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This supplementary material consists of three parts. Appendix C reports additional nu-
merical results. Appendix D provides Lemma 1 and its proof. This lemma establishes the
sure screening property for both interaction and main effect screening and thus Condition
1 holds under some sufficient conditions. Appendix E contains some additional technical
lemmas and their proofs. Hereafter we use d with ¢ = 1,2,... to denote some generic
positive or nonnegative constants whose values may vary from line to line. For any set

G, denote by |G| its cardinality.

C Additional Numerical Results

In this section, we report additional numerical results, which include all screening results

for all settings in studies 1 and 2 and additional selection results.

C.1 Screening Results for Studies 1 and 2

For the screening step, we employed several recent feature screening procedures: the sure
independence screening (Fan and Lv, 2008), feature screening via distance correlation
(Li et al., 2012), variable selection via sliced inverse regression (Jiang and Liu, 2014),
and interaction pursuit via distance correlation (Kong et al., 2017), respectively. Since
this paper focuses on interaction models with one single response, we can also consider
the method of interaction pursuit via Pearson correlation for screening, which is exactly
the same as interaction pursuit via distance correlation, except for the placement of
distance correlation by Pearson correlation when identifying the variables in A and B.
The method in Jiang and Liu (2014) is an iterative procedure that alternates between
a large-scale variable screening step and a moderate-scale variable selection step when

the dimensionality p is large. Since all other screening methods are non-iterative, in



this section we compare the initial screening step of Jiang and Liu’s method with other
methods. We use the full iterative method in Jiang and Liu (2014) when comparing the
variable selection performance. Each method in Fan and Lv (2008), Li et al. (2012),
and the initial screening step of Jiang and Liu (2014) returns a set of variables without
distinguishing between important main effects and active interaction variables. Thus for
each of those methods, we construct interactions using all possible pairwise interactions
of the recruited variables. By doing so, the strong heredity assumption is enforced. We
would like to remark that the resulting feature screening procedures are different from
their original versions.

In other words, we include the following five methods to assess the variable screen-
ing performance: SIS2, the sure independence screening; DC-SIS2, feature screening via
distance correlation; SIRI*2, variable selection via sliced inverse regression; IPDC, inter-
action pursuit via distance correlation; IP, interaction pursuit via the Pearson correlation.
For the first three methods, we construct interactions using the recruited variables. For
the third method, only the initial screening step of the method in Jiang and Liu (2014)

is used to recruit variables.

Table 3: The percentages of retaining each important interaction or main effect, and all
important ones (All) by all the screening methods for models 1-4.

Method Model 1 Model 2 Model 3 Model 4
Xl X5 X1X5 All X1 X10 X1X5 All Xm X15 X1X5 All X1X5 X10X15 All
(n,p, p) = (300, 5000, 0)
SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.14 0.14 1.00 1.00 0.02 0.02 0.00 0.01 0.00
DC-SISs2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.10 0.10 0.18 0.20 0.01
SIRI*2 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.93 1.00 1.00 0.32 0.32 0.63 0.65 0.43
IPDC 1.00 1.00 1.00 1.00 1.00 1.00 0.98 098 1.00 1.00 1.00 1.00 1.00 1.00 1.00

P 1.00 1.00 098 098 1.00 1.00 098 0.98 1.00 1.00 097 097 0.86 0.85 0.71
(n,p, p) = (300,5000,0.5)
SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.09 1.00 1.00 0.02 0.02 0.00 0.01 0.00

DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.16 0.16 0.32 0.25  0.05
SIRI*2 1.00 1.00 1.00 1.00 1.00 1.00 092 092 100 1.00 034 034 0.70 0.57  0.36
IPDC 1.00 1.00 099 099 1.00 1.00 099 099 1.00 1.00 099 0.99 1.00 1.00  1.00
Ip 1.00 1.00 099 099 1.00 1.00 094 094 1.00 1.00 097 097 0.81 0.89  0.70

Table 3 lists the comparison results for all screening methods in recovering each im-
portant interaction or main effect, and retaining all important ones for models 1-4. Table

4 lists the comparison results for model 5. For model 1 satisfying the strong heredity



Table 4: The percentages of retaining each important interaction or main effect, and all
important ones (All) by all the screening methods for model 5.
X1 X Xoo Xz Xy XX XiXypo X5Xi5 XioXis All
(n,p, p) = (300, 5000, 0)
SIS2 0.96 0.96 098 0.99 0.99 0.09 0.92 0.01 0.05 0.01
DC-SIS2 0.96 0.99 0.99 1.00 0.99 0.26  0.95 0.09 0.42 0.08
SIRI*2 090 0.95 090 094 0.93 0.32 0.85 0.18 0.50 0.08
IPDC 0.97 1.00 099 1.00 0.99 0.79 0.85 0.85 0.95 0.73

IP 0.95 1.00 0.97 098 097 042 056 055 064  0.25
(n,p, p) = (300, 5000, 0.5)
SIS2 0.96 0.88 1.00 0.93 094 010 084 002 006 001

DC-SIS2 1.00 0.97 1.00 0.98 0.99 033 0.97 0.19 0.35 0.19
SIRI*2 090 0.93 097 091 0.89 0.46 0.85 0.22 0.45 0.16
IPDC 1.00 0.99 1.00 098 096 0.81 0.8 0.90 0.95 0.73
IP 094 097 097 090 0.93 046  0.50 0.60 0.64 0.21

Table 5: The percentages of retaining each important interaction or main effect, and all
important ones (All) by all the screening methods for study 2.

(n, p, p) = (300, 10000, 0) (n, p, p) = (400, 10000, 0)
X1X5 X10X15 All X1X5 X10X15 All
SIS2 0.00 000 000  SIS2 0.00 0.00  0.00

DC-SIS2 0.08  0.13 0.00 DC-SIS2  0.32  0.30 0.09
SIRT*2 ~ 0.50  0.51 0.28 SIRI*2 0.84 0.76 0.65
IPDC 098  0.99 0.97 IPDC 1.00  1.00 1.00

P 0.76  0.83 059 IP 097 098 095
(n,p, p) = (300, 10000, 0.5) (n,p, p) = (400,10000,0.5)
X, X5 XiXi5 Al X, X5 Xi0X15 All

SIS2 0.00  0.00 0.00 SIS2 0.00  0.01 0.00
DC-SIs2 0.10  0.16 0.00 DC-SIS2 0.39  0.36 0.17
SIRI*2  0.53  0.55 0.28 SIRI*2 0.81  0.78 0.64
IPDC 1.00  0.99 0.99 IPDC 1.00  1.00 1.00
IP 082  0.83 0.65 IP 096  0.95 0.91

assumption, all methods performed rather similarly and all retaining percentages were
either equal or close to 100%. The last four methods performed similarly and improved
over the sure independence screening method in model 2 in which the weak heredity
assumption holds. In models 3 and 4, the method of interaction pursuit via distance cor-
relation and the method of interaction pursuit with the Pearson correlation significantly

outperformed all other methods in detecting interactions across all settings, showing their



advantage when the heredity assumption is not satisfied. We also observe that the sure
independence screening method failed to detect interactions, whereas the method of vari-
able selection via sliced inverse regression improved over the method of feature screening
via distance correlation in these two models. Model 5 was designed to examine the ro-
bustness of each method at the presence of more main effects and interactions. The
advantages of interaction pursuit via distance correlation and interaction pursuit remain
in this model. These results suggest that a separate screening step should be designed
specifically for interactions to improve the screening accuracy, which is indeed one of the
main innovations of the method of interaction pursuit in Kong et al. (2017). Table 5

shows the same conclusions.

C.2 Additional Selection Results for Studies 1 and 2

Table 6: Variable selection results for study 1 with (n,p, p) = (300,5000,0). Reported
values are medians and robust standard deviations (in parentheses) of three performance
measures: PE, prediction error; FS, falsely discovered signs; and Time, running time in
seconds. 0* means that the corresponding value is small than 0.001.

SIS2-L,+SICA DC-SIS2-L;+SICA SIRI IPDC-L{+SICA  IP-Lasso  IP-L;+SICA  Oracle
Model 1

PE 3.1(0.8) 3.1(0.7) 2.9(0.3) 3.1(0.8) 3.6(0.4) 3.1(0.9) 2.9(0.3)
FS 0(5.2) 0(4.5) 0(0) 0(2.0) 112.5(24.6) 0(6.7) 0(0)
Time 715.7(37.5) 712.3 (35.5) 808.1(38.9) 113.6 (17.2) 7.2(0.7) 122.5(11.8) 0*(0%)
Model 2

PE 19.6 (3.3) 2.1 (0.3) 2.2 (0.0) 2.1 (0.4) 2.4 (0.2) 2.1 (0.2) 2.0 (0.1)
FS 25 (14.9) 1(4.1) 3 (3.0) 0 (5.4) 96 (21.3) 0(2.2) 0 (0.0)
Time 734.4 (38.5) 718.2 (37.3) 798.3 (49.3) 107.4 (9.0) 6.8 (0.6) 116.5 (6.9) 0* (0%)
Model 3

PE 20.8 (2.0) 20.0 (3.2) 13.2 (0.5) 2.1 (0.3) 2.4 (0.2) 2.1 (0.2) 2.0 (0.1)
FS 29.5 (5.2) 27 (13.4) 8 (3.0) 0 (2.7) 98.5 (19.4) 0 (3.4) 0 (0.0)
Time 752.5 (32.8) 746.4 (34.3) 436.6 (9.2) 109.8 (9.5) 6.7 (0.6) 116.1 (8.6) 0* (0%)
Model 4

PI;)) ’ 36.3 (3.2) 34.2 (13.3) 12.3 (2.7) 1.4 (0.1) 1.6 (9.0) 1.4 (9.7) 1.3 (0.0)
FS 35 (14.9) 28.5 (12.3) 6 (6.7) 0 (0.0) 78 (36.2) 0 (4.1) 0 (0.0)
Time 749.2 (15.3) 752.5 (19.9) 223.3 (137.1) 98.3 (6.9) 6.4 (0.9) 108.2 (11.4)  0* (0*)
Model 5

PE 63.6 (10.8) 47.0 (18.1) 6.4 (34.4) 2.0 (17.0) 36.4 (31.8) 36.3 (33.6) 2.0 (0.0)
FS 20 (6.7) 16 (12.3) 21 (9.7) 5 (1.5) 120 (35.1) 10 (11.6) 0 (0.0)
Time 744.4 (58.7) 749.1 (41.1) 499.8 (82.4) 112.7 (14.9) 9.7 (2.3) 141.5 (17.2)  0* (0%)




Table 7: Variable selection results for study 2. Reported values are medians and robust
standard deviations (in parentheses) of three performance measures: PE, prediction error;
FS, falsely discovered signs; and Time, running time in seconds. 0% means that the
corresponding value is small than 0.001.

