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We propose a new nonparametric test for detecting the presence of jumps in asset prices using
discretely observed data. Compared with the test in Aït-Sahalia and Jacod (2009), our new test enjoys
the same asymptotic properties but has smaller variance. These results are justified both theoretically
and numerically. We also propose a new procedure to locate the jumps. The jump identification problem
reduces to a multiple comparison problem. We employ the false discovery rate approach to control the
probability of type I error. Numerical studies further demonstrate the power of our new method.
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1. Introduction

The discontinuities of asset prices, so-called ‘‘jumps’’, play
important roles in pricing and managing risks of many financial
instruments such as asset returns, option prices, interest rates, and
exchange rates. Recently, researchers have proved the existence
of jumps and studied their financial implications in the literature
both empirically and theoretically. See, for example, Merton
(1976), Duffie et al. (2000), Pan (2002), Johannes (2004) and
Andersen et al. (2007).

The wide availability of high-frequency data for a host array
of financial instruments makes it feasible to accurately detect
the locations of jumps with little time delay. The interest in
testing and identifying jumps has surged recently. For example,
Aït-Sahalia (2004) introduces methods to separate jumps from
diffusion. Jiang and Oomen (2008) propose a test statistic that
measures the impact of jumps on the third- and higher-order
return moments and is directly related to the profit/loss function
of a variance swap replication strategy. Barndorff-Nielsen and
Shephard (2006) introduce a test statistic based on the bipower
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variation of the asset price, which is consistent and asymptotically
normal with mean zero under the null hypothesis of no jumps,
and which converges in probability to some negative number
depending on the jump sizes under the alternative hypothesis. A
nonparametric test statistic was proposed by Aït-Sahalia and Jacod
(2009), which converges to two different deterministic numbers
that are independent of the dynamics of the diffusion process,
depending onwhether the sample pathhas or does not have jumps.
Fan and Wang (2007) develop wavelet methods to estimate jump
locations and jump sizes from a jump-diffusion process that is
discretely observed with market microstructure noise. Lee and
Mykland (2008) introduce and study a nonparametric test to detect
jump arrival times up to the intra-day level. Their test statistic
not only detects the presence of jumps but also gives estimates
of the realized jump sizes in asset prices. Jacod and Todorov
(2009) consider a bivariate asset price process and propose tests
to decide whether these processes have common jumps or not
using discretely observed data on a finite time interval. Other tests
include Carr and Wu (2003), Mancini (2003) and Johannes et al.
(2004a,b).

The asset price Xt is assumed to follow an Itô semimartingale
process and is observed at discrete time points ti = i1, i =
0, 1, . . . , n. In this paper, we consider high-frequency data—i.e.,
assuming that 1 → 0 as n → ∞ and T = n1 is a fixed positive
number. To simplify the notation, we suppress the dependence of
1 on n when it causes no confusion. Aït-Sahalia and Jacod (2009)
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propose a nonparametric test statistic with the following form

Sn =

[n/K ]∑
i=1

|XiK1 − X(i−1)K1|p

n∑
i=1

|Xi1 − X(i−1)1|p
,

where K is a positive integer, p > 3, and [z] denotes the integer
part of z. This is the ratio of power variations at two time scales
(Zhang et al., 2005). The intuition of the test statistic Sn is that
if there is a jump in the time interval ((i − 1)1, i1], then the
magnitude of the increment 1Xi = Xi1 − X(i−1)1 is large and
independent of the sampling interval 1, whereas the magnitude
of 1Xi is small and depends on 1 when there is no jump in the
interval. A high power of the increment 1Xi further separates
the magnitudes of |1Xi|p in the previous two cases. Since the
increments containing jumps are much larger than those that
do not, their contribution to the summation dominates all other
terms. As a result, Sn behaves very differently when the sample
path on the time interval [0, T ]has jumps from the casewhen there
is no jump. In fact, Sn converges to 1 when a jump is present, and
it converges to K p/2−1 in the absence of jumps, as formally stated
in (7). This limiting result holds for any Itô semimartingale Xt with
no need to estimate themodel parameters, and thus it is genuinely
nonparametric. It serves as the basis for separating jumps from
diffusion.

