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This supplementary material consists of three parts. Appendix C reports additional nu-

merical results. Appendix D provides Lemma 1 and its proof. This lemma establishes the

sure screening property for both interaction and main effect screening and thus Condition

1 holds under some sufficient conditions. Appendix E contains some additional technical

lemmas and their proofs. Hereafter we use C̃i with i = 1, 2, . . . to denote some generic

positive or nonnegative constants whose values may vary from line to line. For any set

G, denote by |G| its cardinality.

C Additional Numerical Results

In this section, we report additional numerical results, which include all screening results

for all settings in studies 1 and 2 and additional selection results.

C.1 Screening Results for Studies 1 and 2

For the screening step, we employed several recent feature screening procedures: the sure

independence screening (Fan and Lv, 2008), feature screening via distance correlation

(Li et al., 2012), variable selection via sliced inverse regression (Jiang and Liu, 2014),

and interaction pursuit via distance correlation (Kong et al., 2017), respectively. Since

this paper focuses on interaction models with one single response, we can also consider

the method of interaction pursuit via Pearson correlation for screening, which is exactly

the same as interaction pursuit via distance correlation, except for the placement of

distance correlation by Pearson correlation when identifying the variables in A and B.

The method in Jiang and Liu (2014) is an iterative procedure that alternates between

a large-scale variable screening step and a moderate-scale variable selection step when

the dimensionality p is large. Since all other screening methods are non-iterative, in

1



this section we compare the initial screening step of Jiang and Liu’s method with other

methods. We use the full iterative method in Jiang and Liu (2014) when comparing the

variable selection performance. Each method in Fan and Lv (2008), Li et al. (2012),

and the initial screening step of Jiang and Liu (2014) returns a set of variables without

distinguishing between important main effects and active interaction variables. Thus for

each of those methods, we construct interactions using all possible pairwise interactions

of the recruited variables. By doing so, the strong heredity assumption is enforced. We

would like to remark that the resulting feature screening procedures are different from

their original versions.

In other words, we include the following five methods to assess the variable screen-

ing performance: SIS2, the sure independence screening; DC-SIS2, feature screening via

distance correlation; SIRI*2, variable selection via sliced inverse regression; IPDC, inter-

action pursuit via distance correlation; IP, interaction pursuit via the Pearson correlation.

For the first three methods, we construct interactions using the recruited variables. For

the third method, only the initial screening step of the method in Jiang and Liu (2014)

is used to recruit variables.

Table 3: The percentages of retaining each important interaction or main effect, and all
important ones (All) by all the screening methods for models 1-4.

Method Model 1 Model 2 Model 3 Model 4
X1 X5 X1X5 All X1 X10 X1X5 All X10 X15 X1X5 All X1X5 X10X15 All

(n, p, ρ) = (300, 5000, 0)
SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.14 0.14 1.00 1.00 0.02 0.02 0.00 0.01 0.00
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.10 0.10 0.18 0.20 0.01
SIRI*2 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.93 1.00 1.00 0.32 0.32 0.63 0.65 0.43
IPDC 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
IP 1.00 1.00 0.98 0.98 1.00 1.00 0.98 0.98 1.00 1.00 0.97 0.97 0.86 0.85 0.71

(n, p, ρ) = (300, 5000, 0.5)
SIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.09 1.00 1.00 0.02 0.02 0.00 0.01 0.00
DC-SIS2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.16 0.16 0.32 0.25 0.05
SIRI*2 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.92 1.00 1.00 0.34 0.34 0.70 0.57 0.36
IPDC 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99 1.00 1.00 1.00
IP 1.00 1.00 0.99 0.99 1.00 1.00 0.94 0.94 1.00 1.00 0.97 0.97 0.81 0.89 0.70

Table 3 lists the comparison results for all screening methods in recovering each im-

portant interaction or main effect, and retaining all important ones for models 1-4. Table

4 lists the comparison results for model 5. For model 1 satisfying the strong heredity
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Table 4: The percentages of retaining each important interaction or main effect, and all
important ones (All) by all the screening methods for model 5.

X1 X10 X20 X30 X40 X1X5 X1X10 X5X15 X10X15 All
(n, p, ρ) = (300, 5000, 0)

SIS2 0.96 0.96 0.98 0.99 0.99 0.09 0.92 0.01 0.05 0.01
DC-SIS2 0.96 0.99 0.99 1.00 0.99 0.26 0.95 0.09 0.42 0.08
SIRI*2 0.90 0.95 0.90 0.94 0.93 0.32 0.85 0.18 0.50 0.08
IPDC 0.97 1.00 0.99 1.00 0.99 0.79 0.85 0.85 0.95 0.73
IP 0.95 1.00 0.97 0.98 0.97 0.42 0.56 0.55 0.64 0.25

(n, p, ρ) = (300, 5000, 0.5)
SIS2 0.96 0.88 1.00 0.93 0.94 0.10 0.84 0.02 0.06 0.01
DC-SIS2 1.00 0.97 1.00 0.98 0.99 0.33 0.97 0.19 0.35 0.19
SIRI*2 0.90 0.93 0.97 0.91 0.89 0.46 0.85 0.22 0.45 0.16
IPDC 1.00 0.99 1.00 0.98 0.96 0.81 0.85 0.90 0.95 0.73
IP 0.94 0.97 0.97 0.90 0.93 0.46 0.50 0.60 0.64 0.21

Table 5: The percentages of retaining each important interaction or main effect, and all
important ones (All) by all the screening methods for study 2.

(n, p, ρ) = (300, 10000, 0) (n, p, ρ) = (400, 10000, 0)
X1X5 X10X15 All X1X5 X10X15 All

SIS2 0.00 0.00 0.00 SIS2 0.00 0.00 0.00
DC-SIS2 0.08 0.13 0.00 DC-SIS2 0.32 0.30 0.09
SIRI*2 0.50 0.51 0.28 SIRI*2 0.84 0.76 0.65
IPDC 0.98 0.99 0.97 IPDC 1.00 1.00 1.00
IP 0.76 0.83 0.59 IP 0.97 0.98 0.95

(n, p, ρ) = (300, 10000, 0.5) (n, p, ρ) = (400, 10000, 0.5)
X1X5 X10X15 All X1X5 X10X15 All

SIS2 0.00 0.00 0.00 SIS2 0.00 0.01 0.00
DC-SIS2 0.10 0.16 0.00 DC-SIS2 0.39 0.36 0.17
SIRI*2 0.53 0.55 0.28 SIRI*2 0.81 0.78 0.64
IPDC 1.00 0.99 0.99 IPDC 1.00 1.00 1.00
IP 0.82 0.83 0.65 IP 0.96 0.95 0.91

assumption, all methods performed rather similarly and all retaining percentages were

either equal or close to 100%. The last four methods performed similarly and improved

over the sure independence screening method in model 2 in which the weak heredity

assumption holds. In models 3 and 4, the method of interaction pursuit via distance cor-

relation and the method of interaction pursuit with the Pearson correlation significantly

outperformed all other methods in detecting interactions across all settings, showing their
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advantage when the heredity assumption is not satisfied. We also observe that the sure

independence screening method failed to detect interactions, whereas the method of vari-

able selection via sliced inverse regression improved over the method of feature screening

via distance correlation in these two models. Model 5 was designed to examine the ro-

bustness of each method at the presence of more main effects and interactions. The

advantages of interaction pursuit via distance correlation and interaction pursuit remain

in this model. These results suggest that a separate screening step should be designed

specifically for interactions to improve the screening accuracy, which is indeed one of the

main innovations of the method of interaction pursuit in Kong et al. (2017). Table 5

shows the same conclusions.

C.2 Additional Selection Results for Studies 1 and 2

Table 6: Variable selection results for study 1 with (n, p, ρ) = (300, 5000, 0). Reported
values are medians and robust standard deviations (in parentheses) of three performance
measures: PE, prediction error; FS, falsely discovered signs; and Time, running time in
seconds. 0∗ means that the corresponding value is small than 0.001.

SIS2-L1+SICA DC-SIS2-L1+SICA SIRI IPDC-L1+SICA IP-Lasso IP-L1+SICA Oracle
Model 1
PE 3.1 (0.8) 3.1 (0.7) 2.9 (0.3) 3.1 (0.8) 3.6 (0.4) 3.1 (0.9) 2.9 (0.3)
FS 0 (5.2) 0 (4.5) 0 (0) 0 (2.0) 112.5 (24.6) 0 (6.7) 0 (0)
Time 715.7 (37.5) 712.3 (35.5) 808.1 (38.9) 113.6 (17.2) 7.2 (0.7) 122.5 (11.8) 0*(0*)
Model 2
PE 19.6 (3.3) 2.1 (0.3) 2.2 (0.0) 2.1 (0.4) 2.4 (0.2) 2.1 (0.2) 2.0 (0.1)
FS 25 (14.9) 1 (4.1) 3 (3.0) 0 (5.4) 96 (21.3) 0 (2.2) 0 (0.0)
Time 734.4 (38.5) 718.2 (37.3) 798.3 (49.3) 107.4 (9.0) 6.8 (0.6) 116.5 (6.9) 0* (0*)
Model 3
PE 20.8 (2.0) 20.0 (3.2) 13.2 (0.5) 2.1 (0.3) 2.4 (0.2) 2.1 (0.2) 2.0 (0.1)
FS 29.5 (5.2) 27 (13.4) 8 (3.0) 0 (2.7) 98.5 (19.4) 0 (3.4) 0 (0.0)
Time 752.5 (32.8) 746.4 (34.3) 436.6 (9.2) 109.8 (9.5) 6.7 (0.6) 116.1 (8.6) 0* (0*)
Model 4
PE 36.3 (3.2) 34.2 (13.3) 12.3 (2.7) 1.4 (0.1) 1.6 (9.0) 1.4 (9.7) 1.3 (0.0)
FS 35 (14.9) 28.5 (12.3) 6 (6.7) 0 (0.0) 78 (36.2) 0 (4.1) 0 (0.0)
Time 749.2 (15.3) 752.5 (19.9) 223.3 (137.1) 98.3 (6.9) 6.4 (0.9) 108.2 (11.4) 0* (0*)
Model 5
PE 63.6 (10.8) 47.0 (18.1) 6.4 (34.4) 2.0 (17.0) 36.4 (31.8) 36.3 (33.6) 2.0 (0.0)
FS 20 (6.7) 16 (12.3) 21 (9.7) 5 (1.5) 120 (35.1) 10 (11.6) 0 (0.0)
Time 744.4 (58.7) 749.1 (41.1) 499.8 (82.4) 112.7 (14.9) 9.7 (2.3) 141.5 (17.2) 0* (0*)
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Table 7: Variable selection results for study 2. Reported values are medians and robust
standard deviations (in parentheses) of three performance measures: PE, prediction error;
FS, falsely discovered signs; and Time, running time in seconds. 0∗ means that the
corresponding value is small than 0.001.

SIS2-L1+SICA DC-SIS2-L1+SICA SIRI IPDC-L1+SICA IP-Lasso IP-L1+SICA Oracle
(n, p, ρ) = (300, 10000, 0)

PE 37.7 (2.0) 37.0 (4.7) 13.3 (8.6) 2.9 (0.4) 3.3 (9.5) 3.1 (11.2) 2.9 (0.2)
FS 34 (13.4) 31.5 (12.7) 6.0 (5.2) 0 (1.3) 79 (43.3) 1 (8.6) 0 (0.0)
Time 791.9 (163.2) 785.2 (177.0) 361.3 (220.1) 100.8 (9.0) 7.8 (1.6) 126.0 (24.1) 0* (0*)

(n, p, ρ) = (300, 10000, 0.5)
PE 37.7 (2.4) 36.4 (10.8) 13.1 (8.5) 2.9 (0.4) 3.2 (9.3) 3.0 (10.4) 2.9 (0.2)
FS 35 (13.4) 31 (12.7) 6 (5.2) 0 (0.0) 79.5 (38.1) 0 (6.7) 0 (0.0)
Time 830.0 (144.7) 812.3 (141.0) 653.2 (399.3) 101.0 (7.8) 7.4 (1.7) 121.2 (18.7) 0* (0*)

(n, p, ρ) = (400, 10000, 0)
PE 37.6 (3.0) 23.3 (13.2) 12.4 (0.4) 2.9 (0.4) 3.0 (0.2) 2.9 (0.2) 2.9 (0.2)
FS 41 (17.2) 33 (12.7) 8 (7.5) 0 (0.0) 74 (17.2) 0 (0.0) 0 (0.0)
Time 1836.1 (449.1) 1998.0 (460.6) 533.0 (177.9) 175.5 (8.9) 14.4 (3.5) 224.1 (52.0) 0* (0*)

(n, p, ρ) = (400, 10000, 0.5)
PE 38.6 (2.2) 22.1 (12.9) 12.6 (8.7) 2.9 (0.4) 3.0 (0.2) 2.9 (0.3) 2.9 (0.2)
FS 44 (5.2) 33.5 (17.5) 8 (5.2) 0 (0.0) 76.5 (16.8) 0 (0.0) 0 (0.0)
Time 1896.2 (468.9) 1906.3 (452.4) 792.1 (384.0) 179.0 (14.0) 14.4 (3.7) 203.8 (54.0) 0* (0*)