SIS2-L,+SICA  DC-SIS2-L,+SICA SIRI IPDC-L,+SICA  IP-Lasso IP-L,+SICA  Oracle
(n,p, p) = (300, 10000, 0)

PE 37.7 (2.0) 37.0 (4.7) 13.3 (8.6) 2.9 (0.4) 33(95)  3.1(1L2) 2.9 (0.2)

FS 34 (13.4) 315 (12.7) 6.0 (5.2) 0 (1.3) 79 (43.3) 1 (8.6) 0 (0.0)

Time  791.9 (163.2) 785.2 (177.0)  361.3 (220.1)  100.8 (9.0) 7.8 (L6) 1260 (24.1) 0% (0%)
(n,p, p) = (300, 10000, 0.5)

PE 37.7 (2.4) 36.4 (10.8) 13.1 (8.5) 2.9 (0.4) 32(9.3)  3.0(104) 2.9 (0.2)

FS 35 (13.4) 31 (12.7) 6(5.2) 0 (0.0) 795 (38.1) 0 (6.7) 0 (0.0)

Time  830.0 (144.7) 812.3 (141.0)  653.2 (309.3)  101.0 (7.8) 74 (L7) 1212 (18.7) 0% (0%)
(n,p, p) = (400, 10000, 0)

PE 37.6 (3.0) 23.3 (13.2) 12.4 (0.4) 2.9 (0.4) 30(02) 2902  29(0.2)

FS 41 (17.2) 33 (12.7) 8 (7.5) 0 (0.0) 74 (17.2) 0 (0.0) 0 (0.0)

Time 1836.1 (449.1)  1998.0 (460.6)  533.0 (177.9)  175.5 (8.9) 14.4 (35) 2241 (52.0) 0% (0%)
(n,p, p) = (400, 10000, 0.5)

PE 38.6 (2.2) 22.1 (12.9) 12.6 (8.7) 2.9 (0.4) 3.0 (0.2) 29(0.3) 29 (0.2)

FS 44 (5.2) 33.5 (17.5) 8 (5.2) 0 (0.0) 76.5 (16.8) 0 (0.0) 0 (0.0)

Time 1896.2 (468.9)  1906.3 (452.4)  792.1 (384.0)  179.0 (14.0)  14.4 (3.7) 203.8 (54.0)  0* (0%)

D Lemma 1 and Its Proof

D.1 Lemma 1

Lemma 1. a) Under Conditions 2 and 6, if 0 < max{2r; + 4&1,2K1 + 45} < 1 and
E(Y*) = O(1), then for any C > 0, there exists some constant Cy > 0 depending on C
such that forlogp = o(n®*™) with n; = min{(1—2k; —4&)/(8+ay), (1 -2k —4&)/(12+
i)},

., > —K1 — —Cl
P(lrgkaélwk wg| > Cn™"™) =o(n""1). (D.1)

b) Under Conditions 2 and 6, if 0 < max{2ko+2&;,2k2+2E} < 1 and E(Y?) = O(1),

then for any C > 0, there exists some constant Cy > 0 depending on C' such that

Rk —K2\ _ —Cs
P(lrgjggowj wi| > Cn™") = o(n~"?) (D.2)

for logp = o(n®) with ny = min{(1 — 2Ky — 2&) /(4 + 1), (1 — 2k — 2£1) /(6 + 1) }.

c) Under Conditions 2, 6 and 7, and the choices of T = con™ and T = con™"2, if



0<&,& <min{l/4—rk1/2,1/2 — ko} and E(Y*) = O(1), then we have
P(I cT and MC /\7) —1- o(n*min{01’02}> (D.3)

for logp = o(ner™indmme}y with constants Cy and Cy given in (D.1) and (D.2), respec-

tively. In addition, it holds that

max

P (121 < O{n*™ 32,0 (51)} and |M] < Ofn® Auax (E7) + 1% diae(2)})

=1-o0 (n_ min{cl’c2}) ; (D.4)

where Amax(+) denotes the largest eigenvalue, 3 is the population covariance matriz of the

random vector (Xi,...,X,)T and X* is the population covariance matriz of the random

vector (X7,..., X3)" with X, = {X} — E(X?)}/{var(X})}'/2.

Comparing the results from the first two parts of Lemma 1 on interactions and main
effects, respectively, we see that interaction screening generally requires more restrictive
assumption on dimensionality p. This reflects that the task of interaction screening is
intrinsically more challenging than that of main effect screening. In particular, when
a1 = 2, the method of interaction pursuit via Pearson correlation can handle ultra-high
dimensionality up to

logp = o (nmin{(172/{174£2)/5,(172/””17451)/7,(172/427252)/3,(172/{27251)/4}) _ (D.5)
It is worth mentioning that both constants C; and Cy in the probability bounds (D.1)-
(D.2) can be chosen arbitrarily large without affecting the order of p and ranges of
constants k1 and ko. We also observe that stronger marginal signal strength for interaction
variables and main effects, in terms of smaller values of k1 and k5, can enable us to tackle
higher dimensionality.

The third part of Lemma 1 shows that the method of interaction pursuit via Pearson

correlation enjoys the sure screening property for both interaction and main effect screen-



ing, and thus Condition 1 holds with C' = min{C}, Cy} and n = ag min{n;, n2}. The third
part of lemma 1 also admits an explicit bound on the size of the reduced model after
screening. More specifically, an upper bound of the reduced model size is controlled by
the choices of both thresholds 7 and 7, and the largest eigenvalues of the two population
covariance matrices ¥* and . If we assume Ao (3*) = O(n%) and A\ (3) = O(n®)
for some constants &3,&, > 0, then with overwhelming probability the total number of
interactions and main effects in the reduced model is at most of a polynomial order of
sample size n.

The thresholds 7 = con™ and T = con™ " given in Lemma 1 depend on unknown
constants co, k1, and ks, and thus are unavailable in practice. In real applications, to
estimate the set of active interaction variables A, we sort |Wg|, 1 < k < p, in decreasing
order and then retain the top d variables. This strategy is also widely used in the existing
literature; see, for example, Fan and Lv (2008), Fan and Song (2010), Li et al. (2012),
Barut et al. (2016), and Zhou et al. (2019). The set of main effects B is estimated
similarly except that the marginal utility |w;| is used. Following the suggestion in Fan
and Lv (2008), one may choose the number of retained variables for each of sets A and B
in a screening procedure as n — 1 or [en/(logn)] with ¢ some positive constant, depending
on the available sample size n. The parameter ¢ can be tuned using some data-driven
method such as the cross-validation.

It is worth pointing out that our result is weaker than that in Fan and Lv (2008)
in terms of growth of dimensionality, where one can allow logp = o(n'~2%?). This is
mainly because they considered linear models without interactions, indicating the intrinsic
challenges of feature screening in the presence of interactions. Moreover, our assumptions
on the distributions for the covariates and errors are more flexible.

The results in Lemma 1 can be improved in the case when the covariates X,’s and

the response Y are uniformly bounded. An application of the proofs for (D.1)—(D.2) in



D.2 and D.3 of the e-companion to this paper yields

P( max |Wy — wg| > CQn’”l) < pCsexp(—Cy 'n'~2m),
1<k<p

P ( max |&; —wj| = can"”) < pCyexp(—Cyn!~22),

where C3 is some positive constant. In this case, the method of interaction pursuit
via Pearson correlation can handle ultra-high dimensionality logp = o(n®) with ¢ =

min{1 — 2k, 1 — 2Ky }.

D.2 Proof of part a) of Lemma 1
Let Spp=n"'> X2Y2 Spe=n"'> X2 Spz=n"'> X} and Sy =n"'> Y72 Then
i=1 i=1 i=1 i=1

wy and @y, can be written as

_ E(Sk1) — E(Sk2)E(Sy) and Oh — Sk1 — Sk2S4

VE(Sis) — E2(Si) /S = 5%,

To prove (D.1), the key step is to show that for any positive constant C, there exist some

Wk

constants 51, e ,54 > 0 such that the following probability bounds

P(max |Sp — E(Sk)| > Cn~) < pCy exp (—5271"1"1) + Cy exp <—54n°‘2771> , (D.6)

1<k<p

P(max | Sy — B(Sia)] > On"*) < pCh exp[—Cyn(72e0)/ (e (D.7)
SRSP

P(max |Sis — E(Sys)| = On™") < pCh exp[—Con™ (172G ren)] (D.8)
SRSP

P(|Ss — E(Sy)| > Cn~"1) < Cy exp <—52n0‘1<1) + Cyexp <—54na2<§) (D.9)

hold for all n sufficiently large when 0 < 2k, + 46, < 1 and 0 < 2, + 4€, < 1, where
= min{(1—2k; —4&)/(8+ay), (1—2k1—4&) /(124 )}, 1 = min{(1 -2k, —4&)/(4+
ar), (1-261—4&)/(8+a1)}, ¢ = min{(1 -2k —2&)/(4+a1), (1-2K1-26)/(6+ )},
and ¢4 = min{(y, (1—2k1)/(44+az)}. Define n = min{ny, (1—2x1)/(4+a1), (1—2K1)/(8+
0), (1} and ¢ = min{n, ¢}, Then 7 — ny and ¢ = min{ny, (1 — 261)/(4 + a)}. Thus,



by Lemmas 8-12, we have

P(max |@ — wi| > Cn ) < pC exp(—Can®™) + Cs exp(—Cyn®2°). (D.10)

1<k<p

Thus, if log p = o{n*"}, the result of the part (a) in Lemma 1 follows immediately.

It thus remains to prove the probability bounds (D.6)—(D.9). Since the proofs of
(D.6)—(D.9) are similar, here we focus on (D.6) to save space. Throughout the proof, the
same notation C is used to denote a generic positive constant without loss of generality,
which may take different values at each appearance.