Aït-Sahalia and Jacod (2009) establish asymptotic distribution
theorems for their test statistic. From their result, it can be easily
seen that the asymptotic variance of Sn increases rapidly with both
K and p. The inflation of the variance reduces the power of the
test. Reducing the variance of the test statistic will undoubtedly
increase the power of the test, which is particularly important
when the sample size is not large. This is exactly the case when the
test statistic is applied to a small window of data to detect whether
there is any jump in that window.

We proceed with an idea of variance reduction and propose a
new test statistic. Note that the numerator of the test statistic Sn
uses only the subsequence {XiK1 : i = 0, 1, . . . , [n/K ]}. For each
ℓ = 1, . . . , K , we can construct a similar test statistic Sn,ℓ whose
numerator uses data points {X(ℓ−1+iK)1 : i = 0, 1, . . . , [n/K ] − 1},
resulting in test statistics Sn,ℓ, ℓ = 1, . . . , K , that have the same
asymptotic distribution. Therefore, a proper linear combination of
them can reduce the variance with mean unchanged and thus give
a more powerful test statistic. This approach requires the study
of the joint behavior of these test statistics under the assumption
of jumps. Rooted in our analytical studies, a new test statistic,
which is the average of those K test statistics, is proposed. We
show that this new test statistic is the optimal one among all linear
combinations of Sn,ℓ in terms of variance reduction.

In addition to detecting the presence of jumps, this paper also
contributes to detecting the locations of jumps using the newly
proposed test statistic. Our main idea is to first divide the whole
time interval [0, T ] into many non-overlapping subintervals of
equal length 2an1 with an → ∞ as n → ∞ and an1 fixed, and
then to apply thenew test statistic to each subinterval. This reduces
the problem of jump identification to a multiple comparison
problem. Using the False Discovery Rate (FDR) approach, one
can decide which subintervals contain jumps at a given level.
Therefore, the jump locations can be identified within an accuracy
of 2an1. In the identified jump intervals, we can further locate
jumps by comparing the magnitude of increments. This FDR
approach can be applied to many tests such as the ones proposed
by Barndorff-Nielsen and Shephard (2006) and Jiang and Oomen
(2008), and thus allows us to use these tests to locate the jumps.
For this reason, our proposed method is very general.

The rest of the paper is organized as follows. Section 2 in-
troduces the model and assumption. In Section 3, we construct

the new test and present its asymptotic properties. Section 4
constructs the critical region and studies its asymptotic size and
power. A new testing procedure to locate the jumps is proposed in
Section 5. In Sections 6 and 7, we present the simulation studies
and a real data application, respectively. Section 8 provides some
discussions. All proofs are presented in the Appendix.

2. Model and assumption

Consider a one-dimensional asset price process Xt on the proba-
bility space (Ω, F , (Ft)t≥0, P). We are interested in testing jumps
in the process Xt over the time interval [0, T ]. In this paper, we as-
sume that Xt is an Itô semimartingale that can be represented as

Xt = X0 +
∫ t

0

bsds+
∫ t

0

σsdWs

+
∫ t

0

∫

E

κ ◦ δ(s, x)(µ− ν)(ds, dx)

+
∫ t

0

∫

E

κ ′ ◦ δ(s, x)µ(ds, dx), (1)

where Wt is an Ft-adapted standard Brownian motion and µ is
a Poisson random measure on [0, t] × E with (E, ε) an auxiliary
measurable space on the probability space (Ω, F , (Ft)t≥0, P). The
intensity measure of µ is ν(ds, dx) = ds ⊗ λ(dx) with λ some
finite or σ -finite measure on (E, ε). The function δ(ω, t, x) is pre-
dictable, the function κ is continuous with compact support satis-
fying κ(x) = x in a neighborhood of 0, and κ ′(x) = x − κ(x). We
further assume that bt and σt areFt-measurable, with σt being an-
other Itô semimartingale

