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Abstract

Multi-task learning is a widely used technique for harnessing information from
various tasks. Recently, the sparse orthogonal factor regression (SOFAR) framework,
based on the sparse singular value decomposition (SVD) within the coefficient matrix,
was introduced for interpretable multi-task learning, enabling the discovery of mean-
ingful latent feature-response association networks across different layers. However,
conducting precise inference on the latent factor matrices has remained challenging
due to the orthogonality constraints inherited from the sparse SVD constraints. In
this paper, we suggest a novel approach called the high-dimensional manifold-based
SOFAR inference (SOFARI), drawing on the Neyman near-orthogonality inference
while incorporating the Stiefel manifold structure imposed by the SVD constraints.
By leveraging the underlying Stiefel manifold structure that is crucial to enabling
inference, SOFARI provides easy-to-use bias-corrected estimators for both latent left
factor vectors and singular values, for which we show to enjoy the asymptotic mean-
zero normal distributions with estimable variances. We introduce two SOFARI vari-
ants to handle strongly and weakly orthogonal latent factors, where the latter covers
a broader range of applications. We illustrate the effectiveness of SOFARI and jus-
tify our theoretical results through simulation examples and a real data application
in economic forecasting.
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1 Introduction

Multi-task learning has gained significant popularity in modern big data applications, par-
ticularly in scenarios where the same set of covariates is employed to predict multiple
target responses, as seen in applications like autonomous driving. A widely used model for

multi-task learning is the multi-response regression model given by

Y = XC* +E, (1)

where Y € R™*9 represents the response matrix, X € R™*? is the fixed design matrix, C* €
RP*? is the true, unknown regression coefficient matrix, and E € R"*? stands for the mean-
zero random noise matrix. Here, n denotes the sample size, p represents the dimensionality
of the covariate vector, and ¢ is the dimensionality of the response vector. When both p
and ¢ are substantially larger than the sample size n, accurately estimating C* becomes
a formidable challenge due to high dimensionality. To address this challenge, structural
assumptions are often imposed on C* through techniques such as matrix factorization,
such as the singular value decomposition (SVD), which facilitates dimensionality reduction.
Among these structural assumptions, two commonly adopted ones are the low-rankness and
sparsity. These assumptions form the basis for various regularization techniques developed
to simultaneously reduce dimensionality and select relevant features.

Methods for simultaneously achieving sparse recovery and low-rank estimation of C*
can be broadly categorized into two classes. The first class involves the direct estimation
of C* using various regularization techniques, as discussed in previous works (Bunea et al.|
2012; Chen and Huang, 2012;|Chen et al., 2013)). The second class focuses on reconstructing

the parameter matrix by initially estimating its sparse SVD components and then combin-



ing them, as demonstrated in related research (Mishra et al., [2017; [Uematsu et al., 2019;
Zheng et al.; 2019; |Chen et al., 2022). An advantage of the latter approach is that the
sparsity assumption applied to different SVD components naturally leads to the interpre-
tation of a sparse latent factor model. In such model, each latent factor represents a sparse
linear combination of the original predictors, and different responses can be associated with
distinct sets of latent factors. The importance of each latent factor can be measured by
examining the magnitude of the corresponding singular value. For example, in the analysis
of yeast eQTL data discussed in |[Uematsu et al. (2019)) and Chen et al.| (2022), it revealed
the existence of three latent pathways (i.e., latent factors). These pathways predominantly
consisted of some original predictors which are certain upstream genes, downstream genes,
and a combination of both, respectively.

While the sparse SVD structural assumption on C* offers an enticing level of inter-
pretability, estimating this sparse SVD structure poses challenges. This complexity arises
from the simultaneous presence of orthogonality constraints and the need for sparsity across
different SVD components. In essence, achieving both sparsity and orthogonality can be
two inherently conflicting objectives within a single statistical inference framework. For
example, the sparsity pattern of a matrix may no longer hold after applying a conventional
orthogonalization process such as the QR factorization. To tackle this dilemma, [Uematsu
et al.| (2019) introduced the sparse orthogonal factor regression (SOFAR) method. SOFAR
allows for the simultaneous attainment of sparse and orthogonal estimates of the factor ma-
trices by formulating them within an orthogonality-constrained regularization framework.
Nonetheless, the development of a valid statistical inference procedure for quantifying the
uncertainty associated with these estimation results remains a challenging task under the

SVD constraints. This paper focuses on addressing such a challenge.



Our inference method builds upon the SOFAR framework (Uematsu et al., |2019). It is
well recognized that estimates obtained through regularization methods can be susceptible
to bias issues, primarily due to the use of penalty functions. Consequently, these estimators
are not directly applicable in statistical inference problems, such as hypothesis testing. To
correct such bias and calculate valid p-values, several statistical inference methods have
been introduced. One line of research suggests debiasing the regularized estimators by
inverting the Karush—Kuhn—Tucker condition associated with the corresponding optimiza-
tion problem (Javanmard and Montanari, 2014; van de Geer et all 2014)) or, equivalently,
using the relaxed projection approach (Zhang and Zhang, |2014). In situations involving
high-dimensional nuisance parameters, Chernozhukov et al.| (2018) devised a double ma-
chine learning framework. This framework introduces a score function vector that is locally
insensitive to nuisance parameters of high dimensionality, allowing for bias correction in the
existence of nuisance parameters. In the context of statistical inference for high-dimensional
principal component analysis (PCA), |Jankova and van de Geer (2021)) proposed a debiased
sparse PCA estimator. They also constructed confidence intervals and hypothesis tests for
inferring the first eigenvector and the corresponding largest eigenvalue. However, extending
this inference procedure to the remaining principal components poses a nontrivial challenge
due to the accumulation of noise from previous eigenvectors and eigenvalues.

In our model setting, both the left and right singular vectors of C* are unknown,
and during our statistical inference for one singular vector, the remaining ones together
become high-dimensional nuisance parameters. Furthermore, these nuisance parameters
must adhere to the orthogonality and unit-length constraints imposed by the SVD struc-
ture, restricting them to some underlying manifold. If one ignores such manifold structure

and directly uses the SVD constraints to calculate the associated statistics for the infer-



ence task, the deficiency in the degrees of freedom will render the construction of the
inference procedure invalid or ineffective; this will be made clear in Section 2.1} In fact,
incorporating the manifold structure is crucial in optimization problems that are subject
to orthogonality or SVD constraints. For instance, in nonnegative independent component
analysis (ICA), Plumbley]| (2005) utilized the manifold structure to calculate gradients and
developed various algorithms under orthogonality constraints. Derenski et al. (2023)) ap-
plied the ICA framework to functional data analysis, achieving nonparametric estimation
accuracy. Additionally, Chen and Huang| (2012)) investigated the manifold structure of the
coefficient matrix under SVD constraints in reduced rank regression. They demonstrated
the consistency of the coefficient matrix and its SVD components when the dimensionality
is fixed. These studies collectively offer valuable insights into leveraging the manifold struc-
ture for algorithmic and estimation improvements. Despite these advancements, exploring
the integration of the manifold structure into the inference procedures for high-dimensional
multi-task learning remains an uncharted area.

To overcome these aforementioned challenges, we suggest in this paper a new manifold-
based inference procedure named high-dimensional manifold-based SOFAR inference (SO-
FARI). Here, the manifold is defined as the Riemannian space where the nuisance parame-
ters lie in under the sparse SVD constraints. We adapt the idea proposed in |Chernozhukov
et al| (2018)) to construct the Neyman near-orthogonal score function on the manifold.
More specifically, instead of constructing a score function which is locally insensitive to
the nuisance parameters on the full Euclidean space, we need only the local insensitive-
ness to hold on the manifold induced by the SVD constraint. Such approach allows us to
construct bias-corrected estimators under the sparse SVD constraint. Depending on the

correlation level between the latent factors, our suggested inference procedure takes two dif-



ferent forms. The first form, named SOFARI,, deals with strongly orthogonal latent factors
where different latent factors have correlations vanishing quickly as sample size increases;
examples in modern data science applications where such assumption makes sense include
biclustering with sparse SVD (Lee et al., [2010), sparse principal component analysis (Shen
and Huang) |2008)), and sparse factor analysis (Bai and Ng, 2008). The second form, named
SOFARI, applies to a wider range of multi-response applications where latent factors can
have stronger correlations among each other (which we name as weak orthogonality con-
dition). We derive the asymptotic distribution for each bias-corrected estimator under the
regularity conditions, allowing us to construct valid confidence intervals for latent factors.
Using similar idea, we also construct the debiased leading singular values, and establish
the asymptotic normality for each of them.

We conduct simulation studies to verify that our bias-corrected estimators for latent left
factors and leading singular values indeed enjoy the asymptotic mean-zero normal distribu-
tions as established in our theory. We also show by numerical examples that the confidence
intervals constructed from our asymptotic distributions have valid coverage under both the
strong and weak orthogonality conditions. In addition, we examine the robustness of SO-
FARI when the correlations among latent factors violate our technical assumption using a
simulation study; our results demonstrate that SOFARI is still applicable even beyond the
scenario described by our technical assumptions. Finally, we apply our inference methods
to the economic forecasting data set and obtain some highly interpretable results revealing
interesting dependence structure among economic variables.

The rest of the paper is organized as follows. In Section [2, we present the SOFARI
framework under both the strong and weak orthogonality constraints. In Section [3, we

establish the asymptotic normalities of the debiased SOFARI estimates. Section || presents



several simulation examples to demonstrate the finite-sample performance of the newly
suggested method. Section [0] discusses some implications and extensions of our work. In
the Supplementary Material, we provide additional theoretical results, simulation studies,

and real data details, as well as all the proofs and secondary technical details.

2 High-dimensional manifold-based inference

Denote by C* = L*D*V*7 the singular value decomposition (SVD) of the true coefficient
matrix C* in model (1)), where L* = (},--- ,I%) € RP*™ and V* = (v}, -+ ,v}) € R
are the orthonormal matrices consisting of left and right singular vectors, respectively,

D* = diag{d},--- ,d*.} € R"*"" is the diagonal matrix of nonzero singular values, and 7*

is the rank of C*. We define U* = L*D* = (u}, - ,u’.) € RP"" as the left factor matrix.

*T
r*

We are interested in estimating and inferring u;’s, for which purpose n; = (v}‘T, RN 3

T
/r.*

wil, o uf )T € R +P("=1) ig the high dimensional unknown nuisance
parameter vector. For technical simplicity, we assume the true rank r* is given and satis-
fies that r* > 2; the case of r* = 1 is much simpler and not considered here because the
orthogonality constraint no longer exists. In practice, we can identify the rank of the latent
SVD structure in advance by some self-tuning selection method such as the one developed
in Bing and Wegkamp (2019) that enjoys the rank selection consistency.

We introduce the new manifold-based SOFARI inference procedure in the next subsec-
tions. Depending on the correlation level among the latent factors, the suggested SOFARI
inference procedure takes two different forms: the basic form SOFARI, for strongly or-
thogonal factors and the general form SOFARI for weakly orthogonal factors, where the

notions of strongly and weakly orthogonal factors will be made clear later. SOFARI is more

broadly applicable than SOFARI,, thanks to its relaxed constraint on correlation level.



2.1 SOFARI; under strongly orthogonal factors

Given an initial biased estimate wj of uj for a given k € {1,---,r*}, we describe the
construction of a debiased estimate with 1} the unknown nuisance parameter vector. To
alleviate the impacts of nuisance parameters, we will make use of the Neyman orthogonality
scores (Neyman, 1959; |Chernozhukov et al., [2018) and find a vector {/;k(uk,nk)e R? of

score functions for u; with nuisance parameter ny, = (vf, -+ vl ul - jul |, ufﬂ, cee

ul)T € R+ =) that satisfies two properties: first, the expectation of ¥ at the true
parameter values (u},n;) is asymptotically vanishing; second, Jk satisfies the Neyman
near-orthogonality condition with respect to the nuisance parameters in the sense that @Zk
is approximately insensitive to 7, when evaluated at (uj,n;) locally.

Moreover, in this section, we consider the case of strongly orthogonal factors such that
D itk ]uijluﬂ = o(n™'/?), to deal with the intrinsic bias issue induced by correlations
between the latent factors, which is specified in Section of the Supplementary Material.
It is worth pointing out that for many learning problems such as biclustering with sparse
SVD (Lee et al., 2010), sparse principal component analysis (Shen and Huang, 2008), and
sparse factor analysis (Bai and Ngj 2008), the design matrix can be regarded as the identity
matrix and thus the strong orthogonality condition holds naturally for the latent factors

when any different w} and wu} are orthogonal.

We start with the following constrained least-squares loss function

*

Llwg,m) = (20) 7Y = ) Xuw] |7, (2)
i=1
subject to uju; =0for 1 <i#j<r*and VIV =1,., (3)
where V = (v, -+ ,v,+) is the matrix of right singular vectors.



Denote by S = n1XTX. A natural starting point for the score function for uy is the

partial derivative of loss function L with respect to u,, which can be simplified as

oL &
a—uk = E’U/k — nilXTYvk (4)

under constraint . However, the above partial derivative is sensitive to the nuisance
parameter vector 7, even if it is within a shrinking neighborhood of 7}, since its derivative
with respect to v, does not vanish. To correct this, we define a modified score function
vector for u; as
oL oL
M

wk<uk;"7k) = a_uk - a—nk;

T

where matrix M = [qu,~~ MU MY M M ,M“*} will be chosen such
that {/;k(uk, M) is approximately insensitive to 1 under the SVD constraint . Note that
the construction of M will depend on k, but we make such dependence implicit whenever
no confusion. When confusion arises, we write the corresponding matrix as M®*). Here,
submatrices M} € RP*? and M; € RP*? correspond to u; and v; for 1 < ¢ < r* with ¢ # k
and 1 < 7 < r* respectively. We will show that the most important construction of M lies
in M7, to be detailed in Proposition [2| while other submatrices can be set as zero.

Based on the modified score function vector @Zk, we can exploit the bias correction idea
(Javanmard and Montanari, 2014; van de Geer et al., 2014) and define a debias function

for the initial estimate u; as

Ur (g, i) = wp — Wby (ug, m),



where matrix W € RP*P will be constructed to correct the bias in the initial estimator. In
this paper, we consider the initial estimator as the SOFAR estimator (w;, v;)i—, formally
defined in Definition [2| and propose valid constructions of M and W so that the bias-
corrected estimator iy (uk, M) enjoys asymptotic normality with mean uj and estimable
variance for statistical inference, where 7, is the nuisance parameter constructed using the
initial SOFAR estimator. Similarly to M, we make the dependence of W on k implicit
whenever no confusion, and write it as Wj, when confusion arises.

We stress that constructions of M and W should not be considered separately because
the former can affect effectiveness of the latter. For example, it may be tempting to
directly leverage the SVD constraints in g—g’; and calculate the derivatives in Euclidean
space to construct M. However, such an M leads to a deficiency in the degrees of freedom
and hence results in the nonexistence of a valid W matrix for our ultimate goal of bias
correction for ug. See Section || of the Supplementary Material for the detailed derivations.

We next provide details on a construction of matrix M that can lead to a valid con-
struction of W. A natural way of making @Zk insensitive to the nuisance parameter vector
My is requiring that g—% be asymptotically vanishing. Such simple requirement, however,
does not take the SVD constraints on 7 into account. To address this issue, we suggest a
new manifold-based inference framework. Specifically, instead of requiring that the score
function vector {/;k be locally insensitive to the nuisance parameters on the full Euclidean
space, we need only the local insensitiveness to hold on the manifolds induced by the SVD
constraints. Such distinction will relax the restriction and save the degrees of freedom,
thereby providing more flexible choices for matrix M. To this end, we first provide the

gradient of @Zk on the corresponding manifolds in the proposition below.

Proposition 1. Under the SVD constraint , the orthonormal vectors v; with 1 <1 <r*

10



belong to the Stiefel manifold St(1,q) = {v € RY : vTv = 1}. The gradient of @Zk on the
manifold is Q(g—fﬁ:), where Q = diag{I, — viv],... I, — vr*vﬁ,lp(r*_l)} and % 15 the

reqular derivative vector on the Fuclidean space.

In light of Propositionabove, under the SVD constraint we can make @k approximately

IS

o ) be asymptotically vanishing. Based on this result,

insensitive to v; by requiring that Q(

the proposition below provides a convenient choice of matrix M for SOFARI;.

Proposition 2. When the construction of M is given by
Z:—Zk_kliC_k, M)=0, M!=0 forl<i<r®andi#k

with C_ = 3, w;vl and zy, = u;{f}u,k, it holds that

D O*L 2L
<W> ° (%k@n{ ~Monanr) 2 Opats=1): A Opxiatr by o0 -1

where A = {f](C - C*) — n*IXTE} (I, — vpv}l).

Based on the construction of M, after plugging in consistent SOFAR initial estimates 6,
we can show that A and thus <%> Q will be asymptotically vanishing. Then the modified
score function zzk is locally insensitive to the nuisance parameters. We next discuss the
corresponding construction of matrix W. The following definition is necessary to facilitate
our theoretical presentation.

)T

Definition 1 (Approximate Inverse). A p X p matriz e = (51,--- ,ép is called an

approximate inverse matriz of ) if there exists some positive constant C' such that 1)

11— O%|max < C+/(logp)/n and 2) maxi<i<, [0:llo < Smax and maxi<i<, ||0;]]2 < C.

Definition |1] above requires mainly that the approximate inverse matrix © satisfies an

11



entrywise approximation error bound of rate \/W and a rowwise sparsity level sp,ax
with the length of each row bounded from above. These are typical properties for high-
dimensional precision matrix estimation and can be achieved by many existing approaches,
such as the nodewise Lasso estimate (Meinshausen and Biithlmann, [2006) and ISEE (Fan

and Lv, |2016)). Proposition (3| specifies our construction of matrix W for the second step.

Proposition 3. When 1,«_1 — z,;klUkalU,k 15 nonsingular and

W =8 {I, + 2! SU (I - 5,/ UL SU ) 'U7, )

with U_ = [uy, -+ ,Ug_1,Ups1, " ,Up| and O an approzimate inverse of X, for M

constructed in Proposition [ it holds that
W (I, — Mivul + MICT,)S = O,

Now let us gain some insight into the constructions of matrices M and W in Propositions
and , respectively. First, based on Proposition , as long as an estimate C for C* with
consistent SVD components (w;, ¥;)5_, is available, we can plug them into matrix M to
form M® so that i/;k with M® is approximately insensitive to the nuisance parameter
vector M when vy, --- v« are constrained to be on the corresponding manifolds.

Next, it can be obtained from Lemma [2|in Section of the Supplementary Material

that the main term in the debias estimator takes the form of

we = Wi (wemi) = wj + L = WL, - Mveuf + MiCT)S| (wo—wj)  (5)

- W[ MICT S + 8+ .
J

12



The third term above consists of three components each multiplied by matrix W, where
> j M;?C*f;-iu; is the intrinsic bias term, dy is an error term that vanishes asymptotically
when plugging in consistent SOFAR estimates, and € is the distribution term. In addition,
a valid matrix W should be an approximate inverse (cf. Definition [1|) of the matrix (I, —
MYv,ul + MzCTk)i, so that the bias term above can be smaller than the root-n order.
Proposition [3] gives an explicit construction of such W for SOFARI,, where its component
L+ 2. SU_,(L-_; —2;'UT, SU_,)~'UZ, is indeed the inverse of I, - MYv,ul + M?CT, |

By calculating the initial SOFAR estimate with SVD components (u;, v;)i_,, our debi-

ased estimate for uj is defined as

o~ (0L — 0L
uy, = up — Wit (ug, mi) = u, — W (— Mk ==

Ouy, 5?7k> ‘(ﬁk,ﬁk)’ (6)

where M(k) = [Opxq(k’fl)a Mk, Opx[q(r*fk)er(r*—l)]} with Mk = —Z;klEC_k and Zkk = G{Eﬂk,
and W, are as given in Propositions [2 and |3 after plugging in (w;,v;)7_,. Since the
constructions of {@y }_, do not rely on each other, we can calculate the SOFARI statistics

for different u;’s simultaneously through parallel computing for large-scale applications.

2.2 SOFARI under weakly orthogonal factors

The SOFARI; procedure in Section deals with the setting of strongly orthogonal latent
factors satisfying >, ]u;‘fo)uﬂ = o(n~'/2). When the latent factors correlations do not
vanish faster than a root-n rate, SOFARI; may not work since the intrinsic bias caused on
the stronger correlations can invalidate the asymptotic distribution. To address this, we
next propose the general SOFARI inference procedure which is applicable to a broader range
of multi-response applications under a weaker assumption on the latent factor correlation.

Different from SOFARI, that considers all unknown parameters in the constrained least-

13



squares loss function , the general SOFARI works by removing the top k& — 1 layers from
the response matrix via subtracting their estimates when making inference on wj. After
removing the previous layers, the intrinsic bias can be controlled when the magnitude of
the singular value corresponding to the current layer dominates the remaining ones even
when the latent factors are not strongly orthogonal to each other.

Let us now describe the construction of the debiased estimate of u; in SOFARI for each
given k with 1 < k£ < r*. Based on the SOFAR estimates u; of u} and v; of v}, we have the
surrogate for C*M = SF 1y T a5 CO = S 1,37, When k = 1, we define CV) = 0
since there is no previous layer to be removed. By subtracting the surrogate XC® of the

previous k — 1 layers from response matrix Y, the constrained least-squares loss function

associated with our inference problem takes the form

L(ug, mi) = (2n) 7 Y[Y = XCW =Y~ Xuo! |3,
1=k

subject to wlu; = 0 for k <i# j <r* and (V®)TV® = 1,.. (7)
where 1, = (ui,,, -+, ul,vf, - ,vﬁ)T is the remaining nuisance parameter vector and

VK = [U1,-++ ,Ug_1, Vg, -+, Up=] is the matrix of right singular vectors with the first £ — 1
columns replaced by SOFAR estimates.

Then the vector of modified score functions for u, can be defined similarly as

~ OL oL
=— -—M_——
V(s 1) D e’
where M = [My, .-, M2 My, -+, M&%] with MY € RP*? for each k+1 < < r* and

M € RP* for each k < j < r*. Similarly, we will show that the most important part of

14



construction of matrix M lies in M. Based on @Zk, we also suggest the debiased function

(g, M) = wp — Wiy (ug, 7).

*

®(2) _ * wp KT #(2) _ T s p kT 2) _ * T
Denote by C*® = D i1 WU C.; = Zi:k-ﬁ-l,i;ﬁj wjvi”, C® = D imhi1 Wil;

U® = [upy1, -, up], and Q = diag{I, —vyvl, -+ , I, — v-vX, L1} The two propo-

sitions below play similar roles as Propositions[2|and [3| for our SOFARI inference procedure.

Proposition 4. When the construction of M is given by
M) = —2'2C?, MY=0, M*=0 fork+1<i<r*
it holds that

O O2L L
—_— = —— — M-——- = A X r*—k)]|s
(377;?) Q (auka”h{ 3"71@87713 Q [ O (pra)l k)]

where A = {2(6(1) —C O 43 (uv! — wvrT)) - n_lXTE} (I, — vev}).

Proposition 5. When L._; — 2 (U@)TSU® s nonsingular and
~ ~ ~ ~1
W =0 {I,, + 2, 2U® (IT*_k — z,;kl(U@)TzU(?)) (U<2>)T}
with © an approximate inverse of i, for M constructed in Proposition Q it holds that
W (I, - Mivuf + My(C?)T) S = O3

Constructions of matrices M and W for SOFARI are provided in Propositions [4] and [5

respectively. Compared to those for SOFARI; in Propositions [2| and [3| matrices M and W

15



here are similar but no longer take the first £ — 1 layers into account since they have been
removed from the response matrix by subtracting their surrogates. Similar to Proposition
2, A in Proposition 4 is asymptotically vanishing after plugging in consistent SOFAR initial

estimates. Then the new debiased SOFARI estimate for u; is constructed as

oL

oL
g = Ur (T, Tk) = g — Wit (T, ) = W, — W’f(a_uk -M® 8771)‘ i)
uk7 k

where M®*) — [/1\7Ik,0px(p+q)(r*,k)} with M, = —zklEC(Q, and W, are defined as in
Propositions |4 and [5| after plugging in the SOFAR estimated SVD components (u;, 0;)i,.

Given that MY = 0 for k+ 1 <4 < r* by Proposition [} the corresponding intrinsic
bias term in ¥y, (ul, n;) would become MZ(C*(Q))Tf]u”,; in view of Lemma |3|in Section
of the Supplementary Material. After plugging consistent SOFAR estimates into M, we

can show that

r*

IMR(C ) Sl = Y (d5/d)IGTEL, (8)

j=k+1

where the right-hand side will be assumed to take the order of o(n~'/2) so that the intrinsic
bias is under control. Moreover, it is clear that both the gaps between singular values
and the correlations between latent factors (as measured by l;Til,t) will play key roles in
determining the magnitude of the intrinsic bias. When the gaps between nonzero singular
values are large enough or the singular values decay dramatically such as in the spiked eigen-
structure, we do not necessarily require the strong orthogonal latent factor constraint that
> itk ]l*TEl | = o(n™%/?), but allow the latent factors to be somewhat correlated. See
Conditions {4| and [5| formally summarizing these two scenarios in the next section. In this

regard, SOFARI is indeed applicable to a wider range of applications compared to SOFARI,.
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3 Asymptotic properties of SOFARI

In this section, we will establish the asymptotic distributions for both SOFARI, (the basic
form) and SOFARI (the general form) suggested in Sectionthat correspond to the settings

of strongly orthogonal factors and weakly orthogonal factors, respectively.

3.1 Technical conditions

To facilitate the technical analysis, we will need to introduce some regularity conditions.
To do so, we first provide the following definition to characterize the properties of SOFAR

SVD estimates. Denote by s, = ||U*||o and s, = [|[V*]|o.

Definition 2 (SOFAR SVD estimates). A p x ¢ matriz C with SVD components (INJ7 ]fN), \Nf)

1s called an acceptable estimator of matrix C* if it satisfies that with probability at least

/

np.qr We have the estimation error bounds

— 0,4 for some asymptotically vanishing 0

() [D =D +|U = U*[|p + VD = VD"l < e,

(5) D =D*[lg +||U = U%[lo + [VD = V'D*[lo < (" + s, + 5,)[1 + o(1)],

where U is defined analogously to U* as U = LD, 7, = (r* + s, + 5,) /22 {n"" log(pq) }'/2,

. 1/2
Ny =1+ 0712 (Z;Zl(d’{/d;)2> , and ¢ and 6 are some positive constants.

Definition [2| above lists the properties of the SOFAR SVD estimates, which can be
ensured by Theorem 2 of [Uematsu et al| (2019)) under some regularity conditions. Since

rank r* is assumed to be given, the SVD components (i, I~), \Nf) are of the same dimensions

/

as their population counterparts. The tail probability 6, ,

has been shown to decay
polynomially in feature dimensionality p. Although some other factor regression methods

(Mishra et al., 2017; |Chen et al., |2022) can also accurately recover the signals in each

17



layer, they may not be suitable as the initial estimates for the suggested SOFARI inference
procedure since the exact orthogonality is generally not enforced precisely. Specifically, we

make the technical assumptions below.

Condition 1. The error matric E ~ N(0,I, ® 3.) with the mazimum eigenvalue of 3.

bounded from above.

Condition 2. There exist some sparsity level s > max{smax, 3(r* + Sy + Sp)} With Spax

defined in Definition [1], and positive constants p; and p, such that

28], 12]1
|6]lg < < |6]lg < -
p1 < min { P 1810 < s p < max HP [6llo <sp <p

Condition 3. The nonzero eigenvalues d* of matriz C*T'C* satisfy that d;* — 2, > 6;d;?

for some positive constant § > 1 — p;/p, with 1 <1i <r* and r*v, = o(d.).

Condition 4 (Strong orthogonality). The nonzero squared singular values di* are at the

constant level and 3, ;. |l;Tle}:, = o(n™/?) for each given k with 1 < k < r*.

Condition 5 (Weak orthogonality). The nonzero squared singular values d;* and the latent

*

factors jointly satisfy that Z;zk+1(d§2/d2)|l;T§]l,’;| =o(n=Y?) for each k, 1 < k < r*.

Similar to [Javanmard and Montanari| (2014)); |[Zhang and Zhang| (2014)), the Gaussian
assumption in Condition (1| above is imposed to simplify the technical analysis. Our theo-
retical results can be extended to non-Gaussian errors using a similar central limit theorem
argument to that in van de Geer et al. (2014)). Condition [2] assumes that the s-sparse
cigenvalues of & are bounded, which is also imposed in [Uematsu et al. (2019); Zheng et al.
(2019) to ensure the identifiability of significant features. The corresponding sparsity level

s has been shown to be at least of order O{n/(logp)} with asymptotic probability one
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based on the concept of the robust spark in [Lv| (2013) when the rows of design matrix X
are sampled independently from the multivariate elliptical distributions.

Condition [3| requires distinction between the nonzero singular values so that different
latent factors are separable. It also assumes d;. to be larger than the asymptotically
vanishing rate 7*v, with convergence rate 7, given in Definition 2 Such assumptions
are standard in factor-based regressions (Uematsu et al., 2019; |Zheng et al., [2019). The
lower bound on §; is imposed such that pd;? > pudz‘_?H to avoid possible equivalence in
2l = u;f‘Tf)u;* for different ¢’s, where 2}; can be understood as the strengths of latent factors
from different layers. Moreover, it can guarantee the existence of matrix W suggested in
Propositions |3| and [5| by meeting the requirement on matrix nonsingularity with a strictly
diagonal dominance argument.

In particular, Conditions will be exploited for the theoretical analyses of both
SOFARI; and SOFARI. Further, Conditions 4] and [5| correspond to the settings of strong
orthogonality and weak orthogonality between latent factors, respectively. The singular
values are assumed to be bounded in Condition [ mainly for technical simplicity, and they
can indeed be diverging as long as the singular values and latent factors jointly satisfy a
similar bound to that in Condition 5 It is clear that if Condition [4] holds, Condition [5] will
be satisfied automatically. Thus, the requirement on correlations between latent factors for
SOFARI is indeed weaker than that for SOFARI,. We present the theoretical guarantees for

these two versions of the SOFARI inference procedure in Sections [3.2] and [3.3] respectively.

3.2 Asymptotic theory of SOFARI;

Let us denote by U = [@y,--- , @], D = diag{dy,--- ,d,-}, and V = [0y,--- ,,+] the

SOFAR SVD components given in Definition [2 For each given k with 1 < k < r*, recall
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that 2}, = w7 3w} and its estimate 3, = af %4, Corresponding to M and W suggested

for SOFARI, in Section ﬁ, we define My = —zZ;liC*_k, M, = —nglié,k, and

Wi =6 {1, + 2 SU (L. — 25 U SU) U]

Wi = 0{1,+ 5,80 (I - 507,80 )"0, }.

Observe that here, C*, = U*,V*L and C_;, = U_, VT, with U*,,V*,, U_, and V_,

the corresponding submatrices after taking off the kth columns. Furthermore, let us define

1/2

i = max{syime, (17 + su + 5,2} (" + su o+ s0)i; log(pg) /v, (9)

which will be the key order for the error term. With Mk and Wk, the theorem below

provides the asymptotic distribution of the proposed estimator uy in @ for SOFARI.

Theorem 1 (Inference on wu}). Assume that Conditions hold and © and C satisfy
Definitions [1] and [3, respectively. Then for each given k with 1 < k < r* and an arbitrary

vector a € A= {a € R : |la|lo < m, ||la|l, = 1} satisfying m'/?k,, = o(1), we have
vna® (dy, —u}) = hy, + tg,
where the distribution term hy = a” Wi(XTEv; — M{E"Xu})//n ~ N(0,v7) with
V2 =a" Wiz, MiZ M7 4+ 0780 S — 28uiv TS M)W a,
Moreover, the bias term t, = O,(m'/%k,) holds with probability at least 1 — 0,,,,, where

/
‘gn,p,q =0

n!p’q

+2(pg)' 0/ (10)
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with 0,, , . given in Deﬁm’tz’on and some constant co > /2.

Theorem [1] above establishes the inference results for each important latent left factor
vector uj, so that the tools of hypothesis testing and confidence interval on the composition
of features in each latent factor are now available. Under the sparse and low-rank settings,
max{sil/fx, (r* 4 sy + 8,)Y2,m2} is relatively small so that the main requirement for the
validity of the asymptotic normal distribution is \/n > log(pq) in view of m'/?x, = o(1),
which is similar to the standard constraint y/n > logp for the inference of univariate
response regressions (Javanmard and Montanari, 2014} van de Geer et al.| [2014; Zhang and
Zhang, 2014). However, the inference of wj here is much more challenging than that of
the univariate response regression coefficient vector since we need to deal with not only
the intertwined nuisance parameter vector vy in the same layer, but also those unknown
singular vectors from the other important layers. Under the structural constraints including
the orthogonality and unit lengths on the singular vectors, our manifold-based technical
arguments exploit the geodesic and the Taylor expansion on the tangent space to control
the error term; the approximation errors caused by the estimates u; and v; of the nuisance

172 2} in k,, for the

parameter vectors yield the secondary term max{srlr{aQX, (r* + sy + Sy)
overall errors.