Recall that Y; = ag + 218y + 21y + & = Bo + IZBB(],B + ZZI%,Z + &;, where
r, = (Xig,.. ., Xip)T, 2z = (XaXie,..., Xip1Xip)', vig = (X, € B, ziz =
(XX, (k, 0) € )T, Bos = (Boj € B)Y, and oz = (Y0.x¢, (k,¢) € I)T. To simplify

the presentation, we assume that the intercept ag is zero without loss of generality. Thus

n n
1 21,2 -1 2/ T T 2
Sk1 =n E XY =n E Xy, gBos + 2, 170,1 + €i)
i—1

i=1

n n n
1 2 ,.T T 2 1 2 ,.T T 1 2 2
=n E X (% gBos + 2 1702)” +2n E X (% gBos + 2 r0.1)8i + 1 E Xiki
i—1 i1 i—1

2Sk11 + 2Sk.2 + Skis

Similarly, E(Skl) can be written as E(Skl) = E(Skl,l) + 2E(Sk1,2) + E(Skl,g). So Skl -
E(Sy1) can be expressed as Sg1 — E(Sk1) = [Sk1,1 — E(Sk1,1)] +2[k1.2 — E(Sk1,2)] + [Sk1,3 —
E(Sk13)]. By the triangle inequality and the union bound we have

3
P( max |S]€1 — E(Sk1)| Z C’n_’“) SP(U{ max |Sk1,j — E(Skl,j)| 2 C’n_’“/él})
7=1

1<k<p 1<k<p

3
<> P(max S ; — E(Sk )| = Cn~"/4). (D.11)
j=1

1<k<p

In what follows, we will provide details on deriving an exponential tail probability bound

for each term on the right hand side above. To enhance readability, we split the proof



into three steps.

Step 1. We start with the first term maxj<g<p [Sk1.1 — £(Sk1,1)]. Define the event
Q= {|Xi| < Mforallj € MU{k}} with M = AU B and M, a large positive
number that will be specified later. Let Ty, = n* f:lek(at;{Bﬂo,B + 2! 770z)%Iq, and
Tho = n7t ilek(x;{Bﬁo,B + 2 770.2)Iae, where I(-) is the indicator function and Qf is

the complement of the set 2;. Then
Skl,l - E(Skl,l) - [Tkl - E(Tkl)] + Tk2 - E(T]ﬁ) (D12)

Note that E(Tye) = E[X}, (2] gBos + 21 770,2)*Tac]. By the fact (a +b)* < 2(a® + b?) for

two real numbers a and b, the Cauchy-Schwarz inequality, and Condition 6, we have

(%T sBo,8 + Zip,z’Yo,I)Q < 2[(931T sBos)” + (Z1T,1’YO,I)2] < 2C3(sal|lz1, s> + s1llz1.z|1%),
(D.13)

where Cj is some positive constant and ||-|| denotes the Euclidean norm. This ensures that
E(Ty) is bounded by 2C3ss E(X 1,8l Tag) + 51 E(X, 11, 2]Tag)]. By the Cauchy-

Schwarz inequality, the union bound, and the inequality (a + b)? < 2(a? + b?), we obtain

1/2
(Q‘i)}

1/2

that

B(XZ |21, 8] Tas) < [B(XE |28 P25)] 7 < {[ 3 B(X X

JjEB

1/2
< {2‘132 S B(XE) + E(ij)]} > P(IXy| > M)

jEB JEMU{k}

<Csy(1 + 55+ 2812 exp[— M /(2¢1)]

for some positive constant 6, where the last inequality follows from Condition 2 and

Lemma 3. Similarly, we have E(X3,||21,z]|*Io:) < Cs1(1 4 5+ 251) /2 exp|—M7" /(2¢1)).

10



This together with the above inequalities entails that
0 < E(Tyz) < 2C2C(s3 + s3)(1 + s + 251)? exp[— M /(2¢1)].

If we choose M; = n™ with n; > 0, then by Condition 6, for any positive constant C,

when n is sufficiently large,

|E(Ths)| < 2C2C (0% + n2)(1 + n& + 2n8) Y2 exp[—n®™ /(2¢1)]

< Cn~" /12 (D.14)

holds uniformly for all 1 < k& < p. The above inequality together with (D.12) ensures

that
_ > —K1
P(ax |Sp1 — E(Spa)| 2 Cn™™ /4)
— > —k1 > —K1 )
<P(max Ty — E(Tu)| 2 Cn™™ /12) + P(max |Tie| > Cn™"/12) (D.15)

for all n sufficiently large. Thus we only need to establish the probability bound for each
term on the right hand side of (D.15).
First consider maxy<x<, |Tx1 — E(T}1)|. Using similar arguments for proving (D.13),

we have (] gfos + 2 770,2)% < 203 (s2]|z: 8||* + 51|z, z]|*) and thus
0 < X5(2] bos + 2 1702) la, < 205 X7 (s2llzs 8I* + s1ll2i,2]1*) e, < 2C5 M (s3 + 53 M7).

For any 6 > 0, by Hoeffding’s inequality, we obtain

no> no?
P(|Ty — E(T; > §) <2 — <2 —
(T = BT 2 ) <26 | ey <20 | et oo
<9 no? L9 no?
ex —_— ex s E——
=2OP\ T8CaSs P\ Tscinest )

where we have used the fact that (a + 0)? < 2(a® + b?) for any real numbers a and b, and
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exp[—c/(a + b)] < exp[—c/(2a)] 4+ exp[—c/(2b)] for any a,b,c > 0. Recall that M; = n™.
Under Condition 6, taking 6 = C'n~"1/12 gives that

p
P(max [Tiy — E(Tia)| 2 Cn™"/12) < ;PUTM — E(T)| = Cn™"/12)
<2pexp (—5711_2'“—8’71_452) + 2pexp (—5711_2“1_12’71_451) . (D.16)
Next, consider maxi<x<p |Tha|. Recall that Thy = n~' >° X3 (2] 3808+ 2 7702) Tac >

=1

0. By Markov’s inequality, for any § > 0, we have P(|Tko| > §) < 0 'E(|Tke|) =

01E(Tyo). In view of the first inequality in (D.14), taking § = Cn™"1 /12 leads to
P(|Tha] > Cn~"/12) < 24C~1C2CN" (0% + n*2) (1 + n® + 2n8) Y2 exp[—n®" /(2¢)]

for all 1 < k < p. Therefore,

3

P(max |Tpo| > Cn™"/12) < »  P(|Tie| > Cn™"/12)
1<k<p pot

<24pC~1C20N% (% + n?2) (1 + n® + 2n8) Y2 exp[—n®™ /(2¢)). (D.17)
Combining (D.15), (D.16), and (D.17) yields that for sufficiently large n,

P( max |Sk1’1 — E(Sk171)| Z C’n_”“/él)

1<k<p

<2pexp (_5711—251—8771—452) +2pexp (_5711—251—12771_451)

+ 24pC 1 C2CN™ (% + n®2)(1 4 nf 4 2n8) 2 exp[—n™ /(2¢1)]. (D.18)

To balance the three terms on the right hand side of (D.18), we choose 7, = min{(1 —
2k — 4&) /(8 4+ a1), (1 — 2k —4£)/(12 4+ a1)} > 0 and the probability bound (D.18)

becomes

P( max |Sk11 — E(Sk11)| > Cn™"/4) < pCs exp <—6’6n°‘1’71> (D.19)
xp

1<k

12



for all n sufficiently large, where Cs and Cg are two positive constants.
Step 2. We establish the probability bound for max;<j<, |Sk1,2 — E£(Sk12)|. Define
the event U; = {|X;;| < Myfor allj € MU {k}} with M = AU B and let

Tis =n"" ZXEIC('TZB/BO,B + 2z r)ede I(e;| < Ms),
=1

Tha = ’n,il ZXEk(JJZ:BﬁO’B -+ ZZI’VO,Z>52‘]I\I/¢H<|5¢| > M3),
i=1

n
~1 2T T
Tys =n E Xik(xi,gﬁo,zs + Zi7170,I)5iH\I/fa
i=1

where M, and Mj are two large positive numbers which will be specified later. Then
Si12 = Tks + Tha + Ts. Similarly, E(Sk12) can be written as E(Sk12) = E(Tk3) +
E(Ty4) + E(Tys5). Since e; has mean zero and is independent of X 1,..., X ,, we have
E(Tis) = EIX{ (21 sbos + 2{ rv02)e1lus] = E[XT(2] sPos + 21 170,2)ug] Eer) = 0.

Thus Sk12 — E(Sk12) can be expressed as
Si12 — E(Sk12) = [Ths — E(Tis)] + Ta + Ths — E(Tya). (D.20)
Note that E(Tr) = E[X3, (2] gbo.s + 21 7702)e1lw, I(Je1| > Ms)]. Thus
|E(Tha)| < BIX3 |21, 5605 + 21 2102|Tw, [e1[I(er] > Ms)].
It follows from the triangle inequality and Condition 6 that

Xtplat gBos + 21 rv0zle, < Xi(l21 o8l + |21 1702 )lw, < CoM3(s2 + s1M3).

(D.21)

for all 1 < k < p and some positive constant Cy. By the Cauchy-Schwarz inequality,

Condition 2, and Lemma 3, we have
Ellea]I(le1| > Mg)] < [E(e})P(ler] > Ms)]'/* < Cexp[—Ms2/(2¢1)]. (D.22)
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This together with the above inequalities entails that
|E(Tk4>| < C()M23<82 + 81M2>EH€1“I(|€1| > Mg)] < CoéMS(SQ + 81M2) eXp[—M§2/(201)].

If we choose My = n™ and M3 = n'® with ny > 0 and 73 > 0, then under Condition 6,

for any positive constant C', when n is sufficiently large,
|E(Ths)| < CoCn®™ (né2 4 nf+m) exp[—n®2™ /(2¢,)] < Cn~"1 /16
holds uniformly for all 1 < k£ < p. This together with (D.20) ensures that

P( max ‘Skl,Z — E(Sk1,2>’ Z Cnf'“/él) S P( max |Tk3 — E(Tkg)’ Z Cn7”1/16)

1<k<p 1<k<p

> O > O .
+ P(121§§)|Tk4\ > Cn™"/16) + P(1?$§p|Tk5| > Cn™"/16) (D.23)

for all n sufficiently large. In what follows, we will provide details on establishing the
probability bound for each term on the right hand side of (D.23).

First consider maxi<j<p [Tks — E(Ti3)|. In view of (D.21), we have | X7 («] 3808 +
zlng)ed, - I(les| < Ms)] < CoM§Ms(sy + s1My). For any 6 > 0, by Hoeffding’s

inequality, it holds that

néo?
P(|Tys — E(Ty3)| > 0) <2exp |—

203M26M§(82 + 81M2)2
no?
4CEMSM2(s3 + sTM2)

<2exp [—

<9 nd? L9 nd?
=S\ TR S22 P\ Tscznsazs? )

where we have used the fact that exp|—c/(a + b)] < exp[—c/(2a)] 4 exp[—c/(2b)] for any

14



a,b,c > 0. Recall that My = n" and Mz = n™. Thus, taking 6 = Cn="1 /16 gives

p
P(max |Txs — E(Tia)] = Cn ™ /16) < Y P(|Txs — E(Tia)| = Cn " /16)

1<k<p
k=1

<2pexp (—57@172”1767’272”37252) + 2pexp (—Cnl 2 —8m—2m= 251). (D.24)

Next we handle max;<y<,|Tk4|. Using similar arguments as for proving (D.21), we
have X7 |z} gfos + 2 7702/lw, < CoM3 (52 + s1Ms) for all 1 <i <nand 1 <k <p and

thus

n

max |Tha| < CoM3(sy + s1Ma)n™ Y |eilI(|ei] > Ms).