σt = σ0 +
∫ t

0

b̃sds+
∫ t

0

σ̃sdWs +
∫ t

0

σ̃ ′sdW
′
s

+
∫ t

0

∫

E

κ ◦ δ̃(s, x)(µ− ν)(ds, dx)

+
∫ t

0

∫

E

κ ′ ◦ δ̃(s, x)µ(ds, dx), (2)

whereW ′
t is another standard Brownianmotion independent ofWt

and µ, and δ̃ is a predictable function. This model was also consid-
ered in Aït-Sahalia and Jacod (2009).

Let 1Xt = Xt − Xt− be the jump size of the process X at time t .
Clearly, 1Xt = 0 when there is no jump at time t , and |1Xt | > 0
whenever there is a jump at time t . Define τ = inf{s ∈ [0, T ] :
1Xs 6= 0} to be the first jump time on the time interval [0, T ]. Then
we usually but not necessarily have τ = 0 almost surely when the
jump activity is infinite, and we have τ > 0 almost surely when
the jump activity is finite.

We introduce some notation to facilitate the presentation. Let

B(p)t =
∑

s<t

|1Xs|p and A(p)t =
∫ t

0

|σs|pds.

Suppose on the time interval [0, t] we have discrete observations
at ti = i1 for i = 0, 1, . . . , [t/1]. We define

B̂(p, 1)t =
[t/1]∑

j=1

|Xj1 − X(j−1)1|p. (3)

For each ℓ = 1, . . . , K , let

B̂(p, K1)ℓ,t =
[t/(K1)]−1∑

j=1

|X(ℓ−1+jK)1 − X(ℓ−1+(j−1)K)1|p.

Then both B̂(p, 1)t and B̂(p, K1)ℓ,t estimate B(p)t .
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Jacod (2008) proves the following convergence results:




p > 2 H⇒ B̂(p, 1)t
P−→ B(p)t ,

X is continuous H⇒
11−p/2

mp

B̂(p, 1)t
P−→ A(p)t ,

(4)

where mp = E|Z |p and Z is a standard Gaussian random variable.

The different behavior of the statistic B̂(p, 1)t , depending on
whether the process X has jumps or not, gives the theoretical
foundation for jump detection.

We define

δ′t(ω) =
{∫

κ ◦ δ(ω, t, x)λ(dx) if the integral exists

∞ otherwise.

Before presenting the main results, we make the following as-
sumption, which is similar to that in Aït-Sahalia and Jacod (2009).

Assumption 1. (a) All paths t → b̃t are locally bounded.
(b) All paths t → bt , t → σ̃t and t → σ̃ ′t are right-continuous

with left limits.
(c) All paths t → δ(ω, t, x) and t → δ̃(ω, t, x) are left-continuous

with right limits.

(d) All paths t → supx∈E
|δ(ω,t,x)|

γ (x)
and t → supx∈E

|̃δ(ω,t,x)|
γ (x)

are locally bounded, where γ is a deterministic nonnegative
function satisfying

∫
E
[γ (x)2 ∨ 1]λ(dx) <∞.

(e) All paths t → δ′t(ω) are left-continuous with right limits on
[0, τ (ω)).

(f)
∫ t

0
|σu|du > 0 a.s. for any t > 0.

Throughout the paper we consider a stochastic process Xt over
a fixed time interval [0, T ]. Thus, an application of the localization
procedure shows that if any theorems to be presented later hold
under the assumption

|bt | + |σt | + |̃bt | + |σ̃t | + |σ̃ ′t | ≤ M, δ(t, x) ≤ γ (x),

|̃δ(t, x)| ≤ γ (x), and γ (x) ≤ M
(5)

for some positive constant M , then they hold under Assumption 1
as well. Therefore, (5) is implicitly assumed to be true by Assump-
tion 1.