Besides inference for the latent left factors, inference on the singular values is also
meaningful as they measure signal strengths of latent factors on the response vector. Since
d;? corresponds to the kth eigenvalue of matrix C*7C*, we aim to make statistical inference
on these nonzero squared singular values. To this end, we will make use of the relationship
that d;? = ||u}||3. Nevertheless, the inference of d}? is not straightforward from that of u}

since d;? is a quadratic sum of components of u}, and the corresponding components of

the debiased estimate u;, are correlated in an unknown and complicated fashion.
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We will address this issue by constructing a debiased estimate directly from ||uy||3 and
derive its asymptotic distribution. In a similar spirit to the construction of uy, by utilizing

the modified score function ¢, we define the debiased estimate for d;? as
i = 113 — 28 Wl (@, 7). (1)

The theorem below reveals that c?,% introduced in is valid for the inference of d}?.

Theorem 2 (Inference on di?). Assume that all the conditions of Theorem [l are satisfied

and (7 + 8y + 8,) %k, = 0(1). Then for each k with 1 < k < r*, we have
VI(d} = di?) = hay + ta,,
where the distribution term hq, = 2uy’ Wi(X"Evy — MGE"Xuj)/y/n ~ N(0,v ) with
V2 = 4w TWi (5 M EMT + 0TS0 S - 28uv T S M) Wi Tw).

Moreover, the error term tg, = Op{(r*+s,+5,)"?k,} holds with probability at least 1—0,,,,

with 0,4 given in (10).

Theorem [2| above provides the asymptotic distributions for the nonzero squared singu-
lar values d};2 with 1 < k& < r* so that the significance levels of the latent factors can be
inferred. Our proof indeed shows that c/l\lzC —d;? and 2u}” (uy, —u}) have the same asymptotic
distribution. Then applying a similar argument to that for proving Theorem [T}, the distri-
bution term h4, here can be obtained by replacing a with 2uj in h;. Consequently, the
validity requirement needs to be strengthened to (7* + s, +s,)"/?, = o(1) in comparison to

m*2k, = o(1) (cf. Theorem . Under such assumptions, the error term ¢4, will converge

22



to zero with the same probability bound 1 — 6, , as in Theorem [I}

Since the population variances v? and Vﬁk presented in Theorems (1| and |2| are unknown
in practice, we can use some consistent estimate of the error covariance matrix 3. along
with the initial SOFAR estimates to obtain their surrogates. The following definition

characterizes the desired property for the estimate ie of 3.
Definition 3. A ¢ x ¢ matriz ¥, is an acceptable estimator of e if | Be — Sell2 = 0p(1).

The definition above only requires the estimation consistency of 3. In practice, the
error covariance matrix 3, can be estimated by first obtaining the residual matrix estimator
E of E from the SOFAR regression and then recovering the error covariance matrix via
some existing covariance estimation techniques such as the hard-thresholding (Bickel and
Levina, 2008) or adaptive thresholding (Cai and Liu| 2011). Based on ¥, and the initial

SOFAR estimates, we can define

72 = a" Wi (ZuM, ML + 07 8,0, — 280,0) B.ML )W a, (12)
72 = 4u Wi, Gu My S ML + 37 E,5,8 — 250,07 S.MF )W, (13)

The theorem below gives the estimation accuracy of variance estimates 77 and ng intro-
duced in and above, respectively.

Theorem 3 (Variance estimation). Assume that all the conditions of Theorem [ are sat-

1sfied and ie 15 an acceptable estimator. Then for each k with 1 < k < r*, we have

i — 2| < émvn and |§Czlk — V§k| < 6’(7’* + Sy + Su)Vn

hold with probability at least 1 —0,,,,, where v, = (1* + s, + 8,) 202 {n"log(pq)}/2, 0np4
1S grven in , and C > 0 is some constant.

23



3.3 Asymptotic theory of SOFARI

For each given k with 1 < k < r*, related to M and W for SOFARI in Section [2.2] we

slightly abuse the notation and redefine M} = —ZZ,;IEJC*(Q), Mk = —5,;,{1536(2), and

W, = S {Ip + z,:,:lf]U*@)(IT*_k - Zk—kl(U*(Q))Tf;U*(Q))—l(U*@))T} :

W, =6 {Ip + 5 S0, — 5,§k1(ﬁ(2))T§ﬁ(2))_1(6(2))T} :

Recall that here, C*® = Y7 wiviT, C@ =37, 4,07, U = [uf,,--- ,u,-], and

71 )

U® = [Wgt1, -+, U] contain only the last r* — k layers since the previous k — 1 layers

have been removed in the constrained least-squares problem . Furthermore, denote by

k-1
) = ke max {1, d; 7", di 7} 4+ qndy 2 diy ( Z @)

i=1

with &, given in (9) and df.., = 0. The theorem below guarantees the asymptotic distri-
bution of the proposed estimator u; in Section with the above defined Wk and Mk,

where £ becomes the key order of the corresponding error term.

Theorem 4 (Inference on u}). Assume that Conditions @ and@ hold, and @, C satisfy
Definitions [1] and [9, respectively. Then for each given k with 1 < k < r* and an arbitrary

vectora € A={a € R”: ||allo < m, ||la|ly = 1} satisfying m"/2&¥ = o(1), we have
\/ﬁaT(iEk — 'U,;;) = hk + tk7
where the distribution term hy = a” Wi(XTEv; — MGET"Xwu})/\/n ~ N(0,v?) with

2 T * * * *T *T * Sk kT *T *T
v, = a Wi(zi Mp XM + o) Boop X — 2Xujv) XM YW a.
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Moreover, the error term t, = Op(ml/Q/fT(lk)) holds with probability at least 1 — 0, , with

On.p.q given in (L0)).

Similar to Theorem [I] for SOFARI, Theorem [4] above provides the asymptotic normal-
ity of the SOFARI debiased estimator u;, for each k with 1 < k < r*. Besides similar but
slightly different definitions for M and W7, the main distinction between these two theo-
rems lies in the order x4 of the error term. While its first part is similar to &, since dy is
generally no smaller than one, k) above contains an extra part y,d; 2 d; +1(Zf:_11 d?). This
is induced by the additional approximation error when we replace the top k£ — 1 layers with
their SOFAR estimates, reflected by term Mk(C*(l) —(AJ(I))Tflﬂk in 6 of Lemmain Section
of the Supplementary Material. Since the convergence rate 7, of the initial SOFAR es-
timates can decay polynomially with sample size n, assuming v, d; >d; H(Zf:_ll dr) =o(1)
should be a mild condition on the singular values. In contrast, Theorem ] broadens sub-
stantially the range of applications for our suggested SOFARI procedure since it relies on
the weaker Condition [l instead of Condition Ml

For the inference on the eigenvalues of matrix C*7C*, the debiased estimates c/i\,% for d;?

can be defined similarly as in except for plugging in the corresponding matrices Mk

and Wk defined in this section. The theorem below validates the hypothesis testing on d}?.

Theorem 5 (Inference on dj?). Assume that all the conditions of Theorem |{| are satisfied

and (r* + s, + sv)l/%%k) =o(1). Then for each k with 1 <k <r*, we have

\/ﬁ(gi% - dzz) = h‘dk +tay,
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where the distribution term hq, = 2uy’ Wi(X"Evy — MGE"Xuj)/y/n ~ N(0,v] ) with

2 *T * * * *T *T * X Sk #T *T *T %
vy, = duy Wiz MpE M + v Bovp X — 28w v B .M )W vy

Moreover, the bias term ty, = O {(r* + s, + sv)1/2d}§/<;$lk)} holds with probability at least

1 — 0y pq with 0,4 given in (10).

Finally, similar to and (L3), denote by I} and 3 the variance estimates obtained
by plugging the initial SOFAR estimates into v and v in Theorems {4 and 7 respectively.

The theorem below provides the estimation accuracy of these two variance estimates.

Theorem 6 (Variance estimation). Assume that all the conditions of Theorem [5] hold and

3. is an acceptable estimator. Then for each k with 1 < k < r*, we have

72 = vl < C'm(r* + sy + s,) {0 log(pa) } 2 d;

|D§k - chlk| < 5,(T* + 5, + Sv)s/zni{n_l log<pq)}1/2dz

hold with probability at least 1—0,,,,, where 0, , , is given in and C' > 0 is a constant.

4 Simulation studies

In this section, we investigate the finite-sample performance of the suggested SOFARI infer-
ence procedure relative to the asymptotic theory established in Section [3] The simulation
setup is presented in Section of the Supplementary Material. In addition, we consider
two settings of different dimensions. In setting 1, we choose (n,p, q¢) = (200,25, 15), while
setting (n, p, ¢) = (200,50, 30) in setting 2. We would like to emphasize that both settings

give rise to the high-dimensional regime since the total dimensionality due to both features
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Figure 1: The kernel density estimates (KDEs) for the distributions of the SOFARI estimators on the latent left factor
vectors (i.e., the left singular vectors weighted by the corresponding singular values) in different sparse SVD layers, and the
squared singular values against the target standard normal density based on 1000 replications for setting 1. Left panel: the
KDEs of T1,1,T2,4, and T3 7; middle panel: the KDEs of Ty 25, T2 25, and T3 25; right panel: the KDEs of Ty, , Tq,, and
Ty,, all viewed from top to bottom. The blue curves represent the KDEs for SOFARI estimators, whereas the red curves
stand for the target standard normal density.

and responses is p * ¢, exceeding greatly the available sample size n.

For implementation of SOFARI, the rank of multi-response regression model is iden-

tified beforehand using the self-tuning selection method developed in Bing and Wegkamp|

(2019). The initial estimate C = (f‘, ]5,\7) is obtained from the SOFAR procedure

matsu et al), [2019) with the entrywise L;-norm penalty (SOFAR-L) and the precision

matrix of the covariates is estimated with the nodewise Lasso [Meinshausen and Buhlmann

(2006)) as suggested in van de Geer et al. (2014]). Moreover, we exploit the adaptive thresh-

olding method (Cai and Liu| |2011) in the covariance estimation for the random errors.

We choose the significance level a = 0.05 for statistical inference and repeat the simu-
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Table 1: The average performance measures of SOFARI on the individual components of the latent left factor vectors
(i.e., the left singular vectors weighted by the corresponding singular values) in different sparse SVD layers, and the squared
singular values (d}2,d32,d3?) = (1002,152,52) over 1000 replications.

Setting CP Len CP Len CP Len
1 wi, 0939 0334 up, 0949 0406 uj, 0953 0.405
wi, 0957 0402 uh;  0.947 0406 ujg 0942 0.404
wig 0946 0403  uhg  0.952 0407  wj, 0948 0.403
uj,, 0939 0409 wuj, , 0938 0409 uf, , 0956 0411
uj 0.952  0.410 w3 0.941 0410 uj 0.958 0.411
uj 0.958  0.393 uj 0.948  0.393 u 0.951 0.395
di? 0944 77225 d3* 0949 11.760 dj*  0.952 3.924
2 W, 0944 0277 w5, 0934 0287 uj, 0948 0286
wi, 0939 0288 uh; 0.946 0288 wjg 0947 0.287
wi, 0954 0289 uhg  0.943 0288  wj, 0941 0.286
wi,p 0950 0292 wj, , 0956 0293 uf, , 0947 0.291
uj 0.948 0.291 w3 0.947  0.291  wuj 0.940 0.289
uj 0.958  0.281 uj 0.940  0.282 u 0.948 0.280
di? 0949 55.795 d3*  0.943 8457  dj  0.943 2.798

lation 1000 times for each setting. We employ two performance measures to evaluate the
inference results: the average coverage probability (CP) and the average length (Len) of
the (1 — «)100% (i.e., 95%) confidence intervals for the unknown population parameters
over the 1000 replications. Specifically, for each individual unknown parameter u*, denote
by CI the corresponding 95% confidence interval of u* constructed using SOFARI. Then
the two performance measures are defined as CP = P[u* € CI] and Len = length (CI),
respectively, where P denotes the empirical probability measure. Here, CP is the empirical
version of the expectation for the conditional coverage probability given both parameters
and the covariate matrix. To verify the asymptotic normalities of the SOFARI estimators,
we further define the standardized quantities for each £ = 1,--- ,r* and j = 1,--- ,p,
Tr; = /n(tr; — ui;)/Vk; and T4 = V(&2 — d2) /Dy, where vp; and 75 are the
corresponding variance estimates given in Theorem [0

The rank of the latent sparse SVD structure is identified consistently as » = 3 over
both two settings. Let us examine the asymptotic normalities of the different SOFARI
estimators. We calculate the kernel density estimates (KDEs) for the standardized quanti-
ties T} ; for both the nonzero and zero components of the vector u; = d;l};, as well as the

KDEs for T,, corresponding to the nonzero d;*’s. These KDEs are similar across the two
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model settings, and thus we only present in Figure [I| the kernel density plots for setting
1 corresponding to the first nonzero component u,’;3(k_1) 41, the last zero component wuj
and d;? in each latent sparse SVD layer, with 1 < k < 3. By comparing the KDEs for the
SOFARI estimators to the standard normal density, we see from Figure[I|that the empirical
distributions of the standardized SOFARI estimates all mimic closely the standard normal
distribution, justifying our asymptotic normality theory established in Section [3|

To ease the presentation, we report the performance measures of the SOFARI estimates
for the three nonzero components and the last three zero components of u; as well as the
squared singular value d}* in each latent sparse SVD layer with 1 < k < 3 over the two
settings and summarize the results in Table It is clear to see from Table [I] that the
average coverage probabilities of the corresponding 95% confidence intervals constructed
by SOFARI are all very close to the target level of 95%. Moreover, we can observe that the
average lengths of the 95% confidence intervals for different uj ; in each latent sparse SVD
layer are relatively stable over j. For the squared singular value d;?, there is a decreasing
trend in the average length of the 95% confidence interval as k increases, which is in line
with our asymptotic theory in Section [3| that the asymptotic variance of the SOFARI
estimate for d}? depends on the magnitude of the nonzero singular value (cf. Theorem @

Besides this simulation example, we have also examined the robustness and effectiveness
of SOFARI when some technical assumptions are violated. Due to the space limit, these

numerical results are presented in Section [B] of the Supplementary Material.

5 Application to the federal reserve economic data

We now showcase the practical utility of the suggested SOFARI inference procedure on an

economic forecasting application. In particular, we will focus on analyzing the monthly
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Table 2: Estimated squared singular values and the lengths of the corresponding 95% confidence intervals for the real
data application in Section

dy i d
Value 2545431 7.546 1.215
Len 13576 1.127 0.591

Table 3: The numbers of significant features with the target FDR level at 5% for the latent left factor vectors (i.e., the left
singular vectors weighted by the corresponding singular values) in different sparse SVD layers for the real data application in
Section

U Uy U
Num 20 41 18

macroeconomic data set from the federal reserve economic database FRED-MD in [Mc-
Cracken and Ng (2016). This data set is comprised of 660 monthly observations for 134
macroeconomic variables from January 1960 to December 2014. Among those variables, we
are interested in the interpretable multi-task learning problem of forecasting some typical
macroeconomic indicators such as the consumer price index (CPI), interest rates, the un-
employment rate, and the stock market price index simultaneously. Besides them, we also
select several important variables considered in (Carriero et al. (2019), including the per-
sonal income, money supply, housing, and exchange rates, giving rise to a total of ¢ = 20
response variables. See Section [C] of the Supplementary Material for the list of the 20
selected responses along with their descriptions.

We treat the remaining macroeconomic variables except for the four with missing values
as covariates for predicting the multiple responses. To alleviate the issue of high correlations
among the covariates, following Zheng et al.| (2021)) we choose randomly one representative
covariate from those highly correlated economic variables whose correlations are above 0.9
in magnitude, resulting in 94 representative covariates. Further, to adapt to times series
data, we transform both responses and covariates through differencing and logarithmic
transformation as in McCracken and Ng (2016). We also incorporate the first to fourth
lags of the responses and covariates into the design matrix of features and standardize each

column of the feature and response matrices to have mean zero and standard deviation
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Figure 2: Bar charts of the significant features in the top three latent left factor vectors (i.e., the left singular vectors
weighted by the corresponding singular values). The significant features correspond to ones presented in Table Different
colors F1, F2, and F3 correspond to the three factors ranked by the estimated singular values, respectively. The y-axis
indicates the magnitude and signs of the corresponding coefficients in each factor.

one, similarly as in |Chi et al| (2025). Finally, the preprocessed data set contains p = 456

features and g = 20 responses with a total sample size of n = 654.

To analyze this data set, we fit multi-response regression model using the SOFAR

estimator (Uematsu et al., [2019) with the entrywise L;-norm penalty (SOFAR-L) due to

its nice prediction performance as shown in Section [C]of the Supplementary Material. The
estimated rank is » = 3, which means that there are three important latent left factor
vectors. Then we apply the SOFARI procedure to the full data set at significance level
a = 0.05. The initial estimate is obtained by SOFAR-L and the estimation for the feature
precision matrix and the error covariance matrix is done similarly as that in Section 4] We
summarize the estimated squared singular values as well as the lengths of the corresponding
95% confidence intervals in Table |2 It is clear that the three latent sparse SVD layers are
well separated and the first latent left factor vector is the most important one since its

contribution toward the total variation is over 99% in terms of the squared singular values.
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In addition, we are interested in studying the composition of the latent left factor
vectors u;’s by testing which original covariates have significant latent weights in different
sparse SVD layers £ = 1,2,3. Note that here we are performing the large-scale multiple
testing in light of the total feature dimensionality p = 456. To account for the multiple
testing problem, we first apply the SOFARI procedure to obtain the p-values for individual
features, and then use the BHq procedure (Benjamini and Hochberg, |1995) to control the
false discovery rate (FDR) at the level 5% for each layer. The results summarized in Table
reveal that the top three latent left factors are highly sparse in their dependency on the
original features whose dimensionality is p = 456.

To gain insights into the composition of the three latent left factor vectors, we plot the
corresponding weights of the significant original features in each latent left factor vector
as a bar chart in Figure 2] where the significant original features are the same as the
ones presented in Table 3] It can be seen from Figure [2] that there are ten features whose
coefficients are much larger than the remaining ones so we mark them with their abbreviated
names. In fact, all those ten features are included simultaneously in both the first and
second latent left factor vectors, except for the third lag of CPIAUCSL (the overall CPI)
which appears only in the first latent left factor vector. This reveals that some important
features can contribute to more than one latent left factor vectors.

Furthermore, the ten most important features are essentially three macroeconomic vari-
ables with different lags, namely CPIAUCSL (the overall CPI), M2SL (M2 money stock),
and M2REAL (real M2 money stock). To help interpret the relationships between macroe-
conomic features and response variables, we also look at estimation results of the right
singular matrix V* from initial SOFAR estimates. Specifically, the overall CPI measures

inflation based on a basket of consumer goods and services. Given the positive factor coef-
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ficients and the negative factor loadings, CPI or inflation tends to have negatively correlate
with several responses such as interest rates. Such phenomenon is sensible since when the
central bank lowers interest rates to stimulate the economy, the inflation level tends to
increase. The other two variables relate to money supply. In particular, M2 money stock
is a measure of money supply that includes cash, checking deposits, and non-cash assets,
while real M2 money stock is the value of M2 money stock deflated by CPI. The negative
factor coefficients along with the negative factor loading suggests a positive relationship
between M2 money stock and the response S&P 500 stock price index. Overall, the SO-
FARI procedure can be exploited to assess feature significance in the latent left factor
vectors across different sparse SVD layers for real applications involving high-dimensional

multi-task learning inference with interpretability and flexibility.

6 Discussions

We have investigated the problem of high-dimensional inference on the latent sparse SVD
structure under the model of multi-response regression. Our technical analysis has revealed
that the use of the underlying Stiefel manifold structure is key to the success of such
inferential task on the latent factors. The resulting SOFARI estimators for the latent left
factor vectors and singular values have been shown to enjoy asymptotic normalities with
justified asymptotic variance estimates. Moreover, our proposed method can be combined
with a sample splitting technique to substantially mitigate the requirement on the sparsity
level, which is presented in Section [E] of the Supplementary Material.

It is noteworthy that inference for latent right factor vectors is not straightforward
from that of the left factor vectors and can be even more challenging. The key difficulty

lies in that when we target at the right factor vectors, the manifold induced by the SVD
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constraints on the left singular vectors would not help in constructing the modified score
function due to asymmetry of the left and the right singular vectors in the response matrix.
This prevents the manifold of left singular vectors from saving degrees of freedom under
the SVD constraints. New techniques will be needed to deal with this interesting yet

challenging topic.
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Supplementary Material to “SOFARI:

High-Dimensional Manifold-Based Inference”
Zemin Zheng, Xin Zhou, Yingying Fan and Jinchi Lv

This Supplementary Material contains some additional theoretical results, simulation stud-
ies, and real data details, as well as the proofs of all main results, lemmas, and additional
technical details. All the notation is the same as defined in the main body of the paper.
We will also use ¢ to denote a generic positive constant whose value may vary from line to

line throughout the proofs.

A The intrinsic bias issue and algorithms

A.1 The intrinsic bias issue

Let us first introduce a lemma below to gain some insights into the intrinsic bias issue in

the simple case of r* =2 and k = 1.

Lemma 1. Under the SVD constraint ([3), for an arbitrary M = [Mj, My, M3] with

M, M, € RP*? gnd M3 € RP*P_ it holds that
Ui (uy, m7) = (I, = Myviu] + Myvyud ) S (uy — u}) + (Myvj + MavJus" Suj + 6 + €,
where § = My {(v1 — v})uf — (voud — viu3")} S(uy — ul) and

e =n"" {M;E"Xu; + MbE"Xu} + M;X"Ev;} — n”'X"Ev}.

In view of Lemma [I{ above, we see immediately that the score function vector 1;1 at the



true parameter values (uj, n;) is
Di(uh,mp) = (Mo + Moo} us" Suj + €,

where € = n~! {MlETXu’{ + MLETXub + MgXTE'U;} — n ' XTEwv}. Hence, the expec-
tation of ¢y at (u?,n;) will be determined by (M;v} + Myv})u;TSut. It is an intrinsic
bias term associated with this inference problem, induced by the correlation between the
two latent factors Xu} and Xuj. In order to design a valid inference procedure, we need

some orthogonality between the latent factors so that
(M5 + Mov})us" Suj|e = o(n™V/?). (A1)

Then the intrinsic bias term can become secondary and does not affect the asymptotic
distribution. In the case of strongly orthogonal factors where ]usTfluﬂ = o(n~'?), the
nuisance parameters from different layers can be separable, and will hold under
suitable choices of matrix M.

For a general rank r*, Lemma [2|in Section shows that the corresponding intrinsic
bias term would be MZC*?,;ZADUZ, where C*, = >, uwiv;”. Then the assumption of

strongly orthogonal latent factors naturally generalizes as

> i Sup| = o(n1?),
J#k

which together with suitably chosen matrix M can control the intrinsic bias.



A.2 Algorithms

In this section, we present Algorithms [I] and [2] for our SOFARI, and SOFARI procedures,
respectively. Here, we denote by e, € RP the p-dimensional unit vector with 1 at the kth
component and 0 elsewhere. In addition, the code for implementing our methods is publicly

available on GitHub (https://github.com/xinaut/SOFARI).

Algorithm 1 SOFARI,

1: Input: Data X € R**P|Y € R™"*¢ -
2: Initial Step: Determine the rank 7 and compute initial SOFAR estimates {di, l;, Fl}jzl
3 fork=1,---,7do . . s

4 M-step: Compute M®*) = [Opxq(k_l)7 M, OPX[q('F—ka(f'—l)ﬂ with M, = —Zk_klEC,k

5. W-step: Compute W, = © {Ip + ggklflﬁ,k(h,l - nglﬁfkflﬁ,k)’lﬁzk}

6:  Debiased estimate: For i = (af,--- @l o], -+ 0,0, 717;T)T7 compute

W (aL ﬁ(k)ai)‘ 7
Ouy, o/ (@)

ﬁkZﬂk—Wk

& = ||Tg]|2 — 2L Wiy (g, 7y

7:  Variance estimate:
Dauk = e;‘gwk (Zkkﬁkieﬁg + ’lﬁ\)/,{ie’l’;ki — 2§ﬁki}fieMZ)erk7
72 = AUl Wi (GuMEML + 37 29,5 - 280,0] . MF )W a.

8: end for
: Output: Debiased estimate and variance estimate {w, d3, v, , V3 }iey

=)

B Additional simulation results

B.1 Simulation setup

For the simulation example in Section {4 we consider a similar setup of the multi-response
regression model to that in Mishra et al.| (2017) so that the latent factors are weakly
orthogonal to each other allowing for correlations among the latent factors. Specifically, we

assume that the true regression coefficient matrix C* = >, _, dilj v}’ satisfies that r* = 3,


https://github.com/xinaut/SOFARI

Algorithm 2 SOFARI

1: Input: Data X € R**P|'Y € R™"*¢ -
2: Initial Step: Determine the rank 7 and compute initial SOFAR estimates {d7, &, rl}1 L
3 fork=1,--- . 7do __ .

4: M—step: M(k) = [Mk7 Opx(p_‘_q)(f-_k):l with Mk _Zk IEC

5. W-step: Compute W, = © {Ip + 23U, — 3,/ UTSU@)- (U(Q))T}

6:  Debiased estimate: For 7, = ('Eal, R T I ,T),?)T., compute

~ oL oL
Uy, = V(g M) = Ug — Wki/)k(ukﬂlk) =uy — Wk(@uk M® 37]1)‘ i)
o/ (g,

& = ||ag]|2 — 2a] Wiy (g, 7).

7:  Variance estimate:

lA/Quk = egwk(zkkﬁkieﬁg + ’l’\)g‘ie’l’;kf} — 22’&;{?}7{% MZ)W{E;W
ng = 4ﬁfvvk(5kkﬁk§~]eﬁf + 17%5]5’17k2 - QE’U,]C’UZZ Mk )WT’U,k
8: end for
9: Output: Debiased estimate and variance estimate {2, d; 22 TE Y

d; =100, d; = 15,d; = 5, and

U, = U/ ||lk|l2 with I, = (1ep(0, s1(k — 1)), unif (S, s1) , rep(0,p — ksl))T,

vi = Vi/ |[Villy with ¥, = (rep(0, s2(k — 1)), unif (Ss, s2) ,rep(0, g — ksg))T

Here, unif (S, s) denotes an s-dimensional random vector with i.i.d. components from the
uniform distribution on set S, rep(a, s) represents an s-dimensional vector with identical
components a, S; = {—1,1}, Sy = [-1,—-0.3] U [0.3,1], s = 3, and sy = 3.

Given the matrix of left singular vectors L* = (I}, ---,l%), we can find a matrix
Lt € RP*®=) guch that P = [L*,L*%] € RP*? is nonsingular. The covariate ma-
trix X is generated following the three steps specified below. First, we create matrix
X; € R™ by drawing a random sample of size n from N (0,I,.). Second, denote by

X ~ N(0,Xx), x; = L*Ix, and X, = LjTi, where the population covariance matrix is

given by Xx = (O.B‘i_ﬂ)pxp. We then generate matrix X, € R*™*®~"") by drawing a ran-



dom sample of size n from the conditional distribution of X5 given x;. Third, the covariate
matrix X is finally defined as X = [X, Xy]P~! so that the latent factors n~'/2XI are
weakly orthogonal to each other.

We further assume that the rows of the error matrix E are i.i.d. copies from N (0,0%32)
with Xp = (O.S‘i_j |)qu that is independent of covariate matrix X, where the noise level

o2 is set such that the signal-to-noise ratio (SNR) HX(d:f*l:*V:f*T)HF /||E||F is equal to 1.

B.2 Simulation example 2

The setup of the second simulation example is similar to that in|Uematsu et al.| (2019)). The
major difference with the simulation setup in Section is that we now do not assume any
particular form of the orthogonality constraint on the latent factors, allowing for stronger
correlations among the latent factors. This means the technical assumptions in Conditions
and 5 may be violated. The challenging setup here is designed to test the robustness of the
SOFARI inference procedure when some of the orthogonality conditions are not satisfied.
Specifically, we assume that the rows of covariate matrix X are i.i.d. and drawn directly
from N (0, Xx) with covariance matrix Xy = (0.3/77) . The true underlying coefficient
matrix C* follows the same latent sparse SVD structure as that in simulation example 1,
except that dj increases from 100 to 200 and both s; and ss increase from 3 to 5. Similarly,
we consider two settings for the second simulation example, and the remaining setups for

settings 3 and 4 are the same as those for settings 1 and 2 in Section [B.1] respectively.



Table 4: The average performance measures of SOFARI on the individual components of the

latent left factor vectors (i.e., the left singular vectors weighted by the corresponding singular val-

ues) in different sparse SVD layers, and the squared singular values (d32, d32, d3?) = (2002, 152, 52)

over 1000 replications for simulation example 2 in Section

Setting CP Len CP Len CP Len
3 uiy;  0.937  0.400 uye  0.945 0417wz, 0948 0418
ui, 0945 0.417 uy, 0945 0416 w3, 0935 0418
uiy 0957 0.416 uyg 0948 0407 w3,y 0.947 0.418
ui, 0943 0.417 uzo 0949 0417 w3y, 0933 0.418
uis 0941 0417 w3,y 0937 0416 wujy; 0947 0417
uy 0.952 0418 w3, , 0948 0417 w3, , 0.965 0.418
uy, 3 0954 0417  wuy, 5 0947 0416 w3, 5 0.950 0.417
uy, o 0949 0417  wi, 5, 0943 0416 w3, , 0.927 0418
uj, 0941 0416 w3, ; 0942 0415 w3, ; 0952 0417
ui, 0945 0.400 uy, 0950 0.399 w3, 0.946 0.400
di? 0949 165.637 d3> 0955 11.015 d3* 0944 4.135
4 uy; 0955  0.287 uye 0944 0295 w3y 0.949  0.295
uy, 0947 0.296 uy, 0942 0295 w3y, 0.922 0.295
uis 0938 0.296 uyg 0945 0295 w3,y 0.940  0.296
uij, 0945 0.297 uze  0.939 0295  wz,, 0942 0.295
uis  0.946  0.296 uyge 0945 0.295  wi,;  0.948  0.295
ui, 4 0952 0296 wi, , 0952 0295 w3, , 0.950 0.295
uy, 3 0944 0297  wi, 5 0953 0295 w3, 3 0.941 0.295
uy, o 0948  0.297  wj 0.948 0.296 u; 0.942 0.296

7p_2 ,p—2
Wi, 0947 0296 wj, , 0.947 0295 wj,, 0945 0.295
wp, 0948 0287 wy, 0926 028 wj, 0956 0.285

di? 0949 117.649 43> 0.952 8.028 i 0.941 2927




Table [4] summarizes the average performance measures of different SOFARI estimates
under simulation example 2. Similar to simulation example 1, the rank of the latent sparse
SVD structure is identified consistently as r = 3. From Table [d] we can see that the
average coverage probabilities of the 95% confidence intervals constructed by SOFARI for
the representative parameters are still very close to the target level of 95%. Furthermore, it
can be seen that the average lengths of the 95% confidence intervals for different components
of the latent left factors across different settings are also stable over both j and k. This
demonstrates that the suggested SOFARI inference procedure can still apply and perform
well even when the correlations among the latent factors may no longer be weak, provided

that the eigengap among the nonzero singular values are sufficiently large.

B.3 Simulation example 3

We consider the setup similar to that of simulation example 2 in Section [B.2] but containing
weakly sparse signals. To be specific, we set (n, p, ¢, 7*) = (200, 50, 30, 3) and in each layer,
the left singular vector contains 8 strong signals and 12 weak signals, while the right singular

vector contains 8 strong signals and 3 weak signals. For the left and right singular vectors,



they are generated as follows:

[, = (unif(S;, 8), rep(0, 30), unif(S,, 12))7,

Iy = (rep(0,4), unif(S,, 12), unif(S;, 8), rep(0, 26))7,
I3 = (rep(0,20), unif(S,, 12), unif(:Sy, 8), rep(0, 10))7,
v, = (unif(Ss, 8), rep(0, 19), unif(Sy, 3))7,

vy = (rep(0, 6), unif(Sy, 3), unif(Ss, 8), rep(0, 13))7,
Vs = (rep(0, 19), unif(Ss, 8), unif(Sy, 3))7,

U = U/ lklla, vic = ¥/ [Vl b = 1,2, 3.

We set S; = {—1, 1} for relatively strong signals, Sy = S, = [—0.1,—0.01] U [0.01, 0.1] for
weak signals, and S5 = [—1, —0.6] U [0.6, 1] for moderate signals. The other setup is similar
to that of simulation example 2 in Section |B.2]

The simulation results are summarized in Table[5 In view of the results, we can see that
the average coverage probabilities of the 95% confidence intervals constructed by SOFARI
for the representative parameters are still close to the target level of 95%. Moreover, the
average lengths of the 95% confidence intervals for different components of the latent left
factors across different settings are stable over both j and k. This shows that the suggested
SOFARI inference procedure can still apply and perform well under some weakly sparse

settings.