1<k<p
=1

It follows from Markov’s inequality and (D.22) that

P( max |T]€4| > (5) <P {O() (82 —|—81M2 Z |€Z‘]I ’51| > Mg) > (5}

1<k<p

<5 'E

CoM3 (55 + 51 Ma)n ZWH |51]>M3)]

=0 100 (82 + SlMg) [‘€1|H(|€1‘ > Mg)]

<6 1CoC M3 (s34 s1Ms) exp[— M2 /(2¢1)].
Recall that My = n™ and Mz = n™. Thus, taking 6 = Cn=" /16 results in

P(lrggzi Tra] > Cn7"1/16) < 160~ CoCn®™ 7 (02 4 né1212) exp[—n®2™ /(2¢,)].

(D.25)

We next consider max;<k<, |Tis|. Since |Tjs| < n~! Z X2 |(x T; I Bos + 251’7071)52'“1\1/?,
=1

15



by Markov’s inequality we have

P(|Tys| > 6) <P{ -1 ZX Z7Bﬁ075 + ZZIVO,I)&“I\I,Z; > 5}

<6 'E

n—l Z X3k|(1‘3;560,8 + 22:17071)8i|1[q;1¢]
i=1

=6 "'B[XE| (2] gBos + 21 2707)e1 [ Lwe]-

It follows from the Cauchy-Schwarz inequality and (D.13) that

E[X 1k|(951 g + 21 770, 1)51|H\DC] <{P[X 1k($1 sBos + 21 70, I) 51] (‘I’(f)}m

<{2C2 [sy B(X |21, 8]1%€2) + 81 B(X 1|20, 2]%2)] P(W5)}2.

Applying the Cauchy-Schwarz inequality again gives

1/2

1/2 1/2
E(Xillzr,5l%et) < [BE(Xllan s E(E)] T < [8223 (XX [E(e1)]

JEB

1/2
< {2_132 Z[E<X111§) + E(ij)]} [E(e1)] "2 < Csa,

jeB

where the last inequality follows from Condition 2 and Lemma 3. Similarly, we can
show that E(X%]z.z]|?c2) < Cs;. By Condition 2 and the union bound, we deduce
P(U9) = P(|X;| > Myfor somej € MU{k}) < (1 + 2s; + s9)crexp(—Mg3" /ey). This

together with the above inequalities entails that
P(|Tys| > 6) < 67{2C2C (52 4 s2)(1 + 281 + s3)c1 exp(— M5 [eq)}/2.
Recall that My = n™. Under Condition 6, taking 6 = Cn~"1/16 yields

p
P(max |Tis| > Cn™/16) < > P(|Tis| > Cn™"/16)

1<k<p
k=1

<16pC~ ' {2C2C e (n* + n®2)(1 + 2n8 + n®)}/2 exp[—n®1"™ /(2¢1)]. (D.26)
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Combining (D.23), (D.24), (D.25), and (D.26) yields that for sufficiently large n,

P( max |Sk172 — E(S}cl’g)’ Z C’n*’“/él)

1<k<p
§2p exp (_6«n1—251—6772—27]3—2§2) + 2]) exp (_6n1—2n1—8n2—2n3—2§1>
+ 16pC ' {2C2C ey (n® + n?2) (1 + 20 + né2) Y2 exp[—n®1" /(2¢)]

+16C ' CoCn™+ (nf2 4 nfi+12) exp[—n®2™ /(2¢)]. (D.27)

Let no = n3 = min{(1 — 2k — 2&)/(8 + au), (1 — 2Ky — 2£1)/(10 4+ ;) }. Then (D.27)

becomes

P(max [Sp12 — E(Sp12)| > Cn™™ /4) < pCrexp (—5871"“72) + Cy exp[—Cign®2"™].
1<k<p

(D.28)

for all n sufficiently large, where 5'7, 58, 5'9, and 6’10 are some positive constants.

Step 3. We establish the probability bound for max;<g<, |Sk13 — E(Sk1,3)|. Define

The =n"" Y X7elI(|Xu| < My)I(|ei| < M),

=1

Tir =n~ ZX (| X < M)I(Jes| > M),

Tg =n"" ZX%ﬁ]I | Xk > My),

1

where M, and M; are two large positive numbers whose values will be specified later.
Then Sk13 = Tre + Tr7 + Tis. Similarly, E(Sk1,3) can be written as E(S13) = E(Tke) +
E(Ti7)+E(Tis) with E(The) = E[X7e11( Xux| < Ma)I(le1] < M5)], E(Tir) = E[XTe11(| X1x] <
My)I(ler| > Ms)], and E(Tys) = E[X%e3(| X1x| > My)]. Thus Sk 3 — E(Sk13) can be

expressed as

Skl,?) — E(Skl,g) = [Tkﬁ — E(TkG)] + Tk7 + Tkg — [E(Tk’?) + E(Tkg)] (ng)

17



First consider the last two terms E(Ty7) and E(Tg). It follows from 0 < X7 e3(| X 1| <

M4)H(|€1| > M5) < MZE%H(|€1| > M5) that
0 < E(Tw7) < M2E[eH(|e1| > Ms5)). (D.30)

An application of the Cauchy-Schwarz inequality leads to E[e31(|e;| > M5)] < [E(e])P(|e1| >

Ms5)]*/2. By Condition 2 and Lemma 3, we have
E[efl(|e1] > Mp)] < {E(e})er} exp(—cr ' Mg? 2) < Cexp[—Mg?/(2c1)]  (D.31)
Combining (D.30) with (D.31) yields
(B (Tye)| < OMZ expl—Mg*/(2c,)]. (D.32)
Similarly, by the Cauchy-Schwarz inequality and Lemma 3 we obtain

|E(Tis)| = BIXTeil(| Xue] > Ma)] < {B(Xiet) P(IX1| > My}

< { E(X%) + EE)? exp[— M1 /(2¢1)] < Cexp[— M1 /(2¢1)].  (D.33)
Combining (D.32) and (D.33) results in
|E(Tir) + E(Tis)| < CMZ exp[— M2 /(2¢1)] + C exp[— M /(2¢1)].

If we choose My, = n"™ and My = n'» with n, > 0 and 75 > 0, then for any positive

constant C', when n is sufficiently large,
|E(Tyr) + E(Tis)| < Cn®™ exp[—n®2™ /(2¢1)] + C exp[—n®"™ /(2¢1)] < Cn™" /16

holds uniformly for all 1 < k < p. The above inequality together with (D.29) ensures

18



that

P( max ’Skl,g - E(Sk1,3)| Z Cn™™ /4)

1<k<p

- 1<k<

< P(max |Tve — E(Tys)| > Cn™"/16) + P(El;?i{ |Ty7| > Cn="1/16)
SRSP

> " .
+ P(1§§§p|Tks| > Cn™"/16) (D.34)

for all n sufficiently large.

In what follows, we will provide details on establishing the probability bound for each
term on the right hand side of (D.34). First consider maxj<g<, |Tis — E(Tke)|. Since
0 < XZ2M(| Xix| < My)(|e;| < Ms) < M}MZ2, by Hoeffding’s inequality, we have for any

60 > 0 that

2n6>
P(|Tws — E(Tys)| > ) < 2exp (—%) = 2exp (—2n'"MMB§?)
My M;
by noting that My = n"™ and M5 = n. Thus, taking 6 = Cn=" /16 gives

P
P(max |Tws — E(Tig)| > Cn "1 /16) < Z (ITke — E(Tis)| > Cn™"*/16)

1<k<p
< 2pexp <—5n1’2”1’4n4’4”5> : (D.35)
Next we handle maxi<g<p ’Tk7| Since maxj<g<p |Tk7| < n_le Z? 1E; <|€1| > M5)

it follows from Markov’s inequality and (D.31) that for any 6 > 0,

P(max |Tig| > 6) <P{n~'M; > £(le;| > Ms) > 5}

1<k<p —
1=

<STEnTI MY el(|ei] > Ms)]

=1

=6 ' M2E[EX1(|ey| > Ms)] < C6~ M2 exp|— M2 /(2¢1)).

Recall that My = n™ and M5 = n. Setting 6 = Cn~ " /16 in the above inequality
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entails

P(max |Tir| > Cn =" /16) < 16C - Cn®M*+* exp[—n®2 /(2¢1)]. (D.36)

1<j<p

We then consider max;<g<, |Trs|- By Markov’s inequality and (D.33), for any 6 > 0,

P(|Tis| 2 0) <67 Eln™" Y X5ei(1Xal > My)] = 6 EIXel1(1Xux| > M)

=1

< 07'C exp[— M ) (2¢1)]. (D.37)
Recall that My = n™. In view of (D.37), taking 6 = Cn™"/16 leads to

P
P(max |Tys| > Cn~"1/16) < ZP(|Tk8| > COn " /16) < 16pC~'Cn™ exp[—n*™/(2¢1)].
1<k<p P

(D.38)

Combining (D.34), (D.35), (D.36) with (D.38) yields that for sufficiently large n,

P( max ‘Skl,?) — E(Skl,ZS)’ > Cn_”1/4) < 2pexp (_5n1—2N1—4774—4775>

1<k<p

+ 16pC~ Cn’™ exp[—n®1™/(2¢1)] + 160~ Cn?1 4 exp[—n®2™ /(2¢1)].  (D.39)
Let ny =15 = (1 — 2k1)/(8 + ). Then (D.39) becomes

P( max |Sk173 — E(Skl’g)’ Z C’n*’“ /4) S pén exp[—algnam‘*] + 513 exp[—éun‘””‘*]

1<k<p

(D.40)

for all n sufficiently large, where 5’11, 5’12, 6’13, and 6’14 are some positive constants.
Since 0 <y < 19 = n3 and ny < 1y, it follows from (D.11), (D.19), (D.28), and (D.40)

that there exist some positive constants 61, cee 54 such that

P( max ’Skl — E(Sk1)| Z C'rf’“) S pél exp (—5271’1”71) + 53 exp (—dma?”l)

1<k<p
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for all n sufficiently large. This concludes the proof of part a) of Lemma 1.

