)
≤ 2p−δ. (A.77)

To control the term ‖X(t)
∗,l ‖, we apply Lemma E.1 with X(t)

∗,l ∼ N(0, I · σ(t)
l,l ) to deduce that

P

(∥∥∥X(t)
∗,l

∥∥∥ /√σ
(t)
l,l n

(t) ≥ 1 +

√
2(δ log p+ log k)

n(t)

)
≤ p−δk−1,

where σ(t)
l,l stands for the variance of X(t)

l . The union bound, together with the assumption of

max{log p, log k} = o(n(0)), entails that

‖X(t)
∗,l ‖ ≤ 2(σ

(t)
l,l n

(t))1/2 ≤ (4Mn(t))1/2 (A.78)
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simultaneously for all t ∈ [k] with probability at least 1− p−δ.

We now condition on the event given by (A.78). Due to Conditions 2.1–2.2, we have

1

k

k∑
t=1

ω
(t)
j,j

E(t)′
∗,j X

(t)
∗,l∥∥∥X(t)

∗,l

∥∥∥
2

≥ n(0)

4M2

1

k

k∑
t=1

(
E

(t)′
∗,j X

(t)
∗,l

n(t)

)2

,

which along with (A.77) leads to

P

(
1

k

k∑
t=1

(
E

(t)′
∗,j X

(t)
∗,l /n

(t)
)2

≥ 4M2

n(0)

(
1 + 2

√
δ log p

k
+

2δ log p

k

))
≤ 3p−δ. (A.79)

Thus we see that the first desired result follows immediately from (A.79) with a union bound for

all l 6= j and C = 4M2(2+3δ), in view of 2((δ log p)/k)1/2 ≤ 1+(δ log p)/k. Since X
(t)
∗,−1C

(t)
1

has i.i.d. Gaussian entries with bounded variance and is independent of E(t)
∗,j , the second desired

result follows from a similar analysis as for (A.79), which completes the proof.
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