Table 5: The average performance measures of SOFARI on the individual components of the
latent left factor vectors (i.e., the left singular vectors weighted by the corresponding singular val-
ues) in different sparse SVD layers, and the squared singular values (d}?, d32, d5?) = (2002, 152, 52)
over 1000 replications for simulation example 3 in Section [B.3

Setting CP Len CPp Len CP Len

5 up; 0937 0279 wyy; 0940 0.298 wuzs; 0.944  0.297
ui, 0928 0.289  wye 0937 0.297 wuzs, 0941 0.296
uyz 0928 0.288 wiye 0945 0.297 wujss 0931 0.296
ui, 0948 0.290  wuj., 0945 0.298 wuzse 0.943  0.297
ujs 0932 0.289  wi, 0.944 0.298 wig, 0926 0.296
ujg 0931 0.289  wuj, 0.940 0.298 wigze 0929 0.296
ui,  0.945  0.289  wuj,; 0945 0.298 wuzse 0.946  0.297
ujg  0.941  0.288 wuj., 0946 0.298 wuz,, 0.942 0.296
uize 0.935 0289 wys; 0948 0.299 w3, 0942 0.296
ujg 0.937  0.288 wuzg  0.940 0.298 w3, 0939 0.296
ujgy 0944 0289 wi,  0.927 0298 wi,; 0941 0.297
ulg 0935 0.288 wig 0926 0.298 w3, 0.943 0.297
ujy 0932 0289 wie 0943 0.298 wi,s 0.928 0.296
ujy 0944 0.288  wy, 0934 0.298 wuz,s 0.939 0.297
ulys 0.940  0.289  wyy; 0943 0.299 wuz,, 0.934  0.297
uiye 0934 0288  wyp;, 0933 0.298 wuz.g 0.947 0.297
uj g, 0926 0.289  wiz 0932 0298 wuz.g 0939 0.297
ujgg 0935 0.288  wiy, 0942 0298 wis, 0950 0.297
uj g 0931 0.288  whs 0935 0.298 w3y 0942 0.296
ulso 0926 0.279  wie 0.947 0.298 wig, 0944 0.296
di? 0935 114.765 d3*> 0939 8883 di?  0.938 2.892




Table 6: The list of 20 selected responses for the real data application in Section [5

Variable Description

RPI Real personal income

INDPRO Total industrial production

CUMFNS Capacity utilization: manufacturing

UNRATE Civilian unemployment rate

PAYEMS Total number of employees on non-agricultural payrolls
CES0600000007 Average weekly hours: goods-producing

HOUST Total housing starts

DPCERA3MO8S8G6SBEA Real personal consumption expenditures

NAPMNOI ISM manufacturing: new orders index

CMRMTSPLx Real manufacturing and trade industries sales
FEDFUNDS Effective federal funds rate

T1IYFFM 1-Year treasury constant maturity minus FEDFUNDS
T10YFFM 10-Year treasury constant maturity minus FEDFUNDS
BAAFFM Moody’s baa corporate bond minus FEDFUNDS
EXUSUKx U.S.-U.K. exchange rate

WPSFD49207 Producer price index for finished goods

PPICMM Producer price index for commodities

CPIAUCSL Consumer price index for all items

PCEPI Personal consumption expenditure implicit price deflator
S&P 500 S&P’s common stock price index: composite

10



Table 7: Prediction errors of different methods for the real data application in Section [5

SOFAR-LL SOFAR-GL RRR RRSVD SRRR
Prediction error 0.921 0.935 1.775 1.002 0.968

C Additional real data results for the federal reserve

economic data

We provide in Table [6] above the list of 20 selected responses along with their descriptions
for the real data application in Section 5] In addition, we show the prediction performance
of different methods on this data set based on the multi-response regression model .
Specifically, we consider the SOFAR estimator (Uematsu et al [2019) with the entrywise
Li-norm penalty (SOFAR-L) or the rowwise (2,1)-norm penalty (SOFAR-GL), reduced
rank regression (RRR), reduced rank regression with sparse SVD (RSSVD) |Chen et al.
(2012), and sparse reduced rank regression (SRRR) (Chen and Huang [2012)). Specifically,
we treat the first 474 observations as the training sample, identify the rank of the multi-
response regression model in the same fashion as in Section[d] and fit the model using each of
those five methods. The prediction error ||[Y — XC|[2/(n1q) is calculated based on the test
sample consisting of the remaining n; = 180 observations. Table [7| reports the prediction
errors for all the methods. We see from Table [7] that the sparse learning methods tend to
have much better prediction performance than the nonsparse learning approach of reduced
rank regression. In particular, SOFAR-L enjoys the highest prediction accuracy followed
closely by SOFAR-GL, which indicates that the latent sparse SVD structure assumed in

SOFAR provides a better approximation to the true underlying data structure.
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D Application to the yeast eQTL data

We also demonstrate the effectiveness of our SOFARI method by analyzing a yeast ex-
pression quantitative trait loci (eQTL) data set described by [Brem and Kruglyak (2005),
previously studied in [Uematsu et al. (2019). In this eQTL data analysis, the primary goal
is to investigate the associations between eQTLs, i.e., genomic regions harboring DNA se-
quence variants, and the expression levels of genes within specific signaling pathways. This
data set originally contains n = 112 samples with 2957 genetic markers and 6216 genes.
Based on the SOFAR estimator, our SOFARI procedure can further evaluate the feature
importance in the latent SVD structure. So we preprocess the data following the same
procedure as that in [Uematsu et al. (2019). Specifically, a marginal screening is performed
to obtain p = 605 genetic markers and we focus on ¢ = 54 genes belonging to the yeast
mitogen-activated protein kinases signaling pathway.

Since SOFAR-L estimate demonstrated nice performance on this data set in [Uematsu
et al.| (2019)), we first implement SOFAR-L to fit the multi-response regression model
and then apply our SOFARI procedure similarly as in Section [5| to conduct inference at
significance level « = 0.05. First, the rank of model is estimated as 3. We then
summarize the estimated squared singular values and the lengths of the corresponding 95%
confidence intervals in Table [l We can see from Table [§ that the first three latent sparse
SVD layers are significant and the first squared singular value is substantially larger than
the remaining ones, indicating that the leading component captures the majority of the
overall variation in the data. Furthermore, we apply our SOFARI procedure to obtain
individual p-values of the compositions of the three latent left factor vectors and then use
the BHq procedure to control the FDR at the 5% level for each layer. Consequently, the

numbers of significant features in the three layers are 74, 18, and 15, respectively, resulting

12



Table 8: Estimated squared singular values and the lengths of the corresponding 95%
confidence intervals for the yeast eQTL data application in Section [D}
i dy  dj
Value 25.869 3.946 2.304
Len 2.400 0.841 0.555

in a total of 107 nonzeros in the left factor matrix and 101 distinct markers. It reveals
certain sparsity patterns across these layers.

To further investigate the prediction aspect of SOFARI, we randomly split the data
set into 80% for training (418 samples) and the remaining 20% for testing (105 samples).
This splitting process is repeated 100 times. For each split, we first apply the SOFARI
method and integrate the BHq procedure to identify nonzero elements of each left singular
vector with the target FDR level of 5%. Then we refit the training data using SOFAR-L
by constraining on the set of identified nonzero elements and evaluate predictive accuracy
through the corresponding test set. For comparison, we also directly estimate the coefficient
matrix via SOFAR-L on the training set and compute the prediction loss on the test set.
The resulting average prediction errors, with standard errors in parentheses, are 0.734
(0.005) and 0.742 (0.006), respectively, indicating that refitting the data based on our

SOFARI method (i.e., the former one) can enhance the predictive performance.

E Sample splitting techniques

In this section, we gain some insights into how the sample splitting techniques can be in-
corporated into the debiased procedure to weaken the sparsity constraints. Although the
sample splitting technique can help weaken the sparsity constraints, this approach also pos-
sesses certain limitations. In particular, random partitioning can introduce variability, and

larger sample sizes are typically needed to ensure efficiency. Thus, for the sake of simplicity,
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we only present the theoretical results of the inference on uj in strongly orthogonal factors
cases. Nevertheless, it is noteworthy that the generalization of inference on u; in weakly
orthogonal factors cases and inference on d;? under both strongly and weakly orthogonal
factors cases follows a similar analysis.

For simplicity, we assume that sample size is 2n and the sample is randomly split into
two of equal size. The second fold of data is used to obtain the initial SOFAR estimates C
and the corresponding SVD components {w;, ¥;}'—,. Meanwhile, the first fold of data, still
denoted as (X,Y), is employed to compute the approximate inverse © and the debiased
estimator ﬁskplit for each layer. Then in the strongly orthogonal factors case, similar to @,

our debiased estimate for u;, can be defined as

~split ~ xxr o~ o~
u’" = up — Wit (g, nk)

W __Mw)a_L)‘ |
ouy, oy / 1 @ 7w

o <8L
where ﬁ(k) = [Opxq(k,l),Mk,opx[q(w,k)ﬂ,(r*,l)}] with Mk = —Z,;klf]é_k, and Wk are
as given in Propositions 2| and [3| after plugging in the SOFAR estimates for the SVD

components derived from the second fold of data.

Denote by

Kkl =max{s/2 (1" 4 sy, + 5,) 221" 4 54 + 50)Y202 log(pq) /v/n. (A.2)

The following theorem shows that the debiased estimator ﬂzplit based on the sample splitting

technique enjoys the asymptotic normality.

Theorem 7. Assume that Conditions @ hold, and © and C satisfy Deﬁm’tz’ons and@

respectively. Then for each given k with 1 < k < r* and an arbitrary vector a € A = {a €

14



12k! = o(1), we have

Hallo < m, |lalls = 1} satisfying m
Vna" (@M — up) = by + 1,
where the distribution term hy = a* Wi (XTEv; — M;ETXw})/\/n ~ N(0,v?) with
V2= a" Wiz, MM + 0TS0 - 28uio " 2. M)W a

Moreover, the bias term t, = Op( 1/2 ’) holds with probability at least 1 — 0, ,,, where

Orpa = Onpq T 2(p0) (A-3)

,p,q p,q

with so = max{Smax, ™" + Sy + Su }, H;qu given in Definition @ and some positive constant

Theorem [7|above establishes the asymptotic normality results of each uj in the strongly
orthogonal factors case. By exploiting the sample splitting technique, we can see that the
requirement for the bias term ¢ to be asymptotic vanishing is weaker than that in Theorem
[ To have an explicit view of this, recall that 4, = (r* 4 s, + s,)"/?n2{n""log(pg)}'/? is

the SOFAR estimation rate. Then the error rate x,, in Theorem [I] can be written as

Ky = max{srln/fxnn ) (T* + Sy + Sv)1/2nn ) 1}7n/\/_

whereas the error rate ], given in (A.2)) can be formulated as
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Since n? given in Definition [2| is larger than 1 and can even diverge with n, the first two
term in &, are reduced by a factor (r* + s, + sv)_l/ 2 in the corresponding terms of k.. In
addition, note that the third term in both x, and &/, is 42 /y/n, which is the inherent bias
induced by the SOFAR initial estimates. Thus, if the first two terms in %, dominate, the

sample splitting technique can help weaken the sparsity constraints.

F Proofs of Theorems and Propositions

F.1 Proof of Theorem [1

The proof of Theorem [I| consists of two parts. The first part establishes the theoretical
results under the rank-2 case, while the second part further extends the results to the general
rank case. Let us denote by & the event on which the inequalities in Definition [2 hold. By
Definition , its probability is at least 1—6}, , .. Moreover, we define & = {n™" | X"E||nax <
c1[n'log(pq)]*/?}, where ¢, is some positive constant. Since E ~ N(0,I, ® X.) under
Condition [I], by the same argument as in Step 2 of the proof of Theorem 1 in|Uematsu et al.
(2019), we know that event & holds with probability at least 1 —2(pq)!~%/2, where ¢y > v/2
is some positive constant. Then we have that event £ = & N &; holds with probability at
least 1 — 0, ,, with 0,, , , = 0;%(1 + 2(pq)1*0(2>/ 2. To ease the technical presentation, we will

condition on event £ throughout the proof.

Part 1: Proof for the rank-2 case. Under the strongly orthogonal factors, since the
technical arguments for the theoretical results of w] and uj} are basically the same, we

present the proof only for w] here for simplicity. In the case that »* = 2 and k£ = 1, for

M and W constructed in (A.95) and (A.96) in the proofs of Propositions 2] and [3] after
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plugging the initial SOFAR estimates satisfying Definition [2| we can obtain that
M, = —3,'S6,0) and Wy = O{L, + (311 — %) ' Swpul },

where z1; = ﬂle]ﬂl and Zgp = ﬂgiﬁg. By Lemma (7| in Section , it holds that |z, —
Zoa| > ¢, which entails that Z1; # Zao. Then we see that Wl is well-defined.

Let us recall that

ﬁl = @/)1(1717 771) = 'al - Wl&l(ﬁla "71)

= @1 — Wit (@, m]) + Wit (@, ) — ¢1(@, 7).
It follows from Lemma [I] and the fact that the initial estimates satisfy Definition [2| that

~ AT (= * * AT AT S AT NA ook ¥ TNk
u, — Wlwl(ul, 771) =Uuy — W1€1 — W151 — W1M1U2'U/2 Eul

+ [Ip W, (1, - My al + Mlagag)i} (@ — ub),
where

& =n 'M,E"Xa; — n ' X Ev, (A.4)

& =M, {(@ —v)al — (Bal — vius")} S(a, — u}). (A.5)

In view of Definition 2, 920, = 0, and ¥ v, = 1, for each given a € A= {a € R” : [|a||y <
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m, ||al| = 1}, we can represent /na® (u; — u}) as

\/ELLT(’&l — ’Uf{) = — \/ﬁaTWﬁl — \/ﬁaTwlgl + \/ECLT (Ip — WlTl)(ﬁl — ’Uf{)
- \/EGTW1M1’U§U§T§“T - \/EGTWI(@ZI(QNLD ) — QZl(ala n)),

(A.6)

where Ty = (Ip—Eﬁliﬁzﬂg)i. We will show that the last four terms on the right-hand side
of (A.6) above are asymptotically vanishing for © satisfying Definition [1f and C satisfying
Definition [21

First, under Conditions [2H4] by Lemma [J] in Section we have that
|aTW151| < emM? (1 4 sy + s5)nt{n" log(pq)}. (A7)

Second, for term a” (I, —WlTl)(ﬂl —u3), it follows from ([A.97)) in the proof of Proposition
that I, - WlTl =1, - ©X. Since O is an acceptable estimator satisfying Definition ,

it holds that
1, — é\)f:Hmax <c{n™ log@Q)}l/Q‘
In addition, by Definition [2|it follows that

i1 = willo < U =U*lo < c(r* + su + 50),

@1 — uilla < U = U*|lp < e(r* + 54+ s,) 07 {n " log(pg) } /2.
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Then we can deduce that

la (1, = W, T)) (@ — u?)| < [lall[|(T, — OZ) (@ — u})|max
< em?||L, — O || aclt — uflh
< em?||L, — O [maclltr — wl]l @ — il

< em2(r* + s, + s,)n2{n " log(pg) }- (A.8)
Third, under Conditions an application of Lemma [10] in Section yields that
\aT\WflMl'v;u;Tiuﬂ = o(m'*n~V?%). (A.9)

Furthermore, for the last term aTWI(% (@1, m7) — ¥ (@1, 1)), under Conditions [2H4] by

Lemma [Bl in Section it holds that

|@" W (41 (@, m) — 91 (@, ) )|

< emax{s2 (" + s, + 5,)Y2 02} + 54+ 5)n2{n " og(pg) . (A.10)
Thus, combining (A.6)—(A.10]) leads to
vna® (i — ul) = —/na"Wié, + t,

where ' = O ml/Q{S}r{fX, (1" + 80+ 5) 2 2} (r* + 5 + 5,)2 log(pq)/\/ﬁ].

We now proceed with analyzing term —ﬁaTvala. Let us define

hi = —a’ WiME"Xu}/vn + a” Wi X Ev} /\/n, (A.11)
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where Wi = OfL, + (27, — 25,) 'SuwiuwsT}, Mt = —27'Swvi?, 2, = wSu}, and
250 = ugTiu’Q‘. Under Conditions 2H4] it follows from Lemma [7 in Section that
|2, — 235| > ¢, which implies that z§; # z3,. Then we can see that W7 is well-defined.

Moreover, under Conditions 2H4, by Lemma [11]in Section [G.11], we have that
| — Vna" W& — hy| < em!2(r* + s, + 5,)*/*n% log(pq) //n.
Hence, y/na’ (4, — u}) can be rewritten as

\/ﬁaT(ﬁl —uj) = hy + ty,

where t; = O |m'?{syli, (r* + su + 5,)V2, 2} (" + 5, + 5,)172 log(pQ)/\/ﬁ] :

Finally, we will investigate the distribution of h;. For the sake of clarity, denote by

o) = Xul, B = -MT"Wila/\/n,

@y = XWiTa/Vin, B, = v},
Observe that all of them are independent of E. Then we can rewrite h; as

hy = aipEﬁl + agEﬁg

= (o ® B1) vec(E) + (g ® Bo)  vec(E), (A.12)

where vec(E) € R™ denotes the vectorization of E.

By Condition [I] that E ~ N(0,I, ® X.), it holds that h; is normally distributed.
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Furthermore, we have that E(h;|X) = 0 and variance

var(hi|X) = (a1 ® B1)" (I, ® e ) (e @ B1) + (02 @ B2)" (I, @ Be) (02 ® Bo)

+2(cq ® B1)" (I, ® Be) (a2 @ Ba). (A.13)

After some simplification, we can obtain that

var(h1|X) = alTInal,BFfEe,Bl + aglnagﬁgEeﬁg + 2a1TIna2[31TEe[32
=uTSul - a" WM S MW Ta + v TS0 a"WiEWiTa

—2a"WiSu v TS, M TW q, (A.14)

which completes the proof for the rank-2 case.

Part 2: Extension to the general rank case. We now extend the results using similar
arguments to those in the first part to the inference of wj, for each given k with 1 <k < r*.

Note that

Wy, = YUk, M) = Uy — Wkizk(ﬁka )

= @y, — Wity (Tg, 1) + Wi (r(Tr, 1) — Vr (T, )

Then by Propositions 2H3] Lemma [2] and the initial estimates satisfying Definition [2| we

can deduce that

\/ﬁaT(ak - UZ) = —\/ﬁaka'Ek - \/ﬁaTWkgk - \/ﬁaTVNVk(Jk(ﬁk, ﬁk) - {Ek(ﬁlm 777;))

-+ \/ﬁaT(Ip — Wka)(ﬂk — ’U,Z) — \/ﬁaTWkﬁkCﬂ,f}uz, (A15)
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where

&, = n 'MLE"X@, — n ' X"Ev}, (A.16)
8 = { M — v}l — My(C, Ct%;>} S — up), (A17)
W, =0 {1 280 (L, — 20T, S0_,)" 16Tk} , (A.18)

Tk = (Ip — ngk’ljg + Mkéfk)g, Mk = Zkk EC k-

Let us further define

h, = —a’ WiM{E' Xu; /v/n + a” W; X Ev} //n, (A.19)
Wi =0 {I + 2 TISU (L — 2 U S U, ) 1Ut7,;} . (A.20)

By Lemma (12| in Section we see that W), and W7 are both well-defined. Then we
will bound the terms on the right-hand side of above, which will be conditional on
S satisfying Definition |1| and C satisfying Definition .

Observe that ||allo < m and ||a||2 = 1. First, by Propositionit holds that Ip—Wka =

I, - ©3. Then by the same argument as for (A.8)), it follows that

" (T, ~ WiTo) @, — ui)| < em2(r" + s, + 5,02 n " log(pg) . (A.21)

22



Under Conditions [2H4], an application of Lemma [5]in Section gives that

|@" W (i (T, i) — (T, 1)

< em! P {sylme, (4 su+ 50) 2+ sy s {n” log(pa) ).

Moreover, under Conditions [2H4] using Lemmas in Sections[G.I5HG.17] respectively,

we can deduce that

|a"W .8, ] < em'2(r* + s, + s,)i2{n" log(pg) }, (A.22)
1a" W M, C L Sus| = o(m!/*n~1/?), (A.23)
| — aTWkEk — hk/\/ﬁ| < cml/z(r* + 8y + sv)?’/z?ﬁ{n_l log(pq)}- (A.24)

Therefore, combining the above results yields that

\/ﬁaT(ﬁk — ’U,Z) = hy + g,

where t), = O(ml/z{srln/fx, (r* + sy +50) Y2, 2 Hr* + sy + 50)n2 log(pg) //1) . The distribution
of hy can be derived using similar arguments as for (A.11)—(A.14)). Consequently, we can

obtain that hy, is normally distributed by Condition [I} E(h;|X) = 0, and variance

V2 = var(h|X) = a"Wi (2, M M:T 4+ 078,08 — 28 v TS M) WiTa.

This completes the proof of Theorem [T}
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F.2 Proof of Theorem

Similar to the proof of Theorem [I]in Section [F.1], the proof of Theorem [2] also contains two
parts. In particular, the first part establishes the desired results under the rank-2 case,

while the second part extends further the results to the general rank case.

Part 1: Proof for the rank-2 case. With the presence of strongly orthogonal factors,
since the technical arguments for the results of d}? and d}? are rather similar, we will mainly
present the proof for d;? here for brevity. Recall that w; = v (w1, 71) = Uy —Wl%(ﬂl, m),

where W, = (:){Ip + (Z11 — 522)_126265}. By some calculations, we can show that

]2 — ut]f?2 = 2uiT (@ — uf) + (@ — u})T (@ — ul)
= 2uiT (@ — uf — Wit (U, 1)) + 26T W (@, 71) + |8 — il
= 2T (G — u}) + 28T Wby (T, 1) + 2(w] — @) Wit (T, 7)) + ||t — w2

(A.25)

To show that d? = || ||2 — 247 W14 (@y, 7) is a valid debiased estimate of di2 = |ju}|2,
we will first prove that 2(w} — )" W1ty (@, 1) + || @ — wi|| is asymptotically negligible
and then establish that 2ui” (@, — u}) is asymptotically normal.

For simplicity, denote by p = u} — w;. Observe that

PTWiihy (@, 1) = pT Wit (i, ) + p" Wi (i1 (T, 1) — 1 (@, m})).
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In light of Lemmal [I], after plugging in the initial estimates we can obtain that

PTWHL (w1, my) = pTW1g1 + PTwlgl - PTwlTl(UT —uy) + PTvlel’U;U;TiUT

= pTwlgl + pTwlgl + pT(Ip — WlTl)p — pr + pTwli/I/lv;u;TiuT, (A26>
where Ml = —gﬂliﬁg'ﬁg, T1 = (Ip — Eﬁliﬁgﬁg)i, and

€ =n'ME"Xu;, — n ' X Ev?,

& =M, {(@ —v)al — (Bal — vius")} S(a, — ul).

We will then show that pTwl (@Zl(ﬂl, m)— 1;1 (u1,m7)) and all the terms on the right-hand
side of (A.26)) above are asymptotically vanishing, which will be conditional on © satisfying
Definition [1| and C satisfying Definition .

First, by Definition [2] it holds that
lollo < 11U = U%[lo < e(r* + s +50) and [|plle < |U = U”|lp < e, (A.27)
where 7, = (r* + s, + 5,)/?n2{n"'log(pq) }!/?. Then it is immediate to see that

lpll3 < c(r + su + su)ny{n~" log(pa) }. (A.28)

Under Conditions [2H4] from (A.27) and Lemmas [f] and [0H10]in Sections[G.5 and [G.9HG.10]
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respectively, we can deduce that

|pTW (1 (1, 1) — 1 (W 7))

< cmax{s/2  (r* + s, + 5,) Y2020 4 sy + 50) 20 {n " log(pg) /2, (A.29)
P"W181| < c(r* + 5, + 5,) ny{n " log(pa) /2, (A.30)
p" WM v Suj| = o((r* + s, + s,)n2 {log(pg)}/*n ). (A.31)

Moreover, similar to (A.8)), it can be shown that

167(L, — WiT)p| < [|p|[1[|(T, — OF)pllmax
1/2 g 1/2
< llolls*l1oll21L, — O macllolls* ol

< e(r* + sy + 5,) 2t {7t log(pq)}g/Q. (A.32)
It remains to bound term pTW{é. We see that
‘pTW{E\/l’ S |7’L71PTW1M1ETX’IAJ:1’ -+ ]nilpTleTE'vﬂ. (ABS)

Let us bound the first term |n~!p” WM, ETX;| on the right-hand side of (A.33) above.
Note that Condition [4| entails that the nonzero eigenvalues di* are at the constant level.
Then under Conditions [2H4] by parts (b) and (c) of Lemmal]in Section and Definition

2] with ||Ds]]2 = 1, we have that
M ls < |17 St0®] [l2 < 12| E8 )52l < c (A.34)

Further, under Conditions [2H4] it follows from (A.27)) and part (c¢) of Lemma [§]in Section
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that

1PTW il < e(r* + s, + 5,)12 {n " log(pg) } /2. (A.35)

Denote by s = ¢(r* + s, + $,). It is easy to see that

1p" WM, [|o = [|(Giitp" Wi El,) - do®l ||o < [|dos o

< Jwsllo + d2(@2 — v3)llo < s,

where the last step is due to ||v3]jo < s, and part (a) of Lemma[f]in Section[G.6] Moreover,

from Definition [2{ and ||uf|lo < sy, it holds for sufficiently large n that

[wallo < [[ur —uillo + [[uillo < c(r” + su + s0),

[wfla < fluy = wpfls + [Juifls < e

With the aid of n 7| XTE||max < c{n~'log(pg)}/?, it follows that

B X o, < 8120 BT X s < 5" X o 121l 121 2

< c(r* + sy + 5,){n"log(pq)} /2. (A.36)

Note that here, for an arbitrary vector x, [x||3, = max|gj<; Y _,cq2; With S denoting an
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index set. Hence, combining the above results gives that

n~!p" WML E Xty | < [|p" Wi M |a ]| BT Xty |2,q
< " Wallol M ol|n B Xt
c(r* + sy + 80) 2 {n"log(pq)}. (A.37)
We next bound the second term |n~!pT W, X7Ewv?| on the right-hand side of (A.33)

above. Denote by ¢; = @w!n ' XTEv?, where w! represents the ith row of W;. Then we

see that TflpTVA\?lXTE’vik = pl'¢, where ¢ = (¢;) € RP. Under Conditions by Lemma

in Section it holds that

1H<13<X |ps| < maX szHl” 1HXTEU1Hmax

2 1/2
< max [aillg” |1 ||~ X Bl |7 [ [0

< cs max{smax, (r* 4 sy + Su)}l/z{n ! log(pq)}l/2

This together with (A.27)) entails that

1/2
™' p" Wi X Ev| = [p" | < ol Bllmax < llollo" o121 lmex

< emax{Smax, (1" + s, + sv)}1/2(r* + 8y + sv)3/2 2{n 1 log(pq)}. (A.38)

Then it follows from (A.33)), (A.37)), and (A.38) that

|pTW1€1| < emax{Smax, (1" + su + sv)}lﬂ(r* + 8, + sv)3/2 2{n 1 log(pq)}- (A.39)
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Thus, combining (A.28)—(A.32)) and (A.39) leads to

121 — will3 < e(r” + sy + s,)m,{n"" log(pg)}, (A.40)
|(UT - al)TW11Z1(a1, 771)‘

< emax{sy, (4 su+ 50) 2 "+ su + 50) Y0 {n " log(pa) }. (A.41)

Finally, for (A.25)) we can rewrite it as

[wa][3 — 5[5 — 28] Widhs (@, 1) = 2ui” (@ — uf) + 1, (A.42)

where ¢ = O(max{shm, (r* + sy + 55) Y2, 02} (" 4 s4 + 50)*2n2{n " log(pq)}). In addition,
replacing a with 2u] and using similar arguments as in the first part of the proof of Theorem

[1, we can obtain that

\/5(2UTT)(’£/21 - uylﬂ) = hd1 + t”’ hd1 ~ N(Ov V§1>7 (A43)

where the error term t” satisfies that

t" = O(max{sym, (1" + su + 5,) V20" + 54 + 5,)*07 log(pg) /V/n),

and the distribution term hy4, and its variance are given by

ha, = 20T WIMIE" Xut /v/n + 2ul WiX Ev; /v/n,
V2 = 4w Sul - W TWIME MW ) + 40 TS 0 - wTWiSWTu}

*T ARk *T * * *
—8uy Wil -uj” WM X, v],
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respectively. Therefore, in view of (A.42)) and (A.43]) we can deduce that

V(|| |2 = [Jut]2 = 2aTW iy (@, 1)) = hay + ta,

with hq, ~ N(0,v7 ) and

tg, =t +¢" = O(max{srlﬁx, (r* + s, + Sv)l/z, Y + sy + 30)3/217,21 log(pq)/v/n),

which completes the proof for the rank-2 case.

Part 2: Extension to the general rank case. Now we extend the results to deal with
the general rank case using similar arguments as in the first part and establish the results on
d;? for each given k with 1 < k < r*. Observe that wy, = ¥y (g, ;) = uy, — Wkizk(ﬂk, k).

Similar to (|A.25)), it holds that

d?c — d? = ||lag||3 — 2ui Wi (g, mr) — [|uill

= 2u;" (T, — uj) + 2(uj, — W) "Wt (T, i) + ||k — up|l3-

We will first prove that 2(uj — W) TW (T, ) + || — u}||3 is asymptotically negligible
and then show that 2u}’ (uw), — u}) is asymptotically normal.

Let us define py, = uj — uy. It is easy to see that

PE Wiy (g, 1) = p Wi (Tg, mf) + pr Wik (T, i) — Vn (g, 17)).-
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By Lemma [2], with the initial estimates we can deduce that

P Wit (@, ) = p Wi + py Widi — pi WiT(uj, — ) + pf WM C¥ S
= pf W& + pr Widy + pi (I, — Wi Ti)pr. — pf pr. + pf WiMCSuy,  (A44)
where Ek,Sk,Vva are given in (A.16)—(A.18), respectively, Mk = —E,;klié_k, and T} =
(I, — M .al + M, CT,)3.
Next we aim to show that all the terms on the right-hand side of (|A.44]) above and

p}fwk(zzk(ﬁk,ﬁk) — (g, m})) are asymptotically vanishing. First, similar to (A.27) it

follows from Definition [ that

lpkllo < c(r* + sy + 5,) and [|pglla < c(r + 54 + )20 {n " og(pg) } /2. (A.45)

Under Conditions from this and Lemmas [5| and in Sections|[G.5| and [G.15HG.16],

respectively, we can obtain that

’Pgwk(%(ak’ ﬁk) - wk(ﬂ'k’ TIZ))‘
< emax{s2 (1" + s, + 5,) 2 020 + 54+ ) 0 {n " log(pg) }P/2,
PEW 8| < c(r™ + s, + 5,)2 18 {n " log(pg) }*/2,

[Pk WM CE Sug| = o((r* + s, + s.)m; {log(pa)}'/*n ).

Further, an application of similar arguments as for (A.32)) yields that

10 (L, — W Th)pe| < c(r* + s, + 5,)202{n" " log(pq) }*/2.
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It also follows from that
lpkll3 < e(r” + su + s, )m, {n"" log(pg)}-
It remains to examine term prA\?kEk. Note that
IpEW,&n| < [n~ ' pf Wi MLE" X, | + [n~ ' pf W, X Ev}| (A.46)

and M, = nglflﬁ_k{/:fk. Under Conditions , by Lemma (13| in Section we have

that
ML, < e (A.47)
From part (a) of Lemma, |§| in Section and Y.0_, ||vZ[lo = so, it holds that

ok WiMgllo = | > (" Wiz, ' S8) - div] o < Y [1diwslo

ik ik
< llvgllo + Y lldi (@i — 0)llo < e(r + su + 5,). (A.48)
ik ik

Under Conditions , based on the above sparsity bound, (A.47)), and part (e) of Lemma

in Section an application of similar arguments to those for (A.33)—(A.39)) results

n

|pZWkEk| < emax{Smax, (1" + su + sv)}l/z(r* + 8y + 50)3/277721{71_1 log(pq)}. (A.49)
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Thus, combining the above results yields that

T, — wl)) < c(r* + 54+ so)n{n " log(pa)},
|(wy — ) "W i (T, )|

< emax{sy/Z, (" + su+ s0)2 (" 4 sy + 50)* P {n " log(pq)}.
For (A.44)), it can be rewritten as
@r 3 — [luills — 205 Wit (U, 1) = 20y (Ty, — uy) + £,

where ¢, = O(max{suax, (" + su + $o)Y2, 2 Hr* + sy + 50)32n2{n""log(pq)}). Moreover,
replacing a with 2u; and using similar arguments as in the second part of the proof of

Theorem [T, we can show that
\/E(QUZT)(ak - UZ) = hdk + t:ilkw hdk ~ N(07 ng)w
where the error term ¢, satisfies that

ty, = O(max{sy, (" + sy + 5,) 2} (" + su + 50)* %1 log(pa) /v/n),
and the distribution term hg, and its variance are represented as

ha, = =2, WiM;E" Xug //n + 2u;" Wi X Ev; //n,
vi, = " Sy - uy WiMEE M Wil up + v Sev - uf WiSWi uy,

— 8u WiSuivy' S M Wil u;,
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respectively. Therefore, we can obtain that

well3 — [|upll3 — 2a) Wibe (e, i) = ha,, + ta,

with hg, ~ N(0,v7 ) and

ta, = ty, +ty, = O(max{syz, (" + su+ 50) 20} (" + su + 5,)"?n; log(pa) /v/n).

This concludes the proof of Theorem [2]

F.3 Proof of Theorem [3

From Condition , we see that the nonzero eigenvalues d}? are at the constant level. Tt

follows from Definition Bl that

[uillo < su, [l = ugllo < e(r” + 50+ 50), [[wkllo < c(r + su + s0),

lille < e, [t — uglla < e(r* + s, + 5,) 205 {n " og(pg) 12, a2 < c.

