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abstract

An aggregated method of nonparametric estimators based on time-domain
and state-domain estimators is proposed and studied. To attenuate the curse
of dimensionality, we propose a factor modeling strategy. We first investigate
the asymptotic behavior of nonparametric estimators of the volatility matrix in
the time domain and in the state domain. Asymptotic normality is separately
established for nonparametric estimators in the time domain and state domain.
These two estimators are asymptotically independent. Hence, they can be
combined, through a dynamic weighting scheme, to improve the efficiency
of volatility matrix estimation. The optimal dynamic weights are derived,
and it is shown that the aggregated estimator uniformly dominates volatility
matrix estimators using time-domain or state-domain smoothing alone. A
simulation study, based on an essentially affine model for the term structure, is
conducted, and it demonstrates convincingly that the newly proposed procedure
outperforms both time- and state-domain estimators. Empirical studies further
endorse the advantages of our aggregated method.
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Covariance matrices are fundamental for risk management, asset pricing,
proprietary trading, and portfolio managements. In forecasting a future event
such as the volatility matrix, two pieces of information are frequently consulted.
Based on the recent history, one uses a form of local average, such as the
moving average, to predict the volatility matrix. This approach localizes in
time and uses the smoothness of the volatility matrix as a function of time. It
ignores completely the historical information, which is related to the current
prediction through a stationarity assumption. On the other hand, one can predict
a future event by consulting the historical information with similar scenarios. This
approach basically localizes in the state variable and depends on the stationarity
assumption.1 For example, by localizing on a few key financial factors, one can
compute the volatility matrix using the historical information. This results in a
nonparametric estimate of the volatility matrix using state-domain smoothing. See,
for example, Andersen, Bollerslev, and Diebold (2002) for a unified framework
of interpreting both parametric and nonparametric approaches for volatility
measurement.

The aforementioned two estimators are weakly correlated, as they use
data that are quite far apart in time. They can be combined to improve the
efficiency of the volatility matrix estimation. This results in an aggregated
estimator of the volatility matrix. Three challenges arise in the endeavor: the
curse of dimensionality, the choice of dynamic weights, and the mathematical
complexity.

Due to the curse of dimensionality, surface smoothing techniques are not
very useful in practice when there are more than two or three predictor variables.
An efficient dimensionality reduction process should be imposed in state-domain
estimation. An introduction to some of these approaches, such as additive modeling,
partially linear modeling, modeling with interactions, and multiple index models, can be
found in Fan and Yao (2003).

In this article, we propose a factor modeling strategy to reduce the
dimensionality in the state domain smoothing. Specifically, to estimate the
covariance matrix among several assets, we first find a few factors that capture the
main price dynamics of the underlying assets. Regarding the covariance matrix
as a smooth function of these factors, the covariance matrix can be computed via
localizing on the factors.

Our approach is particularly appealing for the yields of bonds, as they are
often highly correlated, which makes the choice of the factors relatively easy.
To elucidate our idea, consider the weekly data on the yields of treasury bills
and bonds with maturities 1 year, 5 years, and 10 years presented in Figure 1.
We choose the 5-year yield process as the single factor. Suppose that the current
time is January 14, 2000 and the current interest rate of the 5-year treasury bond
is 6.67%, corresponding to time index t = 1986. One may estimate the volatility
matrix based on the weighted squared differences in the past 104 weeks. This

1 By ‘‘stationarity’’ we do not mean that the process is strongly stationary, but has some structural
invariability over time. For example, the conditional moment functions do not vary over time.
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(b) Correlation in the time domain
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(c) Correlation in the state domain

Figure 1 Illustration of time- and state-domain estimation. (a) The yields of 1-year, 5-year, and
10-year treasury bills from 1962 to 2005. The vertical bar indicates localization in time, and the
horizontal bar represents localization in state of the 5-year treasury bill process. (b) Illustration
of time-domain smoothing: 1-year yield differences are plotted against 10-year yield differences
with the regression line superimposed. (c) Illustration of the state-domain smoothing: 1-year yield
differences are plotted against 10-year yield differences for those periods with the corresponding
5-year yields restricted to the interval 6.37% ± .2%, indicated by the horizontal bar in (a).

corresponds to time-domain smoothing, using the small vertical stretch of data
shown in Figure 1(a). On the other hand, one may also estimate the volatility
matrix using the historical data with interest rates approximately 6.67%, say,
6.67 ± .20%. This corresponds to localizing in state domain and is indicated by the
horizontal bar in Figure 1(a). Figure 1(b) and (c) present scatter plots of the yield
differences X1yr

t − X1yr
t−1 for the 1-year bill against the yield differences X10yr

t − X10yr
t−1

for the 10-year bond, using respectively the data localizing in the time and state
domains. The associated regression lines of the time- and state-domain data are
also presented. The scatter plots give two estimates of the conditional correlation
and conditional variance of the volatility matrix for the week of t = 1986. They
are weakly dependent, as the two scatter plots use data that are quite far apart in
time.

Let ̂�T,t and ̂�S,t be the estimated volatility matrices based on data localizing
in the time and state domains, respectively. For example, they can be the sample
covariance matrices for the data presented in Figure 1(b) and (c), respectively, for
t = 1986. To fully utilize these two estimators, we introduce a weight wt and define
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an aggregated estimator2 as

̂�A,t = ωt̂�S,t + (1 − ωt)̂�T,t. (1)

The weight function ωt is always between 0 and 1, and it can be an adaptive random
process which is observable at time t. Due to the weak dependence between the
original two estimators, the aggregated estimator is always more efficient than
either of the time- and state-domain estimators.

An interesting question is the choice of the dynamic weight ωt. Suppose we
have a portfolio with allocation vector a. Then the aggregation method gives us
the following estimate of the portfolio variance:

aT
̂�A,ta = ωtaT

̂�S,ta + (1 − ωt)aT
̂�T,ta. (2)

Since ̂�S,t and ̂�T,t are asymptotically independent3, the optimal weight in terms
of minimizing the variance of aT

̂�A,ta is

ωopt,t = var(aT
̂�T,ta)

var(aT̂�S,ta) + var(aT̂�T,ta)
. (3)

Indeed, our asymptotic result in Section 4 shows that the optimal weight admits a
simple and explicit form, independent of a. This makes our implementation very
easy.

The above approach is data analytic in the sense that it is always operational.
To appreciate our idea, we will introduce a mathematical model for the data-
generating process in Section 1. And then in the following several sections we
formally show that the aggregated estimator has the desired statistical properties.

1 MODEL AND ASSUMPTIONS

Let Wt = (Wt
1, . . . , Wm

t )T and W = {Wt, FW
t ; 0 ≤ t < ∞} be an m-dimensional

standard Brownian motion. Consider the following d-dimensional diffusion
process

dXt = μtdt + σ tdWt, (4)

where Xt = (X1
t , . . . , Xd

t )T, μt is a d × 1 predictable vector process, and σ t is a d × m
predictable matrix process, depending only on Xt. Here, m can be different from d.
This is a widely used model for asset prices and the yields of bonds. This family of

2 Ledoit and Wolf (2003) introduce a shrinkage estimator by combining the sample covariance estimator
with that derived from the CAPM. Their procedure intends to improve estimated covariance matrix by
pulling the sample covariance towards the estimate based on the CAPM. Their basic assumption is that
the return vectors are i.i.d. across time. This usually holds approximately when the data are localized in
time. In this sense, their estimator can be regarded as a time-domain estimator.

3 We prove in Section 4 that ̂�S,t and ̂�T,t are asymptotically independent, and thus they are close to be
independent in finite sample. In the following, by ‘‘nearly independent’’ and ‘‘almost uncorrelated’’, we
mean the same.
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models includes famous ones such as multivariate generalizations of both Vasicek
(1977) and Cox, Ingersoll, and Ross (1985).

Under model (4), the diffusion matrix is �t = σ tσ
T
t . As mentioned before,

when d ≥ 2, the so-called curse of dimensionality makes implementation hard. To
reduce the dimensionality, we introduce a scalar factor ft and model the drift and
diffusion processes as μt = μ(ft) and σ t = σ (ft), where μ(·) = {μi(·)}1≤i≤d is a d × 1
Borel measurable vector and σ (·) = {σ ij(·)}1≤i≤d,1≤j≤m is a d × m Borel measurable
matrix. Then model (4) becomes

dXi
t = μi(ft)dt +

m
∑

j=1

σ ij(ft)dWj
t, 1 ≤ i ≤ d. (5)

In this model, the diffusion matrix is �(ft) = σ (ft)σ (ft)T. See also Engle, Ng, and
Rothchild (1990) for a similar strategy.

We introduce some stochastic structure on ft by assuming that ft is the solution
to the following stochastic differential equation (SDE):

dft = a(ft)dt +
m
∑

j=1

bj(ft)dWj
t, (6)

where a(·) and b1(·), b2(·), · · · , bm(·) are unknown functions. In some situations
like modeling bond yields4, the factor ft can be chosen as one of the bond yields,
that is, ft is one of the coordinates of Xt. But in general, ft may be different from
any coordinate of Xt, and the theoretical studies in this article apply to both cases.
The data are observed at times ti = t0 + i�, i = 0, 1, . . . , N, with sampling interval
�, resulting in vectors {Xti , i = 0, 1, . . . , N} and {fti , i = 0, 1, . . . , N}. This model is
reasonable for the yields of bonds with different maturities since they are highly
correlated. Thus, localizing on all the yields processes in the state domain results in
approximately the same data set as localizing on only one of the yields processes. In
addition, our study can be generalized to the multifactor case without much extra
difficulty. We will focus on the one-factor setting for simplicity of presentation.