D.3 Proof of part b) of Lemma 1

We recall that w} = F(X;Y) and &} = n=! ;n:lXij}Q. Note that Y; = By + z1' By + 25 v +
ei = Bot+a] gbos+2] 170+ei, where z; = (X;l, LX) = (XX, Xip1 Xap)T,
i = (X0 € B)T, 2,1 = (XuXie, (k,0) € I)T, Bop = (6,¢ € B)T, and ~v,; =
(Yre, (k, £) € )T, To simplify the proof, we assume that the intercept oy is zero without

loss of generality. Thus

05 = 30X = S Xy e s+ )+ S X

=1 =1 =1

£ S+ Sje.

Similarly, wj can be written as wj = E(X;Y) = E(Sj1) + E(Sj2). So @ — wj can be

expressed as Wj — w; = [Sj1 — E(551)] + [Sj2 — E(Sj2)]. By the triangle inequality and

the union bound, it holds that

OF — Wi > —f2
P(lrgjzg) | — wi| > Cn™"™)

<P(max |Sj1 — E(S)| > Cn~/2) + P(max |Sjp — B(Sjp)| = Cn™/2).  (DA1)
SJSp

1<j<p

In what follows, we will provide details on deriving an exponential tail probability bound
for each term on the right hand side above. To enhance readability, we split the proof
into two steps.

Step 1. We start with the first term max;<j<,|Sj1 — E(S;1)|. Define the event
O, = {|Xu| < Mgforalll € MU {j}} with M = AU B and Mg a large positive

number that will be specified later. Let Tj; = n™* ZXij(mz:BBO,B + ZZI%,I)]I@ and

=1
n

Tjs =n~" Y Xij(x] 3o + 2. 170.2)lec, where I(-) is the indicator function and ®f is the
i=1
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complement of the set ®;. Then an application of the triangle inequality yields

1Sj1 — E(Sj1)

=|[Tj1 — E(Typ)] + Tjo — E(T)2)| < [Tj — E(Tj)| + |Tje| + [E(T)2)]

S|Th = E(Ti)| + [Thel + E(|Tjl). (D.42)

Note that |Tjo| < n™' 3 | Xi; (2] gbo,s+2 270,2) lec and thus E(|T|) < E[|X1,(2] gfos+
i=1

szyo’z)\]lqﬁ]. By the triangle inequality and Condition 6, we have

| X15(21 gBos + 21 1702)] < Co(IXuslllz1, 8l + | X1l 21,210), (D.43)

which ensures that E(|T}|) is bounded by Co[E(| X ;|71 5l[11ae) + E (| X1| 21, z[[11ac)].

Here ||-]|; is the L; norm. By the Cauchy-Schwarz inequality and the triangular inequality,

1/2
o

1/2

we deduce

‘) 12
B(\ X121, 8l Tag) < [BXE o, s]3)P(@5)]* < {[82ZE (X3, X3)

teB

1/2
g{z—lsZZ[E<X@>+E<X@>J} S PUXdl > M)

teB e MU{5}

<Csy(1 + s34 251) /% exp[— M /(2¢1)]

for some positive constant 5, where the last inequality follows from Condition 2 and
Lemma 3. Similarly, we have E(|X1;|[|21,z]iIae) < Csi(14s5+2s1) "% exp[— M /(2¢1)).

This together with the above inequalities entails that
E(|Tpa|) < CoCls1+ s2)(1+ 52+ 251) "2 exp[— Mg / (2c1)].

If we choose Mg = n™ with ng > 0, then by Condition 6, for any positive constant C,

when n is sufficiently large,
E(|Tj]) < CoC(nf' 4+ nf)(1 + 0 + 208)/2 exp[—n®1 /(2¢,)] < Cn~"2 /6 (D.44)
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holds uniformly for all 1 < j < p. The above inequality together with (D.42) ensures

that

P(max |S]1 — (Sjl)| Z Cn_“2/2)

1<j<p
<P(max |Tj; — E(Tj)| > Cn™"/6) + P(max |Tjs| > Cn~"2/6) (D.45)
1<5<p 1<j<p

for all n is sufficiently large. Thus we only need to establish the probability bound for
each term on the right hand side of (D.45).
First consider max<j<, |Tj1 — E(Tj1)|. Using similar arguments as for proving (D.43),

we have

| X35 (2] 8Bos + % 1707) (1 Xz, 8l + | X121, zl11) Lo, < Cols2M§ + s1Mg).

For any 0 > 0, an application of Hoeffding’s inequality gives

P(T. >0) <2
(|51 — E(Tj1)| eXp{ 202 MA( 52+31M6) }

<2
P [ 4C3 M 32—|—32M2)}

< nd? Lo nd?
exp eX — 5
T8C2ZMEsE P\ scengs? )

where we have used the fact that (a +0)? < 2(a? + b?) for any real numbers a and b, and
exp[—c/(a + b)] < exp[—c/(2a)] + exp[—c/(2b)] for any a,b,c > 0. Recall that Mg = n's.

Under Condition 6, taking § = Cn™"2/6 results in

p
Pl [T = E(Tp)|  Cn6) < 3 PUT ~ B(T)| = O™ /0
]:
<2pexp <—5n1’2”274%72§2> + 2pexp (—57}1’2"‘2’6"6’251) . (D.46)

Next, consider maxj<j<,|Tj2|. By Markov’s inequality, for any § > 0, we have

P(|Tj2| > 6) < 6 'E(|Tys]). In view of the first inequality in (D.44), taking § = Cn="2/6
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gives that

P(|Tj5] > Cn="2/6) < 60~ CoCn’™ (nét + n&)(1 4 nf 4 2n8) Y2 exp[—n®17 /(2¢;)]

for all 1 < j < p. Therefore,

p
P(max [Tpp| > Cn™"/6) < 3 P(|Tp| > Cn™"/6)
j=1

<6pC~1CoCn"™ (né + n&)(1 + nf? + 2n)/2 exp[—n*1" /(2¢)].
Combining (D.45), (D.46), and (D.47) yields that for sufficiently large n,

P(max |S]1 — (S]1)| 2 CTL_HQ/2)

1<j<p

< 2pexp <_5n172n274n672£2) —i—2pexp( C 1—2K2—6m6— 2§1>

+ 6pC 1 CoCn™ (0 + n&2) (1 + nf + 2n8) Y2 exp[—n1" /(2¢1)].

(D.47)

(D.48)

To balance the three terms on the right hand side of (D.48), we choose 7g = min{(1 —

2Ky —2&)/(4+ ), (1 —2Kky —2&)/(6+ 1)} > 0 and the probability bound (D.48) then

becomes

P(max |Sj; — E(S;1)| > Cn~"2/2) < pC) exp (—5’2710‘”76)

1<5<p

for all n sufficiently large, where C, and C, are two positive constants.

(D.49)

Step 2. We establish the probability bound for max;<;<, [Sj2 — E(S;2)|. Define

Tjs = _12 el (|Xij] < M7)I(le;| < Ms),
Tja=n" Z il (| Xy | < M7)I(le;| > Ms),

5 =n Z 62 |Xz]| > M7)
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where M; and Mg are two large positive numbers whose values will be specified later.
Then Sjo = Tj3 + Tjs + Tj5. Similarly, E(Sj2) can be written as E(S;) = E(Tj3) +
E(T;4) + E(Tj5). Since 1 has mean zero and is independent of X 4,...,X;,, we have
E(Ts5) = E[Xyal(|Xy;] > Mr)] = E[Xy;1(|Xq5] > M7)]E(er) = 0. Thus Sj» — E(Sj2)
can be expressed as Sjs — E(Sj2) = [Ijs — E(T}3)] + Tja + Tj5s — E(Tj4). An application

of the triangle inequality yields

|Sjo — E(Sj2)| <|Tjs — E(Tjs)| + |Tja| + |Tjs| + |E(T)a)|

<|Tjs = E(Tja)| + |Tjal + |Ts| + E(|Tjal)- (D.50)

First consider the last term E(|T}4|). Note that |Tj| <n~t Y7 | X611 X5;]

< M7)I(|e;] > Mg) and thus
E(|Tul) < E[|Xya ([ Xy] < M7)I(led| > Mg)] < MzE[le1[I(Jea] > Mg)]. - (D.51)

An application of the Cauchy-Schwarz inequality gives F||e1|I(|e1]| > Mg)] < [E(e2)P(|e1| >

M;g)]*/2. By Condition 2 and Lemma 3, we have
Ellei[I(er] > My)] < {E(e})er}'V exp(—c; M52 /2) < Cexp[-Mg?/(2e1)]  (D.52)
Combining (D.51) with (D.52) yields
E(Ty|) < C My exp[—M¢2/(2¢1)]. (D.53)

If we choose M; = n'" and Mg = n with n; > 0 and ng > 0, then for any positive

constant C', when n is sufficiently large,
B(|Tya]) < Cn™ exp[—n®™ /(21)] < Cn~"/3
holds uniformly for all 1 < j < p. The above inequality together with (D.50) ensures
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that

P( max |Sj2 - E(Sjg)’ Z C’n*”2/2)

1<j<p

1K<y

<P(max [Tjs — B(Tjs)| > Cn~"/8) + P(max |Tjs| > Cn~"/8)

+ P(max |Tj5| > Cn™"2/8) (D.54)
1<j<p

for all n sufficiently large.
In what follows, we will provide details on establishing the probability bound for each
term on the right hand side of (D.54). First consider maxi<j<, |Tj3 — E(T}3)|. Since

| X8 (1X0;] < Mp)I(|ei] < Ms)| < M7Msg, for any 6 > 0, by Hoeffding’s inequality we

obtain

no?

PIIT - E(T)] 2 0) < 2600 (s

) = 2exp (—2_1n1_2”7_2"852) ,
by noting that M; = n" and Mg = n™. Thus, taking 6 = Cn~"2/8 gives

p

P(max |Ts — E(Tjs)| = Cn"/8) < 3" P(|Tys — E(Tjs)| > Cn~"/8)
1<j<p —
]:

<2pexp (—5711_2“2_2’77_2”8) . (D.55)

Next we handle maxi<j<, |Tja|. Since maxi<j<, [Tja| < n 'M7Y " |ei]I(le:] > Ms),
it follows from Markov’s inequality and (D.52) that for any § > 0,

P(max [Tyl > 6) <P{n~'M; > |eifl(|e;| > Ms) > o}

1<j<p
i=1

<ST'ERT MY Jei[I(lei] > Ms)]

=1

=6 "Mz E[je1[I(|e1] > Ms)] < C5~ My exp|—M&2 /(2¢1)).
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Recall that M; = n and Mg = n". Setting § = Cn~"?/8 in the above inequality entails

P(max [Ty > Cn~"2/8) < 160~ Cn"*"= exp[—n®2" /(2¢1)]. (D.56)

1<j<p

We now consider maxi<;<, |Tjs|. By the Cauchy-Schwarz inequality and Lemma 3 we

deduce that

E|Tjs| = E|Xyel(|X1;] > M7)| < {B(X3,e]) P(1Xy;] > My)]}/?