For some sy and 7,, let us define p-dimensional vectors a and a* that satisfy

la*[lo < s0, [la —a™[lo < so, [lallo < so,

la*]z < ¢ fla—a’lly <7, [a]: <c
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We also define 72 = ¢ + @9 — 2¢3 and v? = ¢ + ¢ — 2¢%, where

o1 = Ul Sua" WM EMIWEa, of =uSula WM MW a",
0 = 0B 0,a"WiEWTa, of =0 S0aWiSW T a*,

03 = &' W Su ol S MIWG, o = a " WiSuiv 'S MW a",

It is easy to see that

02 =V < o1 — @il + |2 — 5] + 2|03 — 5

Then we will bound the three terms on the right-hand side of (A.50) above separately,

which will be conditional on © satisfying Definition [1] and C satisfying Definition .

(1). The upper bound on A;. Recall that M, = —Zep ISU_ WVT M = — 2 ] U WV

By Lemma [13]in Section [G.13] it holds that

IMill2 < e, IMjll2 < c, (A51)

M, — M ||s < c(r* + sy + $0) 202 {n" " log(pg) /2. (A.52)

Observe that A; = |Fa! WM, EMIWTa — 27, a* WM .M W:Za*|. We denote

by

= [a"W, M, S M/ W'a — a”" WM S M TW:Ta*|,

*T * * *T *T %
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Then under Conditions by parts (b) and (c) of Lemma [f] in Section [G.6| we have that

Ay < Zril A + |Zkk — 25| Ar2
< N2l SallaAvs + [Fie — 2] Az

< cAyy 4 c(r* + sy + 50) Y202 {n" log(pg) Y2 Ao (A.53)

For term Aj, introduced above, by Condition [1| that ||X.|l2 < ¢, part (c¢) of Lemma

in Section |G.14} and (A.51)), we can show that

Az < [|l@" Wil [V [lo][Ze MG [ Wi a2 < eso. (A.54)

Further, for term A;; introduced above, it follows that

Ay < [@"W M, S (MIWEa — MTW: T a*)|
+ (@ WM, — & T WM MW a*|
< |@"W M E. [|MIWTa — MTW;Ta"|,

+ [[@a” WM}, — a* "W M |2 || 2. M;TW;iTa*||,.

In light of Condition [1, Lemma [14] in Section [G.14], (A.51)), and (A.52), it can be easily

seen that

16T WM, Z,[|» < 03(1)/2 and || Z.MIW;ila*||, < cs(l)/z.
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Moreover, it follows from parts (c¢) and (d) of Lemma |14]in Section that

1aTWy, — aTWi|s < @ (W), — Wi)ls + [[(@ — a*) Wi |

< 03(1]/2(7“* + 5y + 5,) 202 {n " log(pg) Y/ + csO/ Tn.- (A.55)

Then from part (e) of Lemma (14| in Section |G.14} (A.51)), (A.52), and (A.55)), we can

deduce that

a7 WMy — aTWiM; [l < [|a” Wi |o|| My — Mj |z + [|aT W, — a* T Wi [lo| M5 ]|2

< cs(l)/Q(r* + 54 + 50)Y 202 {n " log(pg) }1/? + cs, Vi (A.56)

Thus, combining the above terms leads to

An < eso(r* + s, + 80) 202 {n " log(pg) }/* + csoy. (A.57)

Finally, using (A.53)), (A.54)), and (A.57]), we can obtain that

Ay < eso(r* + s, + sv)l/2 2{n log(pq)} 12 4 csomy,. (A.58)

(2). The upper bound on A,. Notice that

= oIS 0a" WiEWTa — 07 S via " WiESWTa*|.

In view of Condition , the nonzero eigenvalues d;? are at the constant level. It follows

from Condition |1 that ||X.|l2 < ¢, Definition [2| that [|vg||s = ||vi]|2 = 1, and part (a) of
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Lemma [6] in Section [G.6] that [0 B.0y| < [|OF ||2[|Zell2]|Tk]l2 < ¢ and

0L B0y, — v SBevp| < [0 Be (V) — vp)| + (0] — v ) Bewy]
< vell2|Zellol|or — villa + [[Or — vill2[| Zell2[lvi 2

(" + su -+ 32)"02 (0™ log(pg) 2
With the aid of the triangle inequality, we can show that

Ay < |07 S 0,]|1aT Wi EWTa — a T WiSW T a*|
+ 0TS0, — 0TS0l |a T WiEW T a*|
<a"W,EW'a — a"W:ZW: a*|

+ @ TWEEWTa*|c(r* + s, + s) 202 {n " log(pg) } /2. (A.59)
It is easy to see that

AW, EW'a — a " WiSW:Ta*|

< a"W,E(WTa - WTa*)| + (@ W, — a’TW)EWiTa*|

= A21 + AQQ.

Let us bound the two terms As; and Ayy introduced above separately. Denote by 'ij and

w! the ith rows of W} and W. Recall that

W;;:@{I 4 ISU (L — 2 UL SU ) 1Uji',;}.
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Denote by A* = (23, 1+_1 — UﬂiUik)*l. Then we have

wT =8 +0'SU* AU,
+ wyh,
where 87 is the ith row of ©. Since |U* llo < s, and @TiUikA* is a vector, it follows

that

* * YESIED *
||w0,iH0 = ||U%, - (6; ZU" A )T”O < Sy-

Together with Definition |1| that max;<;<, H@Ho < Smax and maxi<<, H@Hg < ¢, under

Condition [2] it holds that

max HEw l|l2 < max ||20 |2 + max H2w02||2
1<i<p 1<i< i<

< max 16:]1> + max g2 < c, (A.60)

where the last step has utilized (A.196)) in the proof of Lemma[l4]in Section[G.14] Further,

based on parts (a) and (b) of Lemma [14] and similar arguments, we can show that

max ||Zw1||2 <¢, max ||f3(151 —w)||e < e(r* + sy, + SU)1/2 2{n 1 log(pq)}l/2 (A.61)
1<i<p 1<i<p
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Then using (A.60)), (A.61)), and part (c) of Lemma[l4] we can deduce that

p
IEWiTa"l: < 1D a;Sw, < ||a® i max IIE'w I < cllallgla"]l> < es®,  (A.62)

=1

@ WiEW; a’| < [l Wi || EW; a’ || < eso, (A.63)
IEWTa - SWTa |, < |EWF(@—a)|s + |E(WE - WiT)a*||,
< lla - a*[l max [|Za@, 2 + [la | max | E(@; - w}),

1/2

< cs) 1/2

Tn +csy " (1" + sy + sv)l/2 2{n 1 log(pq)}l/z. (A.64)

Along with [|@a"Wy |2 < cst/? by part (e) of Lemma , it follows that

Aoy < @7 Wil|o|E(WTa — WiTa)|;

< 50T 4 ¢so(r* + 54 + 50) Y202 {n " log(pq) } /2. (A.65)
For term A,y introduced above, combining (A.55)) and ( m ) leads to

Agy < @7 Wi — aTWi ||| EW;Ta* ||,

< esoTp + eso(r™ + sy + sv)l/2 2n~t log(pq)}l/2 (A.66)

Hence, by (A.65)) and (A.66]) it holds that

|6T\A7\7k§]\/7\\7£6 — a*TW};iW,’;Ta*\ < eso(Tn + (1" + sy + Sv)l/Q 2t log(pq)}l/Q)
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This together with (A.59) and (A.63) yields that

Ay < eso(mn + (1 + sy + 50) 2 {n " log(pg) }'?). (A.67)

(3). The upper bound on Aj. Note that

ST S STy ATwl K TYRT*§3, % o *T * T\ 7T

From Condition [1} part (b) of Lemma [6 parts (¢) and (e) of Lemma [14] and (A.51)), we

see that

@" W S| < (@7 Willa|| S|z < esy/,

o MWL @] < o ol el bV o[ Wi a” 2 < s

Let us define As; = |07 S MIW7a — v:7S,M;TW:Ta*|. Then for term As, it holds that

~TW. S35 1157 vTwTs «T *Tya7+T o *
+ @' Wi Za, — a*" WiSuj||[vi’ S M W;ila*|

1/2 1/2|~Txx7 -~ &
< sy *Agy + sy *|aT W Sy, — aT WSl

For term As; introduced above, it follows from Definition |2 that ||} || = 1, Condition
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[l (A51), (A.56), part (a) of Lemmal6] and part (c) of Lemma [14] that

Agy < (10 2l Zel oI ME W@ — MW a2 + 18 — o] Sel oM ]2 W |5

< 05[1)/2(7“* + Sy + sv)l/Q 2{n~t log(pq)}l/2 + 050/ T

Moreover, using ([A.55)), part (b) of Lemma [6] and part (e) of Lemma [14] we can deduce

that

@ WS, — a'TWiSui| < @ Wlal|E @ — up)ls + 18" Wi — " Wil Suil,

1/2

< ¢s 1/2

To+esy (r' + s, + sv)1/2 2t log(pq)}l/2

It follows that

Az < csoTy + eso(r™ + sy 4 8,) 202 {n" og(pg) }/2. (A.68)

Then combining (A.50)), (A.58)), (A.67), and (A.68) gives that

72— V2| < eso(Tn 4 (1" + sy 4 80) 202 {n" og(pg) }/?). (A.69)

Let us define 72 with 3. in 72 replaced by the acceptable estimator 3. satisfying
Definition [3} Then by Condition [1] that ||X.||s < ¢ and Definition 3] for sufficiently large

n, it holds that

1Bl < 1Bellz + [Ze — Sell < c. (A.70)

Note that in the above three part proofs, we have only used the property of 3, such that
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|2.l2 < ¢. Based on the observation (A.70), replacing 3. with 2, in the above proofs will

lead to the same result as in (A.69)) that

72— 12 < eso(mn 4 (7 + 54 + 50) 202 {n " og(pg) }1/?). (A.71)

When a = u; and a* = uj, we have that so = c¢(r* + s, + s,) and

= c(r* + s + 5,) 22 {n" og(pq) } /2.

Also, we have 72 = D”jk and v? = ud Then in light of (A.71] m we see that

72— v | < e(rt + sy + s,)* 22 {n " log(pg) /2.

When a = a* € A(m) = {a € R? : |la]lo < m,||lalls = 1}, we have s = m and 7,, = 0.

Furthermore, we have that 72 = 72 and v? = v7. Similarly, from (A.71) it holds that

7 — V] < em(r* + s, + 5,)Y 02 {n" log(pg) 12,

which completes the proof of Theorem [3]

F.4 Proof of Theorem 4

Let us recall that

wy, = Y (Ug, M) = wy — Wk@;k(ﬂkza )

= Uy — Wty (T, ;) + Wi (W (T, 7)) — Wi (T, 1))
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Using Lemma [3| and Propositions and the initial estimates satisfying Definition [2] we

can deduce that

vna® (G, — ul) = —v/na' Wi&, — vnaT Wi.e, — vna Wi,y (g, k) — r (e, 1))

+ vnaT (I, — W, T) (@, — ul) — vna’ WM, (C*) T Sul,  (A72)
where Mk = —zl;klflé@), T, =1, - ﬁkﬁkﬁf + Mk(é(z))Ti, and

&, = —n ' X"Ev} + n 'M,E" Xy, (A.73)
8 = My (B — v)al — (C? — C* N S(@y — ul) — M (CY — C*NTSa,,  (A.74)

W, =0 {I 428003, - 2100 Tzﬁ<2>)—1(6<2>)T} . (A.75)

Further, denote by

hi, = —a* WiMiE Xu} /v/n + a” W; X Ev} /\/n, (A.76)
where M} = —27'SC*@ | 2 = 4TS, and
Wi = @{I 4 2 TISU (L., — 2 (U ) TSU ) 1(U*<2>)T}. (A.77)

In view of Lemma (19| in Section , we see that both W, and W; are well-defined. We
aim to bound the terms on the right-hand side of (A.72)) above, which will be conditional
on © satisfying Definition [1] and C satisfying Definition .

It follows from Proposition [5| that I,, — Wka =1, - ex. Using similar arguments as
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for ({A.8)), this implies that
aT (1, — Wi Ty) (@, — up)| < em2(r* + s, + 5,)12{n " log(pq)}.

Under Conditions and [o an application of Lemmas in Sections [G.22HG.25],

respectively, leads to

|aTVNVk(QZk(’l~Lk> M) — Jk(ﬁm k)|

V2 max{syn, (77 su+ s0) Y20t su o+ so)i {n” log(pg) } max{dy 47,

<cm
| — a"W €, — hi/ V| < em2(r* + s, + 5,)3 202 {n"" log(pq) yd; ",
1aT WM, (C* TSl | = o(m!/*n1/?),
k—1

" Widi| < em'2(r* + s, + 5,) 2 {log(pg) Y2 dy 1 di P (> di) /n

i=1

+em (1" + sy + so)m {n” log(pa) Yy dy.

Moreover, using similar arguments to those for (A.11))—(A.14]), we can show that hy ~

N(0,v?) with
V2 = var(h|X) = a" Wiz, M M:T + v TS0 — 25w v’ S M)W q,
Therefore, combining the above results yields that

\/ﬁaT('ﬁ,k — ’U,Z) = hk + tk7
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where hy, = —a"WiM;E"Xu}/v/n + a"W;X"Euv}//n ~ N(0,12) and

te = Ofm 2 max{1,d d 2 max{slf2, (" + s, + 5,) Y202} + s, + 5,02 log(pa) /v
k—1

+m2(r* 4 sy + 5,) 202 {n " log(pg) Y2 dy,  di 3 Zd }
i=1

This concludes the proof of Theorem [4]

F.5 Proof of Theorem [5l

Notice that ak = wk(ﬁlm ﬁk) = ’l,:ljk — Wkik(ﬁk, ﬁk) Similar to " it holds that

& — d? = |2 — 2uF Wity (U, 1) — || |12

= 2" (@), — u) + 2(w; — )" Witd(@g, ) + || — i3 (A.78)

We then show that 2(u} — )T Wit (T, 77) + ||@, — ]2 is asymptotically negligible.

Denote by p, = uj — uy. It is easy to see that
Pk Wit (U, M) = pj, Wity (U, m3) + o, W (Vn (@r, Tr) — Dr (U, m3)).-
From Lemma [3 with the initial estimates we can deduce that

i Wit (W, 1) = pf Wier + pi Widi + pf Wi T (W — ug) + pf WM, (C*?)T S
= pI W& + pL Wby, + pf (I, — Wi Ty) pi, — pi pie + pE WiM,(C*) Zu;,  (A.79)
where €, 0, W), are given in (A.73)—(A.75)), respectively, M, = — 2 ISC®, and Ty =
I, — Myoal + M,(C?)TS,
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We will show that all terms on the right-hand side of (A.79)) above and pZWk(Jk(ﬂk, M) —

Jk(ﬁk, n;)) are asymptotically vanishing. Similar to (A.27)), by Definition [2[it holds that
lprllo < c(r* + sy + 5,) and [|pgllz < c( + 54 + 50) 202 {n" log(pqg) }1/2. (A.80)
Under Conditions and [5 an application of (A.80)) and Lemmas gives that

|pt Wi (Vr (T, i) — o (ar, m))|
< cmax{s/2 (1" 4 sy + 5,) Y2 02" + s+ 50)? 0 {n " og(pg) ¥2/? max{d; !, di 72,

T WM, (C*NTSwr| = o((r* + 54 + 5012 {log(pg) }/2n 1),

k—1
IPE W] < c(r™ + s, + 5,)* 2 {n=""*1log(pq) Yy, (> dy)

=1

+ (1" + sy + 8) 05 {n " log(pg) Y 2d2d; ;.
Further, using similar arguments as for , we can show that
1P, = WiTi)pr] < e + s+ s0) i {n” log(pa) 2.
It also follows from that
lpell3 < e(r® + sy + s, )m, {n"" log(pg)}-
It remains to bound term p{WkEk above. Clearly, we have

|pZWkEk| S |n_1pZWkMkETXﬂk| + |n_1p£WkXTEvZ|.
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Based on the property of W, in Lemma , it follows from similar arguments as for (A.38))

that
|n_1p£WkXTE'vZ] < emax{Smax, (1" + s, + Sv)}1/2(7”* + 5y + Sv)3/277,21{n_1 log(pq)}.

Observe that Mk = —zk_,jié@). With the aid of similar arguments as for (A.48]), we can

obtain that
|PEWiMillo < c(r + 50+ 5,).
Denote by s = ¢(r* + s, + $,). Similar to (A.36]), we can deduce that

B Xy |5, < 8M20 BT X a2l 212

< o(r* + sy + s0) {n” log(pa) } ;.

Then similar to (A.37)), an application of Lemma [20]in Section results in

In~ prt WiMLE " Xay| < || p" WiMy]2|[n " E" Xk 25
< lp" Wil M2 ]ln ™" E" Xay|2,s

< e(r* + sy + 8)"n2{n " og(pg) Yy di
It follows that

|p£\7\7k€k| < emax{Smax, (1" + 54 + 5,) }/2(r* + sy + 50) 202 {n" log(pq)}. (A.81)
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Thus, combining the above results yields that

T, — wl))2 < c(r* + 54+ so)n{n " log(pa)},
|(wy — ) "Wty (T, 1)

< emax{sya, (1 + su + 50) 2} (0 + su + 5,)Y 0 {n " log(pg)}.
Then (A.78]) can be rewritten as
) *2\ *T (=~ * /
Vi(dy, — di?) = vn2w" (ty, — up) +

where t;, = O(max{suax, (I + su + $2)V2, 02 (" + sy + $0)32n2log(pq)//n). For term
Vn2uiT (uy, —u}) above, replacing a with 2u; and using similar arguments as in the proof

of Theorem [ in Section [F.4] it holds that
V2w (U — up) = ha, +tg,,

where the distribution term hg, = 2u;" Wi(X"Ev;; — MGE"Xuj)//n ~ N(0,v7 ) with

variance
2 *T * [ % * *T *T * Sk kT *T *T %
and the error term tgk satisfies that

o= o{d;; max{1, d:", d:" 2} max{s/2, (r* + su + 5,) /2, 20 + su + 50)¥?02 log(pq) /v/n
k—1
0 st s og(p) g (Y dn b

=1
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Finally, we can obtain that

\/ﬁ(&z - dl?) = hdk +ta,

with hg, ~ N(0,v} ), where the error term t4, satisfies that

ta, = th, +th, = O (" + su + 5, {n " log(pa) } 2y i 2(Y_ )

o dimax{1, di ™ 2} max{ s (7 4 su + 80)'2 20+ su 4 50) 02 log(pa) v/ |.
This completes the proof of Theorem [5]

F.6 Proof of Theorem

This proof of Theorem [0] is similar to that of Theorem [3]in Section [F.3] For some sg, ay,

and 7, let us define p-dimensional vectors a and a* satisfying that

allo < 50, lla™[lo < 0, [lal2 < can, [la™]l2 < can,

& —a*llo < so, @ — a2 < 7.
In addition, we define 72 = ¢ + 3 — 2¢3 and v? = ¢} + ¢} — 2% with

o1 = ulSua WMy EMI W a, of = wTSuia WM S MTW: a*,
0s = VS 00 WiEWTa, o) = v S0a’WiEWTa*,

03 = a' Wi Xu,of TM{Wla, ¢ = a " W;Sujv' S M W;ila".
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Then it holds that

72—V < o1 — @] + |2 — 5| + 2|03 — 3

We will bound the three terms in (A.82) above following similar analysis as in the proof
of Theorem (3| which will be conditional on © satisfying Definition (1| and C satisfying

Definition 2l

(1). The upper bound on A;. Observe that
Ay = 2@ WM, E M WTa — 25,a T WM S MTWiTa?|.
Let us define

Ay =@ WM B M{ WG — a" WM S M} Wi a|,

Ay = @ T WM MTWila*|.
Under Conditions 2H3| by part (c) of Lemma [6] we have that

|Ar] < |Zek| Avt + |2k — 251 Ar2

< edP A + edi(r* + sy + 50) 02 {(n " og(pg) } /2 Ass. (A.83)

For term A;, above, from Condition [1} Lemma [20]in Section [G.20} and part (c) of Lemma
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in Section we can show that

Az < [|la™ Wil MGl e[V |2 [ Wi a™ (|2 < esoandydi . (A.84)

Further, for term A;; above, it holds that

Ap < [@"W M, S (MIWEa — MTW: T a")|
+ (@ WM, — & WMD) S MW a*|
< |@" WM E.[|MIWTa — M;TW;Ta"|,

+|@aTW M, — @ TWiM || =MW Ta*||o.

By Condition [T, Lemma 20, and Lemma [21], it is easy to see that

a7 WM, Z. s < @7 Wl || My [lo||Sello < esy/*di2d} 4 am,

IZMIWITa ||y < (12|l [IM;T || WiTa3]ls < sy *di2d] .

In light of parts (c) and (d) of Lemma 21} we can deduce that

1aTWy — aTWi|s < @ (W), — Wi)ls + [|(@ — a*) Wi

1/2

< s o (r" + sy so)Pra{n! log(pq)}1/2dz_2dzﬂ

+ 053/27'”. (A.85)
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Then it follows from (A.85)) and Lemmas that

|&" WM, — @ " WiM; 2 < @ Wil |V — Ml + @ W, — a*" Wi oM.

< csé/Qan(r* + Sy 4 50) 202 {07! log(pq)}l/zd* 2

+ sy radi 2y (A.86)

Hence, combining the above results yields that

Apy < eso@2(r* + s, + 5,) 02 {n " og(pg) Y 2d T g+ csoanTady T AR (AST)

Therefore, with the aid of (A.83]), (A.84), and (A.87)), we can obtain that

Ay < eso@2(r* + s, + 5,) 22 {n" og(pg) Y22y, | + cson Tady AR (A.88)

(2). The upper bound on A,. Notice that

Ay = [0S0, WiEWTa — 0TS 0a T WiESWTa*|.

From Condition [1} Definition [2] that ||0y||> = ||v}||s = 1, and part (a) of Lemma [} it holds

that [0y Bevg| < [0 ]|2]|Zel2]|Okll2 < ¢ and

|0k Bty — vy Bevg| < [0 Be(Or, — vp)| + (0 — o) B
< [[orlzl1Zell2lvn = villo + [|or = vgll2]ZEella[[vk]l2

C(T*—f-su—l—sv)l/g 2{7’L llog(pq)}l/Qd* 1
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An application of the triangle inequality gives that

Ay < |O}f S vp]|a” WkEWka - a*TW,’;f]WZTaﬂ
+ 07 2.0 — v TS0 TWIEW e
< c|aTWk§Wga — a"W:SW o

+ c|la TWEEWTa?|(r* + s, + 5,) /202 {n"" log(pg)}/2d: 1.

Using similar arguments as for (A.60)—(A.64)), it follows from Lemma [21] that

IEW;Ta*|ls < esy*an,
@aTWiEWiTa*| < |a" W[ |EW;Ta* |, < esoal,
IEWla - SWiTa*|, < |[EW (@ — a)|, + |S(WF — W;D)a* |

< esy P + sy Pan(r + sy + 5,) 22 {n " log(pg) } 2 dy, dy 2.

Along with (A.85)), it holds that

"W, EWTa — a " WiEW:Ta*|
<@ Wil Z(Wia - Wila") |z + @ Wy, — a Wi | Wi a’ |5

< 5002 (17 4 5y + 5,) 202 {n 7! log(pq)}l/zdk+1d* 2 4 e80Ty

Thus, combining the above results leads to

Ay < eso0(r* + 5y + 50) 202 {n" og(pg) }2d T + csoanTn. (A.89)
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(3). The upper bound on A;. Note that

Az = [ W Zu vl . M) Wia — o WiSujv" S M;"W;ila*|.

In view of Condition [T Lemma [20, and Lemma [2I] we have that

@ WS < @ Willo[ Sl < est/*and;.

o Z MW a| < o ol Se o[ MG 2| Wi a2 < esg/*nd;d5 .

Let us define A3 = |07 S MIWTa — v;7S,M;T"W:Ta*|. Then we can obtain that

A; < |a"W, S0, |[of . MIWTa — v TS MTW L a*|
~TxxT S~ s TYRT*%Y, % || +T *Txx7*T - *

1/2 1/2 _ P s ~
< csO/ andyAsy + cso/ andi2dy o |a" WiEay, — a*" WiSuj).

For term As; above, it follows from Condition , Lemma , Lemma , and ([A.86))

that

Azt < [[B 2] Ze2IME Wia — MEEWiT e[|z + ([0 — v || Se | MG Wi a2

< csé/Qan(r* + 5 + 5) 202 {n " og(pg) } 2% + CSé/QTndZ_2dz+1.
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Further, in light of Lemma |§|, Lemma , and (|A.85)), it holds that

@ WS, — a'TWiSui| < @ Wilal|E @ — up)lo + 18" Wi — " Wil Suil,

< 08(1]/20%(7’* + 8, + sv)l/2 2{n 1 log(pq)}1/2 + cso Tndk

Combining the above results leads to

Az < csoozi(r* + 8, + sv)1/2 2{n 1 log(pq)}l/Qd* Ly espaymhdt _1d,§+1. (A.90)

Hence, a combination of (A.88]), (A.89)), and (A.90]) yields that

72— V2| < esga? (r* + sy + 50) 202 {n " og(pg) Y2di T + csoan T (A.91)

Define 7% with 3, in 72 replaced by the acceptable estimator f]e satisfying Definition

e

Bl Since in the above three part proofs, we have only used the property of 3. such that

|IZcll2 < ¢, using similar arguments as for (A.70)) and (A.71)) in the proof of Theorem 3| in

Section [F.3] it follows from (A.91) that

72— V% < esoa (r* + sy + 50) 202 {n " og(pg) YA + esoanTh. (A.92)
When a = 2u; and a* = 2uj, we have that so = c(r* + s, + s,), 0, = dj, and

T = (1 + 8y + 8,) 202 {n" log(pq) }*/2. Then with (A.92), we can show that

’Ajdz - Vc2lk| <e(rt + sy + Sv)3/2 2{n ! 10g<pQ)}1/2d*

k
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Moreover, when a = a* € A(m) = {a € R? : |lal|o < m, ||a|2 = 1}, we have sg = m, a,, =

1, and 7,, = 0, which yields that

U — VR < em(r* + s, + 5,) 202 {n " log(pq) Y/ 2d;

This concludes the proof of Theorem [6]

F.7 Proof of Theorem [T

The proof of this theorem is similar to that of Theorem [1] The main difference is that we
exploit the data independence to bound the remainder terms. Note that the construction

of the debiased estimate is given by

ﬁzpht = uy, — Wk&k(aka n}i) + Wk(izk(’ak, 77;:;) - Jk(ﬁk, ﬁk))

Then by Propositions 2H3] Lemma [2| and the initial estimates satisfying Definition [2] it

holds that

\/ﬁaT(ﬁtht —uy) = —V/na" W&, — \/ﬁaka@k(ﬁka M) — {/Jvk(ﬁk, ) — Vna" Wy,

+vnal (I, — W, T)) (G — u)) — vna? WM, C LS,  (A.93)
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where

&, = n 'MLE"X@, — n ' X"Ev}, (A.94)
gk = {Mk(vk — ’Uk) Mk(C C*}];)} ﬁ(ﬁk — ’U/;;),
W, =6 {I 4 ZISU_ (L — 20T, S0, 1fJTk} ,

Tk = (Ip — ngk’ljg + Mkéfk)g, Mk; = Zkk EC k-

The last three terms in (A.93]) follow the same argument as in (A.21)—(A.23)) of the proof

of Theorem [I} which implies that

@’ (T, — WiTy) (t — up)| < em'*(r* + s, + s.)n2{n~" log(pa)},
" Wide| < em'2(" + s, + s, )m {n~ log(pa)},
\aTWkMkCiTkiu}Z] = o(m!*n=1/?%).

Denote by hy, = —a’ WiM;E"Xu}//n+a” W;XTEv; /\/n. By exploiting the sample

splitting technique, we can bound the first two terms of (A.93)) in Lemmas [26{ and 27| as

| — aTWkEk — hi/v/n| < cml/z(r* + 54 + 5,)*n2{n"log(pq)},
|aTWk<1Zk<ﬂka ﬁk) - ”Jk(ﬁk, "71?))’

< em!/? max{sfn/fx, (r* + s, + sv)l/Qni}(r* + 8y + sv)l/z 2{n "og(pq)}.
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Thus, combining above terms leads to
\/ﬁaT(ﬁtht —uy) = hy + t,

where t;, = O(ml/Q{srlr{aQX, (r* 4 sy + 50) V202 Hr* + sy + s,) Y02 log(pg) //n) . Furthermore,
under Condition [I} we can obtain that hy is normally distributed with E(h|X) = 0 and

variance
V2 = var(h|X) = "W (2, M M:T 4+ 078,08 — 28 v TS M) WiTa.
This completes the proof of Theorem [7}

F.8 Proof of Proposition

Under the SVD constraint that VI'V =I,., we have that
viT v; =1

for 1 <7 < r*. From the definition of the Stiefel manifold given in Section , we see that
all vectors v; belong to the Stiefel manifold St(1,q) = {v € R? : vTv = 1}. For function
QZk, denote by %—% with 1 <4 < r* the regular derivative vectors on the Euclidean space.
Then under the Stiefel manifold St(1, ¢), applying Lemma (30| in Section and similar to
(A.255)), we can show that the manifold gradient of zzk at v; € St(1,q) is given by

! a'vi )

(I, —vv
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Moreover, for vectors u; with 1 < j <7* and j # k, it holds that

T P
'u,juj—dj.

Since d; is unknown and its estimate varies across different estimation methods, there is no

unit length constraint on u; and we can take the gradient of Jk with respect to u; directly on

the Euclidean space R? as gi;’;. Recall that gy, = (w], -+ ul_,ul (- ul, of, - ,vﬁ)T.
Therefore, the gradient of z;k on the manifold can be written as

8nk ’
where Q = diag{IL,+_1), I,—v1v{, ..., I;—v,~v}. This completes the proof of Proposition

il

F.9 Proof of Proposition

The proof of Proposition [2| consists of two parts. Specifically, the first part establishes the
theoretical results under the rank-2 case, while the second part further extends the results

to the general rank case.

Part 1: Proof for the rank-2 case. Under the strongly orthogonal factors, the technical
analyses for the theoretical results of u] and u} are basically the same, so we present the

proof only for uf for simplicity. Using the derivatives (A.99)—(A.102)) in the proof of Lemma
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[1}, some calculations show that

ule)uqu 0 0
02 R R
onont - 0 ugEuQIq QUQUQTE —n'YTX |
1
0 —n1XTY >
2L I
GuronT [-n~'X"Y,0,0].

Observe that n ! XTY = §C+§3(C* —C)+n1XTE for a given matrix C = u,v! +uyvl.

Plugging it into the derivatives above, we have that

0?L 0?L
It _Ava, L5 _Bia,
omont * du,0nt b
where
ul S, 0 0
A= 0 ul Su,l, vulS —vulS |,
0 —Suv! — Suyv! by
0 0 0
As=10 0 (C—-CHTE —n'E™X |
0 3(C-C*)—n'X"E 0

B = [—iulvlT — iugvg, 0, 0] , Ay = [E(C - C —-n'X"E,0,0].
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Then we aim to find matrix M € RP*(P+20) that satisfies (B — MA)Q = 0. It is

equivalent to solving equations

(ulTiulMl + iulvlT + iu2vg>(lq —vv]) =0,
(—Mgflulfvf — Mgi’ll;g’vg + Ugi’UQMg)(Iq —vyws) =0,

Mgi\] + Mg(’vg’u,g — ’Ul’u,,{)i =0.

Recall that z1; = ulTEA]ul, Zog = uQTiug, and 219 = ulTi\JUQ. By the orthogonality constraint

of v{ vy = 0, the equations above can be rewritten as

T 3 T
211M1<Iq — U1V, ) = —E’U;Q’U2 R

T S T
ZQQMQ(Iq — V2V, ) == M3Eu1v1 y

M,S + M, (voul — vlulT)f) = 0.

Therefore, it can be seen that the choice of M with

M, = —z;'Sugvl, My =0, Ms =0 (A.95)

satisfies the above equations. Since (B — MA)Q = 0, it holds that

0?L 0L

G omf " Omon!

)Q = (B-MA)Q+ (A, - MA,)Q

= (Ab — MAa)Q - [Aa 07 O] 9

where A = {E(C —C*) — n_lXTE} (I, — vyvf). This concludes the proof for the rank-2

case
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Part 2: Extension to the general rank case. We now extend the results using similar

arguments to those in the first part to the inference of uj for each given k with 1 <

k < r*. Utilizing the derivatives (A.105)—(A.108) and after some calculations, for each

i,7€{1,---,r*} with i # j we can show that

0?L 0?L

W = Opxp; W = i\]’
GSQTLUJT = O0yxp; %TTL%T = 2viu;fr§ —n 'YX,
81;81-2—81'—:5 = Oyxq; 81)812—8[1;?’ = uin)uin.