Let Y i = (Xti+1 − Xti )�
−1/2, and denote by Y1

i , Y2
i , . . . , Yd

i the coordinates of
Y i. Then, by the Euler scheme, we have

Y i ≈ μ(fti )
√

� + σ (fti)εti , (7)

where εti follows the m-dimensional standard Gaussian distribution. The
conditional covariance matrix of X at time ti can be approximated by ��(fti) [see
Fan and Zhang, (2003)]. Hence, the estimate of the conditional covariance matrix
is almost equivalent to the estimate of the diffusion matrix �(·). Fan and Zhang
(2003) study the impact of the order of difference on nonparametric estimation.
They found that while a higher order can possibly reduce approximation errors,

4 In practice, one can take the yields process with median term of maturity as the driving factor, as this
bond is highly correlated to both short-term and long-term bonds.
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it increases variances of data substantially. They recommended the Euler scheme
(7) for most practical situations.

To use time-domain information, it is necessary to assume that the sampling
frequency � converges to zero so that the biases in time-domain approximations
are negligible. As a result, we face the challenge of developing asymptotic theory
for the diffusion model (5). Both nonparametric estimators in the time domain
and state domain need to be investigated. Pioneering efforts on nonparametric
estimation of drift and diffusion include Jacod (1997), Jiang and Knight (1997),
Arfi (1998), Gobet (2002), Bandi and Phillips (2003), Cai and Hong (2003), Bandi
and Moloche (2004), and Chen and Gao (2004). Arapis and Gao (2004) investigate
the mean aggregated square errors of several methods for estimating the drift and
diffusion, and compare their performances. Aı̈t-Sahalia and Mykland (2003: 2004)
study the effects of random and discrete sampling when estimating continuous-
time diffusions. Bandi and Nguyen (1999) investigate small sample behaviors of
nonparametric diffusion parameters. See Bandi and Phillips (2002) for a survey
of recently introduced techniques for identifying nonstationary continuous-time
processes. As long as the time horizon is long, the diffusion matrix can be
estimated with low-frequency data (say, finite �−1). See, for example, Hansen,
Scheinkman, and Touzi (1998) for the spectral method, Kessler and Sørensen
(1999) for parametric models, and Gobet, Hoffmann, and Reiss (2004) for specific
univariate nonparametric diffusions.

To facilitate our future presentation, we make the following assumptions:

Assumption 1 (Global Lipschitz and linear growth conditions) There exists a
constant k0 ≥ 0 such that

‖μ(x) − μ(y)‖ + ‖σ (x) − σ (y)‖ ≤ k0|x − y|, (8)

‖μ(x)‖2 + ‖σ (x)‖2 ≤ k2
0(1 + x2),

for any x, y ∈ R. Also, with b(·) = (b1(·), b2(·), · · · , bm(·))T, assume that

|a(x) − a(y)| + ‖b(x) − b(y)‖ ≤ k0|x − y|.

Assumption 2 Given any time point t > 0, there exists a constant L > 0 such that
E|μi(rs)|4(q0+δ) ≤ L and E|σ ij(rs)|4(q0+δ) ≤ L for any s ∈ [t − η, t] and 1 ≤ i, j ≤ d, where
η is some positive constant, q0 is an integer not less than 1, and δ is some small positive
constant.

Assumption 3 The solution {ft} of model (6) is a stationary Markov process and
real ergodic. For t ≥ 0, define the transition operator by:

(Htg)(a) = E(g(ft)|f0 = a), a ∈ R,
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where g(·) is any Borel measurable bounded function on R. Suppose Ht satisfy the G2

condition of Rosenblatt (1970), that is, there is some s > 0 such that

|Hs|2 = sup
{g, Eg(X)=0}

E1/2(Hsg)2(X)
E1/2g2(X)

≤ α < 1.

Assumption 4 The conditional density p�(y|x) of fti+�
given fti is continuous in

the arguments (y, x) and is bounded by a constant independent of �. The time-invariant
density function p(x) of the process ft is bounded and continuous.

Assumption 5 The kernel K(·) is a continuously differentiable, symmetric
probability density function satisfying

∫

|xjK′(x)|dx < ∞, j = 0, 1, . . . , 5, (9)

μi =
∫

xiK(x)dx < ∞, i = 0, 1, . . . , 4, (10)

and

ν0 =
∫

K2(x)dx < ∞.

Let {Ft} be the augmented filtration defined in Lemma 2 of Appendix.
Assumption 1 ensures that there exist continuous, adapted processes X = {Xt, ∈
Ft; 0 ≤ t < ∞} and f = {ft ∈ Ft; 0 ≤ t < ∞}, which are strong solutions to SDEs (4)
and (6) respectively, provided that the initial values X0 and f0 satisfy E‖X0‖2 < ∞
and E|f0|2 < ∞, and are independent of Brownian motion W [see, e.g., Chapter 5,
Theorem 2.9 of Karatzas and Shreve, (1991)]. Assumption 2 indicates that, given
any time point t > 0, there is a time interval [t − η, t] on which the drift and
volatility functions have finite 4(q0 + δ)-th moments. Assumption 3 says that ft is
stationary and ergodic and satisfies some mixing condition [see Fan, (2005)], which
ensures that ft is Harris recurrent. For the stationarity assumption of ft to be true,
see Hansen and Scheinkman (1995) for conditions. Assumption 4 imposes some
constraints on the transition density of ft. Assumption 5 is a regularity condition on
the kernel function. For example, the commonly used Gaussian kernel satisfies it.

With the above theoretical framework and assumptions, we will formally
demonstrate that the nonparametric estimators using the data localizing in time
and in state are asymptotically jointly normal and independent. This gives a formal
theoretical justification and serves as the theoretical foundation for the idea that
the time-domain and state-domain nonparametric estimators can be combined to
yield a more efficient volatility matrix estimator.
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2 DIFFUSION MATRIX ESTIMATION USING RECENT INFORMATION
The time-domain method has been extensively studied in the literature. See,
for example, Robinson (1997), Härdle, Herwartz, and Spokoiny (2002), Fan et al.
(2003), and Mercurio and Spokoiny (2004), among others. A popular time-domain
method, the moving average estimator is defined as

̂�MA,t = 1
n

n
∑

i=1

YN−iYT
N−i, (11)

where n is the size of the moving window. This estimator ignores the drift
component and utilizes n local data points. An extension of the moving average
estimator is the exponential smoothing estimator, which is defined as

̂�ES,t = (1 − λ)
∞
∑

i=1

λi−1YN−iYT
N−i, (12)

where λ is a smoothing parameter controlling the size of the local neighborhood.
RiskMetrics of Morgan (1996), which is used for measuring the risks of financial
assets, recommends λ = 0.94 and λ = 0.97 when one uses Equation (12) to forecast
the daily and monthly volatility, respectively.

The exponential smoothing estimator (12) is one type of rolling sample
variance estimator. See Foster and Nelson (1996) for more information about
rolling sample variance estimators. Estimator (12) is also related to the multivariate
GARCH model in the literature. Note that when � is very small, the first term on
the right hand side of Equation (7) can be ignored. Thus Equations (7) and (12) can
be written as

Y i ≈ σ (fti)εi,

�ti = (1 − λ)Y i−1YT
i−1 + λ�ti−1 ,

where �ti = σ (fti)σ (fti )
T, which reminisces the IGARCH model.

The exponential smoothing estimator in Equation (12) is a weighted sum of
squared returns prior to time t. Since the weight decays exponentially, it essentially
uses recent data. To explicitly account for this, we use a slightly modified version:

̂�T,t = 1 − λ

1 − λn

n
∑

i=1

λi−1YN−iYT
N−i. (13)

Here, as in the case of the moving average estimator in (11), n is a smoothing
parameter controlling explicitly the window width, and λ acts like a kernel weight
which may depend on n. For example, when λ = 1 − τ

n with τ a positive constant,
besides the normalization factor 1−λ

1−λn , the first data point Yt−1 receives weight 1,
while the last point Yt−n receives approximately weight e−τ . In particular, when
λ = 1, it becomes the moving average estimator (11).

Before going into the details, we first introduce some notations and definitions.
Let A = (aij) be an m × n matrix. By vec(A) we mean the mn × 1 vector formed
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by stacking the columns of A. If A is also symmetric, we vectorize the lower
half of A and denote the vector by vech(A). These notations are consistent with
Bandi and Moloche (2004). It is not difficult to verify that there exists a unique
m2 × m(m + 1)/2 matrix D with elements 0 and 1, such that

PDvec(A) = vech(A),

where PD = (DTD)−1DT. Another useful definition is the Kronecker product of
two matrices A and B, which is defined as A ⊗ B = (aijB).

Since the estimator ̂�T,t is symmetric, we need only to consider the asymptotic
normality of the linear combination of the vector vech(̂�T,t):

̂UT,t ≡ cTvecĥ�T,t = 1 − λ

1 − λn

n
∑

i=1

λi−1
d
∑

k=1

k
∑

�=1

ck�Yk
N−iY

�
N−i, (14)

where c = (c1,1, c2,1, c2,2, c3,1, . . . , cd,d)T is a constant vector.

Proposition 1. Under Assumptions 1 and 2, for almost every sample path, we have

‖σ (rs) − σ (ru)‖ ≤ K|s − u|q, s, u ∈ [t − η, t], (15)

where q = (2q0 − 1)/(4q0), q0 is the integer in Assumption 2, and the coefficient K satisfies
E[K4(q0+δ)] < ∞ with δ a positive constant.