D Lemma 1 and Its Proof

D.1 Lemma 1

Lemma 1. a) Under Conditions 2 and 6, if 0 ≤ max{2κ1 + 4ξ1, 2κ1 + 4ξ2} < 1 and

E(Y 4) = O(1), then for any C > 0, there exists some constant C1 > 0 depending on C

such that for log p = o(nα1η1) with η1 = min{(1−2κ1−4ξ2)/(8+α1), (1−2κ1−4ξ1)/(12+

α1)},

P ( max
1≤k≤p

|ω̂k − ωk| ≥ Cn−κ1) = o(n−C1). (D.1)

b) Under Conditions 2 and 6, if 0 ≤ max{2κ2+2ξ1, 2κ2+2ξ2} < 1 and E(Y 2) = O(1),

then for any C > 0, there exists some constant C2 > 0 depending on C such that

P ( max
1≤j≤p

|ω̂∗j − ω∗j | ≥ Cn−κ2) = o(n−C2) (D.2)

for log p = o(nα1η2) with η2 = min{(1− 2κ2 − 2ξ2)/(4 + α1), (1− 2κ2 − 2ξ1)/(6 + α1)}.

c) Under Conditions 2, 6 and 7, and the choices of τ = c2n
−κ1 and τ̃ = c2n

−κ2, if
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0 ≤ ξ1, ξ2 < min{1/4− κ1/2, 1/2− κ2} and E(Y 4) = O(1), then we have

P
(
I ⊂ Î and M⊂ M̂

)
= 1− o

(
n−min{C1,C2}

)
(D.3)

for log p = o(nα1 min{η1, η2}) with constants C1 and C2 given in (D.1) and (D.2), respec-

tively. In addition, it holds that

P
(
|Î| ≤ O{n4κ1λ2

max(Σ∗)} and |M̂| ≤ O{n2κ1λmax(Σ∗) + n2κ2λmax(Σ)}
)

= 1− o
(
n−min{C1,C2}

)
, (D.4)

where λmax(·) denotes the largest eigenvalue, Σ is the population covariance matrix of the

random vector (X1, . . . , Xp)
T and Σ∗ is the population covariance matrix of the random

vector (X∗1 , . . . , X
∗
p )T with X∗k = {X2

k − E(X2
k)}/{var(X2

k)}1/2.

Comparing the results from the first two parts of Lemma 1 on interactions and main

effects, respectively, we see that interaction screening generally requires more restrictive

assumption on dimensionality p. This reflects that the task of interaction screening is

intrinsically more challenging than that of main effect screening. In particular, when

α1 = 2, the method of interaction pursuit via Pearson correlation can handle ultra-high

dimensionality up to

log p = o
(
nmin{(1−2κ1−4ξ2)/5, (1−2κ1−4ξ1)/7, (1−2κ2−2ξ2)/3, (1−2κ2−2ξ1)/4}) . (D.5)

It is worth mentioning that both constants C1 and C2 in the probability bounds (D.1)–

(D.2) can be chosen arbitrarily large without affecting the order of p and ranges of

constants κ1 and κ2. We also observe that stronger marginal signal strength for interaction

variables and main effects, in terms of smaller values of κ1 and κ2, can enable us to tackle

higher dimensionality.

The third part of Lemma 1 shows that the method of interaction pursuit via Pearson

correlation enjoys the sure screening property for both interaction and main effect screen-
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ing, and thus Condition 1 holds with C = min{C1, C2} and η = α1 min{η1, η2}. The third

part of lemma 1 also admits an explicit bound on the size of the reduced model after

screening. More specifically, an upper bound of the reduced model size is controlled by

the choices of both thresholds τ and τ̃ , and the largest eigenvalues of the two population

covariance matrices Σ∗ and Σ. If we assume λmax(Σ∗) = O(nξ3) and λmax(Σ) = O(nξ4)

for some constants ξ3, ξ4 ≥ 0, then with overwhelming probability the total number of

interactions and main effects in the reduced model is at most of a polynomial order of

sample size n.

The thresholds τ = c2n
−κ1 and τ̃ = c2n

−κ2 given in Lemma 1 depend on unknown

constants c2, κ1, and κ2, and thus are unavailable in practice. In real applications, to

estimate the set of active interaction variables A, we sort |ω̂k|, 1 ≤ k ≤ p, in decreasing

order and then retain the top d variables. This strategy is also widely used in the existing

literature; see, for example, Fan and Lv (2008), Fan and Song (2010), Li et al. (2012),

Barut et al. (2016), and Zhou et al. (2019). The set of main effects B is estimated

similarly except that the marginal utility |ω̂∗k| is used. Following the suggestion in Fan

and Lv (2008), one may choose the number of retained variables for each of sets A and B

in a screening procedure as n−1 or [cn/(log n)] with c some positive constant, depending

on the available sample size n. The parameter c can be tuned using some data-driven

method such as the cross-validation.

It is worth pointing out that our result is weaker than that in Fan and Lv (2008)

in terms of growth of dimensionality, where one can allow log p = o(n1−2κ2). This is

mainly because they considered linear models without interactions, indicating the intrinsic

challenges of feature screening in the presence of interactions. Moreover, our assumptions

on the distributions for the covariates and errors are more flexible.

The results in Lemma 1 can be improved in the case when the covariates Xj’s and

the response Y are uniformly bounded. An application of the proofs for (D.1)–(D.2) in
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D.2 and D.3 of the e-companion to this paper yields

P
(

max
1≤k≤p

|ω̂k − ωk| ≥ c2n
−κ1
)
≤ pC3 exp(−C−1

3 n1−2κ1),

P
(

max
1≤j≤p

|ω̂∗j − ω∗j | ≥ c2n
−κ2
)
≤ pC3 exp(−C−1

3 n1−2κ2),

where C3 is some positive constant. In this case, the method of interaction pursuit

via Pearson correlation can handle ultra-high dimensionality log p = o(nξ) with ξ =

min{1− 2κ1, 1− 2κ2}.

D.2 Proof of part a) of Lemma 1

Let Sk1 = n−1
n∑
i=1

X2
ikY

2
i , Sk2 = n−1

n∑
i=1

X2
ik, Sk3 = n−1

n∑
i=1

X4
ik, and S4 = n−1

n∑
i=1

Y 2
i . Then

ωk and ω̂k can be written as

ωk =
E(Sk1)− E(Sk2)E(S4)√

E(Sk3)− E2(Sk2)
and ω̂k =

Sk1 − Sk2S4√
Sk3 − S2

k2

.

To prove (D.1), the key step is to show that for any positive constant C, there exist some

constants C̃1, . . . , C̃4 > 0 such that the following probability bounds

P ( max
1≤k≤p

|Sk1 − E(Sk1)| ≥ Cn−κ1) ≤ pC̃1 exp
(
−C̃2n

α1η1
)

+ C̃3 exp
(
−C̃4n

α2η1
)
, (D.6)

P ( max
1≤k≤p

|Sk2 − E(Sk2)| ≥ Cn−κ1) ≤ pC̃1 exp[−C̃2n
α1(1−2κ1)/(4+α1)], (D.7)

P ( max
1≤k≤p

|Sk3 − E(Sk3)| ≥ Cn−κ1) ≤ pC̃1 exp[−C̃2n
α1(1−2κ1)/(8+α1)], (D.8)

P (|S4 − E(S4)| ≥ Cn−κ1) ≤ C̃1 exp
(
−C̃2n

α1ζ1
)

+ C̃3 exp
(
−C̃4n

α2ζ′2

)
(D.9)

hold for all n sufficiently large when 0 ≤ 2κ1 + 4ξ1 < 1 and 0 ≤ 2κ1 + 4ξ2 < 1, where

η1 = min{(1−2κ1−4ξ2)/(8+α1), (1−2κ1−4ξ1)/(12+α1)}, ζ1 = min{(1−2κ1−4ξ2)/(4+

α1), (1−2κ1−4ξ1)/(8+α1)}, ζ2 = min{(1−2κ1−2ξ2)/(4+α1), (1−2κ1−2ξ1)/(6+α1)},

and ζ ′2 = min{ζ2, (1−2κ1)/(4+α2)}. Define η = min{η1, (1−2κ1)/(4+α1), (1−2κ1)/(8+

α1), ζ1} and ζ = min{η1, ζ
′
2}. Then η = η1 and ζ = min{η1, (1 − 2κ1)/(4 + α2)}. Thus,
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by Lemmas 8–12, we have

P ( max
1≤k≤p

|ω̂k − ωk| ≥ Cn−κ1) ≤ pC̃1 exp(−C̃2n
α1η) + C̃3 exp(−C̃4n

α2ζ). (D.10)

Thus, if log p = o{nα1η}, the result of the part (a) in Lemma 1 follows immediately.

It thus remains to prove the probability bounds (D.6)–(D.9). Since the proofs of

(D.6)–(D.9) are similar, here we focus on (D.6) to save space. Throughout the proof, the

same notation C̃ is used to denote a generic positive constant without loss of generality,

which may take different values at each appearance.

Recall that Yi = α0 + xTi β0 + zTi γ0 + εi = β0 + xTi,Bβ0,B + zTi, Iγ0,I + εi, where

xi = (Xi1, . . . , Xip)
T , zi = (Xi1Xi2, . . . , Xi,p−1Xi,p)

T , xi,B = (Xij, j ∈ B)T , zi, I =

(XikXi`, (k, `) ∈ I)T , β0,B = (β0,j ∈ B)T , and γ0,I = (γ0, k`, (k, `) ∈ I)T . To simplify

the presentation, we assume that the intercept α0 is zero without loss of generality. Thus

Sk1 =n−1

n∑
i=1

X2
ikY

2
i = n−1

n∑
i=1

X2
ik(x

T
i,Bβ0,B + zTi, Iγ0,I + εi)

2

=n−1

n∑
i=1

X2
ik(x

T
i,Bβ0,B + zTi, Iγ0,I)

2 + 2n−1

n∑
i=1

X2
ik(x

T
i,Bβ0,B + zTi, Iγ0,I)εi + n−1

n∑
i=1

X2
ikε

2
i

,Sk1,1 + 2Sk1,2 + Sk1,3.

Similarly, E(Sk1) can be written as E(Sk1) = E(Sk1,1) + 2E(Sk1,2) + E(Sk1,3). So Sk1 −

E(Sk1) can be expressed as Sk1−E(Sk1) = [Sk1,1−E(Sk1,1)]+2[Sk1,2−E(Sk1,2)]+[Sk1,3−

E(Sk1,3)]. By the triangle inequality and the union bound we have

P ( max
1≤k≤p

|Sk1 − E(Sk1)| ≥ Cn−κ1) ≤P (
3⋃
j=1

{max
1≤k≤p

|Sk1,j − E(Sk1,j)| ≥ Cn−κ1/4})

≤
3∑
j=1

P ( max
1≤k≤p

|Sk1,j − E(Sk1,j)| ≥ Cn−κ1/4). (D.11)

In what follows, we will provide details on deriving an exponential tail probability bound

for each term on the right hand side above. To enhance readability, we split the proof
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into three steps.

Step 1. We start with the first term max1≤k≤p |Sk1,1 − E(Sk1,1)|. Define the event

Ωi = {|Xij| ≤ M1 for all j ∈ M ∪ {k}} with M = A ∪ B and M1 a large positive

number that will be specified later. Let Tk1 = n−1
n∑
i=1

X2
ik(x

T
i,Bβ0,B + zTi, Iγ0,I)

2IΩi and

Tk2 = n−1
n∑
i=1

X2
ik(x

T
i,Bβ0,B + zTi, Iγ0,I)

2IΩci
, where I(·) is the indicator function and Ωc

i is

the complement of the set Ωi. Then

Sk1,1 − E(Sk1,1) = [Tk1 − E(Tk1)] + Tk2 − E(Tk2). (D.12)

Note that E(Tk2) = E[X2
1k(x

T
1,Bβ0,B + zT1, Iγ0,I)

2IΩc1
]. By the fact (a+ b)2 ≤ 2(a2 + b2) for

two real numbers a and b, the Cauchy-Schwarz inequality, and Condition 6, we have

(xT1,Bβ0,B + zT1, Iγ0,I)
2 ≤ 2[(xT1,Bβ0,B)2 + (zT1, Iγ0,I)

2] ≤ 2C2
0(s2‖x1,B‖2 + s1‖z1, I‖2),

(D.13)

where C0 is some positive constant and ‖·‖ denotes the Euclidean norm. This ensures that

E(Tk2) is bounded by 2C2
0 [s2E(X2

1k‖x1,B‖2IΩc1
) + s1E(X2

1k‖z1, I‖2IΩc1
)]. By the Cauchy-

Schwarz inequality, the union bound, and the inequality (a+ b)2 ≤ 2(a2 + b2), we obtain

that

E(X2
1k‖x1,B‖2IΩc1

) ≤
[
E(X4

1k‖x1,B‖4)P (Ωc
1)
]1/2 ≤ {[s2

∑
j∈B

E(X4
1kX

4
1j)

]
P (Ωc

1)

}1/2

≤

{
2−1s2

∑
j∈B

[E(X8
1k) + E(X8

1j)]

}1/2
 ∑
j∈M∪{k}

P (|Xij| > M1)

1/2

≤C̃s2(1 + s2 + 2s1)1/2 exp[−Mα1
1 /(2c1)]

for some positive constant C̃, where the last inequality follows from Condition 2 and

Lemma 3. Similarly, we have E(X2
1k‖z1, I‖2IΩc1

) ≤ C̃s1(1 + s2 + 2s1)1/2 exp[−Mα1
1 /(2c1)].
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This together with the above inequalities entails that

0 ≤ E(Tk2) ≤ 2C2
0 C̃(s2

1 + s2
2)(1 + s2 + 2s1)1/2 exp[−Mα1

1 /(2c1)].