3. Test statistics

To simplify the notation, we will drop the dependence of the
test statistic on t whenever there is no confusion. For instance, we
write B̂(p, K1)ℓ for B̂(p, K1)ℓ,t . Based on the convergence results
in (4), Aït-Sahalia and Jacod (2009) propose the following statistic
to test for jumps:

Ŝ(p, K)1 =
B̂(p, K1)1

B̂(p, 1)
. (6)

This test statistic behaves differently for sample paths without
jumps from those with jumps. In fact, they proved that Ŝ(p, K)1
converges in probability to the variable S(p, K) given by

S(p, K) =
{
1 on the event Ω

j
t ,

K p/2−1 on the event Ωc
t ,

(7)

where Ω
j
t = {ω : Xs(ω) is discontinuous on [0, t]} and Ωc

t =
{ω : Xs(ω) is continuous on [0, t]}. Note that the event Ω

j
t means

that the model has jumps, whereas the event Ωc
t does not mean

that the model is continuous. In fact, Ωc
t could also correspond

to the case where the model has jumps but none are in the time
interval [0, t]. The test statistic Ŝ(p, K)1 enjoys nice properties. It
is invariant under the scaling of Xt , and its limiting behavior is

independent of the dynamics of the process Xt . Aït-Sahalia and
Jacod (2009) also derived the asymptotic distribution of Ŝ(p, K)1.
The asymptotic mean of Ŝ(p, K)1 is 1 when jumps are present
and is K p/2−1 when there are no jumps. Its asymptotic variance
is a complicated function of K and p that increases with both
K and p. This indicates that although larger K and larger p can
separate the asymptotic means further apart, the improvement
would very likely be masked by the inflation of the asymptotic
variance. Therefore, it is important to reduce the dependence of
the asymptotic variance on K or p, which motivated our work.

For a given K ≥ 2, there are K test statistics of the similar form:

Ŝ(p, K)ℓ =
B̂(p, K1)ℓ

B̂(p, 1)
, ℓ = 1, . . . , K . (8)

Thanks to the similarity of their mathematical forms, they have
the same asymptotic distribution. Intuitively, for finite K ,
{̂S(p, K)ℓ}Kℓ=1 should have asymptotic correlation 1. Contrary to
this intuition, the asymptotic correlation is less than 1, as formally
presented in Theorems 1 and 2. This suggests that the test statis-
tic defined in (6) can be improved by linearly combining the K test
statistics defined in (8). We thus propose a new test statistic:

Ŝ(p, K , ω) =
K∑

ℓ=1

ωℓ̂S(p, K)ℓ,

where ω = (ω1, . . . , ωK ) is the weight vector satisfying
∑K

ℓ=1

ωℓ = 1. It is critical to derive the asymptotic joint distribution of
these K test statistics Ŝ(p, K)ℓ, ℓ = 1, . . . , K . A similar technique
was used by Aït-Sahalia et al. (2005) with p = 2, but it was mainly
used for the reduction of measurement errors.

Define

D(p) =
∑

s≤t

|1Xs|p(σ 2
s− + σ 2

s ).

The following theorem gives the asymptotic joint distributions of

B̂(p, 1) and
∑K

ℓ=1 ωℓ̂B(p, K1)ℓ when jumps are present in the
sample path of Xt .

Theorem 1. Assume that Assumption 1 holds, 1 → 0, and p > 3.
Then the pair of variables

1−1/2

(
B̂(p, 1)− B(p),

K∑

ℓ=1

ωℓ̂B(p, K1)ℓ − B(p)

)

converges stably in law to a bivariate random vector (Z(p), Z(p) +∑K

ℓ=1 ωℓZ
′(p, K , ℓ)), where Z(p) and Z ′(p, K , ℓ) given by (29) in Ap-

pendixA.2 are defined on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of the orig-
inal filtered space (Ω, F , (Ft)t≥0, P) and havemean zero conditional

on F . Conditional on F , Z(p) and Z ′(p, K , ℓ) are independent, and

Z ′(p, K , ℓ) have the following conditional variance and covariance:

Ẽ

(
Z ′(p, K , ℓ1)Z

′(p, K , ℓ2)|F
)

= p2
{
K − 1

2
−

1

K
(K − |ℓ2 − ℓ1|)|ℓ2 − ℓ1|

}
D(p). (9)

Furthermore, if the processes X and σ have no common jumps, Z(p)
and Z ′(p, K , ℓ) are F -conditionally Gaussian.