Remark 1. Proposition 1 shows the continuity of σ (rs) as a function of time s,
which is the foundation of time-domain estimation. In the proof of Proposition 1,
we only used Assumption 2 and the condition ‖σ (x) − σ (y)‖ ≤ k0|x − y| with k0 a
positive constant. Assumption 1 is made to ensure the existence of a solution to
model (5).

Theorem 1 Suppose that n → ∞, n�2q/(2q+1) → 0, and Assumptions 1 and 2 hold at
time t. If the limit τ = lim

n→∞ n(1 − λ) exists, then given ft = x, the conditional distribution

of vech(̂�T,t) is asymptotically normal, that is,

√
n vech(̂�T,t − �(x))

D−→ N
(

0,
τ (1 + eτ )
(eτ − 1)

�(x)
)

,

where �(x) = PT
D{�(x) ⊗ �(x)}PD.

Note that all data used in the estimator (13) is within n� away from time
t. According to Proposition 1, the approximation error of (13) is at most of
order O((n�)q), which together with the condition n�2q/(2q+1) → 0 in Theorem 1
guarantees that the bias is of order o(n−1/2).
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3 DIFFUSION MATRIX ESTIMATION USING HISTORICAL
INFORMATION

The diffusion matrix in Equation (4) can also be regarded as a nonparametric
regression given ft = x. See, for example, its first-order approximation (7).
Therefore, it can be estimated by using the historical information via localizing on
the state variable ft, as illustrated in Figure 1. The local linear smoother studied in
Stanton (1997) will be employed. This technique has several nice properties, such
as asymptotic minimax efficiency and design adaptation. Further, it automatically
corrects edge effects and facilitates bandwidth selection [Fan and Yao, 2003].

In the construction of the state-domain estimator, we will use the N − 1
data points right before the current time t, that is, the historical data
{(fti , Y i), i = 0, 1, . . . , N − 1}.

It can be shown that the diffusion matrix has the standard interpretation in
terms of infinitesimal conditional moments, that is,

E[Yi
kYj

k|ftk = x0] = vij(x0) + O(�).

For a given kernel function5 K and a bandwidth h, the local linear estimator
β̂

ij
0 of vij(x0) is obtained by minimizing the objective function

N−1
∑

k=0

{Yi
kYj

k + β
ij
0 + (ftk − x0)β ij

1}Kh(ftk − x0) (16)

over β
ij
0 and β

ij
1 . Let

W�(x) =
N−1
∑

k=0

(ftk − x)�Kh(ftk − x) (17)

and

wk(x) = Kh(ftk − x){W2(x) − (ftk − x)W1(x)}/{W0(x)W2(x) − W1(x)2}. (18)

Then the local linear estimator in (16) can be expressed as

̂�S,t(x) =
N−1
∑

k=0

wk(x)YkYT
k . (19)

This estimator depends only on the historical data (horizontal bar in Figure 1), and
relies on the structure invariability.

The above weight function wk(x) is called an ‘‘equivalent kernel’’ in Fan and
Yao (2003). Expression (19) reveals that the estimator ̂�S,t(x) is very much like

5 The kernel function is a probability density, and the bandwidth is its associated scale parameter. Both
of them are used to localize the linear regression around the given point x0. The commonly used kernel
functions are the Gaussian density and the Epanechnikov kernel K(x) = 0.75(1 − x2)+.
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a conventional kernel estimator except that the ‘‘kernel’’ wk(x) depends on the
design points and locations.

Before establishing the asymptotic normality of ̂�S,t(x), we first investigate the
asymptotic property of W�(x).

Proposition 2. Suppose � → 0, N� → ∞, and 1
h

√

� log �−1 = o(1). Under
Assumptions 3–5, we have

W�(x) = Nh�{p(x)μ� + oa.s.(1)}, � = 0, 1, 2, 3. (20)

The results of Proposition 2 are similar to those in Section 6.3.3 of Fan and Yao
(2003), p.237, but the proofs are completely different, as we have high-frequency
data here. As sampling interval � → 0, the correlations of the sample {fti} tend to
1. The high correlation makes their proof fail in our case. To attack this problem,
we invoke the local time. The definition and some preliminary results of local
time can be found in Revuz and Yor (1999), p.221). For the multifactor situation,
the local time generally does not exist. However, by using the occupation time
of Bandi and Moloche (2004), our results can be generalized to the multifactor
situation.

Theorem 2 Suppose � → 0, N� → ∞, h = O(N−1/5), and 1
h

√

� log �−1 = o(1).
Moreover, suppose that �(·) is twice differentiable. Under Assumptions6 3–5, the state-
domain estimator has the following asymptotic normality

√
Nh vech

(

̂�S,t(x) − �(x) − 1
2

h2μ2�
′′(x)

) D−→ N(0, 2ν0p(x)−1�(x)),

where �′′(x) is the matrix whose entries are the second derivatives of the corresponding
entries of �(x).

Proposition 2 and Theorem 2 are both studied under the assumption of high-
frequency data over a long time horizon, that is, � → 0 and N� → ∞. Various
studies under this assumption include Arfi (1998), Gobet (2002), and Fan and
Zhang (2003).

4 DYNAMIC AGGREGATION OF TIME- AND STATE-DOMAIN
ESTIMATORS

In this section, we show that the nonparametric estimators in the time and state
domains are asymptotically independent. This allows us to combine these two
estimators together to yield a more efficient one.

6 The stationarity condition of ft in Assumption 3 can be weakened to Harris recurrence. See Bandi and
Moloche (2004) for asymptotic normality of local constant estimator under recurrence assumption.
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4.1 Asymptotic Normality
The time- and state-domain estimators defined in the previous sections are both
driven by the factor process ft. Intuitively, with high probability, most of the
data they use are far apart in time. Since the Markov process ft is stationary
and satisfies some mixing condition (Assumption 3), ft and fs are asymptotically
independent for t and s far away from each other. Since both the time- and state-
domain nonparametric estimators are driven by the same factor process ft, it is
reasonable to expect that the two estimators are also asymptotically independent.
The following theorem formally shows this result.

Theorem 3 Under the conditions of Theorems 1 and 2, conditioning on ft = x, we have

(i) asymptotic independence:
( √

Nh vech
(

̂�S,t − �(x) − 1
2 h2μ2�

′′(x)
)

√
n vech

(

̂�T,t − �(x)
)

)

D−→ N
(

0,

(

2ν0p(x)−1�(x) 0
0 τ (1+eτ )

(eτ −1) �(x)

))

.

(ii) asymptotic normality of the aggregated estimator ̂�A,t(x) in (1):

√
Nh vech

(

̂�A,t(x) − �(x) − 1
2

h2ωt(x)μ2�
′′(x)

)

D−→ N(0, �(x)),

where �(x) = (

2ω2
t (x)ν0p(x)−1 + b(1 − ωt(x))2 τ (1+eτ )

(eτ −1)

)

�(x), provided that
lim Nh/n = b for some positive constant b and h = O(N−1/5).

From Theorem 3(i) we can see that the asymptotic covariance matrices of ̂�S,t

and ̂�T,t are proportional to a common matrix �(x), which is the reason that
the optimal dynamic weight ωt(x) is independent of the allocation vector a, as
mentioned in the Introduction. The same kind of result would hold for multifactor
setting. In fact, by using the occupation time of Bandi and Moloche (2004), one
can establish a similar result in the multifactor setting without much extra effort.
The main difference would be that the invariant density function p(x) of the single
factor process ft is replaced by the joint invariant density function of the multifactor
processes. So even though the proofs have only been derived with one factor, the
substance of our idea is actually broader. Note that the nonparametric estimator
in the time domain uses n data points and the nonparametric estimator in the state
domain effectively uses the amount O(Nh) of data. The condition lim Nh/n = b
ensures that both estimators effectively use the same amount (order) of data, which
avoids the trivial case that either the time domain or the state domain dominates
the performance.

4.2 Choice of the Dynamic Weight
A natural question is how to choose the dynamic weight ωt(x). By Theorem 3(i)
and (3), it is easy to see that for any allocation vector a, the asymptotic optimal
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weight is

ωt(x) = bτ (1 + eτ )p(x)
2ν0(eτ − 1) + bτ (1 + eτ )p(x)

, (21)

which is independent of a. This choice7 also optimizes the performance of the
aggregated covariance estimator ̂�A,t(x). Indeed, by Theorem 3(ii), the asymptotic
covariance matrix of ̂�A,t(x) is given by �(x). It depends on the weight through
the coefficient

ψ t(x) ≡ 2ω2
t (x)ν0p(x)−1 + b(1 − ωt(x))2 τ (1 + eτ )

(eτ − 1)
,

which is a quadratic function, and attains its minimum at Equation (21).
When 0 < b < ∞, the effective sample sizes in the time and state domains

are comparable. Hence, neither the time-domain nor the state-domain estimator
dominates. Therefore, by aggregating the time- and state-domain estimators, we
obtain an optimal reduction of asymptotic variance. The biases of the aggregated
estimator are indirectly controlled, when the optimal smoothing is conducted for
both time- and state-domain estimators so that their biases and variances are
already traded off before aggregation.

Note that at time t, the optimal weight ωt(x) depends on the current value
of the factor process f through the density function p(x). This is consistent with
our common sense. When f is low or high, p(x) and, consequently, the optimal
weight are approximately zero. In this case, the main contribution to the aggregated
estimator comes from the time-domain estimator. When f is well in the middle of its
state space, say, near its unconditional mathematical expectation, the state-domain
estimator tends to dominate the aggregated estimator.

In practice, the density function p(x) is unknown and should be estimated.
There are many existing methods to do this, such as the kernel density estimator
and the local time density estimator [see Aı̈t-Sahalia (1996) and Dalalyan and
Kutoyants (2003)].