<{ LB + B} expl-Mg /(260)] < Cexpl—M3 /(261)].
An application of Markov’s inequality yields
P(|Tjs5| > 6) < 67" E|Tjs| < 67'C exp[— M /(261)] (D.57)
for any 6 > 0. Recall that M; = n. In view of (D.57), taking § = Cn~"2/8 gives that

P

P(max |Tj5| > Cn™"/8) <> P(|Tjs| > Cn™"/8) < 8pC~'Cn"* exp[—n’" /(21))].
1<j<p 1
J:

(D.58)

Combining (D.54), (D.55), (D.56), and (D.58) yields that for sufficiently large n,

P( max |S]2 — E(Sj2)| Z Cni'{2/2) S 2peXp (_6711*2“2*2777*2778)

1<j<p

+ 8pC ' Cn"™ exp|—n®" /(2¢1)] 4+ 16C~1Cn 2 exp[—n®2" /(2¢1)].  (D.59)
Let n; = ng = (1 — 2K2)/(4 + a1). Then (D.59) becomes

P( max |Sj2 - E(SJQ)’ Z Cn_m/2)

1<j<p

<pCs exp[—Cyn®'"] + Cs exp|—Cen2"] (D.60)

for all n sufficiently large, where 6’3, 54, 6’5, and 5’6 are some positive constants.
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Since 0 < ng < 17, it follows from (D.41), (D.49), and (D.60) that

P(llgagc | —wj| > Cn™"™) < pCh exp <—5’2n°‘1"6> + pCs exp[—Cyn®] + Cs exp[—Cgn®"]
ISP

< p57 exp (—6’8n°‘1”6> +Cs exp[—éﬁnaz%]

with C; = C) 4 C3 and Cs = min{Cs, Cy} for all n sufficiently large. If logp = o(n®")
with 7' = min{(1 -2k —2&)/(4+ 1), (1 —2ky—2&1)/(64+ 1)} > 0, then for any positive

constant C', there exists some arbitrarily large positive constant Cs such that

O — Wt > OnT?) < —C2
P(lrgjaé\w] wi| > Cn™") < o(n~"?)

for all n sufficiently large, which completes the proof of part b) of Lemma 1.

D.4 Proof of part ¢) of Lemma 1

The main idea of the proof is to find probability bounds for the two events {Z C 7 } and
{M C M\}, respectively. First note that conditional on the event {A C le\}, we have

{Z c Z}. Thus it holds that
P(ZCTI)>P(ACA). (D.61)

Define the event & = {maxge4 |@0r —wi| < 2 'con™"}. Then, with 7 = con ™", the event

&, ensures that A C A. Thus,

-~

PMACA) >P&)=1—-P(&)=1- P(rl?afl( @ — wi| > 27 epn ™).
S

Following similar arguments as for proving (D.10), it can be shown that there exist some

constants C; > 0 and 5’2 > (0 such that for all n sufficiently large,

P(%laff @ — wi| > 27 epn ™) < 23151 exp[—égnmin{o“’a?}”}. (D.62)
€
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Note that the right hand side of (D.62) can be bounded by o(n~=¢!) for some arbitrarily

large positive constant C. This gives

PACA) >1—on ). (D.63)
Thus combining (D.61) and (D.63) yields

P(ZCI)>1-on ). (D.64)

Using similar arguments as for proving part b) of Lemma 1 and (D.63), we can show
that there exist some positive constants 51, 52, and Cy such that for all n sufficiently

large,

P(BCB)> P(mag{ OF —wi] <27 ) > 1 — 5201 exp(—Cyn®1"?)
je

> 1—o(n~), (D.65)
Combining (D.63) and (D.65) leads to

PMCM)>P(ACA and BCB)>PACA)+PBCB) -1

>1 — o(n~min{C1.C2}) (D.66)
In view of (D.64) and (D.66), we obtain
P(Z C Z and M C /\//\l) > P(Z C f) +PMC M\) —1>1-— O(n—mm{cl,@})

for all n sufficiently large. This completes the proof for the first part of part c¢) of Lemma
1.

We proceed to prove the second part of part ¢) of Lemma 1. The main idea is to

establish the probability bounds for two events {|A] = O[n2 Apax(S9)]} and {|B] =
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O[n**2 X pax ()]}, respectively. If we can show that

P {|X| - O[n2”1)\max(2*)]} >1 — o(n~1), (D.67)

P {|B| - O[nzmmax(z)]} >1 — o(n~) (D.68)
with C} and Cy defined in (D.1) and (D.2), respectively, then it holds that

P{IZ1 = 0 [n™ A2 ()]} 2 P {4 = O [1* A ()] } 2 1= (0

max

and

P {|/\7 | = O [0 A (57) + 122 Mo (3)] }

>p {|,Z| — O Apax(2)] and |B| = O[nQ“Q)\maX(E)]} > 1 — o(n~min{C1.Ca}y,
Combining these two results yields

P (7] = O(n" X2, ()} and [M] = O{n™ Ay (5) + 1 (£}

max

—-1—o (n—min{Cl,Cz}) )

It thus remains to prove (D.67) and (D.68). We begin with showing (D.68). The key

step is to show that

p
@)’ = [E@Y)I < Cohmax(%) (D.69)
=1
for some constant Cs > 0, where z = (X1,...,X,)T. If so, conditional on the event

&y = {max |&F — w}| < 27'¢un ™"}, the number of variables in B=1{j: 5| > can™"2}
1<j<p

cannot exceed the number of variables in {j : |wj| > 27'con™2}, which is bounded by

46'30’2n2"2)\max Y). Thus it follows from (D.2) that for all n sufficiently large,
2

2 {|E| < 45362_2n2“2)\max(2)} > P(&) =1 P(E) > 1 — o(n~C2). (D.70)
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Now we further prove (D.69). Let uy = argmin, g, F (Y — a:Tu)z. Then the first

order equation E[z(Y — zTug)] = 0 gives E(2Y) = [E(xz")]uy = Xug. Thus
1E(zY)]|5 = ud 210 < Amax(Z)uo” Stig = Amax(X)var (z7ug) . (D.71)
It follows from the orthogonal decomposition that
var (V) = var (xTuo) + var (Y - ITUO> > var (xTug) )

Since E?(Y?) < E(Y*) = O(1), we have var(Y) < E(Y?) = O(1). Then the above
inequality ensures that var (x uo) < C’3 for some constant C’3 > (. This together with
(D.71) completes the proof of (D.69).

We next prove (D.67). Recall that Y* = Y2 and X} = {X}? — BE(X?)}//var(X2).
Then from the definition of wy in (B.1), we have w, = E(X;Y*). Following similar

arguments as for proving (D.69), it can be shown that
p ~
D_wi= ZE2 XY = | B@Y)[3 < Codman(5°). (D.72)

where Cy is some positive constant, z* = (X7, ... , X", and ¥* = cov(z*). Then, on
the event & = {maxi<<, [0 — wi| < 27'con "1}, the cardinality of {k : |@x| > can™"}
cannot exceed that of {k : |wg| > 27 con ™1}, which is bounded by 4C;¢5 025 Apax (5%).

Thus, we have
P {|ﬁ| < 45402_2n2“1)\max(2*)} > P(&) =1 P(E) >1— o(n),

where the last equality follows from (D.1). This concludes the proof of part ¢) of Lemma

1 and thus Lemma 1 is proved.
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E Proofs of Technical Results

E.1 Lemma 2 and its proof

Lemma 2. Let W, and Wy be two random variables such that P(|W;| > t) < C, exp(—égtal)
and P(|Wy| > t) < Cyexp(—Cyt®?) for all t > 0, where ay, oz, and C;’s are some pos-
itive constants. Then P([WiWa| > t) < Csexp(—Cgt®02/(102)y for il ¢ > 0, with

55 = 51 + 53 and 6’6 = min{ég, 6’4}.

Proof of Lemma 2. For any t > 0, we have

P(‘W1W2’ > t) < P(‘Wl‘ > ta2/(al+a2)) + p(’W2‘ > ta1/(a1+o¢2))
< 61 eXp<_52ta1a2/(a1+a2)) + 53 exp(_64ta1a2/(a1+a2))

< G, oxp(—Gygevlirten
by setting Cs = Cy + C3 and Cg = min{Ch, C}.

E.2 Lemma 3 and its proof

Lemma 3. Let W be a nonnegative random variable such that P(W > t) < Cy exp(—Cyt®)
forallt > 0, where o and Ci’s are some positive constants. Then it holds that E(e@W&) <
54, E(Weam) < 55’”54771! for any integer m > 0 with 53 = 52/2 and Cy = 1+ 51, and

E(WF) < 6'5 for any integer k > 1, where constant 55 depends on k and «.

Proof of Lemma 3. Let F(t) be the cumulative distribution function of W. Then for
allt >0, 1—F(W) = P(W > t) < Cexp(—Cht®). Recall that W is a nonnegative

random variable. Thus, for any 0 < T < 6’2, by integration by parts we have

BEe™) =~ /OOO Al - F(t)] =1+ /OOO Tat* '™ [1 — F(t)] dt

> -~ ~ re% Té
<1 +/ Tat* . Cre~ @D gp — 14—~
0 CQ - T

Then, taking 53 =T = 6*2 /2 and 54 =1+ 61 proves the first desired result.
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Note that égnE(Wam)/m‘ <>, 6’§E(Wak)/k:! = E(eéSWa) for any nonnegative
integer m. Thus E(W*™) < C3™Cym!, which proves the second desired result.
For any integer £ > 1, there exists an integer m > 1 such that £ < am. Then applying

Holder’s inequality gives

am—k)/(am)

E(W*) < {B(we)en e {ppom/en-n)
>k/(am>

— (B < (&5 Cym!
Thus the kth moment of W is bounded by a constant 6’5, which depends on k and a.

This proves the third desired result.