If we choose M1 = nη1 with η1 > 0, then by Condition 6, for any positive constant C,

when n is sufficiently large,

|E(Tk2)| ≤ 2C2
0 C̃(n2ξ1 + n2ξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η1/(2c1)]

< Cn−κ1/12 (D.14)

holds uniformly for all 1 ≤ k ≤ p. The above inequality together with (D.12) ensures

that

P ( max
1≤k≤p

|Sk1,1 − E(Sk1,1)| ≥ Cn−κ1/4)

≤P ( max
1≤k≤p

|Tk1 − E(Tk1)| ≥ Cn−κ1/12) + P ( max
1≤k≤p

|Tk2| ≥ Cn−κ1/12) (D.15)

for all n sufficiently large. Thus we only need to establish the probability bound for each

term on the right hand side of (D.15).

First consider max1≤k≤p |Tk1 − E(Tk1)|. Using similar arguments for proving (D.13),

we have (xTi,Bβ0,B + zTi, Iγ0,I)
2 ≤ 2C2

0(s2‖xi,B‖2 + s1‖zi, I‖2) and thus

0 ≤ X2
ik(x

T
i,Bβ0,B + zTi, Iγ0,I)

2IΩi ≤ 2C2
0X

2
ik(s2‖xi,B‖2 + s1‖zi, I‖2)IΩi ≤ 2C2

0M
4
1 (s2

2 + s2
1M

2
1 ).

For any δ > 0, by Hoeffding’s inequality, we obtain

P (|Tk1 − E(Tk1)| ≥ δ) ≤2 exp

[
− nδ2

2C4
0M

8
1 (s2

2 + s2
1M

2
1 )2

]
≤ 2 exp

[
− nδ2

4C4
0M

8
1 (s4

2 + s4
1M

4
1 )

]
≤2 exp

(
− nδ2

8C4
0M

8
1 s

4
2

)
+ 2 exp

(
− nδ2

8C4
0M

12
1 s4

1

)
,

where we have used the fact that (a+ b)2 ≤ 2(a2 + b2) for any real numbers a and b, and
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exp[−c/(a+ b)] ≤ exp[−c/(2a)] + exp[−c/(2b)] for any a, b, c > 0. Recall that M1 = nη1 .

Under Condition 6, taking δ = Cn−κ1/12 gives that

P ( max
1≤k≤p

|Tk1 − E(Tk1)| ≥ Cn−κ1/12) ≤
p∑

k=1

P (|Tk1 − E(Tk1)| ≥ Cn−κ1/12)

≤2p exp
(
−C̃n1−2κ1−8η1−4ξ2

)
+ 2p exp

(
−C̃n1−2κ1−12η1−4ξ1

)
. (D.16)

Next, consider max1≤k≤p |Tk2|. Recall that Tk2 = n−1
n∑
i=1

X2
ik(x

T
i,Bβ0,B+ zTi, Iγ0,I)

2IΩci
≥

0. By Markov’s inequality, for any δ > 0, we have P (|Tk2| ≥ δ) ≤ δ−1E(|Tk2|) =

δ−1E(Tk2). In view of the first inequality in (D.14), taking δ = Cn−κ1/12 leads to

P (|Tk2| ≥ Cn−κ1/12) ≤ 24C−1C2
0 C̃n

κ1(n2ξ1 + n2ξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η1/(2c1)]

for all 1 ≤ k ≤ p. Therefore,

P ( max
1≤k≤p

|Tk2| ≥ Cn−κ1/12) ≤
p∑

k=1

P (|Tk2| ≥ Cn−κ1/12)

≤24pC−1C2
0 C̃n

κ1(n2ξ1 + n2ξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η1/(2c1)]. (D.17)

Combining (D.15), (D.16), and (D.17) yields that for sufficiently large n,

P ( max
1≤k≤p

|Sk1,1 − E(Sk1,1)| ≥ Cn−κ1/4)

≤2p exp
(
−C̃n1−2κ1−8η1−4ξ2

)
+ 2p exp

(
−C̃n1−2κ1−12η1−4ξ1

)
+ 24pC−1C2

0 C̃n
κ1(n2ξ1 + n2ξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η1/(2c1)]. (D.18)

To balance the three terms on the right hand side of (D.18), we choose η1 = min{(1 −

2κ1 − 4ξ2)/(8 + α1), (1 − 2κ1 − 4ξ1)/(12 + α1)} > 0 and the probability bound (D.18)

becomes

P ( max
1≤k≤p

|Sk1,1 − E(Sk1,1)| ≥ Cn−κ1/4) ≤ pC̃5 exp
(
−C̃6n

α1η1
)

(D.19)
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for all n sufficiently large, where C̃5 and C̃6 are two positive constants.

Step 2. We establish the probability bound for max1≤k≤p |Sk1,2 − E(Sk1,2)|. Define

the event Ψi = {|Xij| ≤M2 for all j ∈M∪ {k}} with M = A ∪ B and let

Tk3 = n−1

n∑
i=1

X2
ik(x

T
i,Bβ0,B + zTi, Iγ0,I)εiIΨiI(|εi| ≤M3),

Tk4 = n−1

n∑
i=1

X2
ik(x

T
i,Bβ0,B + zTi, Iγ0,I)εiIΨiI(|εi| > M3),

Tk5 = n−1

n∑
i=1

X2
ik(x

T
i,Bβ0,B + zTi, Iγ0,I)εiIΨci

,

where M2 and M3 are two large positive numbers which will be specified later. Then

Sk1,2 = Tk3 + Tk4 + Tk5. Similarly, E(Sk1,2) can be written as E(Sk1,2) = E(Tk3) +

E(Tk4) + E(Tk5). Since ε1 has mean zero and is independent of X1,1, . . . , X1,p, we have

E(Tk5) = E[X2
1k(x

T
1,Bβ0,B + zT1, Iγ0,I)ε1IΨc1

] = E[X2
1k(x

T
1,Bβ0,B + zT1, Iγ0,I)IΨc1

]E(ε1) = 0.

Thus Sk1,2 − E(Sk1,2) can be expressed as

Sk1,2 − E(Sk1,2) = [Tk3 − E(Tk3)] + Tk4 + Tk5 − E(Tk4). (D.20)

Note that E(Tk4) = E[X2
1k(x

T
1,Bβ0,B + zT1, Iγ0,I)ε1IΨ1I(|ε1| > M3)]. Thus

|E(Tk4)| ≤ E[X2
1k|xT1,Bβ0,B + zT1, Iγ0,I |IΨ1|ε1|I(|ε1| > M3)].

It follows from the triangle inequality and Condition 6 that

X2
1k|xT1,Bβ0,B + zT1, Iγ0,I |IΨ1 ≤ X2

1k(|xT1,Bβ0,B|+ |zT1, Iγ0,I |)IΨ1 ≤ C0M
3
2 (s2 + s1M

2
2 ).

(D.21)

for all 1 ≤ k ≤ p and some positive constant C0. By the Cauchy-Schwarz inequality,

Condition 2, and Lemma 3, we have

E[|ε1|I(|ε1| > M3)] ≤ [E(ε2
1)P (|ε1| > M3)]1/2 ≤ C̃ exp[−Mα2

3 /(2c1)]. (D.22)
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This together with the above inequalities entails that

|E(Tk4)| ≤ C0M
3
2 (s2 + s1M2)E[|ε1|I(|ε1| > M3)] ≤ C0C̃M

3
2 (s2 + s1M2) exp[−Mα2

3 /(2c1)].

If we choose M2 = nη2 and M3 = nη3 with η2 > 0 and η3 > 0, then under Condition 6,

for any positive constant C, when n is sufficiently large,

|E(Tk4)| ≤ C0C̃n
3η2(nξ2 + nξ1+η2) exp[−nα2η3/(2c1)] ≤ Cn−κ1/16

holds uniformly for all 1 ≤ k ≤ p. This together with (D.20) ensures that

P ( max
1≤k≤p

|Sk1,2 − E(Sk1,2)| ≥ Cn−κ1/4) ≤ P ( max
1≤k≤p

|Tk3 − E(Tk3)| ≥ Cn−κ1/16)

+ P ( max
1≤k≤p

|Tk4| ≥ Cn−κ1/16) + P ( max
1≤k≤p

|Tk5| ≥ Cn−κ1/16) (D.23)

for all n sufficiently large. In what follows, we will provide details on establishing the

probability bound for each term on the right hand side of (D.23).

First consider max1≤k≤p |Tk3 − E(Tk3)|. In view of (D.21), we have |X2
ik(x

T
i,Bβ0,B +

zTi, Iγ0,I)εiIΨi · I(|εi| ≤ M3)| ≤ C0M
3
2M3(s2 + s1M2). For any δ > 0, by Hoeffding’s

inequality, it holds that

P (|Tk3 − E(Tk3)| ≥ δ) ≤2 exp

[
− nδ2

2C2
0M

6
2M

2
3 (s2 + s1M2)2

]
≤2 exp

[
− nδ2

4C2
0M

6
2M

2
3 (s2

2 + s2
1M

2
2 )

]
≤2 exp

(
− nδ2

8C2
0M

6
2M

2
3 s

2
2

)
+ 2 exp

(
− nδ2

8C2
0M

8
2M

2
3 s

2
1

)
,

where we have used the fact that exp[−c/(a+ b)] ≤ exp[−c/(2a)] + exp[−c/(2b)] for any
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a, b, c > 0. Recall that M2 = nη2 and M3 = nη3 . Thus, taking δ = Cn−κ1/16 gives

P ( max
1≤k≤p

|Tk3 − E(Tk3)| ≥ Cn−κ1/16) ≤
p∑

k=1

P (|Tk3 − E(Tk3)| ≥ Cn−κ1/16)

≤2p exp
(
−C̃n1−2κ1−6η2−2η3−2ξ2

)
+ 2p exp

(
−C̃n1−2κ1−8η2−2η3−2ξ1

)
. (D.24)

Next we handle max1≤k≤p |Tk4|. Using similar arguments as for proving (D.21), we

have X2
ik|xTi,Bβ0,B + zTi, Iγ0,I |IΨi ≤ C0M

3
2 (s2 + s1M2) for all 1 ≤ i ≤ n and 1 ≤ k ≤ p and

thus

max
1≤k≤p

|Tk4| ≤ C0M
3
2 (s2 + s1M2)n−1

n∑
i=1

|εi|I(|εi| > M3).

It follows from Markov’s inequality and (D.22) that

P ( max
1≤k≤p

|Tk4| ≥ δ) ≤P

{
C0M

3
2 (s2 + s1M2)n−1

n∑
i=1

|εi|I(|εi| > M3) ≥ δ

}

≤δ−1E

[
C0M

3
2 (s2 + s1M2)n−1

n∑
i=1

|εi|I(|εi| > M3)

]

=δ−1C0M
3
2 (s2 + s1M2)E[|ε1|I(|ε1| > M3)]

≤δ−1C0C̃M
3
2 (s2 + s1M2) exp[−Mα2

3 /(2c1)].

Recall that M2 = nη2 and M3 = nη3 . Thus, taking δ = Cn−κ1/16 results in

P ( max
1≤k≤p

|Tk4| ≥ Cn−κ1/16) ≤ 16C−1C0C̃n
3η2+κ1(nξ2 + nξ1+2η2) exp[−nα2η3/(2c1)].

(D.25)

We next consider max1≤k≤p |Tk5|. Since |Tk5| ≤ n−1
n∑
i=1

X2
ik|(xTi,Bβ0,B + zTi, Iγ0,I)εi|IΨci

,
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by Markov’s inequality we have

P (|Tk5| ≥ δ) ≤P

{
n−1

n∑
i=1

X2
ik|(xTi,Bβ0,B + zTi, Iγ0,I)εi|IΨci

≥ δ

}

≤δ−1E

[
n−1

n∑
i=1

X2
ik|(xTi,Bβ0,B + zTi, Iγ0,I)εi|IΨci

]

=δ−1E[X2
1k|(xT1,Bβ0,B + zT1, Iγ0,I)ε1|IΨc1

].

It follows from the Cauchy-Schwarz inequality and (D.13) that

E[X2
1k|(xT1,Bβ0,B + zT1, Iγ0,I)ε1|IΨci

] ≤ {E[X4
1k(x

T
1,Bβ0,B + zT1, Iγ0,I)

2ε2
1]P (Ψc

1)}1/2

≤{2C2
0

[
s2E(X4

1k‖x1,B‖2ε2
1) + s1E(X4

1k‖z1, I‖2ε2
1)
]
P (Ψc

1)}1/2.