Note that n~'X7Y = £C + f](C* — C) + n'XTE for a given matrix C = Z’,::l u v}

Plugging it into the derivatives above leads to

ajj—;ug NN aqiz(;;,f EUNTIUNT
%aiQTLUJT = A A, aijLulT = AG + A
avaj—a[;f = Ay TAG 82,2—;;; = A +AY,
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where

AL =0y AL =0y, AL =3, Al =0,,
A =0, AW =0,,, AY=-3C, AY=%(C-C")-n'X"E,

Al =04y, AL =04, AV =vulS-) vulS AY=(C-C)'S-n'E'X,

ij ij
JFi

v VY w T VU
AT = 0gxq, A7 =04xq, A} =u; Zwul,, A =04

iJ 1

We next calculate the term

O [ L L
<W> Q= <8uk8"71{ N Mamf)n? Q

It holds that

(AW) 1<i<r* (Aff) 1<i<r*

2
L _ RS 1<5<r"j#k
ooy
k
(A)1<icrizr (AL) 1<icr izh
1<j<r 15 < j 2k
(A icicr (AY) 1<ice
1252 1<k
+
(A?f) 1<i<r* ik (Afju) 1<i<r* ik
1<j<r? 1<j <k
0L
o = [(A) e (A ] (A s (BB ]
aukang [( k:])1g3§r’( k])lgjgr*,];ék ( kj)1§ggr*’( kj)1§ggr*,g7ék

Then we aim to find matrix M satisfying that

(AV)1<icrs (AY)  1<ice

v U 1<5<r* 1<5<r* j#k
(MY, M*, ] SE sisrtizk | Q

(A)1<icrizr (AL) 1<icr ik

1<j<r® 1<j<r=,j#k

_ uv Uy

- [< ’W‘)lggr’ (Akﬂ')lsjér*,j#k} ’
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where MV = [MY,--- MU], M" = [MY,--- | ML%], M", is obtained by removing M} in
M*, M € RP*? and MY € RP*? with i, € {1,--- ,r*}, and Q = diag{I, —viv{,..., I, —
’UT*'UT*, 1)}

Based on the above analysis, after some calculations we can deduce that

MSS + MY (vyu! =) wvu)) )£ =0 fori=1,---,r" with i # k,
J#i

(—Mgf]C + Mfu?f}ui)(l —vwl)=0fori=1,--- 7" with i # k,

(Mz'u,gfluk + fJC)(Iq —vvl) =0.

Let us recall that C = Z;;l 'u,jva. Using the orthogonality constraints of v]v; = 0 for

i,7 € {1,---,r*} with ¢ # j, we can rewrite the above equations as

M“E+M”vl Zv] E 0 fori=1,---,r" withi #k,
J#i

2MY (I, — v;vl) = MYSC_; for i = 1,- -+, r* with i # k,

zkkMZ(Iq — ’Uk’Ug) = —f)C_k.
Therefore, it is clear that the choice of M with
M = zkkEC gy M =0, M =0 for ¢=1,--- 7" with¢#k

satisfies the above equations. Moreover, some further calculations reveal that

O?L 0*L

. e — — 0 - Auv I o T 0 o -
duront M amaonr)? [Opxqi—1); Ak Ly = 0505 ), Opfg(r—k+p(r+ -]

= [Opxg(k—1)s A, Opx[g(r—k)+p(r=—1)]];
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where A = {E(C —C*) — n_lXTE} (I, — vxwl). This concludes the proof of Proposition

2l

F.10 Proof of Proposition

Similar to the proof of Proposition [2]in Section[F.9] the proof of Proposition [3 also includes
two parts. In particular, the first part establishes the desired results under the rank-2 case,

while the second part generalizes these results to the general rank case.

Part 1: Proof for the rank-2 case. With the strongly orthogonal factors, as the
technical arguments for the results of w] and u} are quite similar, we will primarily present

the proof for u} here. It follows from the construction of M in (A.95)) of the rank-2 case

in the proof of Proposition [2] that

T T _ —133 T T
I, — Miviu; + Mivou, =1, — 217 Yuav, vou,

_ —153 T

By the Sherman-Morrison-Woodbury formula, for each a,b € R?, we see that I, + ab” is

nonsingular if and only if 1 + b%a is nonzero. If it is nonsingular, then we have

ab”
I by =1, — ————.
( 4 +a ) P 1 + bTa
Let us define a = —zﬁ1§u2 and b = uy. From the assumption that zy; # 299, we see that
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1 — 23! 299 # 0. This further shows that I, — zﬁliugug is nonsingular and

(I, — Myvju] +Myjveug) ' = (I, — zﬁlf)ung)_l

=1, + (211 — 222)_1§3u2ug.
Thus, we can set
W = O{L, + (211 — 220) ' Supul }, (A.96)
which satisfies that
W(I, — Myviul + Myvul)S = O3, (A.97)

This completes the proof for the rank-2 case.

Part 2: Extension to the general rank case. We proceed to extend the results by
employing similar arguments to those in the first part to the inference of u; for each given
kE with 1 < k <r*. With the aid of the definition of M} in Proposition [2| we can deduce

that

I, - Mivu; + MUCL, =1, — 2'2C_,CT, =1, — 2,/ 2 - Z wv! - Z vju]T
itk £k
=1, - 5/ 2 ) wau! =1, - 2,/TU_U",.
i#k

Moreover, by the Sherman-Morrison-Woodbury Formula, we have that for A, B € RP*("~1)

67



I, + AB” is nonsingular if and only if I._; + BT A is nonsingular, and then
(L, + AB") ' =1,- A(L.-_; + BPA)"'B”.
Denote by A = —zk_klflU_k and B” = UZ, . Notice that
L. +BTA=1._, -z )UT,SU_,,
and by assumption, I« — zk_klU:fkflU_k is nonsingular. Thus, we can set

W=0 {Ip 42 SU (L — z,;klUTkiU_k)—lufk} ,

which satisfies that

W (L, — Mivul + MICT,)S = OF.

This completes the proof of Proposition

F.11 Proof of Proposition

Based on the derivatives (A.111)—(A.114)), through some calculations we can show that for

each i,j € {k,--- ,r*} with i # j,

O*L O*L

=0, ———— =3
u;0u] PP G 0ul ’
0*L 0*L ~~
=0y —— = —n'XTY + SCO
8ui8vjr XD Qu;0v] " * ’
0*L 0L = _ ~ =
W = Oq><p> W = QUZ’U;ZTE —nNn 1YTX + (C(l))TE,
i g ? A
0*L 0*L

e
———— = 0y, ——— = u; 2u;l,.
dv;0v] P Qv ovT v
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Notice that n'XTY = £C + f](C* — C) +n'X”E for a given matrix C = Z;;l wvl .

Plugging it into the above derivatives, we rewrite the derivatives as

65;—;'0? = A+ ALY, 8'5,2—8['/0? =AY 4+ AW,
aZQTLu]T = A+ A azi;if = A+ AL
&fj—a[;f = A} + A}, 8223[;;; — AV LAY

where

A~

uy uu Y __ uu
Ajj = OPXP’ Aij - OP><P> Azz - 27 Au - OP><P7

ij

AL = 0pg, AL =0y, ALY =-3C, AY =5(CY +> up! - C') —n'X"E,
i=k

ij

VU VU VU T E T
k<i<r*
1Zi

Azu _ (6(1) + C(Q) . C*)Ti . nflETX’

vV __ VU __ v _ o T . vV
A7 = 04xq, Aij = Ogxq, Ay = u; Yuly, A7 = 04xq.

ij
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o 9L 22L
Let us recall that onT = BugomT M BT It holds that

vU VU
2 AV p<i<rr AV p<i<rr
oL ( Zj)kngr* (A3 )k+1Sj§r*
onom;.
i
(Af ) ki<icr (AR kr1<icr
k<G<r* k+1<5<r"

(A7) rsicr (AF) k<ico

+ k<j<rr EH1<5<r* ’
Segsr (B)msg

T (IO N RS NI N

duont ki) k<j<rs ? \"kT ) ke 1<g<rs ki) k<j<re (B ) pp1<j<rn |

Then we aim to find matrix M that satisfies

(A;)]p) k<i<r* (A%“) k<i<r*

[Mv7 Mu] E<j<r* EH1<5<r" Q
(A%”) k1<i<r* (AZ“) k1<i<r
k<j<r* k+1<5<r

- [(AZ;})kgjgr* ’ (Az;)kﬂgjgr*] ’

where M" = [My, ;,--- ,M&4],M* = [M},--- ,MZ], and Q = diag{I, — vyvf,-- -,
Iq - vr*v;ﬂ,lp(r*,k)}.

Observe that (AZu) k+1<i<r* (A%v)k+1§i§r* (Af]u) k<i<r* and (Afjv) k<i<r* ale both di-
k1< <r k<j<r* k1< <r k<j<r*

agonal matrices. After some calculations, we can deduce that

r*

M!S+ M (vl — Y vul)S=0 fori=k+1,-- 17,
J=k+1,j#i

(—MUSC + Mlu! Su;) I, —vwl ) =0 fori=Fk—+1,-- 1",
(Mlul'Su;, + 3 Z uvl) (I, — vvl) = 0.
i=k

Recall that C = 2;21 wvf . Then by the orthogonality constraints v v; = 0 for any i # 7,
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the equations above can be simplified as

r*

M?fi +M§)(’UiUiT — Z ’UlulT)fl =0 fori=k+1,---,r"%,
I=k,j#i

2MY (I, — viv]) = MUSC_; fori=k—+1,--- 1",

T*
v T 3 2: T
ZkkMk(Iq — ’Uk’l)k> =-X u;v; .
i=k+1

Therefore, we are ready to see that the choice of M with
MY = —2'SC?, M{=0, MV=0 fori=hk+1,--- 7

satisfies the above equations. Finally, with some calculations we can obtain that

PL o PL
Ouonk onomk

( )Q = [A, 0 (prg) -]

where A’ = AYW(T, —vpv}) = {2(6(1) — 43 (uw!l —wrvT)) — n_1XTE} (I, —

vpv}). This concludes the proof of Proposition

F.12 Proof of Proposition

Similar to the proof of Proposition |3|in Section [F.10] we see that the existence of matrix

W,. depends on the nonsingularity of matrix I, — M{v,ul + My(C®)T. Tt follows from
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the definition of M, in Proposition {4 that

I, — Mivgul +ML(CONT =1, — 2 'BC_, (C)T
LS Yl Y vl

i#£k j=k+1
=1, - Zk:_kli : Z UIUZT =1, - zk_klflU(Q)(U(Q))T.

i=k+1

Under the assumption that L«_j,—z;,' (U)TSU® is nonsingular, an application of similar
. "y . . 1S (2) @NT ; .
arguments as in the proof of Proposition |3| yields that L, — z,,, XU®(U®)" is nonsingular

and the choice of
W =06 {Ip 4 ISUO(L., — Zkfkl(U@))TiU(Z))fl(U(Q))T}

satisfies that

I, — W(I, — Mjvzul + M} (CO)TT = I, — OF.

This completes the proof of Proposition [5]

G Some key lemmas and their proofs

G.1 Proof of Lemma [1

When r* = 2, the loss function can be written as

L(ui,m) = 2n) Y — Xujv] — Xugvg |7

subject to uluy =0 and [vy, 'vg]T [v1, V9] = I,
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T ,T

where m; = (v{,v], u} )T. Then under the orthogonality constraint vl v, = 0, it can be

simplified as

L= (2n)’1{HYH2F + ul XTXuy vl v + ud X Xugvs vy

— 2u1TXTYv1 — 2ngTY'v2}.

After some calculations with ||vq]|2 = ||vs]|2 = 1, we can deduce that

a—L = iul — TLilXTY'Ul,
811,1
oL -~
— = 'vl'u,lTEul — n_lYTXul,
3171
L -
oL _ Suy —n ' X Y,
8u2
oL N
— = ’lJQ’LLgE’LLQ —n YT Xu,.
8'02

(A.98)

(A.99)
(A.100)
(A.101)

(A.102)

Utilizing the derivatives (A.100)—(A.102)) with some calculations, it follows that

oL
M—
om

i
+ M, {—v{u’Q‘TfJu’{ — n_lETXu’Q‘}
= (Mviul — Mviui)S(u;, — ul) — (Myv) + Myv])ul! S}

—n " Y{M,E"Xu; + M3X Ev; + MoE" Xus))

= (Myvu] — Mivoud)S(u; — uf) — (Myv; + Mov})us? Sujf + 8
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where we set

8, = — {M (v, — v)ul — My (vpu] — viuy”)} S(uy — )

—n Y (MLET Xu,; + MLET Xub + M3 X Ev}). (A.103)

Together with the derivative (A.99)), it holds that

~ oL

) oL
Y(uy,my) = T M

LA 8_"71

]

= (I, — MlvlulT + levgug)i(ul —ui) + (Myv; + Mgvf)ung)uf + 41, (A.104)

where §; = -8 — n ' XTEwv;.

Therefore, combining (A.103)) and (A.104]), we can obtain that

b(ur, ;) = (I, = Myval + Mivoul)S(u; — uf) + (Mo + Mo} Jus’ Su}

+ 90 + €,

where & = M, {(v; — v})ul — (voul — viuj")} S(u; — u?) and

e =n""{ME"Xu; + MbE"Xuj + M;X"Ev; } — n~ ' X"Ev}.

This completes the proof of Lemmal [I}
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G.2 Lemma [2] and its proof

Lemma 2. Under the SVD constraint in Section[2.1], for an arbitrary M it holds that

Dr(ug, M) = (I, — Myvgul + MPCL)E (uy, — uf) + MLCY Suj

+ Z M?C*EEU; + &) + €,
ik

where 8, = My { (v, — vj)u} — (CL, — C)} ZA)(uk —u}) and

e =n 'MyE"Xu; —n ' X "B} + 0" ) (MyX"Ev} + MVE"Xu).
i#k

Proof. Under the orthogonality constraints v v; = 0 for each i, € {1,--- ,r*} with i # j,

we have that

L=2n) " Y% +2(Y,-XC_;) + uf X"Xupv] vp + | XC_ |z — 2uf X" Yu, } .

After some calculations with ||vg||2 = 1, we can obtain that

oL g

T, = Sup — n ' X Yy, (A.105)
oL T —1~T

— =vpuL XU —n Y Xuyg. (A.106)
Gvk

For each j # k, similarly we also have that

OL o

S~ Wi~ n ' X" Yw;,, (A.107)
J
L ~
% = vju; Su; —n 'Y Xu,. (A.108)
J
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It follows from the derivatives (A.106)—(A.108)) that

oL
M—
oy,

= M; {vjul S, — up) - CSuy — 0 E Xuy |

i,

v *T'QY,  * —1pT * u~T *
+ > My {-CSu; 0 E X - Y MX B
7k 7k

= M} (viul — C)E(uy — uf) — MyC Su;

= MICT Sl — n T ME Xy, — 0ty MYETXul —n 7ty MUXTEw)
#k #k J#k

= Mj(vpup & — CT, ) (up — up) — MpC i Su; — Y MIC,Su) + 4,
ik

where

8 = =M {(vp — vj)ui = (CL, = CI)} Sy — wy)
—n ' MyE Xuy, — 07ty MIXTEvl - Y MinT'E X, (A.109)
ik #k

Along with the derivative ({A.105)), it holds that

~ oL

) oL
Y(ug,my) = S,

n;:_ 3_77k

i

= (I, - Mivul + MUCT ) S (uy, — ul) + MUC Su)

+) MICT Sl + 6, (A.110)
J#k

where §; = —8] — n ' XTEv;.
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Hence, combining (A.109) and (A.110) yields that

D(ug,np) = (I, — Myvul S + MICT, ) (uy — uj)

+MCY Su; + Y MICTSu) + 0; + &,
i7k

where & = {Mj(vx — v)u] — MY(CT, — C7)} S(uy — uf) and

e =n""> M/X"Ev} +n 'MJE"Xu; + Y Min"'E"Xu; — n~'X"Ev;.
j#k J#k

This concludes the proof of Lemma 2]

G.3 Lemma [3] and its proof

Lemma 3. Under the SVD constraint mn Section for an arbitrary M it holds that

Up(wg, m) = (I, — Mjvpu; + My (C)HT ) S(up — u)) + MU(C*) T Syl
+ Z MY <v,’:u}ZT ) + Ok + €,
i=k+1

where 8, = MY { (v, — v)ul — (C? — C*@)T) S(ay, — up) — MY(CO — C*D)T Sy, and

r*

e = n ' MyE"Xuy, — n ' X "Bo; +n7' ) (M!X"Ev} + MYE"Xu)).
i=k+1
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Proof. Observe that the loss function is equivalent to
L= (2n)’1{HYH% — 2ui Y Xy, + uj X Xuywi vy,
+2(Y, —-XCD) 4 2(Y, —XC?) + 207 XTXCWwy, + 20l XTXCP,

+2(XCW, XCP) + | XCW |2 + ||XC(2)||§,},

For each j,5' € {k+1,---,r*} with j # j/, we have vlv; = 0 and v7v;, = 0. Then the
7] ] 7 7J

loss function can be simplified further as

L= (2n)_1{]|Y||§, — 2l YT Xy, + ul X Xuvl vy,

+20Y, —XCM) +2(Y, —=XC?) + 20T XTXC Wy,

*

+2(XCW, XC®) + | XCY|2 + Y u]TXTXujfuijj}.
j=k+1

After some calculations with ||vg|l2 = 1, we can show that

oL & N
T = Suy, — n ' XT"Yvy, + ZCHuy, (A.111)
oL T —1~T RIONES
Fo = UKk Sup —n Y Xuy + (CV) By (A.112)
Uk
For each j € {k+1,--- ,r*}, similarly by |lv,||2 =1 it follows that
OL _ $u, — 07X Yo, + SC A
J
OL _ 'S IyTX cTs: A114
%—vjuj Uu; —n uj—i-( ) U;. ( . )
j
Note that gy = [vf,--+ vk, ul - ,uZl]T and n, = [v;F, - ol wily, - ,uﬁﬂT
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Let us simplify (A.111)—(A.114]) using CWuy;, =0 and a(l)vj = 0. It holds that

oL $ —a * ) ok * * -~ % _ %
Dup b Sup — Y Sujvi vp — n X Boj = S(uy, — uj) — 0 X B,
9L =Yu; — Z f]uf’vz*T'v* —n ' XTEv; = —n ' X Ev’.
auj n J J J

Moreover, we can deduce that

-1
oL ~ ISP
—| =vu Euk v *TEuk + vial Zup — n 'ET Xuy
kW | u iU;
6vk -
=1
k—1 r*
o TR * *T YRS n-'ET
=viul S(up —ul) + Y (v;ul — viu )Euk - g viuy uy, E* Xuy,
i=1 Jj=k+1
,r*
(vpui — vju —uy) — viuwTSu)
KUy J Uy, k 3 k
j=k+1 j=k+1

+ > (vl — v ) S —up) + (G — vju”) Sy
i— i=1

* k—1
oL
8_'0]- =] u*TEu — Zvl TEu + va, TEu _IETXU;
1=1 i=1
k—1
= Z(E@T - 'v;‘u;‘T)Zuj - Z v} ulTEu ’IETXuj-.
=1 k<I<r*,l#j
Recall that M = [ e, MG M ,Mﬁ*}. Hence, combining the above results
leads to

Ui(ug,mp) = (I, — Myvpul + My (CP)T)E(uy, — uf)

+ M (CN Sy + > MY (vjug” + (C*P)) S + € + 0y,
i=k+1
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where &), = MY((v), — v})u} — (C? — C*(2))T)§(“k: —uy,) and

r*

e = —n ' X"Ev] + n ' MJE Xuy, +n~' Y (MYX"Ev; + M/E"Xu))
i=k+1

— MY(CY — ¢ )T S,
This completes the proof of Lemma [3]

G.4 Lemma [4 and its proof

The lemma below provides the Taylor expansion of Jl (uy,m;) around 17 on the Stiefel
manifold for the rank-2 case; see Section |[H| for the technical background and relevant

notation.

Lemma 4. For arbitrary M; € RP*?, My € RP*P| and M3 € RP*Y, we have the first-order

Taylor expansion of ibvl (w1, m1) with respect to my in a neighborhood of nf given by

U (wy,m) =y (uy,m}) + (—n ' XTY — ulTiulMl)(Iq —vivih) expgfl('vl)
+ (n""MLXTY — ul SuyM;) (I, — vivlT) expggl('vQ)

A~

+ (—MLE — 2Mvius” S 4+ n MY TX) (uy — ul) + Toyr + Tuz + Tog,

where exp;i}('vl) € Ty: St(1,q) and exp;;('vg) € Ty; St(1,q) are the tangent vectors on the
corresponding Stiefel manifolds, and r,: € RP, 1oy € RP, and ry; € RP are the Taylor

remainder terms satisfying that

Irotllz = O(ll expys (01)l[2); Iruslla = Oluz — u3ll2), Iresll2 = O] expys (v2)]13)-

Proof. Recall that @Zl(ul,m) = 9L _ Mg—é, where 1, = [vT, ul,v]]T € RPH2. We

ouy

80



will prove the result by conducting the Taylor expansion with respect to vy, us, and vy,
respectively. In order to show the Taylor expansion clearly, let us write function 1;1 in the

form

Jl(ulu'rh) = Jl(ulavlau2,v2)'
We will exploit the path below to carry out the Taylor expansion of {/zvl(ul, V1, Ug, Vo)
(uh V1, U2, ’02) — (uh 'UT7 U, UZ) — (uh 'UT7 U, 'U;) — (uh ’UI, ’U,;, 'U;)

Let us first treat wq, us, and vy as fixed and do the expansion of 151 with respect to vy.
Since both v; and v} belong to set {v € R? : vTv = 1}, we have that vy, v; € St(1, ¢) by the
definition of the Stiefel manifold. Then by the representation of orthonormal matrices on
the Stiefel manifold given in (A.250)) in Section , we see that there exists some tangent

vector & € T: St(1,q) such that v; can be represented through the exponential map as

V1 = CXPysr (&)

Meanwhile, the tangent vector &; can be represented as &; = exp;T1 v1, where exp;i‘1 denotes

the inverse of the exponential map.
Then by Lemma [29in Section , we have the first-order Taylor expansion of @Zl with

respect to vy given by

Jl (w1, v1, U2, v2) = Jl (u1,v7, uz,v2) + <va121 (u1,v1,u2,v2),&1) + Tvy, (A.115)

where V,,;zzl (w1, v1,us,v9) is the gradient of 1;1 (w1, v1, ug, v2) With respect to v, at v
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on the Stiefel manifold, (-,-) is the metric defined in (A.254)) in Section , and 7, € RP

is the corresponding Taylor remainder term satisfying that

2 = O(ll&]5).

T.,*
I7;

Applying Lemma [30] in Section the gradient on the Stiefel manifold St(1,q) is given

by
~ - a'{/}vl(ul V1, U, Vo)
va%(uh V1, Uz, Vy) = (Iq - ’Ul’UlT) ’8 )
U1 v
where %&’”2’”2) represents the partial derivative of i/;l(ul, V1, Ug, V3) With respect

v

to v, at v in the (usual) Euclidean space.

In view of (A.254]) in Section we further have that

(Vorthi (w1, 01, Uz, 03), €1) = tr([Vos 1 (wr, v1, w2, v2)]7€1) = [Vor U1 (ur, v1, w2, )] &

_ awl (u17 V1, U2, '02)
vl

(I, —vivh)éy,
vy

where the second equality above holds since erqzl(ul, V1, Uy, V2) and & are g-dimensional

vectors. Hence, combining the above results leads to

877’51 (uh V1, U2, ’02) (I o 'U*'U*T)él
L\q 1%1

1;1 ('Uq,'Ul,'UQ,'UQ) :{El ('l,l/l,'UI,'U;Q,'UQ)—i— T
avl ’Ul

+ Ty, (A.116)

2= O([[&1]3)-

where |7y
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Moreover, similar to vy, for the Taylor expansion with respect to vy we can deduce that

8w1 (ulavfau%vQ) (I —’U*’U*T)€2
L\ g 22

'le ('Ull,'UT,’U,Q,'UQ) :¢1 (uhvikvu??v;)_{_ ovT
/02 ’02

+ Tos,s (A117>

P (u1,v7 uz,v2)

where 3
V2

is the partial derivative of Jl(ul, v}, ug, v3) with respect to vy at v3,
v3

& = exp;;(w) is the corresponding tangent vector, and r,; € R” is the Taylor remainder

term satisfying that

2 = O(|[&]5).

T.,*
170

Since there is no unit length constraint on us, we can take the Taylor expansion of @Z

with respect to uy directly on the Euclidean space RP. It gives that

a¢1 ('U,h ,v>1k7 U2, 'U;) (u2 - u*)
N 2

(2 (Ulavik,u%l’;) =1 (ubvfa’u;?v;)WL T
aU2 U2

+ T, (A.118)

1 (w107 uz,03)

s is the partial derivative of Jl(ul, v}, us, v3) with respect to us at

where
uj

uj, and 7,3 € R” is the corresponding Taylor remainder term satisfying that

2 = O([[uz — u33).

T, *
17
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Combining (A.116)—-(A.117)), we can obtain that

~ ~ &Z Uy, V1, U2, V
D oty 01,0, 09) = 0 (a2 )+ T )
1

. (Iq - 'UT'UIT)El

vy
01 (wy, v}, Uz, v2) T Oy (uy, v, Uy, v3)
I, — vivi SR el Uy — U
ol v;( g — VU )€ + ul us( 2 — Uy)
+ Tyr Ty + T (A.119)

On the other hand, it follows from the definition of ¢, (i, 7;) with 7, = (o], ul v ]T

that

~ oL oL oL oL oL oL
tilw,m) =50 = Mg =5~ Mg = Mg > = My

Through some calculations with (A.99)-(A.102)), we can show that

8&1 Uy, V1, U2, U2 S
( ’ 71 ’ ) = —TZ_IXTY — ’UI?E’LI,lMl,
ov; vt

8@31 U, VT, Uy, Uy =
(w, = )| - n ' MoXTY — u) SusMs,
0v, 03

8@[)1(“1, ’UT) Ug, ’U;)
oul uj

= —M,3 — 2M3viuiTS + n M3 YT X

Then plugging them into (A.119)) entails that

151 (Uh "71) = {/;1 (uh "ﬁ) + (_n_IXTY - Ufi’qul)(Iq - ”TUTT)&

+ (nflMQXTY — uQTfJugl\/Ig)(Iq — v;"U;T)Ez

A~

+ (—M,E — 2Moiul” S + 0 "M YT X) (ug — ul) + Tyr + Tugy + Toj.

Since & = expgf1 (v1) and & = exp;;1 (vg), this concludes the proof of Lemma .
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G.5 Lemma [5 and its proof

Lemma 5. Assume that all the conditions of Theorem |1 are satisfied. Then under the
strongly orthogonal factors, for Wk gwen in (A.18)) and an arbitrary a € RP, with proba-

bility at least 1 — 0, ,, we have

’aTWk(Jk(aka M) — Jk(ﬂka ;)

1/2 * * -
< cllall®|alls max{ sy (7 + s+ 52)"2 (" 4 su+ s, {n og(pa)},

where 0, ,, is given in (L0) and c is some positive constant.

Proof. The proof of Lemma 5| consists of two parts. Specifically, the first part establishes
the desired results under the rank-2 case, while the second part further extends the results

to the general rank case.

Part 1: Proof for the rank-2 case. For the rank-2 case with strongly orthogonal factors,
since the technical arguments for the inference of wj and w} are similar, for simplicity we
will present the proof only for u} here. When we use the initial estimates (u, uz, v1, 2)
satisfying Definition , by Lemma 4| the first-order Taylor expansion of ¥, (uy,my) at ny is

given by

U1 (@, ) = O (G, 1) + (—n 7' XY — @f S My) (I, — ojvi”) exp,! (@)
+ (n MLXTY — i i M;) (I, — viv3”) exp,! ()

-+ (—Mgi — 2Mgv§u§T§ + n_l].\/.[gYTX) ('ljz - ’U,;) + ’r'vf + Tug + ’l"vg,
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where the Taylor remainder terms satisfy that

T,,*
174

2 = O(|[ty — u3]f3), [Iros

2 = O(|| expy; (B1)I[3), [I7ug 2 = O expyg (9a)[2)-

Moreover, when the construction of M = [M;, My, M3] is given as
M, = — (@' Sa,) 'Susvl, My =0, M; =0,
it is immediate to see that

Ur (@, ) = Un (@, m7) + (—n 7 XTY + Sa0] ) (1, — vjvi”) exp, ! (@)

+ ’r'uf + ’rug + 'r"vé‘ . (A120)

We aim to bound the difference between ¢, (@, 7;) and ¥, (@, ), which will be divided

into two parts.

(1). Upper bounds on || exp,: (01)l|o, || expy: (91) 2, || expy; (¥2)]lo, and || expy; (v2)]fo.
Denote by & = exp;i}(ﬁl) the tangent vector, so that exva(Sl) = v;. Since 1y =
O(||€1113), if & = 0 we need only to bound term 7,z + r; in (A.120) above. Without loss
of generality, let us assume that & # 0. Observe that the g-dimensional tangent vector
&1 € Ty St(1,q), where T St(1,q) is the tangent space of the Stiefel manifold St(1, ¢) at
v}. Then from Lemma [3I]in Section [H.2] we have the explicit form of the corresponding

geodesic

At 0%, 61) = 07 - cos((fEalat) + - - sin(|€alaf).
1&1]]2

Hence, in view of the definition of the exponential map in (A.245)) in Section it holds
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that

’51 = eXpUT (61) = ’7(1a v;sl)

— v - cos([€la) + T2 - sin([&1]1). (A121)
e

Moreover, we claim that sin(||&;]|2) # 0 when & # 0. Otherwise, if sin(]|&;|]2) = 0 it
implies that cos(||£1]]2) = £1 and then ¥, = +v} by (A.121). When ¥; = v], we have
& = 0, which is a contradiction. On the other hand, if v; = —v}, we have ||[v; — v]|]2 =
I2v5|l = 2. Then v; is not a consistent estimator of vj, which is a contradiction to

Definition [2} Thus, we have that sin(||&;|2) # 0. Then it follows from (A.121) that

&l

= (v; — v} cos y ) A.122
El ( 1 1 (H€1H2)) Sln(l|€1H2) ( )
Since [|&1]|2/ sin(]|&€1]]2) # 0, we can deduce that
1€1]lo = [[v1 — v7 cos([[&1]l2)[lo = [[(v1 — vT) + v (1 — cos([[&1]2))|o
< [Jv1 = vilo + [log (1 — cos([|€1][2))]]o
< (" + sy + Sy), (A.123)

where the last inequality above follows from Lemmal6 in Section and [|vf|lo = sp.
We next derive the upper bound on ||&;|]2. Since & € T: St(1,q), from (A.252) in
Section we see that v;7¢; = 0. An application of Lemma 3 in|Chen and Huang (2012)

leads to

€11l = O(|lv1r — vil[2).
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Together with Lemma [6] it yields that

1€1ll2 < cllDr = villz < e(r* + sy + 5,) 07 {n~ " log(pg)} 2 /d3. (A.124)

Further, applying similar arguments to & = expggl(ﬁg), we can obtain that

lexpys (@2)[lo < (" + 50 + 50), (A.125)

lexpy; (D2)ll2 < (™ + s, + 5,) 205 {n~" log(pg) }/? /. (A.126)

(2). The upper bound on \aT\Aﬁl (1 (@, 1) — ¥ (@1, m7))|- By the Taylor expansion

of 1y (g, ) in (A.120), it holds that

1@ W (41 (T, ) — 91 (@, m7))] < |aT W (—n ' XTY + Sa9% ) (1, — vijoiT)é|

+ |aTW1(rv; + Puz 4 Tz )

. (A.127)

Let us first bound term |a? W (—n XY +Sa,97 ) (I,—vv:T)€,|. Notice that n ! XTY =

Suivi? + Suivy” +n'XTE. Along with v;Tv? = 1, it gives that

(—n'XTY + Su,00 ) (I, — viviT)
= (—SuwvT + B! — uwiviT) — n ' XTE)(1, — vivT)

= (Z(U2v; — wjvs") — n ' XTE)(I, - vivi").

Denote by A = i(ﬂgﬁg —uivil) — n IXTE. Tt follows that

1aTW,(—n ' XTY + S0l ) (I, — vivT)éy| = [ WA, — vivT)g | (A.128)
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Recall that Wl = é{Ip + (511 — 522)_126265}, where %/11 = ’lj{i’ljl and g22 = ’ljgi’ag
Denote by @w! = 87{L, + (Z11 — Z2) ' Sw,al'} the ith row of W, for i =1,--- ,p. In light

of Lemma [§] in Section it holds that

max l|lw;llo < 2max{smax, 3(r* + s, + s,)} and Imax |w;||2 < c. (A.129)

Then we have that

[ AL, — vivi)é| < |[wln ' XTE(I, — viviT)&|

+ W] Bt — wpvy")(I, — viviT)é . (A.130)

For the first term on the right-hand side of (A.130]) above, it follows from the sparsity of

vy, and &; that

]ﬁfn_lXTE(Iq — UIUTT)&] < IQTJ;Fn_lXTE&] + ]ﬁfn_lXTEvIva€1|

< @/ n ' X Els[&1 2 + | n T XTE[|y[[vivT & )2

2,8

< 2|lw]n ' X E|l2,|& 2, (A.131)

where s = ¢(r*+s,+s,) and the last inequality above is due to ||[vivT& |2 < ||Jvf]2|viT€| <
|€1]]2 for |lvi]lz = 1. Note that here, for an arbitrary vector X, ||x[|3, = max|gj<s > ,cq %7

with S standing for an index set.