Although Theorem 1 does not exclude the situation when Xt is
continuous, both B(p) and D(p) are zero in the absence of jumps.
Thus we only use Theorem 1 to derive the asymptotic distribution
of Ŝ(p, K , ω) under the assumption of jumps. Since the asymptotic
distributions are derived for arbitrary linear combinations, the
above results also give the asymptotic joint distributions of the
K + 1 random variables B̂(p, 1), B̂(p, K1)1, . . . , B̂(p, K1)K . In
view of (9), the conditional correlation between Z ′(p, K , ℓ1) and
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Z ′(p, K , ℓ2) can be small if |ℓ1 − ℓ2| is close to K/2. In particular,
when K = 2, the conditional correlation between Z ′(p, K , 1)
and Z ′(p, K , 2) is zero. Therefore, by choosing ω = (1/2, 1/2),
compared with Ŝ(p, K)1, we reduce the asymptotic variance by a
factor of 1/2. For generalK , with a proper choice ofω, the reduction
of the variance of the new test statistic Ŝ(p, K , ω) can also be
significant.

Corollary 1. Assume that the conditions of Theorem 1 hold. Then,
conditional onΩ j, 1−1/2(̂S(p, K , ω)−1) converges stably in law to a
random variable S(p, K , ω)j which, conditional on F , has mean zero
and variance

Ẽ

(
(S(p, K , ω)j)2|F

)

=
[
K − 1

2
−

K∑

i,j=1

ωiωj(1− K−1|i− j|)|i− j|
]

× p2
D(2p− 2)

B(p)2
. (10)

Moreover, if the processes X and σ have no common jumps, condi-
tional on F , S(p, K , ω)j has Gaussian distribution.

Wewould like to remark that although inmodels (1) and (2), the
processes X and σ are driven by the same Poisson randommeasure
µ, the jump behaviors of X and σ can be very different and even

independent if the functions δ and δ̃ are chosen appropriately. This

was also pointed out by Jacod (2007, Page 20). In fact, if δ and δ̃
are chosen in a way such that X and σ have independent jump
behaviors, with probability 1, X and σ have no common jumps.
Thus, it is not restrictive to exclude the common jump case in
Theorem 1 and Corollary 1.

Notice that under the assumption of jumps, the optimal weight
vectorωopt in terms ofminimizing the variance of S(p, K , ω)j is the
solution to the following quadratic optimization problem

argmax
ω

∑

i,j

ωiωj

(
1− K−1|i− j|

)
|i− j| subject to

K∑

i=1

ωi = 1.

It is not hard to show that its solution is of equal weight due
to the exchangeability of the weights—i.e., ωopt = K−11. The
corresponding variance in (10) is

(2K − 1)(K − 1)p2

6K

D(2p− 2)

B(p)2
. (11)

The optimal choice of K in terms of variance reduction is clearly
attained at K = 2.

Deriving the asymptotic joint distribution of Ŝ(p, K)ℓ, ℓ =
1, . . . , K when Xt is continuous is nontrivial. We can show that
the optimal weight vector ω under the assumption of no jumps
coincides with the optimal weight vector ωopt = K−11 under the
assumption of jumps. This is clear once we observe that due to
the similarity of the definitions of Ŝ(p, K)ℓ, ℓ = 1, . . . , K , the
asymptotic covariance of Ŝ(p, K)ℓ1 and Ŝ(p, K)ℓ2 depends only on
|ℓ1−ℓ2| for 1 ≤ ℓ1, ℓ2 ≤ K . Therefore, minimizing the asymptotic
variance of Ŝ(p, K , ω) yields ωopt = K−11. Hereinafter, we denote

by S̃(p, K) = Ŝ(p, K , ωopt).
The following theorem characterizes the asymptotic joint

distribution of K−1
∑K

ℓ=1 B̂(p, K1)ℓ and B̂(p, 1) when X is
continuous.