5 NUMERICAL ANALYSIS

To evaluate the aggregated estimator, we compare it with the time-domain
estimator and the state-domain estimator. For the time-domain estimation, we
apply the exponential smoothing8 with λ = 0.94. For the state-domain estimation,
we choose one yield process as the ‘‘factor,’’ and then use it to estimate the

7 The optimal choice of weight is proportional to the effective number of data points used for the
state-domain and time-domain smoothing. It always outperforms the choice with ωt = 1 (state-domain
estimator) or ωt = 0 (time-domain estimator).

8 The choice comes from the recommendation of the RiskMetrics of J.P. Morgan. The parameter λ can also
be chosen automatically by data by using the prediction error as in Fan et al. (2003). Since we compare the
relative performance between the time-domain estimator and the aggregated estimator, we opt for this
simple choice. The results do not expect to change much when a data-driven technique is used.
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volatility matrix. The Epanechnikov kernel is used with the bandwidth h chosen
by generalized cross validation method [see Fan and Yao (2003)]. To choose the
optimal weight ωt(x), we estimate the density function p(x) by the kernel density
estimator [see Aı̈t-Sahalia (1996)].

The following three measures are employed to assess the performance of
different methods for estimating the diffusion matrix. The first two can only be
used in simulation, and the last one can be used in both simulation and real data
analysis.

Measure 1. The entropy loss is given by

l1(�t, ̂�t) = tr(�−1
t
̂�t) − log |�−1

t
̂�t| − dim(�t).

Measure 2. The quadratic loss is defined as

l2(�t, ̂�t) = tr
(

̂�t − �t
)2

.

Measure 3. The prediction error (PE) is computed as

PE(̂�t) = 1
m

T+m
∑

i=T+1

tr
(

Y iYT
i − ̂�ti

)2 (22)

for an out-sample of size m. The expected value can be decomposed as

E[PE(̂�t)] = 1
m

T+m
∑

i=T+1

E[tr
(

Y iYT
i − �ti

)2
] + 1

m

T+m
∑

i=T+1

E[tr
(

�ti − ̂�ti

)2].

Note that the second item reflects the effectiveness of the estimated diffusion
matrix, while the first term is the size of the stochastic error, independent of
the estimators. The first term is usually an order of magnitude larger than the
second term. Thus, a small improvement in PE means a substantial improvement
in estimated volatility. This will also be clearly demonstrated in our simulation
study (see Figure 4).

Measure 4. Adaptive prediction error (APE).

As seen above, the dominant part of the PE is the stochastic error; however, what
we really care about is the estimation error. To reduce the stochastic error in
Equation (22), we define the following adaptive prediction error:

APE(̂�t) = 1
m

T+m
∑

i=T+1

tr

⎛

⎝

1
2k + 1

i+k
∑

j=i−k

Y jYT
j − ̂�ti

⎞

⎠

2

, (23)

where k is a nonnegative integer. The basic idea is to average out the stochastic
errors first before computing square losses, but this creates bias when k is large.
When k = 0, the APE reduces to the PE defined in Equation (22).



Fan ET AL. An Aggregated Method of Nonparametric Estimators 335

5.1 Simulation

We use an essentially affine market price of risk specifications in Duffee (2002)
to simulate bond yields, and hence to obtain simulated multivariate time series.
Essentially affine model is the multivariate extension of the square-root process. It
has been proved useful in forecasting future yields [see Duffee (2002)]. Cheridito,
Filipović, and Kimmel (2005) investigate the essentially affine model with one,
two, and three state variables, and give estimates of the parameters. We use their
one-state variable model to conduct the simulations.

The one-state variable affine term structure model assumes that the
instantaneous nominal interest rate rt is given by

rt = d0 + d1st,

where d0 and d1 are scalars, and st is a scalar state variable. The evolution of the
state variable st under the the risk-neutral measure Q is assumed to be

dst = (

aQ
1 + bQ

11st
)

dt + √
stdWQ

t . (24)

This is the well-known Cox–Ingersoll–Ross (CIR) model.
Let P(t, τ ) be the time-t price of a zero-coupon bond maturing at t + τ . Under

the affine term structure and the assumption of no arbitrage, Duffie and Kan (1996)
show that the bond price admits the form

P(t, τ ) = EQ
t exp

(

−
∫ t+τ

t
rudu

)

= exp[A(τ ) − B(τ )st], (25)

where A(τ ) and B(τ ) are both scalar functions satisfying the following ordinary
differential equations (ODEs)

dA(τ )
dτ

= −aQ
1 B(τ ) − d0 and

dB(τ )
dτ

= bQ
11B(τ ) − 1

2
B2(τ ) + d1. (26)

Thus, the bond’s yield

y(st, τ ) = − 1
τ

log P(t, τ ) = 1
τ

[−A(τ ) + B(τ )st] (27)

is affine in the state variable st.
We use the above model to simulate 5 zero-coupon bond yield processes with

maturities 1 month, 2 years, 4 years, 6 years, and 8 years. Since there is only one state
variable st, the bond yields of different maturities are perfectly linearly related,
as shown in (27), which is an unrealistic artifact of the model. To attenuate this
dilemma, Cheridito, Filipović, and Kimmel (2005) assume that only the 1-month
yield process is observed without error, while other yields are contaminated
with i.i.d. multivariate Gaussian errors with mean zero and unknown covariance
matrix. They estimate the unknown parameters from the yields of zero-coupon
bonds extracted from the US Treasury security prices from January 1972 to
December 2002. The estimated parameters are aQ

1 = 0.5, bQ
11 = −0.0137, d0 = 0.0110,
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Figure 2 Functions A(τ ) (solid curve) and B(τ ) (dashed curve) for the parameters given in the
simulation.

and d1 = 0.0074. The standard deviations of the Gaussian errors are estimated as
σ 1 = 0.0119, σ 2 = 0.0144, σ 3 = 0.0155, and σ 4 = 0.0159 for the yields of 2-, 4-,
6-, and 8-year bonds, respectively. The associated correlation coefficients are
estimated as ρ12 = 0.9727, ρ13 = 0.9511, ρ14 = 0.9371, ρ23 = 0.9950, ρ24 = 0.9877,
and ρ34 = 0.9978.

In the simulation, we set the the parameter values to be the above estimated
values from Cheridito, Filipović, and Kimmel (2005). We first generate discrete
samples of the state variable st from diffusion process (24). Then we solve ODEs
in Equation (26) numerically. Figure 2 shows the solution to Equation (26). After
that, we obtain the ideal yield processes by using Equation (27) with maturities 1
month, 2 years, 4 years, 6 years, and 8 years. Finally, we add the i.i.d. 4-variate
normal errors to the last four ideal yield processes to obtain the observed bond
processes with these maturities9.

To generate the sample path of st, we use the transition density property
of the process. That is, given st = x, the variable 2cst+� has a noncentral chi-
squared distribution with degrees of freedom 4aQ

11 and noncentrality parameter

2cxebQ
11�, where c = 2bQ

11

exp(bQ
11�)−1

. The initial value of s0 is generated from the invariant

distribution of st, which is gamma distribution with density p(y) = ων

�(ν) yν−1e−ωy,

where ν = 2aQ
11 and ω = −2bQ

11.

9 Here we add normal noise to make the model more realistic. Our method performs even better without
noise. Since the noise vectors are i.i.d. across time and the standard deviations are small, adding them to
the original time series does not change the whole structure. Hence, our theory can carry through under
contamination.
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We simulate 500 series of 1200 observations of weekly data with � = 1/52
for the yields of five zero-coupon bonds with maturities 1 month, 2 years, 4
years, 6 years, and 8 years, respectively. For each simulated series, we set the last
150 observations as the out-sample data. For time t out-sample data point, the
time-domain estimator is based on the past n = 104 (two years)10 observations,
that is, observations from t − 104 to t − 1; and the state-domain estimator is based
on the 1050 data points right before the current time, that is, the data points from
time t − 1050 to t − 1. The first yields process (1-month) is used as the factor for
state-domain estimation.

As pointed out in Section 1, the conditional covariance matrix of the
multivariate diffusion can be approximated by the diffusion matrix times the
sampling interval �. Hence, we first obtain estimates of the diffusion matrix, and
then convert them into the conditional covariance matrix estimates. The theoretical
value of the conditional variance of st is given by Duffee (2002). Since the bond
yields are linear regression models of the state variable (see Equation (27) with
Gaussian errors), the true (theoretical) value of the conditional covariance matrix
of the bond yields can be easily obtained. By comparing the estimated conditional
covariance matrix to its theoretical value, the performance of our estimation
procedures is evaluated.

Figure 3 depicts the averages and standard deviations of the entropy and
quadratic losses of time-domain, state-domain, and aggregated estimators. It
shows unambiguously that the aggregated method always has the smallest
averages and standard deviations across 500 simulations for both the entropy
loss and quadratic loss. Figures 4(a) and (b) summarize the distributions of
the average losses over 150 out-samples forecasting across the 500 simulations.
The results are consistent with those in Figure 3. On the other hand, if the PE
in Equation (22) with m = 150 is used, the distributions look quite different,
which is demonstrated in Figure 4(c). It shows clearly that even though there
are huge efficiency improvements in estimating the volatility matrix by using the
aggregated method, the improvements are masked by stochastic errors which are
an order of magnitude larger than the estimation errors. The average prediction
errors over 500 simulations are 1.850 × 10−2, 1.825 × 10−2, and 1.846 × 10−2 for
the time-domain, the aggregated, and the state-domain estimators, respectively.
This demonstrates that a small improvement in PE means a huge improvement in
the estimation of the volatility matrix. This effect is more illuminatingly illustrated
in Figure 4(d) where each point represents a simulation. The x-axis represents the
ratios of the averages of 150 quadratic losses for the time-domain estimator and the
state-domain estimator to those for the aggregated estimator, whereas the y-axis is
the ratios of the PEs for the time-domain estimator and the state-domain estimator
to those for the aggregated estimator. The x-coordinates are mostly greater than
1, showing the improved efficiency of the aggregated estimation. On the other

10 With λ = 0.94, the last data point used in the time domain has an extra weight 0.94104 ≈ 0.0016, which is
very small. Hence, we essentially include all the effective data points.
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Figure 3 (a) The averages of the entropy losses over 500 simulations for the time-domain
estimation (dotted curve), state-domain estimation (dashed curve), and aggregated method (solid
curve). (b) The standard deviations of the entropy losses over 500 simulations for time-domain
estimation (dotted curve), state-domain estimation (dashed curve), and the aggregated method
(solid curve). (c) and (d): The same as in (a) and (b) except using the quadratic loss.

hand, the improved efficiency is masked by stochastic errors, resulting in the
y-coordinate spreading around the line y = 1.