From (A.129) and the fact that n 7! ||XTE||max < c{n~'log(pg)}/?, it holds that

1 7™ X B ax < |31 [0 X B |nax

< emax{smax, (1" + su + 5,) }'/*{n""log(pg)}'/>.
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Then it follows that

[0 0~ X E|l2,s < cmax{smax, (r* + sy + 50)} 25" + 5, + 5,) 2 {0 log(pg) } /2,

which together with (A.124]) and (A.131)) entails that

@i n ™ XTE(I, — vjv" )&

< emax{Smax, (1" + s, + sv)}l/Q(T* + 8, + sv)ni{n_l log(pq)}/d;. (A.132)

We next bound term |wTZ(u2'U2T — wviT) (I, — viv;T)&; | on the right-hand side of

(A.130) above. Observe that

1305 — uso3")ls < (2@ — ug)o3" |2 + | S (T2 —03)" >
< NB(wy — ) 2flvzll2 + (B |2]|vs — vyl

< (1 4 sy + Sy) 1/2 2 {n 1log(pq)} /2,

where the last inequality above uses [[vf]|» = 1 and Lemma [ It follows from (A.124) and

|lvi]lo = 1 that

1T, — vivi )&z < [[&llz + [[vjviT&l2 < 2)|& |2

o(r* + sy + 50)?n2 {n " log( pq} /d*
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Together with (A.129)), it holds that

@] S (w0) — wpvy”) (I, — vivi)&| (A.133)

< w2 E(@ovg — ubvy")[|o] (L, — vivi" )&

<c(r* + s, + sv)nﬁ {n’l log(pq)} /d;. (A.134)

Combining (A.130)), (A.132), and (A.133)), we can obtain that

|iuViT3(Iq —viviN)E| < emax{sV2 (1 + s, 4 5) Y2, 2} + 54 + so)n2{n " log(pq)}/d.

max’

Applying (A.129) again results in

max [@] A(L—vivi")&| < emax{si, (r+suts,) 2 (" Fsutso)n {n log(pa)} /d3.

1<i<p

Thus, for each vector a € RP we have that

"W, A1, —viviD)é] < lali[WiAT, — 05017 || mas

1/2 ~T X
< lallg”lall: max & A(1, - vivi")&|

< cllally alla max{syl, (7 + su +5,)2 2} + sy + s )mp{n~" log(pa) }/d}. (A.135)

max’

above. Let us recall that the Taylor

It remains to bound term |aTW1 (Por + Tuy + 7o)

remainder terms ryr, yz, and ry; satisfy that

I7o; |2 = O(l expy; (©1)[5), Irusll2 = O[22 — u3[l3), [[7us]l2 = O(]l expy; (w2)ll3).
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Based on Lemmathat ||aT\A7\71H2 < c\|a||(1]/2||a,||27 from (|A.124)) we have that

"W iry: | < [ Wi [a]|re

2

< cllallg®|lalla(r + s, + s,)ms{n " log(pa)}/d;.

and |aTVNVl'r1,; |. In view of Deﬁnition

Then we apply similar arguments to |aTW1ru§

and (A.126]), it holds that

@y — w33 < e(r* + sy + s,)ma{n " log(pq)},

lexpy; (D)3 < e(r” + su + su)n,{n" log(pg)}/d5”.

Similarly, we can show that

> < cllally*lallo(r" + su + s,)ms{n " log(pa)},

"W irgs| < @ Wil|2 |7

> < cllallg®|alla(r* + s, + s,)ms{n " og(pa)} /d5’.

[aTWiry; | < [|aTW|a]|7s

Since the nonzero eigenvalues d;? are at the constant level by Condition , it follows that

’aTwl(Tv; + Tyuy + 7‘1;;) < |GTW1TU;| + |aTW17‘u; + \aTWﬂ“v;

< cllall?alls(r* + su + so)n {n " log(pg)}- (A.136)

Combining (A.127)), (A.128), (A.135)), and (A.136]) yields that

‘aTwl(&l (w1, M) — Jl (w1, my))]

< cllafli*lallo max{si/Z, ( + s, + )" 02} + su + 5.2 {0 log(pg)}.  (A.137)
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Thus, for a € A={a € R?: ||aljp < m,||al|s =1}, we can obtain that

|@"W (¢ (@, 1) — 91 (@, 77))]

< em"? max{sf2, (1" + su + 5) V220" + s+ s )2 log(pg)},  (A.138)

which completes the proof for the rank-2 case.

Part 2: Extension to the general rank case. We extend the results using similar argu-

ments as in the first part. For the nuisance parameter n, = [v{, -+ ,vL, ui, -, u}_;, ui,,

,ul,]7, it follows from the definition of ¥y (wus, M) that

r*)

oL oL
ou Man,

oL oL w OL
—a_uk‘( oy T MG, T2 Jav> (A139)

1/% (’UJk:, "7k)

By Proposition , we see that MY = 0 and M} = 0 for j € {1,---,r*} with j # £,
which means that we need only to consider v, as the nuisance parameter. In light of the

derivatives (A.105) and (A.106)), we can deduce that

~ oL oL
= M
Vi (wr, k) Dy kDo,
= Suy, — n ' X Yo, — MY (vpul Suy, — n YT Xuy). (A.140)

For arbitrary fixed Mj, we can see that @Zk(uk,nk) is only a function of u; and vy,
which means that we need only to do the Taylor expansion of {Ek(uk, M) with respect to

vg. Similar to the proof of Lemma [4 in Section [G.4] we can obtain the Taylor expansion
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of P (uk, %)

.
Qe ) | (1 e exp, ! (ve) + Ty,

Ui (wr, M) = s (ug, mp,) + ovT "

where the Taylor remainder term satisfies that
1707 [l2 = O(]l expy! (v [3)-

From (A.140)), it holds that

a&k (g, i)

_ —1~T T v
’Uk 'Uk

Then by Proposition [2| that M, = —z,;,jic_k and the initial estimates in Definition 2, we

have that

?Zk(’ak, M) — {/;k(ﬂ'k: M%)
= (—n'XTY + ié,k)(lq —vivy") eXp;Z1 (Vk) + 7o
= (2(C_p — C*,) — n ' XTE)(1, — viv}T) exp, ! (Tk) + Ty, (A.141)

where we slightly abuse the notation and denote the Taylor remainder term as

I7o; |2 = O] expy: (B0) ).
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We next bound term aTWk(sz(ﬂk, M) — Jk(ﬂk, 1;)) above. Observe that

"W (5 (T, k) — (8, 7))

< |a"Wi(B(C 4 — C7}) — n ' X"E)(I, — vjv}") exp,! (B)

By Lemma |13 in Section |[G.13] it can be seen that
IS(Coi — C e < (™ + s, + 5,)202 {n " log(pg) } 2. (A.142)

Denote by wj; the ith row of W, for i = 1,--- ,p. By parts (a) and (b) of Lemma [14]in

Section |[5.14] we have that

max ||wy.illo < 2max{smax, 3(r* + s, + 5,)} and max ||wy,|2 < c. (A.143)
1<i<p 1<i<p

Using similar arguments as for (A.125)) and ({A.126]), it holds that

lexpy! (@) lo < (™ + su + 50), (A.144)

lexpyt @)ll2 < el + s+ 5,)" 02 {0 log(pg)} /2 /d. (A.145)

Based on results (A.142)—(A.145) above, we proceed with following the proof for the

rank-2 case. With similar arguments as for (A.131)) and (A.132)), it follows that

wkz “IXTE(L, _UZUZT)GXP;;I(%N

< Cmax{smax, (T* + Sy + Sv)}lﬂ(r* + Sy + Sv)ni{nil log(pQ)}/d;
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Further, similar to (A.133)), we can deduce that
B B(Co — C (I, — i) expy (8] < cr” + s+ s, {n " log(pg)} /i
and

" Wi(3(C i — C7)(I, — vjv;") exp,! (B

< cllalY?alolr + 5. + s,)7t {n " log(pa) } /. (A.146)
Thus, similar to (A.135]), combining the above results gives that

‘aTWk(fJ((NJ_k — ¢, - XTE)I, — viv)T) expgg(ak)‘ (A.147)

< cllallg?[lallamax{slZ, (" + su + 50)" /2 02" + 5, + 5,)02{n " og(pg) }/dj.
Moreover, an application of similar arguments as for (A.136]) shows that

< clla)ly?lalla(r* + s + so)t{n " log(pq)}/d;2. (A.148)

|aTWkT‘vz

Under Condition 4] that the nonzero eigenvalues di? are at the constant level, combining

the above results yields that

|@T W (Vi (e, ) — (T, 1)

< cllally*lall max{siZ, ( + s, + )" 02} (0" + s, + 520 log(pa)},  (A.149)

which completes the proof of Lemma
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G.6 Lemma [6] and its proof

Lemma 6. Assume that Condition holds and C satisfies Definition @ Then with proba-
bility at least 1 — 6, , , with 6, ,, given in (L0), we have that for all sufficiently large n and

each k=1,--- 1",
(a) [[7x — vill2 < evudi ™, Ndi @ —v) 2 < cvny Sy (@i — ) llo < 30" + 50+ 50):
(b) [Buills < cdi, [|Sells < cdf, |2 (8 — uf)ll2 < ey
() Bk — 254l < cmdi, [ — 2 | < omdi ™, ol ™ < edi 2, Bl < ed

where v, = (r* + 8, +5,) 02 {n""log(pq) } /2, Zix = ﬂ{iﬂk, 25 = uzTiu}z, and ¢ is some

positive constant.

Proof. We first prove part (a). In view of Definition , it holds that

|dxvr, — djvilla < ¢y, and |dy, — di| < ey,

where 7, = (7" + 5, + 5,)?n2{n""log(pq) } /2. Observe that di (v, —v}) = (&;ﬁk —divy) +

(dy — dy)Up,. Since ||0g||2 = 1, we have that

1 (@ — o) |2 < ||dir — diwillo + |d — di[Tkll2 < -

Since the true singular values dj # 0 for each k = 1,--- ,7*, it follows that

1o = vill2 < evn/dy.
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Also, by Definition [2] it holds that

*

D lde(@e = vp)llo < > Idi®r — divillo + > I (di — di)w|lo
k=1 k=1

k=1

< Nk — divillo + > llvgllo
k=1 k=1

< (r* 4 sy + Su)[L + 0o(1)] + sy

< 3(r* 4 sy + Su)-

For part (b), let us recall that u; = djl;. Since ||If||o < s, and [|l;]|2 = 1, it follows

from Condition [2] that
IZuillz = dil| 28|z < pudillii]ls < cd;.
From Definition [2| we can show that
|, —upllo < (r" + sy + sp)[L +0(1)] and ||u, — up|l2 < cvyn.

Moreover, by [|uj|lo < s, and [|u}|l2 < df for sufficiently large n, and Condition |3 that

v, = o(d%.), it holds for u; that

[wkllo < llwk — willo + lugllo < (" 4 su 4 50)[1 + 0o(1)] + 50 < 3(r" + 54 + 50),

laiell < [ — il + oo < eds.
Then it follows from Condition 2] that

158> < pullalls < edi and [|B(@ — wp)l2 < pulltie — il < e
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For part (c), using part (b) of this lemma and Definition [2 we can deduce that

Zok — 2| = [ S, — up Sy
< [l S (@ — ul)| + (@ — up) Sug)
< gl Z (@ — up)ll2 + [[ar — wpllz ]| Sug

< eyady. (A.150)

Note that

~T *T Y, %
up XU, — uy DU

=~ *
Fkk T Fkk| _
ul Yuy - ui Xu;

Zkk * 2

Zee — Zhe | =

By Condition , we have that d;2p, < w;TSu; < di2p,. Then it follows that
2| = i S| < ] < odi

Together with ((A.150)), it yields that

ST *T Y ) )%
u, XU, — U U,

w TSl (wTSu; + o(1))

Zow — e | < < cYady .
Furthermore, by 7*v,, = o(d?.) in Condition , we have for sufficiently large n it holds that

Zen | < lzi |+ 12 — 2 | < edy ™.

This concludes the proof of Lemma [6]
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G.7 Lemma [7] and its proof

Lemma 7. Assume that all the conditions of Theorem[]] are satisfied. Then with probability

at least 1 — 0, , 4 with 0, ,, given in , it holds that for all sufficiently large n,

|25 — 255l = ¢, Yo Lzl = o) = ol|z; — 25)),
1<I<r*, I#k
2 — 235 = ¢, > Ful =00 ) = o( |7 — Zl).
1<I<r*, I#k
where ¢ is some positive constant and i, j, k € {1,--+ ,r*} with i # j.

Proof. We will first show that |2} — 27;| > ¢. By Condition [2| and the sparsity of u; = d;I;

171

we see that di?p; < z; < di?p, and d*p; < 27; < d}?p,, which lead to

di?p; — d;@,ou <z — 2 < di?py — djzpl. (A.151)

In light of Condition [3] we have d;?—d;?, > 0,d;? for some positive constant &; > 1—(p;/py)
with 1 <4 < r*. Since p;, p, are positive constants, there exists some positive constant cg

such that 0; = 1 — (p;/pu) + o, which further entails that

dle)z - dﬁ-lpu > Copudf2 > ¢, (A.152)

where the last inequality above is due to Condition [ that d; is at a constant level.

If i < j, we have i + 1 < j so that d}7, > d;*. This together with (A.I51]) and (A.152)

shows that

Z — 25 2 d?pr — d}k-zpu > dp — d7pu > c
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If i > j, using similar arguments we can obtain that z7; — 23; > ¢. Thus, for ¢ # j it holds

that

Z*

i

-zl >c (A.153)

We next bound term z;; — zj; above. By part (c) of Lemma |§| and Condition {4 that d}

is at a constant level, we can deduce that

(i = Z35) = (255 — 2i)| < |2 — 23l + 1255 — 255 < e,

where v, = (r* + s, + 5,)?n?{n"'log(pq)}*/%. From the assumption of Theorem [I| that
m'?k, = o(1), we have 7, = o(1). Together with (A.153)), for all sufficiently large n it

follows that

Zi — 2| 2 |2 = 25 = 1(Ga = 235) = (25 = 25) > e (A.154)

i J

Now we analyze terms » )i« ;2 2| and D0, cpn 1y [25]- From Condition , we

have that

>zl = o). (A.155)

1<i<r*, l£k
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Moreover, it follows that

T — 2l = S — u S| < S (W - w)| + (G - up) S|
< |l E (@ — w2 + [t — wgll2] S 2

< e(r* + su + 5,){n log(pg) }?, (A.156)

where the last inequality above is due to part (a) of Definition 2] part (b) of Lemmal6] and

Condition [4] that dj, is at a constant level. Then for sufficiently large n, it holds that

Bl < [zl + 2 = 2l < c(r + su+ 50) i {n” log(pg) }2,

which further yields » 0, ;. . |2l = O(r*v,).

Let us recall the assumption that m'/%x, = o(1) with

fin = max{s/2 (1" 4 s, + 5,)Y2, 21" 4 54 + 50)07 log(pq) /v/n.

It follows from 7, = (r*—+su+5,) 272 {n"log(pq) }'/ and (r*+s,45,)/? < max{sse, (r+

su+s0)!/2, M5} that

m!'2(r* + sy + $,)v/10g(pa) v = o(1), (A.157)

which further leads to

Y. Ful=00"7) = o(1).

1<i<r*, £k
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Therefore, along with (A.153]), (A.154), and (A.155)), it yields that

Y lml=ollzh—2l) and Y [Zul = o7 — %)),

1<i<r*, £k 1<i<r*, l£k

which completes the proof of Lemma [7]

G.8 Lemma [§ and its proof

Lemma 8. Assume that all the conditions of Theorem are satisfied. Let Wl = (:){Ip +
(11 — Zo0) ' Swoul’} and Wi = @{Ip + (2 — 23) ' SwswsT}. For an arbitrary vector
a=(ay, - ,a,)" € RP, with probability at least 1 — 0,,,,, with 0,,,, given in (10), we have

that for all sufficiently large n,

(a) maxj<i<p ||w!|lo < 2max{smax, 7" + Sy + Su},
maxlgigp H’lﬁlno S Zmax{smax, 3(7’* -+ Su + Sy)},

maxi<i<y [|[w; — wyllo < 3(r" + sy + 8y);

(b) maxi<icp [|w] |2 < ¢, maxi<i<p [Jwill2 < ¢,
maxi<icy [|W; — wjlla < c(r* + s, + 5,)" 07 {n" log(pg) }/?;
1/2 %7 1/2
(o) [la™Will> < cllalls”|all2, |[a™Wi ]2 < cllally?[al-,

[aT(W1 — Wi)|l2 < e(r* + sy + 5,) /202 {n " log(pg) }/*||aly*||alls,

where w! and w;T are the ith rows of \7\71 and W7, respectively, with i =1,--- ,p, and c

18 some positive constant.
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Proof. 1t is easy to see that

P p
la" Wills = 1Y aiwi"lls < faal - [l
=1 =1

< 1 < lal|/? *
< Jlall e iz < llallyllalls o [l o (A.158)
Similarly, we also have that
la" Wi ll2 < llally|lall> max [, (A.159)
1<i<p
A7 * 1/2 ~ *
la" (W1 = W1)[l» < [lalls” el max f|w; — wj .. (A.160)

Then it can be seen that once parts (a) and (b) of this lemma are established, the results

in part (c) can be obtained immediately with the aid of (A.158)—(A.160). Thus, it remains

to prove parts (a) and (b).

We begin with proving part (a). Since w;T is the ith row of W%, we have w;T =
67 {1+ (2}, —25) " SuiuzT}, where 87 is the ith row of ©. Noting that 67 (2%, —z3,) ' Su}
is a scalar and ||u3||o < s,, we can deduce that

1H<12a<}§) H(é\;r(ZiKI - 252)_1211,;) ’ 'U';THO < “'U';HO S5 < rt+ Su Tt Sy

From Definition , we see that max;<;<, HGAPZHO < Smaz. Hence, it follows that

max [|w|o < max [|6;]lo + [|u5]lo < 2 max{smax, 7" + Su + v} (A.161)
1<i<p 1<i<p
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Observe that w! = af{lp + (Z11 — Z22)~ Eu2u }. By Definition l we have that
[usllo < [Jusllo + [Jws — uzllo < 3(r" 4 su + 50).
Then an application of similar arguments as for leads to
max ||w;|lp < max ||9 lo + [|@2]lo < 2max{smax, 3(r" + sy + ) }-

1<i<p

Further, we can show that

max |w; — willo < Inax 1(6F (211 — Z20) "' Sto) - s — (OF (25, — 28,) "' Sud) - uiT|o
< max |[(67 (Z11 — Z2) "' Sa) - (U — i) o + [lusl [0
1<i<p

< Jlug = wullo + flusllo < 3(r" + sy + 50),

where the last step above is due to Definition . This completes the proof for part (a).
We next show part (b), which consists of two main steps. Since Condition 4| is satisfied,
the proof below will exploit the fact that the nonzero eigenvalues d;? are at the constant

level.

(1). The upper bound on max;<;<, ||w}||2. Let us recall that

*
S
)

; {Ip + (211 — 252)_12"‘;“?}‘

Under Condition [2} it follows from part (b) of Lemma [6] and [[u}||s = dj < ¢ that

|Zugus” 2 < ([ Suslslus o < c.
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Also, under Conditions 24 Lemma[7] gives that |z]; — z3,] > ¢. Then we can obtain that
(211 = 235) " Bugus’ [l < [25) — 25| | Busus’ 2 < e.

Together with Definition (1| that max;<;<, ||§l||2 < ¢, it yields that

< x \—1, *_ xT <
max fJwy]l; < max ||6’||2+1H§1aX 10: 1211 (251 — 232) ' Suguz"|l, < c. (A.162)

(2). The upper bounds on max;<;<, ||w; — w}||>» and max;<;<, [|w;||2. From Definition

that max; <i<p 16:]|> < ¢, we have that

max ||; — wil> < max [16:]a]|(Z1 — Z) ™ Stnu — (e — 25) " Sugup |l
< ell(Fur — o) "' St — (=) — 23) " Sy’

< |1 — Zao) T (Sotty — Suduyl)|s

+cf|[(Zin — Z22) 7 = (251 — 230) B usus” o

We will bound the two terms introduced above separately. It follows from part (b) of

Lemma [f] and part (a) of Definition [I] that

1Szl < [|Sullo s < e,
1St — Susus” s < 1S — up)us” | + || S, — up)",

c(r* + s, + 8,) 02 {n " log(pq) }/2.
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Lemma [7] implies that |2]; — z3,| > ¢ and |Z1; — Zae| > ¢. Further, it holds that

(i1 — Z02) 7 — (211 — 235)
1 (Z11 — Z22) — (211 — 239)

25 — 239 (211 — 239) + (211 — Z22) — (2]) — 235) '

In view of part (c) of Lemma [6] we have that

|(Z11 — Z22) — (217 — 250)| < |21 — 21| + [Z22 — 23|

(" + sy + 5,) 02 {n" log(pq) }/2.

Together with |2f; — 23, > ¢, for sufficiently large n it holds that

S (Z11 — Z22) — (2] — 239)

~ ~ \—1 * *
21—z — & — 2
(211 — Z22) (211 — 232) (231 — 239)% + o((271 — 232)?)

o(r* + su + 5,) 2 {n” log(pa) }/2.
Combining the above results gives that

max [[@; — w;[l> < e(r* + su + s0)' i {n " log(pg) }'/% (A.163)

Therefore, using (A.162)), (A.163), and the triangle inequality, we can obtain that for all

sufficiently large n,
max [|w; |2 < max ||w; |2 + max sz w2 <,

1<i<

which concludes the proof of Lemma [§]
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G.9 Lemma [9 and its proof

Lemma 9. Assume that all the conditions of Theorem are satisfied. For 5 defined in

(A.5) and an arbitrary a € RP, with probability at least 1 — 6, ,, we have that

1a"W181| < cllalls?|all2(r* + su + st {n " log(pg)}

where 0, ,, is given in (L0) and c is some positive constant.

Proof. Notice that

1aT"W,8,| = |a" W 2 S0t {(@) — v))al — (Bal — vius?)} S(a, — u))|
< |a" W1z S, (31 — of)|[a] Bt — u))|

+ 1a" W1z Sttt (vaal — viu S (U, — ul)l.

We aim to bound the two terms introduced above under Condition ] that the nonzero

eigenvalues d;? are at the constant level. For the first term above, it follows from Conditions

24 that

@TW 2 S0,07 (0, — o)) [al S(a, — ul)
< 25 [|la" W |2 | |2]|02]]2]|v1 — vi|2]|t 2] E (w1 — uf)|ls

< cllallg?alls(r* + 5. + o)t {n " og(pg)} (A.164)

where we have used Definition [ with ||Ds]]2 = 1, ||[@a]|2 < ¢, parts (a)—(c) of Lemmal6] and
part (c) of Lemmal§]

For the second term above, let us first bound ||wv] — ujv3T||o. In light of part (a) of
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Definition [2] and part (a) of Lemma [6 we can deduce that

w20 — usvs” ||a < [[(B2 — ud)vy" |2 + || U2(v2 — v3) "2
< g — w3 |o]|vsll2 + [|ug|l2]|ve — v3 o

< e(r* + s+ 50202 {nlog(pg) } 7.
Then similar to (A.164]), it holds that

1aT W12 Su,07 (D) — viuD) S (w — u?)]
< [Z5H1@T Wy ||| St ||| Ta] |20 — wiviT |2 S (@ — ul)|.

< clallyllall2(r" + s, + s.,)ns {n~" log(pg)} .
Thus, combining the above results yields that
@ Wi81| < cllafg”[lalla(r" + s + o) {n " log(pa) }
which completes the proof of Lemma [9]

G.10 Lemma [I0] and its proof

Lemma 10. Assume that all the conditions of Theorem are satisfied. For Ml =
I Sl Wy = (:){Ip + (Zi — Z20) " 'Swal}, and an arbitrary a € RP, with prob-

ability at least 1 — 6,4 with 6,4 given in (10), it holds that
" WiM 3" S| = of Jalflalon /%),
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Proof. Recall that M; = —Eﬁliﬂﬁ{ . Under Condition || that d}* are at the constant
level, parts (b) and (c) of Lemma@show that ||Saslls < ¢ and 37| < ¢. Since [|Ua]ls = 1

due to Definition [2| we can obtain that
IMils < |12 Eae0] |2 < |27 [|Zws|2]| 022 < e (A.165)
It further holds that

" WMoy Suf] < [l W ol M oo ooy S|

1/2 * TSy
< cl|a|§?||all2)tyT S0, (A.166)

where we have used |[a”W;||s < c||a||é/2||a||2 in Lemma , 3]s = 1, and |ui?Sui| <

c]lngllﬂ. Therefore, under Condition {4 we have that
|a" WM v3us" Sl = of laflg* |allzn ).
which concludes the proof of Lemma

G.11 Lemma [11] and its proof

Lemma 11. Assume that all the conditions of Theorem[l] are satisfied. For €, defined in
(A.4), hy defined in (A.11)), and any a € A = {a € R? : |lalo < m,|lals = 1}, with

probability at least 1 — 0, , , it holds that
| = a"Wae — /] < em 20+ su + 50) Vo {n” log(pa)

where 0,,, 4 is given in (L0) and c is some positive constant.
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Proof. Observe that

| —a" W& — hi/Vn|
<n ' a"W, M E"X@; — " WMIE"Xu!| + n~'a” (W, — W)X Ev}|
< n ' a" WM ETX (@ — u})| +n Y ("W, M, — a” WM E"Xuj|

+n e (W, — WHX Ev?. (A.167)

We aim to bound the three terms introduced above separately. Let us first show that
a”W; M, aTwlﬁl—aTWfM’{, and aT(Wl—WT) are all s-sparse with s = ¢(r*+s,+s5,).
Recall that M = — %' 8,07 and M} = — 257 Sugvi”. It follows from part (b) of Lemma

6] and ||vs]jo < s, that

[aTW M, ||, = [|Gila” WiEl,) - dodl
< |l davallo < [lvzlo + ng(’ffz —v3)llo

<c(r* + s, + 5y) (A.168)

and

|aTW M, — aTWiM;||o < [|(Z1la” WL - ol o + || (217 'aT WiZu3) - 037 ||o

< |da®s|lo + [V3llo < c(r* + su + 50). (A.169)
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Further, from the definitions of W; and W7, we have that

laT (W1 — Wi)llo = [|(aTO©(Z11 — Za0) 'Ss) - 1 — (aTO(27, — 23) ' Sud) - usT o
< Nalllo + [lwsTllo < 2||wsllo + ||as — w30

< (1 4 sy + Sy), (A.170)

where the last step above is due to Definition [2]and ||u}||o < s,. Hence, combining (A.167)-

(A.170) leads to

| — a"W1& — hu /| < [|aTWi oMy [lo]n ' ETX (1, — u?)

2,5
+ la” WM, — a" WMo ||ln ' BT Xut||.
+ @ (W1 — W)l |ln ' X Evf |2,
=: A + Ay + As. (A.171)

We will provide the upper bounds for the three terms Ay, As, and A3 introduced in (A.171|)
above separately.
We start with bounding n™' |[ETX (w; — u})|l2s, n 7 | ET Xul|l2.s, and n7 | XTEv}o.s.

From n™ | X"E||max < c¢{n"'log(pqg)}'/? and Definition , we can deduce that

nTHETX (@ — ) lmax < 07 B X a1 — wills

< 0B X el |81 — i [lo @ — w2 < e(r* + su + s )m {0 og(pg)},

B X s < 17 BT X a5 6 [0 ]2 < esy/*{n " log(pg) }/d5,

X ES] o < 07X E 05 0 [[05 12 < es/*{n " log(pa)}/2.
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Then it follows that

nHETX (@ — u)llas < sV ETX (@ - ) e < es¥ 0 {0 log(pg)},
n | E Xujlas < es'/?s/2{n " log(pg) }'/?d;,

n! HXTEv’lk ll2.s < csl/2si/2{n_1 log(pq)}1/2.

Using part (c¢) of Lemma 8] ||allg = m, and ||a||» = 1, we can show that

laT W[5 < em'?,

la” (W1 — W)|l2 < em'2(r* + s, + 5,)Y 20 {n " log(pg) } /2.

Further, for M; = —2;' St,07 and M = —z17 ST, it holds that

1Mo < 15 S0l o < 20| S0s2]|Dall2 < edi2d3,

IM; o < [l Subos” |2 < |2 1Zus]lallvslle < cdi~?d3,

(A.172)
(A.173)

(A.174)

(A.175)

(A.176)

(A.177)

(A.178)

where we have used the results in parts (c) and (d) of Lemmal[6] Hence, combining (A.172)),

(A.175)), and (|A.177)), for term A; above we can obtain that

Ar = [|aT W ||| ML ||o][n ' ETX (@1 — u)) 2.6

< em*?(r* + sy + 5,)* 202 {n"og(pq) }dyd; 2.
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With the aid of (A.174]) and (A.176)), it also holds that

Az = [|aT (W, — W) [lo]ln X Ev;|s,s

< emM?(r* + s, + 5,)* 202 {n " og(pq)}. (A.180)

It remains to bound term A, above. From Lemma [f] and [|vj]|2 = 1, we see that

[Subvy” |2 < || Sus|fa|[viT |2 < cds,
1Z8:07 — SubvsT[ls < S (@ — ub)|lallvsT [l + | S| (@2 — v3) 7|2

c(r + su + 5,) 2 {n " log(pg) }2.

Together with the upper bounds for |Z;;'| and |Z;' — 27| in Lemma @ it holds that

M — M2 = |57 807 — 27 ' Suivy’ |,
< Bl — SupopT | + 170 — 2 |1 Zusvs |

(1 + sy + 5,) 02 {n" og(pg) Y2 d 2, (A.181)

Then a combination of (A.175), (A.176)), (A.178]), and (A.181]) results in

|aTW M, — a’WiM;||; < [|[aTW (M, — M})|ls + [|(a” W, — a"W7;)M;]|s
< @™ Wi o] My — M|z + [la” (W1 — W7)||2]| M |2

< em?(r* 4 sy + 5,) Y202 {n " log(pg) Y2 di 2. (A.182)
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With the aid of (A.173]) and (A.182), we can deduce that

Ay = ||a” WM, — a” WiM;||o||[n ' ET Xui|o.

< em'P(r* + s, + 50) 02 {n" log(p) }di (A.183)

Therefore, combining (A.171)), (A.179), (A.183)), and (A.180]) yields that

| — aTwlgl — hi/v/n| < cml/Q(T* + 8, + SU)?’/Qni{n_l log(pq)}di_l. (A.184)

Furthermore, under Condition [4] that df is at the constant level, we have that

| — aTW & — hi/v/n| < em (" + s, + 5,)* 02 {n" log(pg)},

which completes the proof of Lemma |11}

G.12 Lemma [12] and its proof

Lemma 12. Assume that all the conditions of Theorem [1| are satisfied. Then for each
given k with 1 < k < r*, with probability at least 1 — 0,,,, , with 0,,,, given in (L0), both
L1 — E,;klﬁifkflﬁ_k and L — z,:;lUiT,cflUik are nonsingular. Moreover, Wy, and Wi

introduced in (A.18]) and (A.20)), respectively, are well-defined.

Proof. We will first analyze matrix L.-_; — nglﬁ:fkflﬁ_k, which is equivalent to analyzing
the nonsingularity of matrix A =: Zy L1 — ﬁfkiﬁ,k For simplicity, denote by A =

(a;) € RUT=DX0"-D with .5 € A= {1 < ¢ <r*: ¢ # k}. It can be seen that for each
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1,] € A,

Zrk — 2ii if 1 =7,

—zy ifiF g

From Lemma , we have that > ., . |ai;| = o(|ag|) for any i, ¢ € A. Then it holds that

la;| > Z la;;| for alli € A,
JEA, j#i

which shows that A is strictly diagonally dominant. Using the Levy—Desplanques Theorem
in Horn and Johnson (2012), we see that matrix A is nonsingular, which entails that I.«_; —
nglﬁfkiﬁ_k is nonsingular. Moreover, with similar arguments we can also show that
L1 — z,j,;lU*_j;ciU*_k is strictly diagonally dominant and thus is nonsingular. Therefore,
we see that both Wk and W; are well-defined and satisfy the property in Proposition ,

which concludes the proof of Lemma

G.13 Lemma [13| and its proof

Lemma 13. Assume that all the conditions of Theorem[1] are satisfied. For each given k

with 1 < k < r*, with probability at least 1 — 0,4 with 0, ,, given in (10), it holds that

(Ul < edi, |EUS, 2 < edf, |U_glls < cdi, |EU 4] < cdi,

IS(U_ = U2 < vy [1B(Cot = CL)ll2 < evny [1Cok — Cllz < e
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Moreover, for My = —Z,;klié,k and Mj = —zZ;liC*_k, we have that

IMG[l2 < edi™*d3, [IMll2 < edi™%dy, [ My — Myl < eyndy*d,

where ¢ is some positive constant.

Proof. Let us first bound terms Hi\]U*_kHQ and Hiﬂ'_ng By definition, it holds that
1U* llo < [[U*]|o = su. For any vector x € R™ ~1, we see that |[U* ,x||o < s,. It follows

from the definition of the induced 2-norm and Condition [2] that

XU ][z = sup [[EULx[ls <e sup [[UZx]la < U], (A.186)
xTx=1 xTx=1
Since U U*, = D*2 with D*3, = diag{d;?,--- ,d;%,,d;%,,- -+ ,d:?}, we can show that
sup |U*,x|3 = sup x’ UL U*,x = sup x' D*?x < d}?, (A.187)
xTx=1 xTx—1 xTx=1

which leads to ||[U* .||2 < edj. It also implies that ||§]Ufk||2 < cdj.

In view of Definition [2] we have that

Uk = UZyllo < U = U"flo < 207" + 5 + 1),

U, — U lle < U — U [lr < [|U = U*||r < ey

Then using similar arguments as for (A.186)), we can deduce that

IZ(U_4 — U2 < e|U_ = U, [l < .
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Hence, for sufficiently large n it holds that

10 4ll2 < 10— = U gllo + 1U* < cdt,

ISU4ll < S0k = U)o + [ SU s < ed.
For term ||2(C_j, — C*,)|l2 above, it follows that

IZ(Ci — C* )2 = (U VT, — U, V)5
< S0V, = V) o + [E(U_ — UL )V
<NEL4]o)Di(V_g = VE) o + 12U, — U) 2 VL 2. (A.188)

Note that Ijzkf;_k = I. An application of similar arguments as for (A.186)) and (A.187))

leads to

ISL_s|. < c.