Applying the Cauchy-Schwarz inequality again gives

E(X4
1k‖x1,B‖2ε2

1) ≤
[
E(X8

1k‖x1,B‖4)E(ε4
1)
]1/2 ≤ [s2

∑
j∈B

E(X8
1kX

4
1j)

]1/2 [
E(ε4

1)
]1/2

≤

{
2−1s2

∑
j∈B

[E(X16
1k) + E(X8

1j)]

}1/2 [
E(ε4

1)
]1/2 ≤ C̃s2,

where the last inequality follows from Condition 2 and Lemma 3. Similarly, we can

show that E(X4
1k‖z1, I‖2ε2

1) ≤ C̃s1. By Condition 2 and the union bound, we deduce

P (Ψc
1) = P (|Xij| > M2 for some j ∈ M ∪ {k}) ≤ (1 + 2s1 + s2)c1exp(−Mα1

2 /c1). This

together with the above inequalities entails that

P (|Tk5| ≥ δ) ≤ δ−1{2C2
0 C̃(s2

1 + s2
2)(1 + 2s1 + s2)c1 exp(−Mα1

2 /c1)}1/2.

Recall that M2 = nη2 . Under Condition 6, taking δ = Cn−κ1/16 yields

P ( max
1≤k≤p

|Tk5| ≥ Cn−κ1/16) ≤
p∑

k=1

P (|Tk5| ≥ Cn−κ1/16)

≤16pC−1nκ1{2C2
0 C̃c1(n2ξ1 + n2ξ2)(1 + 2nξ1 + nξ2)}1/2 exp[−nα1η2/(2c1)]. (D.26)
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Combining (D.23), (D.24), (D.25), and (D.26) yields that for sufficiently large n,

P ( max
1≤k≤p

|Sk1,2 − E(Sk1,2)| ≥ Cn−κ1/4)

≤2p exp
(
−C̃n1−2κ1−6η2−2η3−2ξ2

)
+ 2p exp

(
−C̃n1−2κ1−8η2−2η3−2ξ1

)
+ 16pC−1nκ1{2C2

0 C̃c1(n2ξ1 + n2ξ2)(1 + 2nξ1 + nξ2)}1/2 exp[−nα1η2/(2c1)]

+ 16C−1C0C̃n
3η2+κ1(nξ2 + nξ1+η2) exp[−nα2η3/(2c1)]. (D.27)

Let η2 = η3 = min{(1 − 2κ1 − 2ξ2)/(8 + α1), (1 − 2κ1 − 2ξ1)/(10 + α1)}. Then (D.27)

becomes

P ( max
1≤k≤p

|Sk1,2 − E(Sk1,2)| ≥ Cn−κ1/4) ≤ pC̃7 exp
(
−C̃8n

α1η2
)

+ C̃9 exp[−C̃10n
α2η2 ].

(D.28)

for all n sufficiently large, where C̃7, C̃8, C̃9, and C̃10 are some positive constants.

Step 3. We establish the probability bound for max1≤k≤p |Sk1,3 − E(Sk1,3)|. Define

Tk6 = n−1

n∑
i=1

X2
ikε

2
i I(|Xik| ≤M4)I(|εi| ≤M5),

Tk7 = n−1

n∑
i=1

X2
ikε

2
i I(|Xik| ≤M4)I(|εi| > M5),

Tk8 = n−1

n∑
i=1

X2
ikε

2
i I(|Xik| > M4),

where M4 and M5 are two large positive numbers whose values will be specified later.

Then Sk1,3 = Tk6 + Tk7 + Tk8. Similarly, E(Sk1,3) can be written as E(Sk1,3) = E(Tk6) +

E(Tk7)+E(Tk8) withE(Tk6) = E[X2
1kε

2
1I(|X1k| ≤M4)I(|ε1| ≤M5)], E(Tk7) = E[X2

1kε
2
1I(|X1k| ≤

M4)I(|ε1| > M5)], and E(Tk8) = E[X2
1kε

2
1I(|X1k| > M4)]. Thus Sk1,3 − E(Sk1,3) can be

expressed as

Sk1,3 − E(Sk1,3) = [Tk6 − E(Tk6)] + Tk7 + Tk8 − [E(Tk7) + E(Tk8)]. (D.29)
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First consider the last two terms E(Tk7) andE(Tk8). It follows from 0 ≤ X2
1kε

2
1I(|X1k| ≤

M4)I(|ε1| > M5) ≤M2
4 ε

2
1I(|ε1| > M5) that

0 ≤ E(Tk7) ≤M2
4E[ε2

1I(|ε1| > M5)]. (D.30)

An application of the Cauchy-Schwarz inequality leads to E[ε2
1I(|ε1| > M5)] ≤ [E(ε4

1)P (|ε1| >

M5)]1/2. By Condition 2 and Lemma 3, we have

E[ε2
1I(|ε1| > M5)] ≤ {E(ε4

1)c1}1/2 exp(−c−1
1 Mα2

5 /2) ≤ C̃ exp[−Mα2
5 /(2c1)] (D.31)

Combining (D.30) with (D.31) yields

|E(Tk7)| ≤ C̃M2
4 exp[−Mα2

5 /(2c1)]. (D.32)

Similarly, by the Cauchy-Schwarz inequality and Lemma 3 we obtain

|E(Tk8)| = E[X2
1kε

2
1I(|X1k| > M4)] ≤ {E(X4

1kε
4
1)P (|X1k| > M4)]}1/2

≤
{c1

2
[E(X8

1k) + E(ε8
1)]
}1/2

exp[−Mα1
4 /(2c1)] ≤ C̃ exp[−Mα1

4 /(2c1)]. (D.33)

Combining (D.32) and (D.33) results in

|E(Tk7) + E(Tk8)| ≤ C̃M2
4 exp[−Mα2

5 /(2c1)] + C̃ exp[−Mα1
4 /(2c1)].

If we choose M4 = nη4 and M5 = nη5 with η4 > 0 and η5 > 0, then for any positive

constant C, when n is sufficiently large,

|E(Tk7) + E(Tk8)| ≤ C̃n2η4 exp[−nα2η5/(2c1)] + C̃ exp[−nα1η4/(2c1)] < Cn−κ1/16

holds uniformly for all 1 ≤ k ≤ p. The above inequality together with (D.29) ensures
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that

P ( max
1≤k≤p

|Sk1,3 − E(Sk1,3)| ≥ Cn−κ1/4)

≤ P ( max
1≤k≤p

|Tk6 − E(Tk6)| ≥ Cn−κ1/16) + P ( max
1≤k≤p

|Tk7| ≥ Cn−κ1/16)

+ P ( max
1≤k≤p

|Tk8| ≥ Cn−κ1/16) (D.34)

for all n sufficiently large.

In what follows, we will provide details on establishing the probability bound for each

term on the right hand side of (D.34). First consider max1≤k≤p |Tk6 − E(Tk6)|. Since

0 ≤ X2
ikε

2
i I(|Xik| ≤M4)I(|εi| ≤M5) ≤M2

4M
2
5 , by Hoeffding’s inequality, we have for any

δ > 0 that

P (|Tk6 − E(Tk6)| ≥ δ) ≤ 2 exp

(
− 2nδ2

M4
4M

4
5

)
= 2 exp

(
−2n1−4η4−4η5δ2

)
,

by noting that M4 = nη4 and M5 = nη5 . Thus, taking δ = Cn−κ1/16 gives

P ( max
1≤k≤p

|Tk6 − E(Tk6)| ≥ Cn−κ1/16) ≤
p∑

k=1

P (|Tk6 − E(Tk6)| ≥ Cn−κ1/16)

≤ 2p exp
(
−C̃n1−2κ1−4η4−4η5

)
. (D.35)

Next we handle max1≤k≤p |Tk7|. Since max1≤k≤p |Tk7| ≤ n−1M2
4

∑n
i=1 ε

2
i I(|εi| > M5),

it follows from Markov’s inequality and (D.31) that for any δ > 0,

P ( max
1≤k≤p

|Tk7| ≥ δ) ≤P{n−1M2
4

n∑
i=1

ε2
i I(|εi| > M5) ≥ δ}

≤δ−1E[n−1M2
4

n∑
i=1

ε2
i I(|εi| > M5)]

=δ−1M2
4E[ε2

1I(|ε1| > M5)] ≤ C̃δ−1M2
4 exp[−Mα2

5 /(2c1)].

Recall that M4 = nη4 and M5 = nη5 . Setting δ = Cn−κ1/16 in the above inequality
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entails

P ( max
1≤j≤p

|Tk7| ≥ Cn−κ1/16) ≤ 16C−1C̃n2η4+κ1 exp[−nα2η5/(2c1)]. (D.36)

We then consider max1≤k≤p |Tk8|. By Markov’s inequality and (D.33), for any δ > 0,

P (|Tk8| ≥ δ) ≤ δ−1E[n−1

n∑
i=1

X2
ikε

2
i I(|Xik| > M4)] = δ−1E[X2

1kε
2
1I(|X1k| > M4)]

≤ δ−1C̃ exp[−Mα1
4 /(2c1)]. (D.37)

Recall that M4 = nη1 . In view of (D.37), taking δ = Cn−κ1/16 leads to

P ( max
1≤k≤p

|Tk8| ≥ Cn−κ1/16) ≤
p∑

k=1

P (|Tk8| ≥ Cn−κ1/16) ≤ 16pC−1C̃nκ1 exp[−n2η4/(2c1)].

(D.38)

Combining (D.34), (D.35), (D.36) with (D.38) yields that for sufficiently large n,

P ( max
1≤k≤p

|Sk1,3 − E(Sk1,3)| ≥ Cn−κ1/4) ≤ 2p exp
(
−C̃n1−2κ1−4η4−4η5

)
+ 16pC−1C̃nκ1 exp[−nα1η4/(2c1)] + 16C−1C̃n2η4+κ1 exp[−nα2η5/(2c1)]. (D.39)

Let η4 = η5 = (1− 2κ1)/(8 + α1). Then (D.39) becomes

P ( max
1≤k≤p

|Sk1,3 − E(Sk1,3)| ≥ Cn−κ1/4) ≤ pC̃11 exp[−C̃12n
α1η4 ] + C̃13 exp[−C̃14n

α2η4 ]

(D.40)

for all n sufficiently large, where C̃11, C̃12, C̃13, and C̃14 are some positive constants.

Since 0 < η1 < η2 = η3 and η1 ≤ η4, it follows from (D.11), (D.19), (D.28), and (D.40)

that there exist some positive constants C̃1, . . . , C̃4 such that

P ( max
1≤k≤p

|Sk1 − E(Sk1)| ≥ Cn−κ1) ≤ pC̃1 exp
(
−C̃2n

α1η1
)

+ C̃3 exp
(
−C̃4n

α2η1
)
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for all n sufficiently large. This concludes the proof of part a) of Lemma 1.

D.3 Proof of part b) of Lemma 1

We recall that ω∗j = E(XjY ) and ω̂∗j = n−1
n∑
i=1

XijYi. Note that Yi = β0 + xTi β0 + zTi γ0 +

εi = β0+xTi,Bβ0,B+zTi, Iγ0,I+εi, where xi = (Xi1, . . . , Xip)
T , zi = (Xi1Xi2, . . . , Xi,p−1Xi,p)

T ,

xi,B = (Xi`, ` ∈ B)T , zi, I = (XikXi`, (k, `) ∈ I)T , β0,B = (β0
` , ` ∈ B)T , and γ0,I =

(γk`, (k, `) ∈ I)T . To simplify the proof, we assume that the intercept α0 is zero without

loss of generality. Thus

ω̂∗j = n−1

n∑
i=1

XijYi = n−1

n∑
i=1

Xij(x
T
i,Bβ0,B + zTi, Iγ0,I) + n−1

n∑
i=1

Xijεi

, Sj1 + Sj2.

Similarly, ω∗j can be written as ω∗j = E(XjY ) = E(Sj1) + E(Sj2). So ω̂∗j − ω∗j can be

expressed as ω̂∗j − ω∗j = [Sj1 − E(Sj1)] + [Sj2 − E(Sj2)]. By the triangle inequality and

the union bound, it holds that

P ( max
1≤j≤p

|ω̂∗j − ω∗j | ≥ Cn−κ2)

≤P ( max
1≤j≤p

|Sj1 − E(Sj1)| ≥ Cn−κ2/2) + P ( max
1≤j≤p

|Sj2 − E(Sj2)| ≥ Cn−κ2/2). (D.41)

In what follows, we will provide details on deriving an exponential tail probability bound

for each term on the right hand side above. To enhance readability, we split the proof

into two steps.