We have proved theoretically that nonparametric estimators based on time-
domain smoothing and state-domain smoothing are asymptotically independent.
To verify this, we compute their correlation coefficients. Since both estimators are
matrices, for a given portfolio allocation vector a, we compute the correlation
of the two estimators aT

̂�T,ta and aT
̂�S,ta across 500 simulations at each

given time t in the out-sample. Figure 5 presents the correlation coefficients for
a = (0.2, 0.2, 0.2, 0.2, 0.2)T. Most of the correlations are below 0.1, which strongly
supports our theoretical result. We also include the 95% confidence intervals based
on the Fisher transformation in the same graph (the two dashed curves). A large
amount of these confidence intervals contain 0. The two straight lines in the plot
indicate the acceptance region for testing the null hypothesis that the correlation
coefficients are zero at the significance level 5%. Most of these null hypotheses
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Figure 4 (a) Box plots of the entropy losses over 500 simulations for the time-domain estimator
(left), the aggregated method (middle), and the state-domain estimator (right). (b) and (c): The
same as in (a) except that the quadratic loss and PE are used, respectively. (d) The ratios of the
averages of the quadratic losses over 150 out-sample forecastings using the time-domain and
state-domain estimators to those based on the aggregated estimator (x-axis) are plotted against
the ratios of the PEs based on the time-domain and state-domain estimators to those based on the
aggregated estimator (y-axis).

are accepted or nearly accepted. In fact, we conducted experiments on the same
simulations with larger sample sizes, and found that as the sample size increases,
the absolute values of the correlation coefficients decrease to 0.

5.2 Empirical Studies

In this section, we apply the aggregated method to two sets of financial data. Our
aim is to examine whether our approach still outperforms the time-domain and
state-domain nonparametric estimators in real applications.

5.2.1 Treasury bonds. We consider the weekly returns of five treasury bonds
with maturities 3 months, 2 years, 5 years, 7 years, 10 years, and 30 years. We set
the last 150 observations, which run from April 9, 1999 to February 15, 2002, as



340 Journal of Financial Econometrics

0 50 100 150
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 5 Correlation of the time-domain estimator and state-domain estimator for the volatility
of an equally weighted portfolio. The dashed curves are for the 95% confidence intervals. The
straight lines are acceptance regions for testing the null hypothesis that the correlation is zero at
significance level 5%.

Table 1 APEs of Bond Yields, Exchange Rates and Simulations.

Time State Aggregated

Bonds
k = 0 3.837 × 10−3 3.767 × 10−3 3.756 × 10−3

k = 1 1.643 × 10−3 1.557 × 10−3 1.555 × 10−3

k = 2 1.013 × 10−3 1.011 × 10−3 9.933 × 10−4

Currencies
k = 0 4.795 × 10−3 4.913 × 10−3 4.755 × 10−3

k = 1 1.681 × 10−3 1.855 × 10−3 1.652 × 10−3

k = 2 8.979 × 10−4 1.184 × 10−3 8.937 × 10−4

Simulations (k = 0) 1.850 × 10−2 1.846 × 10−2 1.825 × 10−2

the out-sample data. For each observation from the out-sample data, we use the
past 104 observations (2 years) with λ = 0.94 to obtain the time-domain estimator,
and the state-domain estimate is based on the past 900 data points. The prediction
error (Measure 3) and adaptive prediction error (Measure 4) are used to assess the
performance of the three estimators: the time-domain estimator, the state-domain
estimator, and the aggregated estimator. The results are reported in Table 1. From
the table, we see that the aggregated estimator outperforms significantly the other
two estimators.

For comparison, the results from the simulated data are also reported. Even
through there is only a small improvement in PE for simulated data, as evidenced
in Section 4.1, there is a huge improvement in the precision of estimating �t in
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terms of entropy loss (Measure 1) and quadratic loss (Measure 2). Hence, with
the improvement of the PE in the bond price by the aggregrated method, we
would expect to have a huge improvement on the precision of the estimation of
covariance, which is of primary interest in financial engineering.

5.2.2 Exchange rate. We analyze the weekly exchange rates of five foreign
currencies with US dollars from September 6, 1985 to August 19, 2005. The five
foreign currencies are the Canadian Dollar, the Australian Dollar, the Euro11, the
British Pound, and the Swiss Franc. The length of the time series is 1042. The
exchange rates from December 6, 2002 to August 19, 2005, which are of length
142, are regarded as out-sample data, and the estimation procedures are the same
as before, that is, for each out-sample observation, the last 104 data points with
λ = 0.94 are set to construct the time-domain estimator, the 900 data points before
the current time are used to construct state-domain estimator, and then roll over.
The results, based on the PE and APE defined in Section 4, are also summarized in
Table 1. They demonstrate clearly that the aggregated estimator outperforms the
time-domain and state-domain estimators.

Using again the simulated data for calibration, as argued at the end of
Section 4.2.1, we would reasonably expect that the covariance matrix estimated by
the aggregated method outperforms significantly both the matrices estimated by
either the time- or state-domain method alone.

6 DISCUSSIONS

We have proposed an aggregated method to combine the information from the time
domain and state domain in multivariate volatility estimation. To overcome the
curse of dimensionality, we proposed a ‘‘factor’’ modeling strategy. The performance
comparisons are studied both theoretically and empirically. We have shown that
the proposed aggregated method is more efficient than the estimators based only
on recent history or remote history. Our simulation and empirical studies have
also revealed that proper use of information from both the time domain and the
state domain makes volatility matrix estimate more accurate. Our method exploits
the continuity in the time domain and stationarity in the state domain. It can also
be applied to situations where these two conditions hold approximately.

Our study has also revealed another potentially important application of our
method. It allows us to test the stationarity of diffusion processes. When time-
domain estimates differ substantially from those of the state domain, it is an indica-
tion that the processes are not stationary. Since the time-domain and state-domain
nonparametric estimators are asymptotically independent and normal, formal
tests can be formed. Further study on this topic is beyond the scope of this article.

11 Europe used several common currencies prior to the introduction of the Euro. The European Currency
Unit (ECU) was used from January 1, 1979 to January 1, 1999, when the Euro replaced the European
Currency Unit at par.
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APPENDIX A: PROOFS

A.1 Proof of Proposition 1

In all the proofs below, we use M to denote a generic constant.
First, we show that the process {ft} is locally Hölder continuous with order

q = (2q0 − 1)/(4q0) and coefficient K1 satisfying E[K4(q0+δ)
1 ] < ∞, that is,

|fs − fu| ≤ K1|s − u|q, s, u ∈ [t − η, t], (A1)

where η is a positive constant. Note that

E|fu − fs|4(q0+δ) ≤ ME

∣

∣

∣

∣

∣

∣

∫ u

s
a(fv)dv

∣

∣

∣

4(q0+δ) + ME
∣

∣

∣

∫ u

s

∑

j

bj(fv)dWj
v

∣

∣

∣

∣

∣

∣

4(q0+δ)

≡ (I) + (II). (A2)

Then by Jensen’s inequality and Assumption 2, we have

(I) ≤ M(u − s)4(q0+δ)−1
∫ u

s
E|a(fv)|4(q0+δ)dv ≤ M(u − s)4(q0+δ). (A3)

On the other hand, applying martingale moment inequalities (see, e.g., Karatzas
and Shreve (1991), Section 3.3.D, p.163), Jensen’s inequality, and Assumption 2
gives

(II) ≤ME

⎛

⎝

∫ u

s

∑

j

b2
j (fv)dv

⎞

⎠

2(q0+δ)

≤ M(u − s)2(q0+δ)−1
∫ u

s

∑

j

E|bj(fv)|4(q0+δ)dv

(A4)

≤M(u − s)2(q0+δ).

Combining Equations (A2), (A3) and (A4) together leads to

E|fu − fs|4(q0+δ) ≤ M(u − s)2(q0+δ).

Thus by Theorem 2.1 of Revuz and Yor (1999), Page 26, we have

E
[(

sup
s=u

{|fs − fu|/|s − u|α})4(q0+δ)]
< ∞ (A5)

for any α ∈ [0, 2(q0+δ)−1
4(q0+δ) ). Let α = 2q0−1

4q0
and K1 = sups=u{|fs − fu|/|s − u|

2q0−1
4q0 }. Then

E[K4(q0+δ)
1 < ∞], and inequality (A1) holds.
Second, by Equation (8) we have

‖σ (fs) − σ (fu)‖ ≤ k0|fs − fu|.
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This together with the Equation (A1) shows that

‖σ (fs) − σ (fu)‖ ≤ k0K1|s − u|q ≡ K|s − u|q.