For term ||(V_i — V*,)D_;]|2 above, we can deduce that

(Vi = VD ]l < [VoiD_y — V5, D* i |lo + [ V_g|l2|| D_g — D* 15
< | V_iD_j, — V*,D* [|r + [[D_y, — D*, I

< |[VD = V*D*||p + |D — D*||p < 7,

where we have used Deﬁnitionand IV_s|l2 = 1. Along with IV*,]l2 =1 and ||§](ﬁ_k —

U* )2 < ey, it yields that
IB(C = €2z < e (A.189)
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Further, using similar arguments we can obtain that

||6—k - C*—kH? = ||6—k\73g - Uikv*—:,l;H?
<O (Vo = V) 2 + (U = U )V

< NLokll2 Dok (Ve = VI 2 + U = UL 2V l2-

< Yy (A.190)
Observe that M, = —E’“l;klflﬁ_k{ffk and M, = —zzlzlinkV*};. For M, = —El;klflé_k,

it holds that

Ml < 12 IIE0 - V]l < 12 IR0k [Vl

< edi7dy,

where we have used part (¢) of Lemma @, ISU_|l2 < cd?, and ||Vy|ls = 1. With the aid

of similar arguments, we can show that
MG [l2 < cd;~?dy.

For term Hﬁk — M ||2, it follows from part (c) of Lemma @ (A.189), ||§3U*_k,||2 < cdi 4,

and [|[V* |2 = 1 that

MG = M2 < [ — 2 B0 (V2 + |25 IE(Cok = €)1

< cypd; dZ’3.

This completes the proof of Lemma, [13]
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G.14 Lemma [14] and its proof

Lemma 14. Assume that all the conditions of Theorem 1] are satisfied. For an arbitrary
a € R? and Wy, and Wi given in (A.18]) and (A.20), respectively, with probability at least

1 = Oppq with 0,4 given in (10), we have that

(a) maxj<i<p ||w!|lo < 2max{smax, 7" + Sy + Su},
maxi<i<p HQB’LHO S 2max{smax, 3(7’* + S, + S,U)},

maxi<i<p |[w; — wjlo < 3(r* + 54+ 5y);

(b) maxicicy [[w]ll2 < ¢, maxigig, [will2 < c,

maxi<i<p |[W; — wils < c(r* + s, + s0)*n2{n""log(pq) }'/*;
* 1/2
() a™Wi|2 < cllalls*[lalls;

(d) lla” (Wi = Wi)ll> < cllally”[lall2(r* + s, + s.)"/22 {n " log(pq) }'/?

.

A7 1/2
(e) la”Will> < clally”[lall.

where w! and w;T are the ith rows of Wk and Wy, respectively, with i =1,--- ,p, and c

18 some positive constant.

Proof. Similar to the proof of Lemma |§ in Section with the aid of (A.158)-(A.160)

we can obtain immediately the results in parts (c)—(e) once the results in parts (a) and (b)
are shown. Hence, it remains to establish parts (a) and (b). We start with proving part

(a). Let us recall that

W, =6 {Ip + 58U (L — E,;klﬁfkfiﬁ_k)‘lﬁfk} ,

Wi =01, + 21 SU" (1 - 2 U sU ) o L
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Denote by A = (ZL-_; — UL, SU_,)™* and A* = (2,L-_1 — UYSU*, ). Then it

holds that

w! =67 (I, + SU_,AU”,) and w’ =8/ (1, + TU* , A*U*L),

(2

where 87 represents the ith row of ©. Let 67 = 87SU_, A with &; = (8;;). It follows from

IIU*||o = s, and part (b) of Definition [2| that

max ||07 SU_,AUT ||, = max ||5TuT,€||0 = max 1Y sua o

1<i<p < 5o
J#k
< > gl < [Tl < [T = U lo + [T
1<j<r*
J#k
<2(r" + sy + 8y) + 80 < 3(r" + 5y + 5y). (A.191)

Also, by Definition (1| we see that max;<;<, ||§z||0 < Smaz- Thus, it holds that

max lw;]lo < max ||0 llo + Inax ||ATEU AU o

< 2max{ Smax, 3(r* + sy + Su) }-

Similar to (A.191]), we can show that

max HB SU* LA UL o < [U*[|o < $0 < 7 + Su + S0 (A.192)

1<i<p

It follows that

max |w} o < max 18:]l0 + [[U*[|o < 2 max{smax, (r* + su + 50}
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Let us further denote by §;7 = @T f]UikA*. Then using similar arguments as for (A.191))

and (A.192)), we can deduce that

max ||w; — wi|jo < max |07 SU_,AUT, — 67SU* , AU ||,
1<i<p 1<i<p

< max |67 (U_y, — U* )" + (8, — 6,)7U |

1<i<p

< max (|67 (Ui = UZ)"lo + max [I(6; — 67) UL o

1<i<p

< U = U o+ [U*lo < 3(r* + su + 50,

which completes the proof for part (a).

We next proceed with proving part (b), which will consist of two parts.

(1). The upper bound on max;<;<, ||[w]||2. Inlight of Deﬁnitionthat max; <i<p 16:]> <
¢, it holds that

* < A' A'A * s 11
max |w; |2 < Ipax 16:]l2 + gggg;HOzEU_kA U llo

< o1+ |50 || A]|2[[TZ[|2). (A.193)

We will bound term [[A*[|;. Denote by Ay = (A*)™! = 25, L1 — U’ikaJUik. Then
using the technical arguments in the proof of Lemma |12 in Section [G.12] we can see that
Ay = 2, L., — UTSU", = (a;;) is symmetric and strictly diagonally dominant, and

* *

aii = 25y, — 25, @iy = —zj; for each i # j. Moreover, we have that Z#i la;;] = o(]ai]). Let

us define

ar = min(jaz| - > lay]) and ap = min (|a;| — > Jagal).

J#i J#i

Then it holds that a; = @ =< min, |a;| = min;z, |2}, — 25| It follows from (A.151)) and
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(A.152)) in the proof of Lemma [7| that for each ¢ € {1,--- ,7*},

* * *2 *2 *2
Zi = Ziyrin 2 di pr— difipu = Copud;” 2 ¢

22

which entails that zj; > 2, ,;,,. We can further see that

Iln7£111€1 |2pp — 2] = min{|21:—1,k—1 — 2y 12k — ZI:—f—l,k-i-ll} > c.

Since (A*)™! = Ay is symmetric and strictly diagonally dominant, an application of

Corollary 2 in [Varah| (1975) leads to

A"z = [|Ag 2 < oo < cmin [z, — ) <e (A.194)

Also, in light of Lemma (13| we have that

ISU*,||» < edi and ||[U*, |2 < cdi. (A.195)

Hence, under Condition {| that the nonzero eigenvalues d}? are at the constant level and

Definition |1| that max;<;<, 16:]l2 < ¢, combining (A.194)—(A.195) yields that

max |, 35U AU, < {g%||0Ai||2||fJU’ik||2IIA*||2||U’17;;||2 < (A.196)

1<i<p

which further results in

max ||w;]|s < c.
1<i<p
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(2). The upper bounds on maxi<i<, ||w; — wf|l2 and max;<i<, ||w;[|;. For term

maxi<;<, |w; — w;||2 above, in view of Definition |1| that max;<;<, H@HQ < ¢, it holds that

max ||@; — wi||; < max |67 o] EU_,AUZL, — SU*, AU,
1<i<p 1<i<p

< |EU_,AUT, — SU* AU .. (A.197)
Some simple calculations give that

»U_,AUT, — SU* A" U

+ 32U AU, — U, (A.198)

We aim to bound the three terms on the right-hand side of (A.198]) above.
Recall that A = (ZrpL1 — ﬁfkflfj_k)*l. Observe that Ay = A~! = 2,1, —
ijkf]ﬁ_k is also symmetric and strictly diagonally dominant from the proof of Lemma

. Using similar arguments as for (A.194)), we can deduce that
1AL = A ]2 < e (A.199)
By Definition [2| we have that

U = U ylls < U = Uy lp < U = U7 || < ey (A.200)
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An application of Lemma [13|leads to

IZU 4lls < edi, Ul < eds, (A.201)

IZ(U_4 — U%Y)lla < c(r* + 5, + s, )72 {n"  log(pg) } /2. (A.202)

Notice that Condition [4] implies that the nonzero eigenvalues d}? are at the constant

level. A combination of (A.199)—(A.202)) yields that

I(ZU- = XU )AUL > < [[B(U- = UL) [lo[|All2 [T, -

< (1 + 5y + s,)n2{n " log(pg) }'/2. (A.203)

Moreover, it follows from (A.194)), (A.195)), and (A.200) that

IZU*  AS(UT, = U)s < |20, | A% [0k — Ul

< (1 + sy + so)n2{n"log(pq) }/2. (A.204)

We proceed with bounding term ||.X — A*||2 above. From (A.194) and (A.199), we see

that |[A;'||ls = [|A*||2 < ¢ and ||Ag" |2 = ||A]l2 < ¢. Then it holds that

|A— Al = 1A — AgMl2 = A5 (s — Ao)AT

< |AT 2l Ao — Aoll2l| AT 2 < | Ag — Ag]l2. (A.205)
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It remains to bound term ||Ag — ;&OHQ above. Note that

1A — Aglls = | Gial-1 — UL, U ) — (25311 — ULZUS)|

< g — 2] + [[ULEU_, — UL SU ..

In light of (A.195)), (A.200), and (A.201)), we have that

UL, SU_, — ULSU*, |, < |UL.(SU_, — SU) |
+ (UL, — U )ZU, ||,
<UL LIZU0 & — SU*, |lo + U7, — U |5|ZU* I,

< e(r* + s, + s,)n2{n " log(pg) }/%.

Together with the upper bound of |Zxx — 2;,| in Lemma [6] it yields that

140 = Aollz < c(r” + sy + s,)m {0 log(pa) }'/2,

which further entails that

1A — A%l < (" + sy + s, ) {n " log(pa)}/2. (A.206)

For term $U* (A — A*)UZ, above, it follows from (A.195), (A.201), and (A.2006) that

ISU (A = AUL s < |EU7[ol|A = A7[5][ U7, ]

< e(r* + sy + s,)ma{n " log(pg)}'/2. (A.207)
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Therefore, combining (A.197)), (A.198)), (A.203)), (A.204)), and (A.207)) gives that

max [[; — w2 < e(r” + su + s0){n”" log(pg)}*.

Moreover, from the triangle inequality we have that for sufficiently large n,
max ||w;||s < max ||w; — w2 + Iax |lw!]l2 < ¢,

1<i<p 1<i<p

which completes the proof of part (b). This concludes the proof of Lemma .

G.15 Lemma [15] and its proof

Lemma 15. Assume that all the conditions of Theorem are satisfied. For gk defined in

(A.17) and an arbitrary a € RP, with probability at least 1 — 0,,, 4 it holds that
a"Wibi| < clallyllalla(r* + su + s.)t {n " log(pa) }

where 0, ,, is given in (10) and c is some positive constant.

Proof. Observe that

" Wii| = la" WiM { (B - vi)ad — (CT, — C5) } S — u)]
< |a" WM, (3, — o)) ||} S (1 — u))|

+ |a" WM, (CT,, — C) S (@, — ul)).

From Lemma (13| we have that Hﬁkﬂg < ed;~?dy. Tt follows from Lemmathat ||aTWk\|2 <
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c||a|][1)/2||a||2. Together with parts (a) and (b) of Lemma @ it holds that

|[aT WMD) — v})||[al S(u, — uj)|
< [l @" W lo | M|z 1Tk — v l[o]|a 2| E(@x — u)|

< dlally”*llall2(r* + s, + s.)ms {n " log(pg) } dy~2d;.
Further, by Lemma [13| we can obtain that
G-k — C4lla < e + 50+ 50) 202 {0 log(pg) }'72.
Then it follows that

@ W M,,(CT,, — C)E(w;, — u})|
< |l @" Wil ||My[o[|CT) — C ol E (@ — ul)ls

< clally”lall2(r + su + s}y {n " log(pq) } di~*d;.
Combining the above results leads to
a"W,di| < cllall”(lalla(r* + 5.+ su)ns {n”" log(pa) } di~d3.

Thus, under Condition [4 that the nonzero eigenvalues d}? are at the constant level, we can

deduce that
[aTW oy < cllally*lalla(r* + 5.+ su)nt {n " log(pg) }

which completes the proof of Lemma [15]
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G.16 Lemma [16] and its proof

Lemma 16. Assume that all the conditions of Them’em are satisfied. For Mk =
—Zp ISC_y and Wy, defined in (A.18) and an arbitrary a € RP, with probability at least

1 —0,,, it holds that
[T W M,,.C% Suf| = of|ally*[|allan~Y?),

where 0, ,,, is given in (10) and c is some positive constant.

Proof. According to the construction that Mk, = —Elzklf]é_k, it holds that

M, C* Su; = E Mkv;u;TEu}; E zklﬁlg uvTv*u*TEuk

J#k J#k i#k
Y RS s - DB R oS
£k i#k £k i#k
_ AT, o+, TV, *
— —szk Euj—i—ZEuz v; — v} ) vj)u; Suy, (A.208)
J#k 1#£k

where the last step above has used v;"v? = 0 for each i # j. For term D itk Y, (v, —v;)" v}

above, we can deduce that

1Y S — v)) vl < 122l di(@; — 0))|l2]lv} 12

i#k i#k
< ey |ldi(@ = o)) < ey,
i#£k

where we have used ||Sl||s < ¢ due to Condition , [vi]l2 = 1, and parts (a) and (b) of
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Lemma |§| Recall the condition that m'/?x,, = o(1) with

fin = max{syl5, (1 + su + 50)V2 0 + 50+ s0)i log(pg) /v/n.

Then an application of similar arguments as for (A.157)) leads to r*~, = o(1).
Part (b) of Lemma @ shows that HiﬂjHQ < cd}. Since the nonzero eigenvalues dj? are

at the constant level by Condition [d] for sufficiently large n we have that

1B, + > 50— v) v)lls < 156l + 11 Sw(®; — v))
ik i#k

%
< cdj.

Together with |Z,'| < c¢d;™? in part (c) of Lemma |§|, it follows that

IMLCh Sl < > 5% + Y Sa(@; — v)) v}

; TS|

£k ik
<) (dy/d)|w" Sug| = ¢ (d?/dy) |1 ;. (A.209)
£k J#k

Using Condition [4] that Z#j |l;‘T§]l;f| = o(n~%/?) and the nonzero eigenvalues d;? are at

the constant level, and Lemma [14] that [|a” W, |, < ¢||alls*[lal|2, we can obtain that

"W M.C S| < [la” Wil MyC™ Sug|,

1/2 _
= o([|ally*|lallan~1/?).

This concludes the proof of Lemma [16]
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G.17 Lemma [I7 and its proof

Lemma 17. Assume that all the conditions of Theorem[1] are satisfied. For € defined in

(A.16), hy defined in (A.19), and any a € A = {a € R’ : |lallp < m,|als = 1}, with

probability at least 1 — 0, , , we have that
| — " W&, — hi/v/n| < em'2(r* + s, + 5,)**n2{n " log(pq)},

where 0,,, 4 is given in (L0) and c is some positive constant.

Proof. The proof of Lemma follows similar technical arguments as in the proof of
Lemma in Section . We will first show that a?” W, M, a” W, M,, — a”W;iM;, and

aT(Wk — W;) are s-sparse with s = ¢(r* + s, + ;). It follows from the sparsity of U* and

V* and (A.191)) that

Do luillo <su Y Aofllo < sur D llllo < e(r” + sy + 50).

1<i<r> 1<i<r* 1<i<r*

Also, in view of part (b) of Lemma [ we have that

Yo ldmwilo< D i@ —v)lo+ Y lIvillo < e(r” + su+ s0)-

1<i<r* 1<i<r* 1<i<r*

Note that M = —Ek_klﬁ D itk w;v]. With similar arguments as for (A.168)—(A.170), we
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can deduce that

la” WiMllo = || Y (" W2 'S8 - divl [lo < D diwillo < e(r* + su + 50),

ik ik

la" WM, — " WiMj[lo < > [[diillo + > 07 llo < e(r™ + 50 + 50),
i#k i#k
la” (Wi = Willo < Y [lgallo + D l[ulllo < e(r + s + 50)-
ik ik

Then similar to (A.171), it holds that

|~ a" Wi — /vl < [la” Wil Myl [0 B X (@ — ).
T la" WM, — " WiMj o0 B Xuf 2.

+ |aT (Wi, = W) [la]ln ' XTEwj]|o,s.

An application of similar arguments as for (A.172))—(A.174]) gives that

nHETX (@, — up)|l2s < 5?02 {n ' log(pg)},
nHETXu |2 < cs'/2s?{(n"  log(pg) }2d;,

nt HXTEUZ ll2.s < cs“%}/%n’l log(pq)}l/Q.

From Lemma we have that

IMills < cdi™2d;, [ Mylls < cdi2d;,

My = Ml < e(r* + s+ 5,) P {n " log(pa) }/2dy > d}.

132

(A.210)

(A.211)
(A.212)

(A.213)

(A.214)

(A.215)



Along with parts (d) and (e) of Lemma [14] it follows that

laT (Wi — Wi)lla < em2(r* + s, + 5,) /202 {n" ' log(pg) } /2,
laT WM, — a”WiM; |2 < [la” Wi, (My — Mj)||2 + [[a” (W — W) M2
< @ Wla[|My, — M2 + [la” (Wi, — Wi)|[[Mj 2

< em'2(r* + 5, + 5,) V202 {n" M og(pg) } /2 d; 2 d;. (A.216)

Therefore, by (A.210)-(A.216), Lemma [14] and Condition [4] that the nonzero eigenvalues

di? are at the constant level, we can obtain that
| — aTWi&r — hy/v/n| < em™?(r* + s, + s,)**n {n""log(pq)}.
This completes the proof of Lemma [I7]

G.18 Lemma and its proof

Lemma 18. Assume that all the conditions of Theorem [ are satisfied. For each given k

with 1 <k < r*, with probability at least 1 — 6, ,, , with 0, ,, given in (10]), we have that

Z |Z | = o(l2gy, — 25]) and Z Zi5] = o(|Zke — Zii)

E+1<j<r*, j#i k+1<j<r*, j#i
for eachie {k+1,--- r*}.

Proof. Let us first analyze terms |25, — 25| and |Zgx — Zi|. Foreach i € {k+1,--- ,7*}, in

view of Condition [2 I we have that dj2p; <z, < di%p, and d%p; < 2} < d?p,, which lead
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to
& pr— di?py < zpy — 2 < dipu — AP
Since max; d; = dj,, using similar arguments as for and (A.152)), it holds that
miin(z;;k z5) > mln(dk o —d2py) = diipr — di2py > odil. (A.217)
Further, from part (c) of Lemma [6| and d; < dj, we can obtain that

|(Zre — Zii) — (2o — 23)| < 20 — 2| + 200 — 23]

< e(r* + sy + 50) P {n" og(pg)}*d;.

By the assumption in Theorem [ that m!/2k’ = o(1), we have v, = o(1). Then for

sufficiently large n, it follows that
Zok = Zal > |z — 25 = |G — Za) — (2 — 25) | > ed?

We next prove that 3, ) ic i [255] = o([25, — 25;]). Observe that |27;| = d*d*]l*Til;f\.

For each i,j € {k+1,--- ,r*}, when j < i, from Condition [5| we have that
%2 ) 7k [7xT S 7% —1/2
(d; /dj)|lj Sl =o(n / )

When j > i, similarly we can obtain that (d;Q/d;‘)HjTilﬂ = o(n~'2). Then for each
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ie{k+1,---,r"}, we can deduce that

d:ds| TS|

¥
Y piase ¥
|2k — 23

d*2
k+1<j<r*, j#i k+1<j<r*, j#i k
2
ey @ 3 d;?
C e r-a— C e r-a—
- dxd2\/n dxd*\/n
k+1<j<r, j<i bk kt1<j<re, j>i 1k v

From Condition [3 that r*7, = o(d%.) and v, = (r* + s, + 8,)?n2{n""log(pq)}'/? > n=1/2,

it holds that r*n~1/2 = o(d*.), which further leads to

> G o(1). (A.218)

z5, — z
k-‘rlg]ST*,j#’L | kk ll|

It remains to show that > ;oo iy |Zij| = o(|Zkx — Zii]). For term [Zz;], an application
of similar arguments as for ({A.156)) gives that

%y — 25| = el 2 — wTSul| < ey, max{d;, d;}.

It follows that

12i5] < 25| + 125 = 251 = |255] + O(ya max{d;, dj}).

i)

Since |z, — 25| > edi? and |Zp, — Zi| > cd;?, in light of (A.218)) it suffices to show that
D kpi<j<re,jpi Ynmax{d;, di} = o(|Zp, — Zi|). Since 4,j > k4 1 such that max{d;,d;} <

(R

d}.,, we can show that

Z max{d;‘,d;f}*yn - cdf 1T ™Y < Cr*’yn B

Z . = > S =o(1
k+1<5<r*, j#i |Zkk5 - Zul dlt2 dk* dr* ( )’
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where we have used Condition (3| that 7*v,, = o(d}.). Therefore, it holds that

T A
_ = = 1 9
|Zkk - Zu‘ O( )

kA 1<j<r, j#i

which concludes the proof of Lemma

G.19 Lemma [19 and its proof

Lemma 19. Assume that all the conditions of Theorem[]] are satisfied. For each given k
with 1 < k < r*, with probability at least 1 — 6,4 with 0,,,, given in (10), both L-_; —
Egkl(ﬁ(z))Tiﬁ(Z) and L_p — zzgl(U*(z))TflU*(z) are nonsingular. Moreover, Wy, and Wi

introduced in (A.75)) and (A.77), respectively, are well-defined.

Proof. Let us first analyze term L._j, — 2,/ (U)TEU®) which is equivalent to analyzing
the nonsingularity of matrix A =: ZpL-_; — (6(2))T§I~J(2) € RO"=Rx("=k) = Denote by
A = (a;j). Then we can see that for each 4,5 € {k+1,--- ,7*},

Zre — 2z i1 =7,

—zij i # ]
From Lemma , it holds that »_.; |ai;| = o(|a;|) for each i € {k +1,--- ,r*}. Hence, it

follows that

|aii| > Z |ai;]

j#i
for all i € {k+ 1,--- ,7*}, which entails that matrix A is strictly diagonally dominant.
With the aid of the Levy—Desplanques Theorem in |Horn and Johnson, (2012), we see that
matrix A is nonsingular and thus matrix L._, — Z, (U®)TSU® is also nonsingular.

Moreover, using similar arguments we can also show that matrix L« — 25, ' (U*(Q))TiU*(Q)
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is nonsingular. Therefore, both Wk and W7} are well-defined and satisfy the property in

Proposition [}, which completes the proof of Lemma

G.20 Lemma [20] and its proof

Lemma 20. Assume that all the conditions of Theorem []] are satisfied. For each given
kwith1 <k <r*, My = —3,'8C®, and M = —2;7'SC*® | with probability at least

1 —0,,4 we have that

IMG[l2 < edi?dj,q, [IMIg|l2 < edi*dy .

IV, — M2 < c(r* + s, + 50) /202 {n " log(pq) }/2d; 2,

where 0,,, 4 is given in (L0) and c is some positive constant.

Proof. The proof of Lemma [20|is similar to that of Lemma [13|in Section |G.13] Notice that
U@y < |U*[lp = sy and (U*@)TU*? = diag{d;2,, - ,d:?}. Using similar arguments

as for (|A.186) and ([A.187)), we can obtain that

Uy < ediyy and [SUP|; < edy,. (A.220)

From Definition [2, we have that

IO = U@ o < |[U = Ul < 20" + 5+ 5,),

[T — U@, < [T~ U5 < [T~ U*[lp < e (A.221)
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An application of similar arguments as for (A.186|) leads to
IS(U — U@, < ¢|UD — U@, < ey, (A.222)
Then for sufficiently large n, it follows that

U, <UD - Uy + U, < cd,y, A.223
k+1

1T, < |Z(TP - U Q)| + |ZU P, < oy, (A.224)
For Mk = —Z ~15C®) , we can deduce that

Ml < ZISTO V@Y, < FIST ) (VO

*—2 7%
< cdy " dgy,

where we have used part (c) of Lemma |§|, IZU@)|, < cdj, ;, and ||{7,(€2)||2 = 1. With similar
arguments, we can show that

M2 < Cd* QdZH

For term || M, — M; ||, with the aid of similar arguments as for (A.188])—(A.189), it holds

that
IS(C® — C @)y < e(r* + 54 + 5,) 202 {n" log(pg) } 2.

Together with part (c) of Lemma @, IZU@)|y < edp,, and [[(V<®)T|ly = 1, we can obtain
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that

M = M2 < |25 = 25 IIEU P o |(VE) ]l + [ I2(C® = C )]

<c(r* + s, + sv)1/2ni{n_1 log(pq)}1/2d,’:f2.

This concludes the proof of Lemma, [20]

G.21 Lemma [21] and its proof

Lemma 21. Assume that all the conditions of Theorem[] are satisfied. For each given k
with 1 < k < r*, an arbitrary a € RP, and W, and W; defined in (A.75) and (A.77),

respectively, with probability at least 1 — 0, , , with 8, ,, given in (10]), we have that

(a) maxi<i<p ||wf]lo < 2max{Smax, ™ + Sy + Su},
maxi<i<p | Willo < 2 max{smax, 3(r* + sy + Sy},

maxi<i<p | W; — wllo < 3(r* + su + 5);
(b) maxi<icy [|w] |2 < ¢, maxi<i<p [Jwill2 < ¢,
maxi<i<p [|W; — w}ls < c(r* + sy + s0) 202 {n"" log(pq) }'/2dy  dy2;
(c) ™ Wil < cllally?[al.:
(d) [T (Wy — Wi)ll2 < cllally|lall2(r* + su + s,)/2n2{n " log(pq) }/ 2y, di 2
(e) a™ Wil < cllally” ] all2.

where we denote df, ., =0, w} and w;T are the ith rows of W, and Wi, respectively, with

1=1,---,p, and c is some positive constant.

Proof. Similar to the proof of Lemma [§]in Section [G.8] an application of similar arguments

as for (A.158)—(A.160) yields that once the results in parts (a) and (b) are established, we
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can obtain immediately the results in parts (c)—(e). Hence, we need only to prove parts
(a) and (b), which will be based on the proof of Lemma [14] in Section [G.14} Compared to
Lemma , we see that the only difference is that matrices U_j and U*, in W, and Wi
of Lemma 14 are now replaced with their submatrices U® and U*® in this lemma. As
a result, U® and U*® will only be more sparse than U_; and U~ ,., respectively. Then
applying similar arguments as in the proof of part (a) of Lemma we can obtain the
results in part (a) of the current lemma.

It remains to show part (b), which also follows similar technical arguments as in the

proof of part (b) of Lemma In view of (A.220)), (A.223)), and (A.224)), we can deduce

that
{IZU @, STy, TP, [UP|5} < edyyy. (A.225)

Denote by A* = (25, L, — (U@ TSU*@) L AS = A* A = (ZuL_p—(U)TEU@) L,
and Kg L= A. Using the technical arguments in the proof of Lemma [19]in Section ,
we see that both A and A, are strictly diagonally dominant. Similar to (A.194)), it holds

that

|A]ls = [|AgHfl2 < e( min [z, — 25~
k<i<lr
< elzy = 2l <edy (A.226)

where the last inequality above is due to (A.217). Moreover, with similar arguments we

have that

[All2 = [|AG |2 < edp™>. (A.227)
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Observe that w? = 67(I, + U@ A*(U*®)T), where 67 is the ith row of ©. It

]

follows from Definition 1| that max;<;<, H@HQ < ¢, (A.225)), and ({A.226)) that

max [[w] s < max [|6]]|T, + ZU A (U")"
1<i<p 1<i<p

< max [[8i]|2(1 + [ZU | Ao (U*)T|l2)
ISP

< cmax{l,d,/d7} <.
Since w! = 67 (I, + SUPDA(UP)T), we can show that

max [|@; — w > < max |6 ||,|SUPAU)" - SUCIA(U)",

1<i<p 1<i<p

< ¢|SUPAU)T — SU A (UO)T,. (A.228)
By some simple calculations, the term above can be decomposed as

SUPA(UT — SU@A*(U)T = (ZUP — SU@)A(UP)T

+ U (A — AH (U £ SUD AU — U@, (A.229)

From (A.221)) and (|A.222]), we see that

IR0 — U )|y < e(r* + 50 + s,)n2{n " log(pa) }'/?, (A.230)

[T — Uy < v + 5, + 5,)n2{n " log(pa)} /2 (A.231)
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Also, applying similar arguments as for (A.205)—(A.207)), it holds that

JA = A%fls < c(r* + 5, + 5,02 {n " log(pa) } 2d; . (A.232)

Combining (A.225)) and (A.228)—(A.232) yields that

max || @; — w] o < e(r” + s, + so)n2{n""log(pq) }'/*d}, dj 2.

Further, by the triangle inequality we have that

ol < w0 — w* s < e
grgl%szlla < lrggg;sz w; |2 + {ggg;”wz o <ec

For k = r*, it holds that W, = Wi = ©. Therefore, based on Definition |1} all conclusions
of this lemma still hold using similar analysis as above. This completes the proof of Lemma

21

G.22 Lemma [22] and its proof

Lemma 22. Assume that all the conditions of Theoremm are satisfied. Then for Wk given

in (A.75) and an arbitrary a € R, with probability at least 1 — 0, ,, we have that

|aTWk(1Zk(ak> M) — ik(aka ;)|

< cllall*|lalls max{sya (7" + sy + 52)" % (0" 4 50+ 50 {n og(pg)}

< max{d; !, d ),
where 0 1s given in (10)) and c is some positive constant.
np,q S 9
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Proof. The proof of Lemma [22]is similar to that of Lemmal5|for the general rank case in Sec-

. . . . T
tion [G.5| Notice that the nuisance parameter is ny = [vf,vf, -+, oL, uf,, -, ul]".

By the definition of Jk(uk, M), we have that

~ oL oL
Vr(ug, M) = Juy Ma—nk
oL oL & oL < oL
=———(My—+ > MI—+ ) M—)
O ( vy j=k+1 $ Ou j=k+1 ! 0v;

From Proposition 4, we see that MY = 0 and MY = 0 for each j € {k+1,--- ,r*},
j J

which means that we need only to consider v, as the nuisance parameter. In light of the

derivatives (A.111)) and (A.112)), it holds that
~ oL oL
— M 2=
Ur(wk, M) D k oy,
= f]uk — nileY’Uk + ié(l)vk

— MY (vpul Suy, — n Y Xuy, 4+ (CD) T Suy).

For each arbitrary fixed M}, we can see from the representation above that Jk (ug, Nk)
is only a function of u; and vy, which entails that we need only to do the Taylor expansion
of @Zk(uk, M) with respect to v. Similar to the proof of Lemma [4]in Section we can

obtain the Taylor expansion of zzk(uk, M)

3%@(“1@7 up

{Ek (wp, i) = {Ek (wr, my) + 3,013

(1, - vivi") expy! (vr)
Vg

+ Ir'uza
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where the Taylor remainder term satisfies that

7oz ll2 = O(ll expy (vi)3).

Moreover, it follows that

a&k (g, i)

50T = ' XTY + 2CW — ufﬁukMz.
k

.
Uk

Then from Proposition 4| that M} = —z,;,jilc(2> and the initial estimates in Definition ,

we can deduce that

Dr (T, ) — (T, )

= (=n7'X"Y + BCW + BCO)(I, — vjv;") exp, (Br) + T

= (2(C_x — Cp) —n ' XTE)(I, — viviT) expgzl(ak) + T,
where we slightly abuse the notation and denote the Taylor remainder term as
_ —1 V12
rop = O([[ expy, (V1)]]2)-

We next bound term aTWk(Jk(ﬂk, M) — @Zk(ﬂk,n;;)) above, which will follow similar

arguments as for (A.142)—(A.149). Observe that

’aTWk({/;k(ﬂka M) — {/;k(ﬂ'k: )|

< |a"W(E(C . — C2)) — n ' XTE)(I, — vjv}") exp,! ()]

+ |CLTW]€T1,Z
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Denote by ﬁ,{z the 7th row of Wk with 2 =1,--- ,p. From Lemma we have that

max |weillo < 2 max{smax, 3(r" + s, + s,)} and max | w2 < e,

which has the same upper bound as in (A.143)). An application of similar arguments as for

(A.125) and (A.126|) leads to

I expgzl(ﬁk)Ho < (1" + sy + Sy),

lexpy (Ti)ll2 < e(r* + sy + 50) 2 {n~" log(pa)} /2 /d;.
Similar to (A.142)), it also holds that
IS(C_x — C")ll2 < (" + su + 5) /0% {n " log(pg) }*.

In view of the above results, we can see that the upper bound for ]aTWk({/;k(ﬁk, M) —

Uiy, n;))| is similar to that for the general rank case of Lemmain Section |G.5| Similar

to (A.141)—(A.147), it follows that

‘aTvak@(é,k — ¢, - XTE)NI, — vivlT) exp;g(ak)‘

1/2
< c||ally/

lallz max{syZ, (7" + s+ s0) 2007 + 50+ so)mi{n” log(pa) }/dj.