Step 1. We start with the first term max1≤k≤p |Sj1 − E(Sj1)|. Define the event

Φi = {|Xi`| ≤ M6 for all ` ∈ M ∪ {j}} with M = A ∪ B and M6 a large positive

number that will be specified later. Let Tj1 = n−1
n∑
i=1

Xij(x
T
i,Bβ0,B + zTi, Iγ0,I)IΦi and

Tj2 = n−1
n∑
i=1

Xij(x
T
i,Bβ0,B + zTi, Iγ0,I)IΦci

, where I(·) is the indicator function and Φc
i is the
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complement of the set Φi. Then an application of the triangle inequality yields

|Sj1 − E(Sj1)| =|[Tj1 − E(Tj1)] + Tj2 − E(Tj2)| ≤ |Tj1 − E(Tj1)|+ |Tj2|+ |E(Tj2)|

≤|Tj1 − E(Tj1)|+ |Tj2|+ E(|Tj2|). (D.42)

Note that |Tj2| ≤ n−1
n∑
i=1

|Xij(x
T
i,Bβ0,B+zTi, Iγ0,I)|IΦci

and thus E(|Tj2|) ≤ E[|X1j(x
T
1,Bβ0,B+

zT1, Iγ0,I)|IΦc1
]. By the triangle inequality and Condition 6, we have

|X1j(x
T
1,Bβ0,B + zT1, Iγ0,I)| ≤ C0(|X1j|‖x1,B‖1 + |X1j|‖z1, I‖1), (D.43)

which ensures that E(|Tj2|) is bounded by C0[E(|X1j|‖x1,B‖1IΩc1
) + E(|X1j|‖z1, I‖1IΩc1

)].

Here ‖·‖1 is the L1 norm. By the Cauchy-Schwarz inequality and the triangular inequality,

we deduce

E(|X1j|‖x1,B‖1IΦc1
) ≤

[
E(X2

1j‖x1,B‖2
1)P (Φc

1)
]1/2 ≤ {[s2

∑
`∈B

E(X2
1jX

2
1`)

]
P (Φc

1)

}1/2

≤

{
2−1s2

∑
`∈B

[E(X4
1j) + E(X4

1`)]

}1/2
 ∑
`∈M∪{j}

P (|Xi`| > M6)

1/2

≤C̃s2(1 + s2 + 2s1)1/2 exp[−Mα1
6 /(2c1)]

for some positive constant C̃, where the last inequality follows from Condition 2 and

Lemma 3. Similarly, we have E(|X1j|‖z1, I‖1IΦc1
) ≤ C̃s1(1+s2 +2s1)1/2 exp[−Mα1

6 /(2c1)].

This together with the above inequalities entails that

E(|Tj2|) ≤ C0C̃(s1 + s2)(1 + s2 + 2s1)1/2 exp[−Mα1
6 /(2c1)].

If we choose M6 = nη6 with η6 > 0, then by Condition 6, for any positive constant C,

when n is sufficiently large,

E(|Tj2|) ≤ C0C̃(nξ1 + nξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η6/(2c1)] < Cn−κ2/6 (D.44)
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holds uniformly for all 1 ≤ j ≤ p. The above inequality together with (D.42) ensures

that

P ( max
1≤j≤p

|Sj1 − E(Sj1)| ≥ Cn−κ2/2)

≤P ( max
1≤j≤p

|Tj1 − E(Tj1)| ≥ Cn−κ2/6) + P ( max
1≤j≤p

|Tj2| ≥ Cn−κ2/6) (D.45)

for all n is sufficiently large. Thus we only need to establish the probability bound for

each term on the right hand side of (D.45).

First consider max1≤j≤p |Tj1−E(Tj1)|. Using similar arguments as for proving (D.43),

we have

|Xij(x
T
i,Bβ0,B + zTi, Iγ0,I)IΦi| ≤ C0(|Xij|‖xi,B‖1 + |Xij|‖zi, I‖1)IΦi ≤ C0(s2M

2
6 + s1M

3
6 ).

For any δ > 0, an application of Hoeffding’s inequality gives

P (|Tj1 − E(Tj1)| ≥ δ) ≤2 exp

[
− nδ2

2C2
0M

4
6 (s2 + s1M6)2

]
≤2 exp

[
− nδ2

4C2
0M

4
6 (s2

2 + s2
1M

2
6 )

]
≤2 exp

(
− nδ2

8C2
0M

4
6 s

2
2

)
+ 2 exp

(
− nδ2

8C2
0M

6
6 s

2
1

)
,

where we have used the fact that (a+ b)2 ≤ 2(a2 + b2) for any real numbers a and b, and

exp[−c/(a+ b)] ≤ exp[−c/(2a)] + exp[−c/(2b)] for any a, b, c > 0. Recall that M6 = nη6 .

Under Condition 6, taking δ = Cn−κ2/6 results in

P ( max
1≤j≤p

|Tj1 − E(Tj1)| ≥ Cn−κ2/6) ≤
p∑
j=1

P (|Tj1 − E(Tj1)| ≥ Cn−κ2/6)

≤2p exp
(
−C̃n1−2κ2−4η6−2ξ2

)
+ 2p exp

(
−C̃n1−2κ2−6η6−2ξ1

)
. (D.46)

Next, consider max1≤j≤p |Tj2|. By Markov’s inequality, for any δ > 0, we have

P (|Tj2| ≥ δ) ≤ δ−1E(|Tj2|). In view of the first inequality in (D.44), taking δ = Cn−κ2/6
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gives that

P (|Tj2| ≥ Cn−κ2/6) ≤ 6C−1C0C̃n
κ2(nξ1 + nξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η6/(2c1)]

for all 1 ≤ j ≤ p. Therefore,

P ( max
1≤j≤p

|Tj2| ≥ Cn−κ2/6) ≤
p∑
j=1

P (|Tj2| ≥ Cn−κ2/6)

≤6pC−1C0C̃n
κ2(nξ1 + nξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η6/(2c1)]. (D.47)

Combining (D.45), (D.46), and (D.47) yields that for sufficiently large n,

P ( max
1≤j≤p

|Sj1 − E(Sj1)| ≥ Cn−κ2/2)

≤ 2p exp
(
−C̃n1−2κ2−4η6−2ξ2

)
+ 2p exp

(
−C̃n1−2κ2−6η6−2ξ1

)
+ 6pC−1C0C̃n

κ2(nξ1 + nξ2)(1 + nξ2 + 2nξ1)1/2 exp[−nα1η6/(2c1)]. (D.48)

To balance the three terms on the right hand side of (D.48), we choose η6 = min{(1 −

2κ2− 2ξ2)/(4 +α1), (1− 2κ2− 2ξ1)/(6 +α1)} > 0 and the probability bound (D.48) then

becomes

P ( max
1≤j≤p

|Sj1 − E(Sj1)| ≥ Cn−κ2/2) ≤ pC̃1 exp
(
−C̃2n

α1η6
)

(D.49)

for all n sufficiently large, where C̃1 and C̃2 are two positive constants.

Step 2. We establish the probability bound for max1≤j≤p |Sj2 − E(Sj2)|. Define

Tj3 = n−1

n∑
i=1

XijεiI(|Xij| ≤M7)I(|εi| ≤M8),

Tj4 = n−1

n∑
i=1

XijεiI(|Xij| ≤M7)I(|εi| > M8),

Tj5 = n−1

n∑
i=1

XijεiI(|Xij| > M7),
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where M7 and M8 are two large positive numbers whose values will be specified later.

Then Sj2 = Tj3 + Tj4 + Tj5. Similarly, E(Sj2) can be written as E(Sj2) = E(Tj3) +

E(Tj4) + E(Tj5). Since ε1 has mean zero and is independent of X1,1, . . . , X1,p, we have

E(Tj5) = E[X1jε1I(|X1j| > M7)] = E[X1jI(|X1j| > M7)]E(ε1) = 0. Thus Sj2 − E(Sj2)

can be expressed as Sj2 − E(Sj2) = [Tj3 − E(Tj3)] + Tj4 + Tj5 − E(Tj4). An application

of the triangle inequality yields

|Sj2 − E(Sj2)| ≤|Tj3 − E(Tj3)|+ |Tj4|+ |Tj5|+ |E(Tj4)|

≤|Tj3 − E(Tj3)|+ |Tj4|+ |Tj5|+ E(|Tj4|). (D.50)

First consider the last term E(|Tj4|). Note that |Tj4| ≤ n−1
∑n

i=1 |Xijεi|I(|Xij|

≤M7)I(|εi| > M8) and thus

E(|Tj4|) ≤ E[|X1jε1|I(|X1j| ≤M7)I(|ε1| > M8)] ≤M7E[|ε1|I(|ε1| > M8)]. (D.51)

An application of the Cauchy-Schwarz inequality gives E[|ε1|I(|ε1| > M8)] ≤ [E(ε2
1)P (|ε1| >

M8)]1/2. By Condition 2 and Lemma 3, we have

E[|ε1|I(|ε1| > M8)] ≤ {E(ε2
1)c1}1/2 exp(−c−1

1 Mα2
8 /2) ≤ C̃ exp[−Mα2

8 /(2c1)] (D.52)

Combining (D.51) with (D.52) yields

E(|Tj4|) ≤ C̃M7 exp[−Mα2
8 /(2c1)]. (D.53)

If we choose M7 = nη7 and M8 = nη8 with η7 > 0 and η8 > 0, then for any positive

constant C, when n is sufficiently large,

E(|Tj4|) ≤ C̃nη7 exp[−nα2η8/(2c1)] < Cn−κ2/8

holds uniformly for all 1 ≤ j ≤ p. The above inequality together with (D.50) ensures
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that

P ( max
1≤j≤p

|Sj2 − E(Sj2)| ≥ Cn−κ2/2)

≤P ( max
1≤j≤p

|Tj3 − E(Tj3)| ≥ Cn−κ2/8) + P ( max
1≤j≤p

|Tj4| ≥ Cn−κ2/8)

+ P ( max
1≤j≤p

|Tj5| ≥ Cn−κ2/8) (D.54)

for all n sufficiently large.

In what follows, we will provide details on establishing the probability bound for each

term on the right hand side of (D.54). First consider max1≤j≤p |Tj3 − E(Tj3)|. Since

|XijεiI(|Xij| ≤ M7)I(|εi| ≤ M8)| ≤ M7M8, for any δ > 0, by Hoeffding’s inequality we

obtain

P (|Tj3 − E(Tj3)| ≥ δ) ≤ 2 exp

(
− nδ2

2M2
7M

2
8

)
= 2 exp

(
−2−1n1−2η7−2η8δ2

)
,

by noting that M7 = nη7 and M8 = nη8 . Thus, taking δ = Cn−κ2/8 gives

P ( max
1≤j≤p

|Tj3 − E(Tj3)| ≥ Cn−κ2/8) ≤
p∑
j=1

P (|Tj3 − E(Tj3)| ≥ Cn−κ2/8)

≤2p exp
(
−C̃n1−2κ2−2η7−2η8

)
. (D.55)

Next we handle max1≤j≤p |Tj4|. Since max1≤j≤p |Tj4| ≤ n−1M7

∑n
i=1 |εi|I(|εi| > M8),

it follows from Markov’s inequality and (D.52) that for any δ > 0,

P ( max
1≤j≤p

|Tj4| ≥ δ) ≤P{n−1M7

n∑
i=1

|εi|I(|εi| > M8) ≥ δ}

≤δ−1E[n−1M7

n∑
i=1

|εi|I(|εi| > M8)]

=δ−1M7E[|ε1|I(|ε1| > M8)] ≤ C̃δ−1M7 exp[−Mα2
8 /(2c1)].
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Recall that M7 = nη7 and M8 = nη8 . Setting δ = Cn−κ2/8 in the above inequality entails

P ( max
1≤j≤p

|Tj4| ≥ Cn−κ2/8) ≤ 16C−1C̃nη7+κ2 exp[−nα2η8/(2c1)]. (D.56)

We now consider max1≤j≤p |Tj5|. By the Cauchy-Schwarz inequality and Lemma 3 we

deduce that

E|Tj5| = E|X1jε1I(|X1j| > M7)| ≤ {E(X2
1jε

2
1)P (|X1j| > M7)]}1/2

≤
{c1

2
[E(X4

1k) + E(ε4
1)]
}1/2

exp[−Mα1
7 /(2c1)] ≤ C̃ exp[−Mα1

7 /(2c1)].

An application of Markov’s inequality yields

P (|Tj5| ≥ δ) ≤ δ−1E|Tj5| ≤ δ−1C̃ exp[−Mα1
7 /(2c1)] (D.57)

for any δ > 0. Recall that M7 = nη7 . In view of (D.57), taking δ = Cn−κ2/8 gives that

P ( max
1≤j≤p

|Tj5| ≥ Cn−κ2/8) ≤
p∑
j=1

P (|Tj5| ≥ Cn−κ2/8) ≤ 8pC−1C̃nκ2 exp[−n2η7/(2c1)].