Hence, E[K4(q0+δ)] ≤ ME[K4(q0+δ)
1 ] < ∞. �

A.2 Proof of Theorem 1

Proof. At time s, for fixed k, �, and i, define Zk,�
i,s = (Xk

s − Xk
ti

)(X�
s − X�

ti
). Applying

Ito’s formula to Zk,�
i,s results in
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s − Xk
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)dX�
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ti
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Hence, Yk
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i can be decomposed as
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k σ (fs)]dWs

and

ck,�
i = �−1

∫ ti+1

ti

m
∑

j=1

σ kj(fs)σ�j(fs)ds.



344 Journal of Financial Econometrics

Correspondingly, (14) has the following decomposition

̂UT,t = 1 − λ

1 − λn

n
∑

i=1

λi−1
∑

�≤k

ck�ak,�
N−i + 1 − λ

1 − λn

n
∑

i=1

λi−1
∑

�≤k

ck�bk,�
N−i

+ 1 − λ

1 − λn

n
∑

i=1

λi−1
k
∑

�≤k

ck�vk,�
N−i

≡ An,� + Bn,� + Vn,�. (A6)

Therefore, Slutsky’s lemma, together with Lemmas 1–3 below, leads to the
conclusions of Theorem 1 immediately. �

Lemma 1. Under Assumption 1, as n → ∞, n� → 0, and n(1 − λ) → τ , we have

EA2
n,� = O(�), (A7)

where An,� = 1−λ
1−λn

∑n
i=1 λi−1∑

�≤k ck�ak,�
N−i, as defined in (A6).

Proof. First, note that

E(ak,�
i )2 ≤ 2E

(

�−1
∫ ti+1

ti

[(Xk
s − Xk

ti
)μ�(fs) + (X�

s − X�
ti

)μk(fs)]ds
)2

(A8)

+ 2E
(

�−1
∫ ti+1

ti

∫ s

ti

[eT
k μ(fu)dueT

� σ (fs) + eT
� μ(fu)dueT

k σ (fs)]dWs

)2

≡ I1(�) + I2(�).

Applying Jensen’s inequality and Hölder’s inequality (Proposition 1), we
obtain

I1(�) ≤ M�−1
∫ ti+1

ti

E
[

(Xk
s − Xk

ti
)μ�(fs) + (X�

s − X�
ti

)μk(fs)
]2

ds (A9)

≤ M�−1
∫ ti+1

ti

{

(

E(Xk
s − Xk

ti
)4E[μ�(fs)]4

)1/2 +
(

E(X�
s − X�

ti
)4E[μk(fs)]4

)1/2
}

ds.

Since an application of Jensen’s inequality, martingale moments inequalities, and
Assumption 2 results in

E(X�
s − X�

ti
)4 ≤ M

⎛

⎝E
[∫ s

ti

μ�(fu)du
]4

+
m
∑

j=1

E
[∫ s

ti

σ�j(fu)dWj
u

]4
⎞

⎠

≤ M

⎛

⎝(s − ti)3
∫ s

ti

E[μ�(fu)]4du +
m
∑

j=1

M(s − ti)
∫ s

ti

E[σ �j(fu)]4du

⎞

⎠

≤ M(s − ti)2,
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we see that Condition (A9) can be bounded as

I1(�) ≤ M�. (A10)

We now consider the second term I2(�) in Condition (A8). By stochastic
calculus and Jensen’s inequality, we have

I2(�) = 2
∫ ti+1

ti

m
∑

j=1

E
(

�−1
∫ s

ti

[μk(fu)σ�j(fs) + μ�(fu)σ kj(fs)]du
)2

ds

≤ M�−1
∫ ti+1

ti

m
∑

j=1

∫ s

ti

E[μk(fu)σ�j(fs) + μ�(fu)σ kj(fs)]2duds

= O(�).

This together with Condition (A10) leads to E(ak,�
i )2 = O(�). Therefore, by the

Cauchy-Schwarz inequality and the assumption that limn(1 − λ) exists,

EA2
n,� ≤ Mn

(

1 − λ

1 − λn

)2 n
∑

i=1

λ2(i−1)
∑

�≤k

c2
k�E(ak,�

N−i)
2 = O(�),

which concludes the proof. �

Lemma 2. Under Assumptions 1 and 2, as n → ∞, n�q → 0 and n(1 − λ) → τ , we
have

√
nBn,�

D−→ Zc,

where Bn,� is defined in Condition (A6) and the random variable Zc is defined in
Theorem 1.

Proof. We will decompose Bn,� into two parts and prove that the first part is
asymptotically negligible and the second part has some asymptotic distribution.

Note that bk,�
i can be decomposed as

bk,�
i = Bk,�

i + Ck,�
i , (A11)

where

Bk,�
i = �−1

∑

j,p

(

σ kj(ft0 )σ�p(ft0 ) + σ kp(ft0 )σ�j(ft0 )
)

∫ ti+1

ti

(Wj
s − Wj

ti
)dWp

s

and

Ck,�
i = �−1

∫ ti+1

ti

∫ s

ti

[eT
k (σ (fu) − σ (ft0 ))dWueT

� σ (fs)

+ eT
k σ (fu)dWueT

� (σ (fs)−σ (ft0 ))]dWs,
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where ek is the unit vector with kth entry 1 and all other entries 0. Correspondingly,
Bn,� is decomposed as

Bn,� = 1 − λ

1 − λn

∑

k≤�

ck�

∑

λi−1Bk,�
N−i + 1 − λ

1 − λn

∑

k≤�

ck�

∑

λi−1Ck,�
N−i ≡ B + C.

First, we show that
√

nC is asymptotically negligible. To this end, note that by
stochastic calculus and the triangular inequality, we have

E(Ck,�
i )2 ≤ �−2

∫ ti+1

ti

m
∑

j=1

E
(

∫ s

ti

eT
k (σ (fu) − σ (ft0 ))dWuσ�j(fs)

)2
ds

+ �−2
∫ ti+1

ti

m
∑

j=1

E
(

∫ s

ti

eT
k σ (fu)dWu(σ�j(fs) − σ �j(ft0 ))

)2
ds

≡ �−2
∫ ti+1

ti

m
∑

j=1

I(j)
1 (�)ds + �−2

∫ ti+1

ti

m
∑

j=1

I(j)
1 (�)ds.

Applying Hölder’s inequality yields

I(j)
1 (�) ≤

(

E
(∫ s

ti

eT
k (σ (fu) − σ (ft0 ))dWu

)4

E(σ�j(fs))4

)1/2

, (A12)

and then by martingale moment inequalities and Condition (15) we obtain

E
(∫ s

ti

eT
k (σ (fu) − σ (ft0 ))dWu

)4

≤ O(1)E

⎛

⎝

∫ s

ti

m
∑

j=1

(σ kj(fu) − σ kj(ft0 ))2du

⎞

⎠

2

≤ O
(

(n� + �)4q�2) .

Hence, we can bound Condition (A12) as

I(j)
1 (�) ≤ O

(

(n�)2q�
)

. (A13)

Next we consider I(j)
2 (�). Similarly, by Hölder’s inequalities, martingale moments

inequalities, and Condition (15) we have

I(j)
2 (�) ≤

(

E
(

∫ s

ti

eT
k σ (fu)dWu

)4E(σ �j(fs) − σ �j(ft0 ))4
)1/2

≤ O(1)

⎛

⎝E[
∫ s

ti

m
∑

j=1

σ 2
kj(fu)du]2(n� + �)4qEK4

⎞

⎠

1/2

≤ O
(

(n�)2q�
)

.
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This together with Condition (A13) implies that

E(Ck,�
i )2 = O

(

(n�)2q) .

Hence, it follows that

E
(√

nC
)2 = O((n�)2q), (A14)

which means that
√

nC is asymptotically negligible.
Next, we consider the term

√
nB. We first define the augmented filtration Ft.

Let (�,F, P) be the probability space in which the Brownian motion {Wt, 0 ≤ t < ∞}
is defined, and X0 is the initial value of model (4) and independent of F∞. Define
the left-continuous filtration Gt = σ (X0) ∨ {FW

t , 0 ≤ t < ∞} as well as the collection
of null sets N = {N ∈ �; ∃G ∈ G∞ with N ⊆ G and P(G) = 0}. Then the augmented
filtration is defined as Ft = σ (Gt ∪ N ), 0 ≤ t < ∞; F∞ = σ (

⋃

t≥0 Ft). First note
that by stochastic calculus we have E[Bk,�

i |F0] = 0 and for i = j, Bk,�
i and Bk,�

j are
independent. Therefore, we only need to verify the conditions of the central limit
theorem for the martingale difference array (see, e.g. Hall and Heyde (1980),
Corollary 3.1, P.58); namely, we need to check

n
∑

i=1

E

⎛

⎝

√
n(1 − λ)
1 − λn λi−1

∑

�≤k

ck�Bk,�
i |Fti

⎞

⎠

2

P−→ τ (1 + eτ )
eτ − 1

cTPT
D(�(ft) ⊗ �(ft))PDc

(A15)

and

n
∑

i=1

E

⎡

⎢

⎣

⎛

⎝

√
n

1 − λ

1 − λn λi−1
∑

�≤k

ck�Bk,�
i

⎞

⎠

4
∣

∣

∣Fti

⎤

⎥

⎦

P−→ 0. (A16)

Expression (A15) gives the asymptotic conditional variance of
√

nB and expression
(A16) implies the conditional Lindeberg condition. These two conditions lead to

√
nB D−→ Zc, (A17)

where the random variable Zc is defined as in Theorem 1.
We first prove expression (A15). From stochastic calculus we know that

E[Bk,�
i |Fti ] = 0 and for i = j, Bk,�

i and Bk,�
j are independent. Moreover, by Condition

(15) we have

E[Bk1,�1
i Bk2,�2

i |Fti ] =�−2
∑

j,g

Hk1,�1
j,g (ft0 )Hk2,�2

j,g (ft0 )
∫ ti+1

ti

E(Wj
s − Wj

ti
)2ds

=1
2

∑

j,g

Hk1,�1
j,g (ft0 )Hk2,�2

j,g (ft0 )
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=1
2

∑

j,g

Hk1,�1
j,g (ft)H

k2,�2
j,g (ft) + og((n� + �)q),

where Hk,�
j,g (x) = σ kj(x)σ�g(x) + σ kg(x)σ�j(x). It follows that

var

⎛

⎝

∑

�≤k

c�kB�,k
i |Fti

⎞

⎠ = cTPD(2�(ft0 ) ⊗ �(ft0 ))PT
Dc

P−→ cTPD(2�(ft) ⊗ �(ft))PT
Dc.