Further, from (A.148]) we can show that

" Wiry | < cllally®llalla(r + s, + s,)ms{n " log(pa)}/di’.
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Therefore, it holds that

la" W, (¢ (wr, 1) — U (Ur, m5))|
< cllally*[lalls max{sk/2, (* 4 s, + s,)Y2, 2} + s, + 5,)72 {n " log(pg)}

< ma{di !, i),
which concludes the proof of Lemma

G.23 Lemma [23] and its proof

Lemma 23. Assume that all the conditions of Theorem []] are satisfied. For € defined in

(A.73)), hy defined in (A.76), and any a € A = {a € R? : |al|lo < m,|al||. = 1}, with

probability at least 1 — 0, ,, it holds that
| — a"Wi&r — hi/v/n| < em"2(r* + s, + s0)* 2 {n""log(pq) Ydi ™,

where 0, , 4 is given in (10 and c is some positive constant.

Proof. This proof follows similar technical arguments as in the proof of Lemmal[I7)in Section
. Note that M;, = —Ek_klflé(m and M}, = —zZEIfJC*@). Using similar arguments, we

can show that a” W, M, a” W, M, — a”W;iM;, and aT(Wk — W;3}) are all s-sparse with

s = c(r*+s,+5,). An application of similar arguments as for (A.210]) and (A.211])—(A.213))
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gives that

| — aTWy&, — hy/v/n| < ||aTWila|[My |2 ]ln " ETX (@), — u})|2,s

+ [|a" WMy, — aT WMo |ln BT X 2.,
+ [|aT(Wy — Wi)[la[ln ' XTEvj 2.6

< es*Pn2{n"" log(pg) Hla" W2 M|

+es'sy/ 2 {n " log(pa) } /@ (Wi — W)z

T es™ st/ log(pg) )i | a” WM, — al WM.

For the terms above, from Lemma [20| we have that

M|z < edi™*dy s Ml < edi™dy s,

||Mk — M|y < e(r* + sy + 5,) 0> {n " log(pg) }/2d: 2,

Moreover, it follows from parts (d) and (e) of Lemma [21] that

la” (Wi = Wi)llz < em' 20" + s, + 50) 25 {n ™" log(pg)} 2 dj 12,

1aT W2 < em/2.

Then it holds that

laTWM;, — a” WiMj |2 < [[a”Wi(My — Mj)||s + [la” (W), — WM
< |la" Wi o[ My — Mi 2 + [la” (W), — W;)[|2[ M2

< cml/Q(r* + Sy + sv)l/2 2{n~t log(pq)}l/Qd* 2
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Thus, combining the above terms yields that
| — a" W& — hi/v/n| < em'2(r* + s, + 5,)¥ 02 {n " log(pq) by .
This completes the proof of Lemma [23]

G.24 Lemma [24] and its proof

Lemma 24. Assume that all the conditions of Theorem@ are satisfied. For ﬁk =
_51;1@126(2) and Wk gwen in (A.75)) and an arbitrary a € RP, with probability at least

1 —0,pq it holds that
|a" WM (C*) TS| = of||alls? || al2n~?),

where 0, ,, is given in (L0) and c is some positive constant.

Proof. Observe that Mk = —Ek_klflé@). With the aid of similar arguments as for (A.208])—

(A.209), it holds that

IMK(C ) Suills < e Y (&2 /)T S

j=k+1

Together with Condition |5| that Z;;Hl(d;fz/d;;)ﬂffllﬂ = o(n~"/?) and Lemma 21| that

1aT W, |2 < clla]|t?||all2, it follows that

"W M, C S| < [la” Wi || My C S o

1/2 _
= o([|all*|lallan~1?),
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which concludes the proof of Lemma

G.25 Lemma [25] and its proof

Lemma 25. Assume that all the conditions of Theoremm are satisfied. For gk defined in

(A.74) and an arbitrary a € RP, with probability at least 1 — 0,,, 4 it holds that

k—1
|a" Wby < cllallg?[lalla(r + s, + 5,)"/*n2{log(pa)} *di 7D df)
i=1

1/2 * — * — £
+cllally*lalla(r + s, + s,)m2{n" log(pq) i~ 2dy,

where 0, ,, is given in (L0) and c is some positive constant.

Proof. Denote by gk = go,k + gM with

8o = My (B, — vp)al — (C? — C*)E (@ — uf),

—

61x = —M,(CY — ") TE .

The derivation for the upper bound on |aTVNngoyk] is similar to that in the proof of Lemma

in Section |G.15, From Lemma , we see that || M|, < cd;?d;,,. Part (e) of Lemma

entails that ||aTWk||2 < c||a||(1)/2||a||2. Further, observe that C® and C*® are submatrices

of C_; and C*,, respectively. It follows from similar arguments as for (A.188))—-(A.190)

that

IC® — C*?|y < ey,

where v, = (7* + 5, + 5,)/?n?{n""log(pq)}'/2. From the above results and Lemma |§|, we
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can deduce that

"W x| < [la” Wil M|z ]| (B — vp)af — (C® — CO)T |52 — up)|:
1/2 *—2 % ~ * ~ ~ *
< cllally®llallovndy 2d ., (I8 — vill2]13F |2 + [(C® = C*®)T,)

< cllallg®llalla(r + s. + s, )na{n" log(pqg) }d; dy ;. (A.233)
We next bound term ]aTWkglyﬂ above. It can be seen that

aTWkng = —aTWkﬁk(a(l) — C*(l))Tflu}z

+a" W, M, (CY — C*ONTS(ul — ).

Notice that EJT@ =0 and 'U;‘T'vz7k =0foreachl1 <i<k—1and k+1<j <r* It holds

that

r* r*
AT = 1 ~ ~T~ ok *—1 L A
Mv; = — 7z, X E u;v;v; =0 and Mjv; = —z,; % E u;v; v; =0.
j=k+1 j=k+1

Then we can show that

k1
— a"W,M,,(CY — C*N TSy = —aTW, M, Z(ﬂﬁlZT —vu ) Su}
i=1

k—1 k-1
= a”W; M, Z viuTSul = aT W, M, Z(E —vf —)uT Sl
i=1 i=1
=a" WM, ) (0 — v])u;" Su;, (A.234)

i=1
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Hence, it follows that

k—1
a" W01 = —a" WM, Y (% — v))u " Suf + a" WM, (CV — C* )T S (uf, — )

=1

::Zlgl%—lgg

We will bound the two terms B; and Bs introduced above separately.

For the first term By above, we have that

k—1
| Z a" W M, (v; — v)uTSul|
i=1

k—1
< la" Wil Mill2 > [l (@ — v7) l2ldi 117 St
=1
k-1
1/2 _ ~ =~
< cllallg®llallad; diyy > i (@ — 072117 SE ],
=1

where the last step above has used Lemma and part (c¢) of Lemma . For term |} Tf]lﬂ

with ¢ = 1,--- |k, in view of Condition [5 it holds that
(di2 /5T S8 = o(n ™).
Together with part (a) of Lemma [0} we can obtain that

k—1 k—1 *
|d: (@ — o) TS < e Y 5,

where 7, = (r* + s, + 5,)/?n2{n"' log(pq) }!/2. This further leads to

k—1 k—1
1> a"WiM(@: — v))w; S| < cllally” |l did; . di (A.235)
i=1 1=1

151



For term B, above, let us first bound term ||6(1) — C*W|,. Observe that c =
UO(VOT and O = U O(VO)T where UD = (g, -+, Up_y), VO = (01, -+, Op_1),

UV = (ul,--- jul ), and V*) = (v¥ ... vf ). Then it follows that

ICW — C* Wy = [UOVO)T — T O (V=0T
< [UDVE = v O) Tl (U0 = U W) (v O,

< LWL DOVE =V O) Ty + [T — T O || (V)" o

It can be seen that LMy = [[(V)T||, = 1. For term |[(V® — V:O)DD|,, we have

that

(VD — v ODWD ||, < [IVOD® — v*OD*D)|, 4 VD, | DD — D*D)|,
< IVOD® — v:OD*O) | 4+ DD — DV ||
< VD = V'D*|lr + |D —D*|s

o(r + sy + 50) % {n " log(pg) }2,

where we have used Definition [2{ and |[V_z|» = 1. Moreover, from Definition [2 it holds

that

ITW U, < Y - UV < |U - U

c(r* + sy + Sv)1/2 2{71 ! log(pq)}1/2
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Combining the above results gives that
ICD — C* Ol < c(r* + 54 + 5,)/ 02 {n " log(pq) }'/2.
It follows from part (c) of Lemma [6| Lemma 20| and Lemma [21] that

1a"W,,M,,(CY — C* NS (u) — )|
< @™ Wi [lo[ M [o[|CV — C* O[S (@, — uf)|2

< cllallgllalls(r + s, + s, )ni{n"" log(pq) bd; *dj .. (A.2306)

Thus, a combination of ({A.235)) and (A.236]) yields that

k—1
@TW814| < cllallfllalla(r + s, + 5,) 22 {n~ log(p) /23 didy i~
=1

+cllallg®lalla(r + 5.+ so)ni{n " log(pq) by~ dy .

Along with (A.233)), it follows that

k—1
@™ Wby < cllallg®llalla(r + s, + 5,)"*n; {log(pa) Y di 1 72D df) /m

=1

1/2 * — x—2 Tk
+cllallg®llallz(r + su + su)nh{n " log(pq) by 2dy, .
This completes the proof of Lemma [25]

G.26 Lemma [26] and its proof

Lemma 26. Assume that all the conditions of Theorem[7 are satisfied. For € defined in

(A.99), hy = —aTW;M:ETXw!//n + aTW:XTEv!/\/n, and any a € A = {a € R? :
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lallo < m, [la|ls = 1}, with probability at least 1 — 0, , . we have that

| — aTWy&, — hi/v/n| < em'2(r* + s, + 5,) 22 {n" log(pg)},

where 0 is giwen in (A.3) and c is some positive constant.

n7p7q

Proof. The proof of this lemma follows similar technical arguments as in the proof of
Lemma . By the proof of Lemma it holds that a”W,M,, a’ WM, — a”W;iM;,
and aT (W — W;) are s-sparse with s = ¢(r*+ s, +s,). Then similar to (A.171)), we have

that

| — a" W&, — hy,/vn| < "W Mn 'ETX (w;, — u))|

+a” (WM, — WiM)n 'E"Xul| + [a” (W, — Win 'X"Euv]|. (A.237)
We first analyze term |a” W, MynETX (1, — u})|. Note that
la™WiMyllo < 5, [la” W Myllz < em'/2.
In addition, it holds that
[ —ugllo < s, fluk — wpfla < ey

Thus, we can show that a”W;M,/||a”W My, € K,(s) and (@, — w})/||tx — ull|» €

K

p

(s), where K,(s) := {b € RP : ||b|lp < s, |/b|l2 = 1}. Conditional on the second fold of
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data, an application of Lemma [28] yields that

la" W, M 'E"X (), — ul)|

aTW, M B u. — ut ~ —~ N
~ %TL 1ETX~k—*k HCLTWkMk”QH’U,k —UZHQ
|aTW M| [we — ug2
< Sup R0 'ETXhy | [|aT WMy ||o||ay, — uj2

h1€Kp(s),haeK (s)

< em!?s 2 {n " og(pg) } 2 (r* + su + s,) 2 {n” log(pa) } /2

= cm1/2<7“* + Su + Sv)77721{7fl lOg(pq)}

For the second and third terms in ((A.237]), observe that

(A.238)

la® (WM, — WiM;) o < s, la” (WM, — WiM;)[l2 < em 2y, lugllo < s, [uills < ¢,

la” (WM, — WiM;)[lo < s, [la” (WM, — WiM;)[|2 < ey, [0ill0 < s, will2 < c.

Based on the above results, similar to (|A.238)), applying Lemma [2§| leads to

la” (WM, — WiMp)n "ETXuj| < em2(r* + s, + s, )72 {n" ' log(pq)},

laT(Wy, — Wi)n ' XTEvf| < em?(r* + s, + s,)n2{n " log(pg)}.

Therefore, combining (|A.237)—(A.240]) gives that

| — aTWy&, — hi/v/n| < em'2(r* + s, + 5,) %02 {n " log(pg)}.

This completes the proof of Lemma [26]
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G.27 Lemma [27] and its proof

Lemma 27. Assume that all the conditions of Theorem [7 are satisfied. Then for any
acA={acR:|alo<mal, =1} and a" Wy (i (U, T) — (T, m})) given in

(A.93)), with probability at least 1 — 6" we have

n7p7q

"W (5 (T, ) — x (U, 7))

< em!? max{sylg, (0 + su + 50) VR 4 su - s0) 0 {n” log(pg) )

b : i
where 0, , . is given in (A.3)) and c is some positive constant.

Proof. The proof of Lemma [27 is similar to the proof of Lemma . By (A.141)), we have

that

U (T, T) — V(T ) = (B(C oy — C7) — ' XTE)(I, — vjvi") expy! (B) + 7o,

where the Taylor remainder term is ||r,:[[2 = O(]| equjzl(’l'}k)ﬂg). Then we bound term

aTW o (D, (T, ) — (T 117)).

First, the upper bounds on a” W, (Z(C_j, — C*,))(I, — vjv;T) exp;;1 (v3,) and aTWker

follow the same argument as in (A.146]) and (A.148) and are given by

a" W B(C — C)(I, — vjv") exp, (3
< cml/Q(r* + 8, + S,,)nﬁ{n_l log(pq)}, (A.241)

|[@" Wiy | < em?(r* + s, + s, )nt{n " log(pg) . (A.242)

Next, we bound term a?Wn !X E(L, — viv;T) exp;zl(iik). Denote by wf; the ith

row of Wy, for i = 1,---,p. By parts (a) and (b) of Lemma [14] in Section [G.14] we have
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that

max |wkillo < 2 max{smax, 3(r" + s, + s,)} and max |wg ]2 < e

Similar to (A.125)) and (A.126)), it holds that
lexpy: (@)llo < e(r™ + sy + 50), [ expy (T2 < e
Then it follows that

@ XTB(, — vivi) exp, (@)

< |y n X Bexp,: (k)] + Wi n X Eop|vi" exp,: ()]

< |wiin™ X Bexp, (@)] + ey |@yn”

where the last step above is due to |v;T €XD,r How)| < gl exp,: o) |2 < e
Denote by s1 = cmax{smax, (r* + s, + $) } and so = ¢(r* + s, + s,). For the first term

above, by Lemma |28 we have that

_ -1(%
X B e @) < | -2 x PO et Gl
[T [exp! @l k
< sup |hin ™ X Eho| [|@|2] expy! (0) 2

hler(Sl),h2EKq(82)

< cmax(s;”?, sy/*) {n " log(pa) } % 7

= cmax{sy2, (1" + sy, + 5,) /23" + 8, + 5,) 02 {n " log(pq) } .

max’
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Hence, it follows that

" Win ' X" Eexp,! ()|

< Cm1/2 ma’X{Siﬂ/aQX’ (7’* + Sy + Sv)l/Q}(r* + Sy + Sv)l/QnZ {n_l log(pq)} :
Therefore, combining the above result with (A.241)) and (A.242]) yields that

|a" W (¢ (T, 1) — Vn (g, m5)|

< em?max{s¥2 (" + sy, + 5,)202 (1" 4 sy + 50) Y202 {n" log(pq)},
which completes the proof of Lemma 27|

G.28 Lemma [28 and its proof

Lemma 28. Assume that Conditions[1H{g hold and let K,(s) :={b € R? : ||b|lo < s, ||b|2 =
1}. Then for some sy < p,sy < q, there exist some constants C' and c such that with

probability at least 1 — 2(pg)~c(s1Vs2),

|
sup ’uTn—leE,U’ < C\/(Sl D) Og(PQ)'

u€Kp(s1),v€Kq(s2) n

Proof. Let x; and e; represent the ¢th and jth columns of X € R™? and E € R",
respectively. Note that we consider the fixed design setting that X is given. The following

calculations will be carried out in the case where X is given. Under Condition [1| that

E ~ N(0,I, ® X.), it holds that

q p
E [n"'u"X"Ev] =E[n™" Z Z u;x; ejv;] = 0.

=1 i=1
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Furthermore, we have that

var(n 'u’ XTEv) = (n"'Xu) @ v)7 (I, ® .)((n” ' Xu) @ v)
=n I XTT,n ' Xuv'S, v
< ntulSu - IS,
< 07 fulls|Bullsl|v o[ Zell2][vlls < entop
where the last inequality above has used Condition [2] and the fact that ||ullz = 1 and
|v|l2 = 1. Hence, under Condition [1], it follows that

nt?

co?

max

P(|n'u’ XTEv| > t) < 2exp(—

). (A.243)

Denote by

Ki(s1) = U A(U), Ka(s2) = U B(V)

UC{1,+ p}|U|<s1 VC{1, g} VI<s2

with
A(U) :={u € R”: [Julls = 1,supp(u) C U},
B(V):={v e R?:||v|2 = 1,supp(v) CV}.
Let us define Aup = Sup,cawyvenn) Aup with A%p = |u'n X Ev| and fixed u €

A(U),v € B(V). Let {uy,--- ,up, } be a1l/3-net of A(U); that is, for any u € A(U), there
exists some u; such that ||u —u;||, < 1/3. It is well-known from Ledoux and Talagrand

(2013) that we can construct a 1/3-net of A(U) with M; < 9251 which implies that log M; <
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251 log9. By the same argument, we can construct a 1/3-net {vy,--- ,vp,} of B(V) with

M, < 9?52 which entails that log M,.; < 2s5log9. Then we can bound

Aap < AL+ AL - A + ALY - A%E

S e AR 1304+ 1/304p

This leads to

Aasg <3 max AYYI A.244
AB = i€{l,- M1}, je{l,- , Mz} AB ( )

By the definitions of U and V', the numbers of choices of U and V' are upper bounded

by (Spl) < p*t and (:;) < p®2, respectively. Denote by sy = max(sy, s2). Then by applying

the union bound and (A.244]), we can deduce that

1
P sup ‘uTn’lXTEv‘ > 3c M
ueKp(s1),ve€Kq(s2) n
1
=P sup ‘uTn_lXTEv‘ > 3c M
wEUp . uj<s; AU WEUy v <o, B(V) n

1
< p*q*? max P sup ‘uTn_lXTEv‘ > 3c M
U:|U|<s1,V:|V[<s2 u€A(U)weB(V) n

< 50 ma P| Asg > 3c
_(pq) U:|U|§51,V):(|V|§sg ( AB =

s0log(pq) )

n

< (pQ>SOP AB =

s 1
( - AU s o [ 50 og(pq)>
i€{l,, M1}, je{1, , M2} n

1
< (pq)* M; My max P (\u{anTEvjl > ¢ w> — A,
2¥} n
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Therefore, from log M; < 2s;1og9, log My < 2s51og 9, and (A.243)), we can obtain that

Ao <2(pq)*® My My exp(—csg log(pq))
<2exp (solog(pq) + log My + log My — ¢sg log(pq))

<2exp (solog(pq) + 4s¢log9 — csglog(pq))

—cso

<2exp (—esplog(pg)) < 2(pq)

This completes the proof of Lemma [28]

H Additional technical details

H.1 The Taylor expansion on the Riemannian manifold

To facilitate our technical analysis, let us first introduce briefly some necessary background
on the Riemannian manifold. For more detailed and rigorous introduction to the Rie-
mannian manifold, see, e.g., Do Carmo and Flaherty| (1992). Let M be a p-dimensional
compact Riemannian manifold. For a given X € M, the tangent space to M at X is a p-
dimensional linear space and will be denoted as Tx M. A Riemannian metric gx is defined
at each point X € M by the map gx : Tx M x Tx M — R and is an inner product on the
tangent space Tx M. For &;,&; € Tx M, denote the inner product as (&1,&2) = gx (&1, &2).
Then the inner product induces a norm || - ||, which is denoted as ||£| = /(€, &) for each
£ € TxM. Given X € M and its tangent vector & € Tx M, let v(¢; X, &) be the geodesic
(the locally length-minimizing curve) satisfying that v(0; X, &) = X and 4(0; X, &) = &.

The exponential map is defined through the geodesic. Specifically, the exponential map at
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a point X is defined as

expy : IxM — M, € = expy & =7(1;X,§). (A.245)

By Theorem 3.7 and Remark 3.8 in Do Carmo and Flaherty| (1992), for each point X €
M a normal neighborhood S of X € M is the one that satisfies (1) each point Y in .S can be
joined to X by a unique geodesic y(¢; X, £), 0 < ¢t < 1, with y(0; X, €) = X and 7(1; X, £) =
Y:; and (2) the exponential map expy is a local diffeomorphism between a neighborhood
of 0 € Tx M and a neighborhood S of X € M. Since expy is a local diffeomorphism, the
exponential map is defined only locally in that it maps a small neighborhood of 0 € T'x M
to a neighborhood S of X € M. Denote by exp)_(1 the inverse of the exponential map.
For each point Y in .S, we can connect two points X and Y by the exponential map that

expy € =Y, or equivalently, £ = expy' Y for £ € Tx M.

Lemma 29. ((Mukherjee et all, (2010, Lemma A.3)) Let M be a compact Riemannian
manifold. Assume that f is a twice differentiable function on M. Denote by V p f(X) the
gradient of f. Then there exists a constant C' > 0 such that for all X € M and & € Tx M,

I€|| < €0 with some €y > 0, the first-order Taylor expansion below satisfies that

If (expx (€)) = F(X) = (Vaf(X). &) || < Clg]*. (A.246)

From ([A.246|) in Lemma [29| above, we can write the first-order Taylor expansion on the

Riemannian manifold as

f(expx(§)) = f(X) +(Vmf(X),€) + OI€N") (A.247)
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or

FOY) = f(X) + (Vamf(X),expy’ Y) + O(]| expy’ YIJ) (A.248)

for £ = expy' Y with & € Ty M.

H.2 The geometry of the Stiefel manifold

We now focus on a special manifold, the so-called Stiefel manifold. We will briefly introduce
some necessary background on the Stiefel manifold. The Stiefel manifold St(p,n) denotes
the set of all orthonormal p-frames in the Euclidean space R™, where the p-frame is a set of
p orthonormal vectors in R”. Specifically, the Stiefel manifold is given by St(p,n) = {X €
R™P : XTX = I,}. For p = 1, the Stiefel manifold St(p,n) reduces to the unit sphere
S"!in R*, where 8" ! := {x € R" : xI'x = 1}. For p = n, the Stiefel manifold St(p,n)
becomes the orthogonal group O(n), where O(j) := {O; € R : OTO; = L;} for each
positive integer j. We can also represent the Stiefel manifold as St(p,n) = O(n)/O(n — p).
See, e.g., [Edelman et al.| (1998); [Lv (2013) for more details on these representations.
Denote by Tx St(p,n) the tangent space of the Stiefel manifold. The tangent space

Tx St(p,n) admits the form

Ty St(p,n) = {XA+B: A e R”"? A=-A" BeR”” X"B=0}. (A.249)

According to the Stiefel manifold representation of orthonormal matrices in [Edelman et al.
(1998) and Chen and Huang| (2012), for each given X* € St(p,n), matrices on the Stiefel

manifold St(p,n) can be represented as

{X=expy-& : & =X"A+B e TxSt(p,n)}, (A.250)
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where expy. is the exponential map defined in (A.245) above. For the Stiefel manifold,
it is common to use the canonical metric as suggested in [Edelman et al. (1998). For the

tangent vector £ = XA + B € Tx St(p, n), the canonical metric (-, -)_ is given by

(€.6), = (€7 (1, - SXXT)e)

_ %tr(ATA) +tr(B"B), (A.251)

where the second equality above can be derived easily using X”X = I, and X’B = 0.
With such canonical metric, we can obtain the gradient of a function on the Stiefel manifold

below.

Lemma 30. ((Edelman et al, 1998, Section 2.4.4)) For a real-valued function f defined
on the Stiefel manifold St(p,n), let Vx f be the gradient of f at X € St(p,n). Then it holds

that

_9F _y of
Vaf = 5% —Xom X,

Let us now consider a special case that p = 1 for the Stiefel manifold St(p,n). For such
case, the Stiefel manifold St(p,n) reduces to the unit sphere S"~!. For x € St(1,n) and its
tangent space T, St(1,n), from (A.249) we see that A = 0. Then we can write T, St(1,n)

as
T, St(1,n) = {B: B € R",x'B = 0}. (A.252)

In addition, similar to (A.250), for given x* € St(1,n), vectors on the Stiefel manifold
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St(1,n) can be represented as

{x =exp. & : x7T¢ =0} (A.253)

Then for the tangent vector & = B € Ty St(1,n), the canonical metric is given by

1

(€,6), = tr(€" (L, — Jxx")g)

— :(B"B) = t(¢7¢)

= (€€,

where (£, &), = tr(£7€) represents the (usual) Euclidean metric. Thus, for the case of p =1
the canonical metric is in fact equivalent to the Euclidean metric. To simplify the notation,

denote the metric (-, -) on St(1,n) as

(€.€) =t (£7¢). (A.254)

Moreover, since & € T, St(1,n) is an n-dimensional vector and (£,&) = tr(¢7€) = £7¢,
such metric induces the norm ||£]]3 = ¢7€.
For the Stiefel manifold St(1,n), the gradient given in Lemma [30| above can be written

as

fo:g—xg—fx—ﬁ—xxTaf

ox oxT™  Ox 0x
= (I, — xxT)g—X. (A.255)

Furthermore, we can characterize the geodesic on St(1,n), i.e., on the unit sphere S"~!
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below.

Lemma 31. ((Absil et al|, (2008, Example 5.4.1)) For the unit sphere 8"~ ' with metric
(A.254), let x € 8™ and & be the tangent vector in the tangent space of S ! at x. Let
t — y(t;x, &) be the geodesic on S™1 with v(0;x,€) = x and 4(0;x,&) = €. Then the

geodesic admits the representation

3
€12

(1t %, &) = xcos([[€]l2t) + == sin([|€]]21).

I Additional insights into constructions of M and W

Here, we show that if one directly considers the SVD constraints in g% and calculates
the regular derivatives in the Euclidean space, it will result in deficiency in the degrees of
freedom and there would not exist a valid W matrix.

For simplicity, let us consider the rank-2 case. The following derivations are similar to
those in the proofs of Lemma [I] in Section and Propositions [2] and [3] in Sections [F.9

and [F.10], respectively. Note that we have

L= (Zn)_l{HYH% + uf XTI Xuv] v; + ul X Xuov] vy + 2ul X Xuyv! vs

—2ul X'Yv, - 2u§XTY'v2}.
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After some calculations, we can deduce that

oL &

S Suvi v, — n ' X Yo, (A.256)
Uy
oL T3 T3 -1~ T
o VU] DUy + vouy Xug —n 0 Y Xuyg, (A.257)
1
oL 3 T -1 T
s Yusv,vs —n X Yo, (A.258)
2
L T3 T —1~T
s VoUuy DUy + V1U; XUus — N Y Xus. (A.259)
2
Denote by n; = (v, vl ul)?, and n} = (viT,viT, w3?)?. Utilizing the derivatives
given in (A.257)-(A.259) and the constraints ||vi||s = ||va]lo = 1 and vTwv, = 0, we can

obtain that

oL
M—
o

o M, {v{ufﬁ(ul —uj) — n_lETXul} —n "M X Ev;}
1

+ M, {vquTi(ul —uj) — n’lETXUZ}
= (Myvjul + Mg'vfuzT)fl(ul —uy) — n_l{MlETXul

+ MLE X + M3XTEU;}

= (Ml’Ul’U,r{ + Mg’vlug)i(ul — UT) + 63,
where we define

8, = —n ' {MyE"Xu; + MaE"Xuj + M X Evs } —

{M;(v; — v))u{ — Ma(viuy — viuy')} S(uy —ul). (A.260)
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Then with the derivative in ((A.256[), we can represent @Z(ul, n;) as

~ oL oL
w,n) = —| —M-——
7/)( 1 771) aul - 8771 'r]i‘
= (Ip — Ml’Ul’U,{ — Mgvlug)i(ul — ’U,T) + 617 (A261)

where 8, is equal to —&] — n"'XTEw}. Thus, combining (A.260)) and (A.261]) yields that
Oluy, ) = (I, — Myvu] — Myviul)E(u; — ul) + €+ 6, (A.262)
where € = n™! {ME"Xu; + MobE"Xuj + M3 X7 Ev; } — n'XTEv} and

6 = {M;(v; — v})u] — Ma(viuj —vius")} S(uy — ul).

Next we proceed with the construction of matrix M = [M;, My, M3]. Utilizing the

derivatives in (A.256)—(A.259) and after some calculations, it holds that

ul Su,l, ul Susl, vul'S
62—L — TA TA T/\ TA 1 T
omon? — | W Susl, u; Xuol, 20ul Y + viul X —nYTX |,
0 25uyv! — n1XTY Sol'v,
0*L r o~
——— = [2Zuv] —n'X"Y,0,0].
Ou,0my i

Note that n~!X7Y = 3C + £(C* — C) + n'X”E, where C = u,v7 + uyv?. Plugging it
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into the above derivatives, we have that

0?L O0?L
T _At+A, and —LE__BiA,
omanT ~ 0 T Guggr ~ 0 T
where
u? S, ul Su,l, voul'S
A= | uISu,l, ul Su,l, vuls |,
0 —Suv? 4 Susw?! Solv,
0 0 0
A, = 0 0 (C — C*)Ti —n 'ETX |
0 3(C-C")—n'X'E 0

B = [SuoT — Sus?,0, 0} Ay = [i(c ~ ") - n'X7E, 0, 0] .

Then we aim to find matrix M € RP*(P+29) gatisfying that B—MA = 0. It is equivalent

to solving the following equations

’U;?iulMl + U{E’UQMQ — iulvlT + 2’1},2’1}; = O,
T T - T S T
u; YusM; + vy YusMy — MsXu v + MsXuyv, =0,

Mlvgulel + Mgi’vg’vg + Mgvgugi =0.

Observe that the the key terms in the modified score function (A.262) related to the

construction of matrix W is I, — Myvu! — Mywvud. For simplicity, here we provide
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the explicit expressions of matrices M; and Mo, respectively. It is worth mentioning that
matrix M3 can be derived following the the above equations and matrices M; and My
easily.

Recall that z;; = u{f]ul, Zog = ugiug, and 219 = uleluQ. It holds that

M + 2:Ms — Suv? 4+ Susv! =0, (A.263)
Zlng + ZQQMQ — M3§’U,1’UT + Mgi’u,g’vg = 0, (A264)
Mlvgu,{i + Mgi’vg’vg + MQUQUgi = 0. (A265)
Then we solve the above equations under the SVD constraints ||v1]ls = ||velz = 1 and

vIvy, = 0. From (A.265), it follows that Mgf] = —Mlvgule] — Mgvgugi. Combining it

with leads to
(z12M + 220M) (I, — vgvg) + (211M] + 215My) vl = 0.
Then using 211 M; + 21sMy = ﬁulfvlT — iuszT in (A.263), we can further show that
(z1aM + 290M5) (Iq — 'UQ'UQT) = iugvlT. (A.266)

Moreover, (A.263) also implies that M; = zﬂl(ﬁulfvlT — fJUQvQT — 219M3,). Combining
it with (A.266[), we can obtain the solutions for matrices M; and M. For simplicity, let

us denote by

S | 2 _ -1 1.2 2\~1

_ 2 \~1 _ -1 2\~1
B = (211222 - 212) ; Ba=—zpy 212 (211222 - 212)
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Then matrices M; and My are given by

M1 = Oéli’u,g’vf + agi\]ulvf — zﬁliuzvg, (AQG?)

M2 = /Bli’u,g’vt‘f + /Bgi’u,l’vt‘f. (A268)

Since B — MA = 0, it holds that

2 2
0°L M@L

I M A~ MA, = A,
Ou,0nt omont ’

where A = [A, Ay, Asz] with

A, =3(C—C*) —n'X"E,
A, =My {n ' X"E-S(C- €},

As =M, {nflETX —(C— C*)Ti} .

Next we move on to the construction of matrix W. In view of the modified score
function (A.262)), we can see that there is no intrinsic term similar to terms and .
This means that if we can find an appropriate matrix W to control the bias in the first
term of , we may be able to use the construction of matrices M and W to directly
make inference without imposing the strong and weak orthogonality conditions (Conditions

and . However, we will show that such matrix W simply does not exist.

In view of matrices M; and M3 given in (A.267)) and (A.268)), we have that

T S T © T T S T - T
Miviu; = yyXugu; + wXuu;, Mzviu, = f1Xusu, + foXuiu, .
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Then some simplifications give that
Ip — Ml’Ul’U,rlf — Mg’Ul’U,rQT = Ip — E’U,Q (Oél’l.l,l + Bl’u,g)T — E’U,l (CJ./Q’U,l + BQ’U,Q)T

Denote by Ly = [—f]ul,—fluz € R?*? and Ry = [apu; + Sous, aquy +Blu2]T €

R?*P. Then we have
Ip — Ml’Ul’U,’lT — M3'U1'U,’2T = Ip + L2R2.

By the Sherman-Morrison-Woodbury formula, I, + LoRs is nonsingular if and only if

I, + RyLs is nonsingular. However, it is easy to see that

1 — (2211 + B2z12)  — (2212 + [2292)
I, + RyLy =

— (1211 + frz12) 1 — (1212 + Pr292)

1 — (o211 + B2z12) — (2212 + [a292)

0 0

which shows that matrix I, — Mjviu] — Msvjug is in fact singular. Therefore, we see
that such matrix W does not exist without incorporating the Stiefel manifold structure

imposed by the SVD constraints.
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