E.3 Lemma 4 and its proof

Lemma 4. Let W be a nonnegative random variable with tail probability P(W > t) <
51 exp(—égto‘) for all t > 0, where o and 6’, s are some positive constants. If constant
a > 1, then E(ea”w) < Cy and EW™) < 5§m6’4m! for any integer m > 0 with

Cs = Co/2 and Cy = e%/% + Cre= /2,

Proof of Lemma /4. Let F(t) be the cumulative distribution function of nonnegative
random variable W. Then 1 — F(t) = P(W > t) < Cyexp(—Cyt®) for all t > 1. If
a > 1, then t <t* forall t > 1 and thus 1 — F(t) < 51 exp(—agt) for all t > 1. Define

Cy=Cy/2 and Cy = ¢C2/2 4 Ce=C2/2, By integration by parts, we deduce

[e.e]

B(efW) = — / T Ol — F(1)] =1+ / CiycOot[1 — F(#)]dt

0

0
1 _ oo
=1+ [ Cs3e%'1 — F(t)]dt + / Cse*'[1 — F(t)]dt
0 1

1 - 0o - _ . . »
<1+ / Cae?ldt + / C1C5e G~ = C2/2 4 e~ /2 = (O,
0 1

which proves the first desired result.
Note that C"E(W™)/m! < 32 CEE(W*)/k! = E(e%W) for any nonnegative inte-

ger m. Thus E(W™) < 53’ ™Cym!, which proves the second desired result.
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E.4 Lemma 5 and its proof
Lemma 5. For any real numbers by,by > 0 and o > 0, it holds that (by + by)* <
Co (b +05) with C, =1 if 0 < a <1 and 27! if a > 1.

Proof of Lemma 5. We first consider the case of 0 < a < 1. It is trivial if by = 0
or by = 0. Assume that both b; and by are positive. Since 0 < by/(by + by) < 1, we
have [b1/<bl + b2)]a Z bl/(bl + bg) Slmllarly, it holds that [bg/(bl + bg)]a Z bg/(bl + bg)

Combining these two results yields

b1 @ bg ¢ bl b2
+ > + =1,
<b1+b2) <b1+b2) by +by byt by

which implies that (by + b2)® < b + b5.

Next, we deal with the case of @ > 1. Since 2 is a convex function on [0, co) for a given
a > 1, we have [(b; +b)/2]* < (b +05)/2, which ensures that (by +b9)* < 2710 +09).

Combining the two cases above leads to the desired result.

E.5 Lemma 6 and its proof

Lemma 6. Let Wy, ..., W, be independent random variables with tail probability P(|W;| >
t) < 51 exp(—égto‘) for all t > 0, where a and 6'2 ’s are some positive constants. Then

there exist some positive constants 53 and 54 such that
P{n""Y (Wi — EW;)| > €} < Cyexp(—Cyn™™1e?) (E.1)
i=1

for0<e<1.

Proof of Lemma 6. Define fMZ = W; — EW;. Then by the triangle inequality and the

property of expectation, we have
Wil = [W; — EWi| < [Wi| + |[EW;| < |W;| + E|Wi|. (E.2)

Next, we consider two cases.
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Case 1: 0 < o < 1. It follows from Lemma 3 that E(e7Wil®) < 14+C; and E|W;| < C,
for all 1 < ¢ < n, where T = 52 /2 and Cj is some positive constant. In view of (E.2)

and by Lemma 5, we have |W;|* < (|W;] + E[W;|)* < |[Wi|® + (E|W;|)®. This ensures
E(eTy < (TEWD" TV < o765 (1 1 ).

Thus, by the Chernoff bound arguments we can show that there exist some positive

constants 55 and 56 such that

P(n= Y [Wi — EW]| > ¢) = P(n"" Y Wi| > €) < Chexp (-@,n%Z) (E.3)

i=1 =1

for any 0 < e < 1.
Case 2: a > 1. In view of (E.2), it follows from Lemma 5 and Jensen’s inequality

that for each integer m > 2,

E([Wi™) < E[(IWi] + E|Wi|)"] < 2" ' E[[W;[™ + (E|Wi|)"]

=2" T E(Wi™) + (BIWi)™] < 2" E(W™) + E(W™)] = 2" E(Wi™). (E4)

Recall that P(|W;| > t) < Cy exp(—Cat®) for all t > 0 and o > 1. By Lemma 4, there
exist some positive constants C; and Cy such that E(|W;|™) < m!CCs. This together

with (E.4) gives
E([W;|™) < ml(2C7)"2(8C2Cy) /2

for all m > 2. Thus an application of Bernstein’s inequality yields

n

P{n™" Y (W, — EW;)| > ¢} = P(In™" Y Wi > ¢)

i=1 i=1

ne? ne?
<2exp | ———=—= — <2exp | ———=—= — (E.5)
160%08 + 4076 160%08 + 407
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for any 0 < € < 1. Let C5 = max{Cs, 2} and C; = min{C, (16C2Cs +4C7)'}. Combin-

ing (E.3) and (E.5) completes the proof of Lemma 6.

E.6 Lemma 7 and its proof

Lemma 7. Assume that for each 1 < j <p, Xy;,...,Xp; are n i...d. random variables
satisfying P(|X4;] > t) < Cy exp(—é’gtal) for any t > 0, where 51, Cy and oy are some

positive constants. Then for any 0 < e < 1, we have

i=1

> e} < Cyexp(—Cyn™nter/2 1} 2y, (E.6)

i=1

P { " Z [Xij Xie Xie — (X3 Xip Xio)]

> e} < C5 exp(—Cgn™™e1/31k 2y - (E.7)

g

< Oy exp(—Cgn™mnter/41}e2), (E.8)

P{ n~! (Xik XieXiw Xie — BE( X X X Xior)]

i=1

where 1 < j, k, 0, k', 0/ < p and @ s are some positive constants.

Proof of Lemma 7. The proofs for inequalities (E.6)—(E.8) are similar. To save space,
we only show the inequality (E.8) here. Since P(|X;;| > t) < C exp(—Cyt®) for all
t > 0 and all 7 and j, it follows from Lemma 2 that X;; X,y X;» X;» admits tail probability
P(| X X3 Xip Xior| > t) < 40, exp(—azt‘“/‘l). By Lemma 6, there exist some positive

constants 53 and 6’4 such that

P(|7’L_1 Z[XikXiﬂXik”Xiﬁ’ — E(sz‘lesz’XzZ’)” > 6)

i=1

< 63 exp (—54nmiﬂ{a1/4,1}62>

for any 0 < € < 1, which concludes the proof of (E.8).
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E.7 Lemma 8 and its proof

Lemma 8. Let A;’s with j € D C {1,...,p} satisfy max;ep |A;j| < Ls for some constant
L3 >0, and Ej be an estimate of A; based on a sample of size n for each j € D. Assume

that for any constant C' > 0, there exist constants 51, Cy > 0 such that
P (maglﬁj — Ayl > Cn”“) < |D]5’1 exp {—5271““1)}
Je

with f(k1) some function of k1. Then for any constant C > 0, there exist constants

53, 6’4 > 0 such that

P (ima 2 — 421> 0w ) < [DIChesp {~Can .

j€D
Proof of Lemma 8. Note that maxep \A?—A?\ < maxjep |A;(A;—A;)|+max;ep | (A;—

A;)A;|. Therefore, for any positive constant C,

P(max | A} — A7 > Cn™) < Plmax |4;(4; - A7) > Cn ™ /2)

jeD JED

+ P(max |(4; — A)A;[ = Cn™/2). (E9)
J

We first deal with the second term on the right hand side of (E.9). Since max;ep |4;] <

L3, we have

P(max |(4; = A4;)4;] > Cn™™ /2) < P(max|4; — Aj|Ls > Cn™" /2)
JE

je€D

—P{max|4; — 4| = (2Ls)"'Cn~"} < [D|Cy exp { ~Con/ }, (E.10)
J

where 51 and 52 are two positive constants.
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Next, we consider the first term on the right hand side of (E.9). Note that

(maX|A (A —Aj)| > Cn"/2)

j€D

< (maX|A (A A > Cn™"™ )2, maX\A|>L3—|—Cn "1/2)

j€D

+P(maX|A (A —A;))| > Cn™"™ )2, maX|A | < L3+ Cn~"/2)

j€D
< (maX|A | > L3+ Cn™"/2) (E.11)
j€D
—i—P(rjneaDX\A (A, — A))| > Cn~" /Q,mEaDX|Aj|<L3+C)
< (magdA | > Ly +Cn™"/2) + P(max\(Lg +CO)A; — A > Cn/2).  (E.12)
J€

Let us bound the two terms on the right hand side of (E.11) one by one. Since max;ep |A4;] <

Ls, we have

A > —k1 < A — A | > —K1
P(Igr‘le%%(|AJ|—L3+On /2)—P<I?€%§(|AJ AJ|+IJI.1€aDX|AJ|_L3+Cn /2)

SP(ngc |/A1] —Ajl >27'Cn") < |D|C5 exp {—G’an(’“)} : (E.13)
je
where 55 and 6’6 are two positive constants. It also holds that

P(max |(Ls + C)(4; = A;)| > Cn ™ /2)

J

= P{max |A; — Aj| > (2Ls 4+ 2C) ' Cn~"}
JE€

< |D|Cy exp {—@mf(”l)} ,
where C; and Cy are two positive constants. This, together with (E.9)~(E.13), entails

P(max |A? — A2| > Cn™"') < [D|Cy exp {—CEnﬂm)} + |D|Cs exp {_amﬂm}

j€D

+[D|Cr exp {—@n““”} < |D|Cs exp {—54nf(”1)} ,
where Cy = Cy + Cs + Cr > 0 and Oy = min{ég, 66, 6’8} > 0.

38



E.8 Lemma 9 and its proof

Lemma 9. Let ﬁj and Ej be estimates of A; and B;, respectively, based on a sample
of size n for each j € D C {1,...,p}. Assume that for any constant C > 0, there exist

constants 51, cee 58 > 0 except 53, 57 > 0 such that
P <mfg< |A; — Ayl > Cn“) < |D|C} exp {—@nf(“l)} + Cyexp {—@mg(”l)} ,
JE€

Jj€D

i (max [Bj - Bj| > CWM) < [D|Cs exp { ~Con ™)} + Crexp {~Cian?™ |

with f(k1) and g(k1) some functions of k1. Then for any constant C' > 0, there exist

constants 59, cee 512 > 0 except 6’11 > 0 such that

i {maX (4, — B;) = (4; = B))| > C”m} < [D|Cy exp {_aonﬂm}

jED

+ 611 exp {—612719(51)} .