Therefore, we get the following result for the conditional variance of the left-hand
side of expression (A15):

n
∑

i=1

E

⎛

⎝

√
n(1 − λ)
1 − λn λi−1

∑

�≤k

ck�Bk,�
i |Fti

⎞

⎠

2

= n(1 − λ)(1 + λn)
(1 + λ)(1 − λn)

var

⎛

⎝

∑

�≤k

c�kB�,k
i |Fti

⎞

⎠

P−→ τ (1 + eτ )
eτ − 1

cTPT
D(�(ft) ⊗ �(ft))PDc,

where τ = limn→∞ n(1 − λ). This verifies expression (A15).
Then we show (A5). Straightforward calculations yield

E

⎡

⎢

⎣

⎛

⎝

∑

�≤k

ck�Bk,�
i

⎞

⎠

4
∣

∣Fti

⎤

⎥

⎦ = O(1)
∑

�≤k

c4
k�E[(Bk,�

i )4|Fti ]

= O(1)
∑

�≤k

c4
k��

−4
∑

j,g

(Hk,�
j,g (ft0 ))4E

[

(∫ ti+1

ti

(Wj
s − Wj

ti
)dWg

s

)4
∣

∣

∣Fti−1

]

= O(1)
∑

�≤k

c4
k�

∑

j,g

(Hk,�
j,g (ft0 ))4.

This together with Assumption 2 and Hölder’s inequality leads to

n
∑

i=1

E

⎡

⎢

⎣

⎛

⎝

√
n

1 − λ

1 − λn λi−1
∑

�≤k

ck�Bk,�
i

⎞

⎠

4
∣

∣Fti

⎤

⎥

⎦ = O(n−1)
∑

�≤k

c4
k�

∑

j,g

(Hk,�
j,g (ft0 ))4 P−→ 0,

which proves Condition (A5). (A17) holds in consequence. Combining Condition
(A14) and (A17) and applying Slutsky’s lemma, we obtain the conclusion in
Lemma 2. �

Lemma 3. Under Assumptions 1 and 2, as n → ∞ and n�q → 0, the following result
holds for Cn,� defined in Equation (A6)

E
∣

∣Cn,� − cTvech(�(ft))
∣

∣ = O
(

(n�)q) . (A18)



Fan ET AL. An Aggregated Method of Nonparametric Estimators 349

Proof. Note that

E|Cn,� −
k
∑

�≤k

ck�vk�,t| = 1 − λ

1 − λn E
∣

∣

n
∑

i=1

λi−1
k
∑

�≤k

ck�

(

vk,�
N−i − vk�,t

)

∣

∣

≤ 1 − λ

1 − λn

n
∑

i=1

λi−1
k
∑

�≤k

ck�E|vk,�
N−i − vk�,t|.

Thus we only need to consider the asymptotic property of E|vk,�
i − vk�,t|. By the

Cauchy–Schwarz inequality and Hölder’s inequality, we have

E
∣

∣vk,�
i − vk�,t

∣

∣ ≤ �−1
m
∑

j=1

∫ ti+1

ti

{

E
∣

∣σ kj(ft)
(

σ�j(ft) − σ �j(fs)
)∣

∣

+ E
∣

∣

(

σ kj(ft) − σ kj(fs)
)

σ �j(fs)
∣

∣

}

ds

≤ �−1
m
∑

j=1

∫ ti+1

ti

{[

Eσ 2
kj(ft)E

(

σ �j(ft) − σ�j(fs)
)2]1/2

+ [

E
(

σ kj(ft) − σ kj(fs)
)2Eσ 2

�j(fs)
]1/2}ds

Therefore by Condition (15) and Assumption 2,

E
∣

∣vk,�
i − vk�,t

∣

∣ = O
(

(n� + �)q) = O
(

(n�)q).

This proves equality (A18). �

A.3 Proof of Proposition 2

Lemma 4. (The Tanaka Formula) Let St be a continuous semimartingale. For any real
number a, there exists a nondecreasing continuous process LS(·, a) called the local time of
St at a, such that

|St − a| = |S0 − a| +
∫ t

0
sgn(Ss − a)dSs + LS(t, a),

(St − a)+ = (S0 − a)+ +
∫ t

0
1{Ss>a}dSs + 1

2
LS(t, a),

(St − a)− = (S0 − a)− −
∫ t

0
1{Ss≤a}dSs + 1

2
LS(t, a).

In particular, |St − a|, (St − a)+, and (St − a)− are semimartingales.

Proof. See Revuz and Yor (1999), Theorem 1.2, Chapter 6, p.222. �

The process LS(t, a) is called the local time of St at point a over time interval
[0, t]. It is measured in units of the quadratic variation process and gives the
amount of time that the process spends in the vicinity of a.
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Lemma 5. Since ft is a stationary real ergodic process, we have

Lf (T, x)
∑

b2
j (x)T

a.s.−→ p(x),

where p(x) is the time-invariant density function of the process ft at x.

Proof. See Bandi and Phillips (2003) and Bosq (1998), Theorem 6.3, P150. �

Lemma 6. Suppose � → 0, N� → ∞, and 1
h

√

� log �−1 = o(1). Under Assumptions
3–5, we have for � = 0, 1, 2, 3

W�(x) = 1
�

∫ tN−1

t0

(fs − x)�Kh(fs − x)ds + Nh�−1Oa.s.

(
√

� log �−1
)

.

Proof. First, note that for any nonnegative integer � ≤ 4, we have
∣

∣

∣

∣

∣

W�(x) − 1
�

N−1
∑

k=0

∫ tk+1

tk

(fs − x)�K
(

fs − x
h

)

ds

∣

∣

∣

∣

∣

(A19)

≤ 1
h�

N−1
∑

k=0

∫ tk+1

tk

∣

∣

∣

∣

(ftk − x)�K
( ftk − x

h

)

− (fs − x)�K
(

fs − x
h

)∣

∣

∣

∣

ds

≤I1 + I2

with

I1 = 1
h�

N−1
∑

k=0

∫ tk+1

tk

∣

∣

∣

∣

∣

K′
(

̂fks − x
h

)∣

∣

∣

∣

∣

∣

∣

∣

∣

fs − ftk

h

∣

∣

∣

∣

|ftk − x|�ds (A20)

and

I2 = 1
h�

N−1
∑

k=0

∫ tk+1

tk

∣

∣

∣(f ks − x)�−1(fs − ftk )
∣

∣

∣K
(

fs − x
h

)

ds, (A21)

wherêfks and f ks are both values on the line segment connecting ftk to fs. Now
define

κN,� = max
i≤N−1

sup
ti−1≤s≤ti

|fs − fti−1 |.

Then, by Levy’s modulus of continuity of diffusions [see, e.g., Revuz and Yor
(1999, Ch. V, Exercise 1.20)],

P

⎛

⎜

⎝lim sup
�→0

κN,�
√

� log �−1
= α

⎞

⎟

⎠ = 1, (A22)



Fan ET AL. An Aggregated Method of Nonparametric Estimators 351

where α is a suitable constant. In turn, Equation (A22) implies that

κN,� = Oa.s.

(
√

� log �−1
)

.

This together with the assumption that 1
h

√

� log �−1 = o(1) leads to

κN,�

h
= oa.s.(1) as N� → ∞.

In view of Equation (A20) and (A21), we have

K′
(

̂fks − x
h

)

= K′
(

fs − x
h

+ oa.s.(1)
)

and

f ks − x = h
(

fs − x
h

+ oa.s.(1)
)

,

uniformly over k = 0, . . . , N − 1. Hence, by Lemma 5 and Revuz and Yor (1999),
Exercise 1.15 and Corollary 1.6 of Chapter 6, we obtain that Equation (A20) can be
bounded as

I1 ≤κN,�

h
h�−1

�

N−1
∑

k=0

∫ tk+1

tk

∣

∣

∣

∣

K′
(

fs − x
h

+ oa.s.(1)
)∣

∣

∣

∣

∣

∣

∣

∣

fs − x
h

+ oa.s.(1)
∣

∣

∣

∣

�

ds

=N�h�−1 κN,�

h

∫ ∞

−∞

∣

∣

∣

∣

K′
(

y − x
h

+ oa.s.(1)
)∣

∣

∣

∣

∣

∣

∣

∣

y − x
h

+ oa.s.(1)
∣

∣

∣

∣

� Lf (tN−1, y)

N�
∑

b2
j (y)

dy

=Nh� κN,�

h

∫ ∞

−∞

∣

∣K′ (u + oa.s.(1)
)∣

∣ |u + oa.s.(1)|�(p(uh + x) + oa.s.(1))du.

This together with Condition (9) yields

I1 ≤ Nh�Oa.s.