(D.58)

Combining (D.54), (D.55), (D.56), and (D.58) yields that for sufficiently large n,

P ( max
1≤j≤p

|Sj2 − E(Sj2)| ≥ Cn−κ2/2) ≤ 2p exp
(
−C̃n1−2κ2−2η7−2η8

)
+ 8pC−1C̃nκ2 exp[−nα1η7/(2c1)] + 16C−1C̃nη7+κ2 exp[−nα2η8/(2c1)]. (D.59)

Let η7 = η8 = (1− 2κ2)/(4 + α1). Then (D.59) becomes

P ( max
1≤j≤p

|Sj2 − E(Sj2)| ≥ Cn−κ1/2)

≤pC̃3 exp[−C̃4n
α1η7 ] + C̃5 exp[−C̃6n

α2η7 ] (D.60)

for all n sufficiently large, where C̃3, C̃4, C̃5, and C̃6 are some positive constants.
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Since 0 < η6 < η7, it follows from (D.41), (D.49), and (D.60) that

P ( max
1≤j≤p

|ω̂∗j − ω∗j | ≥ Cn−κ2) ≤ pC̃1 exp
(
−C̃2n

α1η6
)

+ pC̃3 exp[−C̃4n
α1η7 ] + C̃5 exp[−C̃6n

α2η7 ]

≤ pC̃7 exp
(
−C̃8n

α1η6
)

+ C̃5 exp[−C̃6n
α2η6 ]

with C̃7 = C̃1 + C̃3 and C̃8 = min{C̃2, C̃4} for all n sufficiently large. If log p = o(nα1η′)

with η′ = min{(1−2κ2−2ξ2)/(4+α1), (1−2κ2−2ξ1)/(6+α1)} > 0, then for any positive

constant C, there exists some arbitrarily large positive constant C2 such that

P ( max
1≤j≤p

|ω̂∗j − ω∗j | ≥ Cn−κ2) ≤ o(n−C2)

for all n sufficiently large, which completes the proof of part b) of Lemma 1.

D.4 Proof of part c) of Lemma 1

The main idea of the proof is to find probability bounds for the two events {I ⊂ Î} and

{M ⊂ M̂}, respectively. First note that conditional on the event {A ⊂ Â}, we have

{I ⊂ Î}. Thus it holds that

P (I ⊂ Î) ≥ P (A ⊂ Â). (D.61)

Define the event E1 = {maxk∈A |ω̂k−ωk| < 2−1c2n
−κ1}. Then, with τ = c2n

−κ1 , the event

E1 ensures that A ⊂ Â. Thus,

P (A ⊂ Â) ≥ P (E1) = 1− P (Ec1) = 1− P (max
k∈A
|ω̂k − ωk| ≥ 2−1c2n

−κ1).

Following similar arguments as for proving (D.10), it can be shown that there exist some

constants C̃1 > 0 and C̃2 > 0 such that for all n sufficiently large,

P (max
k∈A
|ω̂k − ωk| ≥ 2−1c2n

−κ1) ≤ 2s1C̃1 exp[−C̃2n
min{α1,α2}r1 ]. (D.62)
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Note that the right hand side of (D.62) can be bounded by o(n−C1) for some arbitrarily

large positive constant C1. This gives

P (A ⊂ Â) ≥ 1− o(n−C1). (D.63)

Thus combining (D.61) and (D.63) yields

P (I ⊂ Î) ≥ 1− o(n−C1). (D.64)

Using similar arguments as for proving part b) of Lemma 1 and (D.63), we can show

that there exist some positive constants C̃1, C̃2, and C2 such that for all n sufficiently

large,

P (B ⊂ B̂) ≥ P (max
j∈B
|ω̂∗j − ω∗j | < 2−1c2n

−κ2) ≥ 1− s2C̃1 exp(−C̃2n
α1r2)

≥ 1− o(n−C2), (D.65)

Combining (D.63) and (D.65) leads to

P (M⊂ M̂) ≥P (A ⊂ Â and B ⊂ B̂) ≥ P (A ⊂ Â) + P (B ⊂ B̂)− 1

≥1− o(n−min{C1,C2}). (D.66)

In view of (D.64) and (D.66), we obtain

P (I ⊂ Î and M⊂ M̂) ≥ P (I ⊂ Î) + P (M⊂ M̂)− 1 ≥ 1− o(n−min{C1,C2})

for all n sufficiently large. This completes the proof for the first part of part c) of Lemma

1.

We proceed to prove the second part of part c) of Lemma 1. The main idea is to

establish the probability bounds for two events {|Â| = O[n2κ1λmax(Σ∗)]} and {|B̂| =
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O[n2κ2λmax(Σ)]}, respectively. If we can show that

P
{
|Â| = O[n2κ1λmax(Σ∗)]

}
≥1− o(n−C1), (D.67)

P
{
|B̂| = O[n2κ2λmax(Σ)]

}
≥1− o(n−C2) (D.68)

with C1 and C2 defined in (D.1) and (D.2), respectively, then it holds that

P
{
|Î| = O

[
n4κ1λ2

max(Σ∗)
]}
≥ P

{
|Â| = O

[
n2κ1λmax(Σ∗)

]}
≥ 1− o(n−C1)

and

P
{
|M̂| = O

[
n2κ1λmax(Σ∗) + n2κ2λmax(Σ)

]}
≥P

{
|Â| = O[n2κ1λmax(Σ∗)] and |B̂| = O[n2κ2λmax(Σ)]

}
≥ 1− o(n−min{C1,C2}).

Combining these two results yields

P
(
|Î| = O{n4κ1λ2

max(Σ∗)} and |M̂| = O{n2κ1λmax(Σ∗) + n2κ2λmax(Σ)}
)

=1− o
(
n−min{C1,C2}

)
.

It thus remains to prove (D.67) and (D.68). We begin with showing (D.68). The key

step is to show that
p∑
j=1

(ω∗j )
2 = ‖E(xY )‖2

2 ≤ C̃3λmax(Σ) (D.69)

for some constant C̃3 > 0, where x = (X1, . . . , Xp)
T . If so, conditional on the event

E2 = {max
1≤j≤p

|ω̂∗j − ω∗j | ≤ 2−1c2n
−κ2}, the number of variables in B̂ = {j : |ω̂∗j | > c2n

−κ2}

cannot exceed the number of variables in {j : |ω∗j | > 2−1c2n
−κ2}, which is bounded by

4C̃3c
−2
2 n2κ2λmax(Σ). Thus it follows from (D.2) that for all n sufficiently large,

P
{
|B̂| ≤ 4C̃3c

−2
2 n2κ2λmax(Σ)

}
≥ P (E2) = 1− P (Ec2) ≥ 1− o(n−C2). (D.70)
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Now we further prove (D.69). Let u0 = argminu∈RpE
(
Y − xTu

)2
. Then the first

order equation E[x(Y − xTu0)] = 0 gives E(xY ) = [E(xxT )]u0 = Σu0. Thus

‖E(xY )‖2
2 = uT0 Σ2u0 ≤ λmax(Σ)u0

TΣu0 = λmax(Σ)var
(
xTu0

)
. (D.71)

It follows from the orthogonal decomposition that

var (Y ) = var
(
xTu0

)
+ var

(
Y − xTu0

)
≥ var

(
xTu0

)
.

Since E2(Y 2) ≤ E(Y 4) = O(1), we have var(Y ) ≤ E(Y 2) = O(1). Then the above

inequality ensures that var
(
xTu0

)
≤ C̃3 for some constant C̃3 > 0. This together with

(D.71) completes the proof of (D.69).

We next prove (D.67). Recall that Y ∗ = Y 2 and X∗k = {X2
k − E(X2

k)}/
√

var(X2
k).

Then from the definition of ωk in (B.1), we have ωk = E(X∗kY
∗). Following similar

arguments as for proving (D.69), it can be shown that

p∑
k=1

ω2
k =

p∑
k=1

E2(X∗kY
∗) = ‖E(x∗Y ∗)‖2

2 ≤ C̃4λmax(Σ∗), (D.72)

where C̃4 is some positive constant, x∗ = (X∗1 , . . . , X
∗
p )T , and Σ∗ = cov(x∗). Then, on

the event E3 = {max1≤k≤p |ω̂k − ωk| ≤ 2−1c2n
−κ1}, the cardinality of {k : |ω̂k| > c2n

−κ1}

cannot exceed that of {k : |ωk| > 2−1c2n
−κ1}, which is bounded by 4C̃4c

−2
2 n2κ1λmax(Σ∗).

Thus, we have

P
{
|Â| ≤ 4C̃4c

−2
2 n2κ1λmax(Σ∗)

}
≥ P (E3) = 1− P (Ec3) ≥ 1− o(n−C1),

where the last equality follows from (D.1). This concludes the proof of part c) of Lemma

1 and thus Lemma 1 is proved.
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E Proofs of Technical Results

E.1 Lemma 2 and its proof

Lemma 2. Let W1 and W2 be two random variables such that P (|W1| > t) ≤ C̃1 exp(−C̃2t
α1)

and P (|W2| > t) ≤ C̃3 exp(−C̃4t
α2) for all t > 0, where α1, α2, and C̃i’s are some pos-

itive constants. Then P (|W1W2| > t) ≤ C̃5 exp(−C̃6t
α1α2/(α1+α2)) for all t > 0, with

C̃5 = C̃1 + C̃3 and C̃6 = min{C̃2, C̃4}.

Proof of Lemma 2. For any t > 0, we have

P (|W1W2| > t) ≤ P (|W1| > tα2/(α1+α2)) + P (|W2| > tα1/(α1+α2))

≤ C̃1 exp(−C̃2t
α1α2/(α1+α2)) + C̃3 exp(−C̃4t

α1α2/(α1+α2))

≤ C̃5 exp(−C̃6t
α1α2/(α1+α2))

by setting C̃5 = C̃1 + C̃3 and C̃6 = min{C̃2, C̃4}.

E.2 Lemma 3 and its proof

Lemma 3. Let W be a nonnegative random variable such that P (W > t) ≤ C̃1 exp(−C̃2t
α)

for all t > 0, where α and C̃i’s are some positive constants. Then it holds that E(eC̃3Wα
) ≤

C̃4, E(Wαm) ≤ C̃−m3 C̃4m! for any integer m ≥ 0 with C̃3 = C̃2/2 and C̃4 = 1 + C̃1, and

E(W k) ≤ C̃5 for any integer k ≥ 1, where constant C̃5 depends on k and α.

Proof of Lemma 3. Let F (t) be the cumulative distribution function of W . Then for

all t > 0, 1 − F (W ) = P (W > t) ≤ C̃1 exp(−C̃2t
α). Recall that W is a nonnegative

random variable. Thus, for any 0 < T < C̃2, by integration by parts we have

E(eTW
α

) = −
∫ ∞

0

eTt
α

d[1− F (t)] = 1 +

∫ ∞
0

Tαtα−1eTt
α

[1− F (t)] dt

≤ 1 +

∫ ∞
0

Tαtα−1 · C̃1e
−(C̃2−T )tα dt = 1 +

TC̃1

C̃2 − T
.

Then, taking C̃3 = T = C̃2/2 and C̃4 = 1 + C̃1 proves the first desired result.
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Note that C̃m
3 E(Wαm)/m! ≤

∑∞
k=0 C̃

k
3E(Wαk)/k! = E(eC̃3Wα

) for any nonnegative

integer m. Thus E(Wαm) ≤ C̃−m3 C̃4m!, which proves the second desired result.

For any integer k ≥ 1, there exists an integer m ≥ 1 such that k < αm. Then applying

Hölder’s inequality gives

E(W k) ≤
{
E[(W k)αm/k]

}k/(αm) {
E[1αm/(αm−k)]

}(αm−k)/(αm)

= {E(Wαm)}k/(αm) ≤
(
C̃−m3 C̃4m!

)k/(αm)

.

Thus the kth moment of W is bounded by a constant C̃5, which depends on k and α.

This proves the third desired result.

E.3 Lemma 4 and its proof

Lemma 4. Let W be a nonnegative random variable with tail probability P (W > t) ≤

C̃1 exp(−C̃2t
α) for all t > 0, where α and C̃i’s are some positive constants. If constant

α ≥ 1, then E(eC̃3W ) ≤ C̃4 and E(Wm) ≤ C̃−m3 C̃4m! for any integer m ≥ 0 with

C̃3 = C̃2/2 and C̃4 = eC̃2/2 + C̃1e
−C̃2/2.

Proof of Lemma 4. Let F (t) be the cumulative distribution function of nonnegative

random variable W . Then 1 − F (t) = P (W > t) ≤ C̃1 exp(−C̃2t
α) for all t ≥ 1. If

α ≥ 1, then t ≤ tα for all t ≥ 1 and thus 1 − F (t) ≤ C̃1 exp(−C̃2t) for all t ≥ 1. Define

C̃3 = C̃2/2 and C̃4 = eC̃2/2 + C̃1e
−C̃2/2. By integration by parts, we deduce

E(eC̃3W ) =−
∫ ∞

0

eC̃3td[1− F (t)] = 1 +

∫ ∞
0

C̃3e
C̃3t[1− F (t)]dt

=1 +

∫ 1

0

C̃3e
C̃3t[1− F (t)]dt+

∫ ∞
1

C̃3e
C̃3t[1− F (t)]dt

≤1 +

∫ 1

0

C̃3e
C̃3tdt+

∫ ∞
1

C̃1C̃3e
(C̃3−C̃2)tdt = eC̃2/2 + C̃1e

−C̃2/2 = C̃4,

which proves the first desired result.