Proof of Lemma 9. Note that max;ep |(ﬁj - EJ) — (A4; — Bj)| < maxjep |EJ — Al +

max;ep |§J — Bj|. Thus, for any positive constant C,

P(max|(A; — B;j) = (4; = B;)| = Cn™™)
j€D
<P(max|4; — A;| > Cn™"/2) + P(max |B; — Bj| > Cn ™™ 2)
Jj€D j€D
<|D|Cy exp {_52”“'{1)} + Csexp {—dmg(m)} + [D|Cs5 exp {—aanf('“)}
+ 57 exp {—égng("l)}

§|D|69 €xp {_élonf(m)} + 511 exp {_612ng(n1)} ,

where 59 = 6’1 + 65 > 0, 510 = min{ég,ég;} > 0, 511 = 53 + 57 > 0, and 612 =
min{54,5g} > 0.
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E.9 Lemma 10 and its proof

Lemma 10. Let B;’s with j € D C {1,...,p} satisfy minjep B; > Ly for some constant
Ly, >0, and Ej be an estimate of B; based on a sample of size n for each j € D. Assume

that for any constant C' > 0, there exist constants 51, Cy > 0 such that
P <ma1;< |B; — Bj| > C’n“) < |D|C} exp {—@nf(“)} .
JE€

Then for any constant C' > 0, there exist constants 53, Cy > 0 such that

> Cn_”“) < |D|C’36Xp{ Cynft }

max
Jj€D

Proof of Lemma 10. Since minjep B; > Ly > 0, there exists some constant Ly such

that 0 < Ly < Ly4. Note that, for any positive constant C,

max\\/ —/Bj| > Cn™™)

j€D

max|\/ —+/Bj| > Cn™™ m1n]B]<L4—L0n )

+P(max|\/Bj —v/Bj| > C’n_’“,min|Bj| > Ly — Lon™ ")
jeD jeD

<P(min|B;| < Ly — Lon™™
_P(g.fé%l|3g|_L4 Lon™"")

B B;
+ P(max —————— | i >Cn™"™ m1n|B | > Ly — Ly). (E.14)

j€D | / + \/—| j€D

Consider the first term on the right hand side of (E.14). For any positive constant C,

we have

in|B:| < Ly — Lon ") < in|B.| — B.— B.| < L,— Lyn~™
P(?é%”BJl_LZl Lon )_P(I]%%l|BJ| I?eagdBJ BJ|—L4 Lon™"™)

<P(max |B; - Bj| > Lon™) < [D|C} exp {—Eiznf(m)} , (E.15)
JjE

by noticing that minjep B; > L4, where 6’1 and 52 are some positive constants.

Next consider the second term on the right hand side of (E.14). Recall that minjep B; >
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Ly. Then, for any positive constant C,

|B; — B
€D fas
" |/ B+ V/Bjl

<P{max|B; - B;| > C(v/Ls — Lo + v/La)n ™"} < [D|Cs exp {—56nf<~1>} . (E.16)
je

> Cn™"™, min |§]\ > Ly — L)
jeD

where C5 and Cy are some positive constants. Combining (E.14), (E.15), and (E.16) gives

P(max |\/§j —/B;| > Cn™) < |D|Cyexp {—54nf<m>} : (E.17)

jeD

where 53 = 51 + 55 and 6’4 = min{éZ, 6’6}.

E.10 Lemma 11 and its proof

Lemma 11. Let A;’s with j € D C {1,...,p} and B satisfy maxjep |A;| < L5 and
|B| < Lg for some constants Ls, Lg > 0, and A\j and B be estimates of A; and B,
respectively, based on a sample of size n for each j € D. Assume that for any constant

C > 0, there exist constants 51, e ,68 > 0 except 6’5 > 0 such that

i (max A — Ay = Cnm) < |D|Cy exp {_5271“'{1)} + Cyexp {_54719“1)} :

JjE€ED

P <|§ - B| > CTL_'“) < Cyexp {—&mf(’“)} + Cy exp {—5’8719(*’”1)}

with f(k1) and g(k1) some functions of k1. Then for any constant C > 0, there exist

constants 59, cee 512 > 0 such that

P (magdgjg - AjBl > Cn_ﬁl) < ’D|ag exp {—éwnf(“l)}
VIS

+6’11 exp {—512719(’“)} .

Proof of Lemma 11. Note that maxjep |EJ§ — A;B| < maxjep |/Alj(§ — B)| +
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max,ep |(ﬁj — A;)B|. Therefore, for any positive constant C,

P(max|A;B — A;B| > Cn™™) < P(max |4;(B ~ B)| = On~"/2)
VIS

jED
+ P(max |(4; - 4)B| = Cn"/2). (E.18)
JjE
We first deal with the second term on the right hand side of (E.18). Since |B| < Lg, we

have

P(max (4, — A,)B| = Cn™ /2) < P(max|A; - A;|Lg > Cn™ /2)
jED jeD

— P{max|A; — Aj| > (2L¢)"'Cn "1}
Jj€D

< |D\51 exp {—égnf(’“)} + Csexp {—6’4719(”1)} (E.19)

with constants 51, 6'2, 54 > 0 and 53 > 0.

Next, we consider the first term on the right hand side of (E.18). Note that

P(max |A;(B — B)| > Cn~"1/2)

jE€D

<P(max |A;(B — B)| > Cn ™™ /2, max |4,| > Ly + Cn~™ /2)
J€D j€D

+ P(max |A;(B — B)| > Cn™" /2 max |A;| < Ls + Cn~"/2)
j€D j€D

<P(max |A;| > Ly + Cn "1 /2)

jeD

+ P(max |A;(B — B)| > Cn~"1/2, max |A;| < Ly + C)
j€

j€D

<P(max |A,| > Ls + Cn~"/2) + P{(Ls + C)|B — B| > Cn~"1/2}. (E.20)
J

We will bound the two terms on the right hand side of (E.20) separately. Since maxjep |A4;] <
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Ls, it holds that

A k1 A.— A. . —K1
P(max|4;] 2 Ls +On™™/2) < P(max|4; — 4] + max|4;] > Ls + Cn ™™ /2)

< P{max|A4; — A;| > 27'Cn~"}
Jj€D

< |D|C5 exp {—égnf(“l)} + Cyexp {—58719(“1)} : (E.21)
where 55, 6’6, 58 > 0 and 6'7 > 0 are some constants. We also have that

P((Ls + C)|B — B| > Cn~"/2) = P{|B — B| > (2L5 + 2C)~'Cn~"}

< Cigexp {—@wf (“1)} + C5 exp {—élﬁnsz(m)} ’

where 513, e C16 are some positive constants. This, together with (E.18)—(E.21), entails

that

§|D|51 exp {—5271“51)} + Czexp {—@mg(’“)} + ‘D|55 exp {—CN'(;nf(””l)}
+ 5’7 exXp {_58719('{1)} + 513 exp {_514nf(”1)} + 515 exp {_616719(”1)}

—51071f(m)} +Chy exp {—51277/9(51)} ;

where 69 = 51 -+ 55 + 513 > 0, 510 = min{ég, 56,614} > 0, 511 = 63 + 67 + 515 > O,
and 512 = min{d;, 68, 516} > 0.

E.11 Lemma 12 and its proof

Lemma 12. Let A;’s and B;’s with j € D C {1,...,p} satisfy maxep |Aj| < Ly and
min;ep | Bj| > Lg for some constants Lz, Lg > 0, and A\j and Ej be estimates of A; and

Bj, respectively, based on a sample of size n for each j € D. Assume that for any constant
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C > 0, there exist constants 51, e ,56 > 0 such that

T _ A, —K1 ~ (o f(r1) ~ _ (Y n9(k1)
P <I}1E%§(|AJ Al > Cn > < |D|C}y exp{ Con }+C3€Xp{ Cyn },

P (mfg@j — By| > Cn_’“) < |D|Cs exp {—éﬁnf(’“)}
VIS

with f(k1) and g(k1) some functions of k1. Then for any constant C' > 0, there exist

constants 57, cee 510 > 0 such that

P (max "‘1) < |D|C; exp{ Cynf }

+ 6'9 exp {—610719(“1)} :

Proof of Lemma 12. Since minep Bj > Lg > 0, there exists some constant Ly such

that 0 < Ly < Lg. Note that, for any positive constant C

A, A
P(max|= — =2 > Cn™"™)
€D B, B
A A =
< ) > On ™ min|B;| < Lg — Lgn ™"
_P(rjneagdB Bj|_C ,IjIé%llBJ’_Lg Lon™")
A, A .
—i—P(maX] J —| > Cn~ ,min|Bj| > Lg — Loniﬁl)
jED Bj j jED
<P(min |Bj| < Ly — Lon™") + P( |A Aj|>cfm in |B;| > Ls — Lo)
min | B; — Lon max | =L — n~"™, min | B, — Ly).
= Vjep =8 0 €0 'B;,  Bj T "jep Y 8 0

(E.22)

Let us consider the first term on the right hand side of (E.22). Since min;ep B; > Ls,

it holds that for any positive constant C,

(m1n|B | < Lg — Lon™%) < P(min |B;| — maX|B — Bj| < Lg— Lyn™"™)
JjeD Jje€D

< P(max |B — Bj| > Lyn™™) < ID|C} exp {—C’an(’“)} : (E.23)

j€D

where C] and C5 are some positive constants.
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The second term on the right hand side of (E.22) can be bounded as

1. A ~
2> R i , —
P(r?ezauDX]Bj Bj| > Cn™"™, IjIélll)l’B” > Lg — Ly)
A A - B
<P(max|= — =| > Cn™"™ /2, min |B;| > Ls — L)

i€D ' B, ) jeD

—i—P(max|é - é| > Cn ™" /2, min |Bj| > Ls — Lo)
j€D §j B;' — " jep Y s 0

<P{max|4; - A;| = 27" (Ls — Lo)Cn~"}
j€E
+ P{max |B; — By| > (2L7)"'(Ls — Lo)LsCn ™"}
jE

<|D|Cs exp {—6'4nf(“1)} + Cs exp {—56719(“1)} +|D|Chy exp {—512nf(”1)} . (E.24)

where C, ..., Cs, Ci1, and Cjp are some positive constants. Combining (E.22)—(E.24)

results in

P(maglflj/l% — A;/B;| > Cn™"1) < |D|C; exp {—@mf(’“)}
J€

+5’9 exp {—5’10719(“1) } ,

where 57 = 51 + 63 + 511 > 0, 68 = min{52,64,612} > 0, 59 = 55 > 0, and 610 =

56 > (. This completes the proof of Lemma 12.
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