(

1
h

√

� log �−1
)

.

Similarly, we can show that Equation (A21) is also bounded by Nh�Oa.s.
(

1
h

√

� log �−1
)

. This proves the stated results. �

Proof of Proposition 2. Since x2�K(x) is a positive function, by Exercise 1.15
and Corollary 1.6 of Chapter 6 of Revuz and Yor (1999) and Lemma 5 above, we
have for � = 0, 1,

1
N�

∫ tN−1

t0

(

fs − x
h

)2�

K
(

fs − x
h

)

ds
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=
∫ (

y − x
h

)2�

K
(

y − x
h

)

Lf (tN−1, y)

N�
∑

b2
j (y)

dy

= h
∫

u2�K(u)(p(uh + x) + oa.s.(1))du

= h
(

p(x)μ2� + oa.s.(1)
)

,

where we have used μ4 = ∫

x4K(x)dx < ∞. This together with Lemma 6 leads to

1
N

W2�(x) = 1
N�

∫ tN−1

t0

(fs − x)2�Kh(fs − x)ds + oa.s.(1) (A23)

= h2�(p(x)μ2� + oa.s.(1)).

Let s(dx) = exp
{

∫ x
α

2a(y)
∑

b2
j (y)

dy
}

2dx
∑

b2
j (x)

be the speed measure of ft. By the Quotient

theorem (Revuz and Yor (1999), Theorem 3.12, Chapter 10, p.427),

1
N�

∫ tN−1
t0

(

fs−x
h

)2�+1
Kh(fs − x)ds

1
N�

∫ tN−1
t0

Kh(fs − x)ds
=
∫

(

y−x
h

)2�+1
Kh(y − x)s(dy)

∫

Kh(y − x)s(dy)
+ oa.s.(1)

= μ2�+1

μ0
+ oa.s.(1)

as N� → ∞. In turn, this implies that

W2�+1(x)/h2�+1

W0(x)
=

1
�

∫ tN−1
t0

(

fs−x
h

)2�+1
Kh(fs − x)ds + NOa.s.

(√
� log �−1

h

)

1
�

∫ tN−1
t0

Kh(fs − x)ds + NOa.s.

(√
� log �−1

h

) (A24)

= μ2�+1

μ0
+ oa.s.(1).

Combining Equation (A23) and (A24), we obtain

W2�+1(x) = Nh2�+1(p(x)μ2�+1 + oa.s.(1)).

This completes the proof. �

A.4 Proof of Theorem 2

Let M(ftk ) = E[YkYT
k |ftk ]. Then the matrix function M(y) can be expanded around a

fixed point x as

M(y) = A0 + A1(y − x) + A2(y − x)2 + A3(y − x)3 + · · · ,
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where A0, A1, . . . are all matrices. To prove the asymptotic property of the
state-domain estimator, let us decompose it as

�̂S,t(x) − M(x) =
N−1
∑

k=0

wk(x)
(

M(ftk ) − M(x)
)+

N−1
∑

k=0

wk(x)
(

YkYT
k − M(ftk )

)

≡ b + t. (A25)

First, we establish the asymptotic behavior of the bias term b. Applying
Taylor’s expansion and Proposition 2 results in

b =
N−1
∑

k=0

wk(x)
(

M(ftk ) − M(x)
)

=
N−1
∑

k=0

wk(x)A1(ftk − x) +
N−1
∑

k=0

wk(x)A2(ftk − x)2 + oa.s.(h3)

= h2μ2A2 + oa.s.(h2).

Since we have the following decomposition

�̂S,t(x) − �(x) = (

�̂S,t(x) − M(x)
)+ (

M(x) − �(x)
) = [b + (

M(x) − �(x)
)

] + t,

and M(x) − �(x) = op(�), the asymptotic bias of the state-domain estimator is

b + (

M(x) − �(x)
) = 1

2
h2μ2�

′′(x) + oa.s.(h2) + op(�). (A26)

Then, let us consider the variance term t. Since t is a matrix, we first vectorize
it and then consider the asymptotic normality of its linear combination, that is, we
look at the statistic

t̃ = aTvech
(

N−1
∑

k=0

wk(x)
(

YkYT
k − M(ftk )

)

)

,

where a is a constant vector. By Proposition 2,

t̃ = 1
p(x)N

N−1
∑

k=0

Kh(ftk − x)aTvech
(

YkYT
k − M(ftk )

){1 + oa.s.(1)} (A27)

≡ AN{1 + oa.s.(1)}.
Therefore, we only need to show the asymptotic normality of AN. To this
end, first let ϑN,k = Kh(ftk − x)aTvech

(

YkYT
k − M(ftk )

)

. Then AN = 1
p(x)N

∑N−1
k=0 ϑN,k.

Straightforward calculations give

var(ϑN,k) = E
(

Kh(ftk − x)aTvech
(

YkYT
k − M(ftk )

))2
(A28)
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= E
{

K2
h(ftk − x)E

[

(

aTvech(YkYT
k − M(ftk ))

)2|ftk

]

}

= 2E
{

K2
h(ftk − x)

(

aTPD�(ftk ) ⊗ �(ftk )PT
Da
)}

= 2h−1ν0p(x)aTPD�(x) ⊗ �(x)PT
Da(1 + o(1)),

where the last step follows from Taylor’s expansion.
Note that Yt� only depends on the sample path of ft over time interval [t�, t�+1].

Thus by conditioning on Ft� , we obtain

cov(ϑN,1, ϑN,�+1) = E
[

ϑN,1Kh(ft� − x)E
(

aTvech
(

Y�YT
� − M(ft�)

)∣

∣Ft�

)]

= 0, � ≥ 1. (A29)

Combining Equation (A28) and (A29) entails

var(AN) = 2ν0

Nhp(x)
aTPD�(x) ⊗ �(x)PT

Da(1 + o(1)).

Since a stationary Markov process satisfying the G2 condition of Rosenblatt
(1970) is ρ-mixing, we can use ‘‘big-block and small-block’’ arguments similar to
those used by Fan and Yao (2003), (Theorem 2.22, p.77) to prove the asymptotic
normality of AN. The lengthy details are omitted here. Thus,

√
NhAN

D−→ N(0, 2ν0p(x)−1aTPD�(x) ⊗ �(x)PT
Da).

This together with Equation (A26) and (A27) implies the asymptotic normality of
the state-domain estimator, that is,

√
NhaTvech

(

�̂S,t(x) − �(x) − 1
2

h2μ2�
′′(x)

)

D−→ N(0, 2ν0p(x)−1aT�(x)a),

where a is an arbitrary constant vector. This completes the proof. �

A.5 Proof of Theorem 3

We only need to show the asymptotic normality of the linear combination

√
Nh aTvech

(

̂�S,t − �(x) − 1
2

h2μ2�
′′(x)

)

+ √
n cTvech

(

̂�T,t − �(x)
)

,

where aT and cT are two constant vectors. This is equivalent to showing
the joint asymptotic normality of

√
NhaTvech

(

̂�S,t − �(x) − 1
2 h2μ2�

′′(x)
)

and√
ncTvech

(

̂�T,t
)

. From the proof of Theorem 2, we have

aTvech
(

̂�S,t − �(x) − 1
2

h2μ2�
′′(x)

)

= aTt + op(1) = t̃ + op(1)

= AN{1 + oa.s.(1)} + op(1),
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where t, t̃ and AN are all defined in the proof of Theorem 2. Therefore, we need
only to consider about the asymptotic normality of

√
NhAN and

√
ncTvech

(

̂�T,t
)

.
We truncate AN by defining

At
N = 1

p(x)N

N−aN
∑

k=0

ϑN,k,

where aN is an integer depending only on N and satisfying aN/N → 0 and
aN� → ∞. We are going to show that:

(i) At
N and

√
ncTvech

(

̂�T,t
)

are asymptotically independent;

(ii) AN − At
N is asymptotically negligible.

We first prove (i). Since a stationary Markov process satisfying the G2 condition
of Rosenblatt (1970) is ρ-mixing with exponentially decaying ρ-mixing coefficient
ρt(·), and the strong-mixing coefficient α(�) ≤ ρ(�) for any integer �, it follows that

∣

∣E exp{iξ (At
N + cTvech

(

̂�T,t
)

)} − E exp{iξ (At
N)}E exp{ıξcTvech

(

̂�T,t
)}∣∣

≤ 32α(aN − n) → 0,

for any ξ ∈ R. This proves (i).
Now, we prove (ii). From the proof of Theorem 2 we know that

var(ϑN,k) = 2h−1ν0p(x)aTPD�(x) ⊗ �(x)PT
Da(1 + o(1)),

and cov(ϑN,1, ϑN,�+1) = 0, ∀� ≥ 1. Therefore,

var(
√

Nh[AN − At
N]) = 2aN

p(x)N
ν0aTPD�(x) ⊗ �(x)PT

Da(1 + o(1)) → 0.

This along with E[ϑN,k] = 0 gives

√
Nh[AN − At

N]
P−→ 0,

which completes the proof of (ii). Combining (i) and (ii) entails that
√

NhAN and√
ncTvech

(

̂�T,t
)

are asymptotically independent. This together with Theorem 1
and the asymptotical normality of

√
NhAN shown in the proof of Theorem 2

completes the proof of Theorem 3. �
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Härdle, W., H. Herwartz, and V. Spokoiny. (2002). ‘‘Time Inhomogeneous Multiple
Volatility Modelling.’’ Journal of Financial Economics 1, 55–95.

Jacod, J. (1997). ‘‘Nonparametric Kernel Estimation of the Diffusion Coefficient of a
Diffusion.’’ Prépublication N. 405 du Laboratoire de Probabilités de l’Université
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