Note that C̃m
3 E(Wm)/m! ≤

∑∞
k=0 C̃

k
3E(W k)/k! = E(eC̃3W ) for any nonnegative inte-

ger m. Thus E(Wm) ≤ C̃−m3 C̃4m!, which proves the second desired result.
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E.4 Lemma 5 and its proof

Lemma 5. For any real numbers b1, b2 ≥ 0 and α > 0, it holds that (b1 + b2)α ≤

Cα(bα1 + bα2 ) with Cα = 1 if 0 < α ≤ 1 and 2α−1 if α > 1.

Proof of Lemma 5. We first consider the case of 0 < α ≤ 1. It is trivial if b1 = 0

or b2 = 0. Assume that both b1 and b2 are positive. Since 0 < b1/(b1 + b2) < 1, we

have [b1/(b1 + b2)]α ≥ b1/(b1 + b2). Similarly, it holds that [b2/(b1 + b2)]α ≥ b2/(b1 + b2).

Combining these two results yields

(
b1

b1 + b2

)α
+

(
b2

b1 + b2

)α
≥ b1

b1 + b2

+
b2

b1 + b2

= 1,

which implies that (b1 + b2)α ≤ bα1 + bα2 .

Next, we deal with the case of α > 1. Since xα is a convex function on [0,∞) for a given

α > 1, we have [(b1 + b2)/2]α ≤ (bα1 + bα2 )/2, which ensures that (b1 + b2)α ≤ 2α−1(bα1 + bα2 ).

Combining the two cases above leads to the desired result.

E.5 Lemma 6 and its proof

Lemma 6. Let W1, . . . ,Wn be independent random variables with tail probability P (|Wi| >

t) ≤ C̃1 exp(−C̃2t
α) for all t > 0, where α and C̃i’s are some positive constants. Then

there exist some positive constants C̃3 and C̃4 such that

P{|n−1

n∑
i=1

(Wi − EWi)| > ε} ≤ C̃3 exp(−C̃4n
min{α,1}ε2) (E.1)

for 0 < ε ≤ 1.

Proof of Lemma 6. Define W̃i = Wi − EWi. Then by the triangle inequality and the

property of expectation, we have

|W̃i| = |Wi − EWi| ≤ |Wi|+ |EWi| ≤ |Wi|+ E|Wi|. (E.2)

Next, we consider two cases.
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Case 1: 0 < α ≤ 1. It follows from Lemma 3 that E(eT |Wi|α) ≤ 1+C̃1 and E|Wi| ≤ C0

for all 1 ≤ i ≤ n, where T = C̃2/2 and C0 is some positive constant. In view of (E.2)

and by Lemma 5, we have |W̃i|α ≤ (|Wi|+ E|Wi|)α ≤ |Wi|α + (E|Wi|)α. This ensures

E(eT |W̃i|α) ≤ eT (E|Wi|)αE(eT |Wi|α) ≤ eTC
α
0 (1 + C̃1).

Thus, by the Chernoff bound arguments we can show that there exist some positive

constants C̃5 and C̃6 such that

P (|n−1

n∑
i=1

[Wi − EWi]| > ε) = P (|n−1

n∑
i=1

W̃i| > ε) ≤ C̃5 exp
(
−C̃6n

αε2
)

(E.3)

for any 0 < ε ≤ 1.

Case 2: α > 1. In view of (E.2), it follows from Lemma 5 and Jensen’s inequality

that for each integer m ≥ 2,

E(|W̃i|m) ≤ E[(|Wi|+ E|Wi|)m] ≤ 2m−1E [|Wi|m + (E|Wi|)m]

=2m−1[E(|Wi|m) + (E|Wi|)m] ≤ 2m−1[E(|Wi|m) + E(|Wi|m)] = 2mE(|Wi|m). (E.4)

Recall that P (|Wi| > t) ≤ C̃1 exp(−C̃2t
α) for all t > 0 and α > 1. By Lemma 4, there

exist some positive constants C̃7 and C̃8 such that E(|Wi|m) ≤ m!C̃m
7 C̃8. This together

with (E.4) gives

E(|W̃i|m) ≤ m!(2C̃7)m−2(8C̃2
7 C̃8)/2

for all m ≥ 2. Thus an application of Bernstein’s inequality yields

P{|n−1

n∑
i=1

(Wi − EWi)| > ε} = P (|n−1

n∑
i=1

W̃i| > ε)

≤ 2 exp

(
− nε2

16C̃2
7 C̃8 + 4C̃7ε

)
≤ 2 exp

(
− nε2

16C̃2
7 C̃8 + 4C̃7

)
(E.5)
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for any 0 < ε < 1. Let C̃3 = max{C̃5, 2} and C̃4 = min{C̃6, (16C̃2
7 C̃8 + 4C̃7)−1}. Combin-

ing (E.3) and (E.5) completes the proof of Lemma 6.

E.6 Lemma 7 and its proof

Lemma 7. Assume that for each 1 ≤ j ≤ p, X1j, . . . , Xnj are n i.i.d. random variables

satisfying P (|X1j| > t) ≤ C̃1 exp(−C̃2t
α1) for any t > 0, where C̃1, C̃2 and α1 are some

positive constants. Then for any 0 < ε < 1, we have

P

{∣∣∣∣∣n−1

n∑
i=1

[XijXik − E(XijXik)]

∣∣∣∣∣ > ε

}
≤ C̃3 exp(−C̃4n

min{α1/2,1}ε2), (E.6)

P

{∣∣∣∣∣n−1

n∑
i=1

[XijXikXi` − E(XijXikXi`)]

∣∣∣∣∣ > ε

}
≤ C̃5 exp(−C̃6n

min{α1/3,1}ε2), (E.7)

P

{∣∣∣∣∣n−1

n∑
i=1

[XikXi`Xik′Xi`′ − E(XikXi`Xik′Xi`′)]

∣∣∣∣∣ > ε

}

≤ C̃7 exp(−C̃8n
min{α1/4,1}ε2), (E.8)

where 1 ≤ j, k, `, k′, `′ ≤ p and C̃i’s are some positive constants.

Proof of Lemma 7. The proofs for inequalities (E.6)–(E.8) are similar. To save space,

we only show the inequality (E.8) here. Since P (|Xij| > t) ≤ C̃1 exp(−C̃2t
α1) for all

t > 0 and all i and j, it follows from Lemma 2 that XikXi`Xik′Xi`′ admits tail probability

P (|XikXi`Xik′Xi`′| > t) ≤ 4C̃1 exp(−C̃2t
α1/4). By Lemma 6, there exist some positive

constants C̃3 and C̃4 such that

P (|n−1

n∑
i=1

[XikXi`Xik′Xi`′ − E(XikXi`Xik′Xi`′)]| > ε)

≤ C̃3 exp
(
−C̃4n

min{α1/4,1}ε2
)

for any 0 < ε < 1, which concludes the proof of (E.8).
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E.7 Lemma 8 and its proof

Lemma 8. Let Aj’s with j ∈ D ⊂ {1, . . . , p} satisfy maxj∈D |Aj| ≤ L3 for some constant

L3 > 0, and Âj be an estimate of Aj based on a sample of size n for each j ∈ D. Assume

that for any constant C > 0, there exist constants C̃1, C̃2 > 0 such that

P

(
max
j∈D
|Âj − Aj| ≥ Cn−κ1

)
≤ |D|C̃1 exp

{
−C̃2n

f(κ1)
}

with f(κ1) some function of κ1. Then for any constant C > 0, there exist constants

C̃3, C̃4 > 0 such that

P

(
max
j∈D
|Â2

j − A2
j | ≥ Cn−κ1

)
≤ |D|C̃3 exp

{
−C̃4n

f(κ1)
}
.

Proof of Lemma 8. Note that maxj∈D |Â2
j−A2

j | ≤ maxj∈D |Âj(Âj−Aj)|+maxj∈D |(Âj−

Aj)Aj|. Therefore, for any positive constant C,

P (max
j∈D
|Â2

j − A2
j | ≥ Cn−κ1) ≤ P (max

j∈D
|Âj(Âj − Aj)| ≥ Cn−κ1/2)

+ P (max
j∈D
|(Âj − Aj)Aj| ≥ Cn−κ1/2). (E.9)

We first deal with the second term on the right hand side of (E.9). Since maxj∈D |Aj| ≤

L3, we have

P (max
j∈D
|(Âj − Aj)Aj| ≥ Cn−κ1/2) ≤ P (max

j∈D
|Âj − Aj|L3 ≥ Cn−κ1/2)

=P{max
j∈D
|Âj − Aj| ≥ (2L3)−1Cn−κ1} ≤ |D|C̃1 exp

{
−C̃2n

f(κ1)
}
, (E.10)

where C̃1 and C̃2 are two positive constants.
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Next, we consider the first term on the right hand side of (E.9). Note that

P (max
j∈D
|Âj(Âj − Aj)| ≥ Cn−κ1/2)

≤P (max
j∈D
|Âj(Âj − Aj)| ≥ Cn−κ1/2,max

j∈D
|Âj| ≥ L3 + Cn−κ1/2)

+ P (max
j∈D
|Âj(Âj − Aj)| ≥ Cn−κ1/2,max

j∈D
|Âj| < L3 + Cn−κ1/2)

≤P (max
j∈D
|Âj| ≥ L3 + Cn−κ1/2) (E.11)

+ P (max
j∈D
|Âj(Âj − Aj)| ≥ Cn−κ1/2,max

j∈D
|Âj| < L3 + C)

≤P (max
j∈D
|Âj| ≥ L3 + Cn−κ1/2) + P (max

j∈D
|(L3 + C)(Âj − Aj)| ≥ Cn−κ1/2). (E.12)

Let us bound the two terms on the right hand side of (E.11) one by one. Since maxj∈D |Aj| ≤

L3, we have

P (max
j∈D
|Âj| ≥ L3 + Cn−κ1/2) ≤ P (max

j∈D
|Âj − Aj|+ max

j∈D
|Aj| ≥ L3 + Cn−κ1/2)

≤P (max
j∈D
|Âj − Aj| ≥ 2−1Cn−κ1) ≤ |D|C̃5 exp

{
−C̃6n

f(κ1)
}
, (E.13)

where C̃5 and C̃6 are two positive constants. It also holds that

P (max
j∈D
|(L3 + C)(Âj − Aj)| ≥ Cn−κ1/2)

= P{max
j∈D
|Âj − Aj| ≥ (2L3 + 2C)−1Cn−κ1}

≤ |D|C̃7 exp
{
−C̃8n

f(κ1)
}
,

where C̃7 and C̃8 are two positive constants. This, together with (E.9)–(E.13), entails

P (max
j∈D
|Â2

j − A2
j | ≥ Cn−κ1) ≤ |D|C̃1 exp

{
−C̃2n

f(κ1)
}

+ |D|C̃5 exp
{
−C̃6n

f(κ1)
}

+ |D|C̃7 exp
{
−C̃8n

f(κ1)
}
≤ |D|C̃3 exp

{
−C̃4n

f(κ1)
}
,

where C̃3 = C̃1 + C̃5 + C̃7 > 0 and C̃4 = min{C̃2, C̃6, C̃8} > 0.
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E.8 Lemma 9 and its proof

Lemma 9. Let Âj and B̂j be estimates of Aj and Bj, respectively, based on a sample

of size n for each j ∈ D ⊂ {1, . . . , p}. Assume that for any constant C > 0, there exist

constants C̃1, . . . , C̃8 > 0 except C̃3, C̃7 ≥ 0 such that

P

(
max
j∈D
|Âj − Aj| ≥ Cn−κ1

)
≤ |D|C̃1 exp

{
−C̃2n

f(κ1)
}

+ C̃3 exp
{
−C̃4n

g(κ1)
}
,

P

(
max
j∈D
|B̂j −Bj| ≥ Cn−κ1

)
≤ |D|C̃5 exp

{
−C̃6n

f(κ1)
}

+ C̃7 exp
{
−C̃8n

g(κ1)
}

with f(κ1) and g(κ1) some functions of κ1. Then for any constant C > 0, there exist

constants C̃9, . . . , C̃12 > 0 except C̃11 ≥ 0 such that

P

{
max
j∈D
|(Âj − B̂j)− (Aj −Bj)| ≥ Cn−κ1

}
≤ |D|C̃9 exp

{
−C̃10n

f(κ1)
}

+ C̃11 exp
{
−C̃12n

g(κ1)
}
.

Proof of Lemma 9. Note that maxj∈D |(Âj − B̂j)− (Aj − Bj)| ≤ maxj∈D |Âj − Aj|+

maxj∈D |B̂j −Bj|. Thus, for any positive constant C,

P (max
j∈D
|(Âj − B̂j)− (Aj −Bj)| ≥ Cn−κ1)

≤P (max
j∈D
|Âj − Aj| ≥ Cn−κ1/2) + P (max

j∈D
|B̂j −Bj| ≥ Cn−κ1/2)

≤|D|C̃1 exp
{
−C̃2n

f(κ1)
}

+ C̃3 exp
{
−C̃4n

g(κ1)
}

+ |D|C̃5 exp
{
−C̃6n

f(κ1)
}

+ C̃7 exp
{
−C̃8n

g(κ1)
}

≤|D|C̃9 exp
{
−C̃10n

f(κ1)
}

+ C̃11 exp
{
−C̃12n

g(κ1)
}
,

where C̃9 = C̃1 + C̃5 > 0, C̃10 = min{C̃2, C̃6} > 0, C̃11 = C̃3 + C̃7 ≥ 0, and C̃12 =

min{C̃4, C̃8} > 0.
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E.9 Lemma 10 and its proof

Lemma 10. Let Bj’s with j ∈ D ⊂ {1, . . . , p} satisfy minj∈D Bj ≥ L4 for some constant

L4 > 0, and B̂j be an estimate of Bj based on a sample of size n for each j ∈ D. Assume

that for any constant C > 0, there exist constants C̃1, C̃2 > 0 such that

P

(
max
j∈D
|B̂j −Bj| ≥ Cn−κ1

)
≤ |D|C̃1 exp

{
−C̃2n

f(κ1)
}
.

Then for any constant C > 0, there exist constants C̃3, C̃4 > 0 such that

P

(
max
j∈D

∣∣∣∣√B̂j −
√
Bj

∣∣∣∣ ≥ Cn−κ1
)
≤ |D|C̃3 exp

{
−C̃4n

f(κ1)
}
.

Proof of Lemma 10. Since minj∈D Bj ≥ L4 > 0, there exists some constant L0 such

that 0 < L0 < L4. Note that, for any positive constant C,

P (max
j∈D
|
√
B̂j −

√
Bj| ≥ Cn−κ1)

≤P (max
j∈D
|
√
B̂j −

√
Bj| ≥ Cn−κ1 ,min

j∈D
|B̂j| ≤ L4 − L0n

−κ1)

+ P (max
j∈D
|
√
B̂j −

√
Bj| ≥ Cn−κ1 ,min

j∈D
|B̂j| > L4 − L0n

−κ1)

≤P (min
j∈D
|B̂j| ≤ L4 − L0n

−κ1)

+ P (max
j∈D

|B̂j −Bj|

|
√
B̂j +

√
Bj|
≥ Cn−κ1 ,min

j∈D
|B̂j| > L4 − L0). (E.14)

Consider the first term on the right hand side of (E.14). For any positive constant C,

we have

P (min
j∈D
|B̂j| ≤ L4 − L0n

−κ1) ≤ P (min
j∈D
|Bj| −max

j∈D
|B̂j −Bj| ≤ L4 − L0n

−κ1)

≤P (max
j∈D
|B̂j −Bj| ≥ L0n

−κ1) ≤ |D|C̃1 exp
{
−C̃2n

f(κ1)
}
, (E.15)

by noticing that minj∈D Bj ≥ L4, where C̃1 and C̃2 are some positive constants.

Next consider the second term on the right hand side of (E.14). Recall that minj∈D Bj ≥
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L4. Then, for any positive constant C,

P (max
j∈D

|B̂j −Bj|

|
√
B̂j +

√
Bj|
≥ Cn−κ1 ,min

j∈D
|B̂j| > L4 − L0)

≤P{max
j∈D
|B̂j −Bj| ≥ C(

√
L4 − L0 +

√
L4)n−κ1} ≤ |D|C̃5 exp

{
−C̃6n

f(κ1)
}
, (E.16)

where C̃5 and C̃6 are some positive constants. Combining (E.14), (E.15), and (E.16) gives

P (max
j∈D
|
√
B̂j −

√
Bj| ≥ Cn−κ1) ≤ |D|C̃3 exp

{
−C̃4n

f(κ1)
}
, (E.17)

where C̃3 = C̃1 + C̃5 and C̃4 = min{C̃2, C̃6}.

E.10 Lemma 11 and its proof

Lemma 11. Let Aj’s with j ∈ D ⊂ {1, . . . , p} and B satisfy maxj∈D |Aj| ≤ L5 and

|B| ≤ L6 for some constants L5, L6 > 0, and Âj and B̂ be estimates of Aj and B,

respectively, based on a sample of size n for each j ∈ D. Assume that for any constant

C > 0, there exist constants C̃1, . . . , C̃8 > 0 except C̃3 ≥ 0 such that

P

(
max
j∈D
|Âj − Aj| ≥ Cn−κ1

)
≤ |D|C̃1 exp

{
−C̃2n

f(κ1)
}

+ C̃3 exp
{
−C̃4n

g(κ1)
}
,

P
(
|B̂ −B| ≥ Cn−κ1

)
≤ C̃5 exp

{
−C̃6n

f(κ1)
}

+ C̃7 exp
{
−C̃8n

g(κ1)
}

with f(κ1) and g(κ1) some functions of κ1. Then for any constant C > 0, there exist

constants C̃9, . . . , C̃12 > 0 such that

P

(
max
j∈D
|ÂjB̂ − AjB| ≥ Cn−κ1

)
≤ |D|C̃9 exp

{
−C̃10n

f(κ1)
}

+C̃11 exp
{
−C̃12n

g(κ1)
}
.

Proof of Lemma 11. Note that maxj∈D |ÂjB̂ − AjB| ≤ maxj∈D |Âj(B̂ − B)| +
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maxj∈D |(Âj − Aj)B|. Therefore, for any positive constant C,

P (max
j∈D
|ÂjB̂ − AjB| ≥ Cn−κ1) ≤ P (max

j∈D
|Âj(B̂ −B)| ≥ Cn−κ1/2)

+ P (max
j∈D
|(Âj − Aj)B| ≥ Cn−κ1/2). (E.18)

We first deal with the second term on the right hand side of (E.18). Since |B| ≤ L6, we

have

P (max
j∈D
|(Âj − Aj)B| ≥ Cn−κ1/2) ≤ P (max

j∈D
|Âj − Aj|L6 ≥ Cn−κ1/2)

= P{max
j∈D
|Âj − Aj| ≥ (2L6)−1Cn−κ1}

≤ |D|C̃1 exp
{
−C̃2n

f(κ1)
}

+ C̃3 exp
{
−C̃4n

g(κ1)
}

(E.19)

with constants C̃1, C̃2, C̃4 > 0 and C̃3 ≥ 0.

Next, we consider the first term on the right hand side of (E.18). Note that

P (max
j∈D
|Âj(B̂ −B)| ≥ Cn−κ1/2)

≤P (max
j∈D
|Âj(B̂ −B)| ≥ Cn−κ1/2,max

j∈D
|Âj| ≥ L5 + Cn−κ1/2)

+ P (max
j∈D
|Âj(B̂ −B)| ≥ Cn−κ1/2,max

j∈D
|Âj| < L5 + Cn−κ1/2)

≤P (max
j∈D
|Âj| ≥ L5 + Cn−κ1/2)

+ P (max
j∈D
|Âj(B̂ −B)| ≥ Cn−κ1/2,max

j∈D
|Âj| < L5 + C)

≤P (max
j∈D
|Âj| ≥ L5 + Cn−κ1/2) + P{(L5 + C)|B̂ −B| ≥ Cn−κ1/2}. (E.20)

We will bound the two terms on the right hand side of (E.20) separately. Since maxj∈D |Aj| ≤
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L5, it holds that

P (max
j∈D
|Âj| ≥ L5 + Cn−κ1/2) ≤ P (max

j∈D
|Âj − Aj|+ max

j∈D
|Aj| ≥ L5 + Cn−κ1/2)

≤ P{max
j∈D
|Âj − Aj| ≥ 2−1Cn−κ1}

≤ |D|C̃5 exp
{
−C̃6n

f(κ1)
}

+ C̃7 exp
{
−C̃8n

g(κ1)
}
, (E.21)

where C̃5, C̃6, C̃8 > 0 and C̃7 ≥ 0 are some constants. We also have that

P ((L5 + C)|B̂ −B| ≥ Cn−κ1/2) = P{|B̂ −B| ≥ (2L5 + 2C)−1Cn−κ1}

≤ C̃13 exp
{
−C̃14n

f(κ1)
}

+ C̃15 exp
{
−C̃16n

g(κ1)
}
,

where C̃13, . . . , C̃16 are some positive constants. This, together with (E.18)–(E.21), entails

that

P (max
j∈D
|ÂjB̂ − AjB| ≥ Cn−κ1)

≤|D|C̃1 exp
{
−C̃2n

f(κ1)
}

+ C̃3 exp
{
−C̃4n

g(κ1)
}

+ |D|C̃5 exp
{
−C̃6n

f(κ1)
}

+ C̃7 exp
{
−C̃8n

g(κ1)
}

+ C̃13 exp
{
−C̃14n

f(κ1)
}

+ C̃15 exp
{
−C̃16n

g(κ1)
}

≤|D|C̃9 exp
{
−C̃10n

f(κ1)
}

+ C̃11 exp
{
−C̃12n

g(κ1)
}
,

where C̃9 = C̃1 + C̃5 + C̃13 > 0, C̃10 = min{C̃2, C̃6, C̃14} > 0, C̃11 = C̃3 + C̃7 + C̃15 > 0,

and C̃12 = min{C̃4, C̃8, C̃16} > 0.

E.11 Lemma 12 and its proof

Lemma 12. Let Aj’s and Bj’s with j ∈ D ⊂ {1, . . . , p} satisfy maxj∈D |Aj| ≤ L7 and

minj∈D |Bj| ≥ L8 for some constants L7, L8 > 0, and Âj and B̂j be estimates of Aj and

Bj, respectively, based on a sample of size n for each j ∈ D. Assume that for any constant
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C > 0, there exist constants C̃1, . . . , C̃6 > 0 such that

P

(
max
j∈D
|Âj − Aj| ≥ Cn−κ1

)
≤ |D|C̃1 exp

{
−C̃2n

f(κ1)
}

+ C̃3 exp
{
−C̃4n

g(κ1)
}
,

P

(
max
j∈D
|B̂j −Bj| ≥ Cn−κ1

)
≤ |D|C̃5 exp

{
−C̃6n

f(κ1)
}

with f(κ1) and g(κ1) some functions of κ1. Then for any constant C > 0, there exist

constants C̃7, . . . , C̃10 > 0 such that

P

(
max
j∈D

∣∣∣Âj/B̂j − Aj/Bj

∣∣∣ ≥ Cn−κ1
)
≤ |D|C̃7 exp

{
−C̃8n

f(κ1)
}

+ C̃9 exp
{
−C̃10n

g(κ1)
}
.

Proof of Lemma 12. Since minj∈D Bj ≥ L8 > 0, there exists some constant L0 such

that 0 < L0 < L8. Note that, for any positive constant C,

P (max
j∈D
|Âj
B̂j

− Aj
Bj

| ≥ Cn−κ1)

≤P (max
j∈D
|Âj
B̂j

− Aj
Bj

| ≥ Cn−κ1 ,min
j∈D
|B̂j| ≤ L8 − L0n

−κ1)

+ P (max
j∈D
|Âj
B̂j

− Aj
Bj

| ≥ Cn−κ1 ,min
j∈D
|B̂j| > L8 − L0n

−κ1)

≤P (min
j∈D
|B̂j| ≤ L8 − L0n

−κ1) + P (max
j∈D
|Âj
B̂j

− Aj
Bj

| ≥ Cn−κ1 ,min
j∈D
|B̂j| > L8 − L0).

(E.22)

Let us consider the first term on the right hand side of (E.22). Since minj∈D Bj ≥ L8,

it holds that for any positive constant C,

P (min
j∈D
|B̂j| ≤ L8 − L0n

−k) ≤ P (min
j∈D
|Bj| −max

j∈D
|B̂j −Bj| ≤ L8 − L0n

−κ1)

≤ P (max
j∈D
|B̂j −Bj| ≥ L0n

−κ1) ≤ |D|C̃1 exp
{
−C̃2n

f(κ1)
}
, (E.23)

where C̃1 and C̃2 are some positive constants.
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The second term on the right hand side of (E.22) can be bounded as

P (max
j∈D
|Âj
B̂j

− Aj
Bj

| ≥ Cn−κ1 , min
j∈D
|B̂j| > L8 − L0)

≤P (max
j∈D
|Âj
B̂j

− Aj

B̂j

| ≥ Cn−κ1/2, min
j∈D
|B̂j| > L8 − L0)

+ P (max
j∈D
|Aj
B̂j

− Aj
Bj

| ≥ Cn−κ1/2, min
j∈D
|B̂j| > L8 − L0)

≤P{max
j∈D
|Âj − Aj| ≥ 2−1(L8 − L0)Cn−κ1}

+ P{max
j∈D
|B̂j −Bj| ≥ (2L7)−1(L8 − L0)L8Cn

−κ1}

≤|D|C̃3 exp
{
−C̃4n

f(κ1)
}

+ C̃5 exp
{
−C̃6n

g(κ1)
}

+ |D|C̃11 exp
{
−C̃12n

f(κ1)
}
, (E.24)

where C̃3, . . . , C̃6, C̃11, and C̃12 are some positive constants. Combining (E.22)–(E.24)

results in

P (max
j∈D
|Âj/B̂j − Aj/Bj| ≥ Cn−κ1) ≤ |D|C̃7 exp

{
−C̃8n

f(κ1)
}

+C̃9 exp
{
−C̃10n

g(κ1)
}
,

where C̃7 = C̃1 + C̃3 + C̃11 > 0, C̃8 = min{C̃2, C̃4, C̃12} > 0, C̃9 = C̃5 > 0, and C̃10 =

C̃6 > 0. This completes the proof of Lemma 12.
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