Theorem 2. Under Assumption 1, if 1 → 0, p ≥ 2, and X is
continuous, then the pair of variables

1−1/2

(
11−p/2̂B(p, 1)−mpA(p),

11−p/2K−1
K∑

ℓ=1

B̂(p, K1)ℓ − K p/2−1mpA(p)

)

converges stably in law to a bivariate random vector (Y (p), Y ′(p)),
which is defined on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of the original

filtered space (Ω, F , (Ft)t≥0, P). Conditional on F , (Y (p), Y ′(p)) is
Gaussian with mean zero and variance–covariance

Ẽ(Y (p)2|F ) = (m2p −m2
p)A(2p),

Ẽ((Y ′(p))2|F ) = K−2v(p, K)A(2p),

Ẽ(Y (p)Y ′(p)|F ) = ṽ(p, K)A(2p),

where ṽ(p, K) = cov(|U1|p, |U1 +
√
K − 1U2|p) and

v(p, K) = K p(m2p −m2
p)+ 2

K−1∑

ℓ=1

cov(|
√
K − ℓU1

+
√

ℓU2|p, |
√

ℓU2 +
√
K − ℓU3|p)

with mp = E|U1|p and U1,U2, and U3 being independent standard

Gaussian random variables.

Corollary 2 is a direct consequence of Theorem 2. It formally
states the asymptotic distributions of S̃(p, K) when X is continu-
ous.

Corollary 2. Assume that the conditions of Theorem 2 hold. Then,

1−1/2(̃S(p, K)−K p/2−1) converges stably in law to a randomvariable

S(p, K)c which, conditional on F , is Gaussian with mean zero and

variance

Ẽ

(
(S(p, K)c)2|F

)
= M(p, K)

A(2p)

A(p)2
, (12)

where M(p, K) = 1

m2
pK

[
K−1v(p, K) − 2K p/2ṽ(p, K) + K p−1(m2p −

m2
p)
]
, and v(p, K), ṽ(p, K), and mp are given in Theorem 2.

The test statistic Ŝ(p, K)1 in Aït-Sahalia and Jacod (2009) has
asymptotic variance

M∗(p, K)
A(2p)

A(p)
(13)

with M∗(p, K) being some constant depending only on p and K

when Xt is continuous, and it has asymptotic variance

(K − 1)p2

2

D(2p− 2)

B(p)2
(14)

when there are jumps. Comparing (11) with (14), we see that
when the sample path contains jumps, the best linear combination
reduces the variance by a factor of K+1

3K
. In particular, when K = 2,

the variance reduction is by a factor of 1/2. Under the assumption
of no jumps, the factor of variance reduction is given by 1 −
M(p, K)/M∗(p, K). Fig. 1 depicts the ratio M(p, K)/M∗(p, K) for
p = 4 and 5. Hereinafter, we focus on the following test statistic:

S̃(p, K) = Ŝ(p, K , ωopt). (15)

4. Testing for jumps

4.1. Estimation of asymptotic variance

The asymptotic variance of S̃(p, K) is a function of D(p), A(p),
and B(p), which are unknown and need to be estimated. The same
estimators as those in Aït-Sahalia and Jacod (2009) are used in this
paper. Specifically, the estimator for D(p) is defined as

D̂(p) =
1

mn1

n∑

i=1

|1n
i X |p

∑

j∈In,t (i)
(1n

j X)21{|1n
j X | ≤ α1γ },

where 1n
i X = Xi1 − X(i−1)1, α > 0, γ ∈ (0, 1/2),mn is the local
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Fig. 1. Plot of M(p, K)/M∗(p, K) against K for p = 4 (solid curve) and p = 5

(dashed curve).

window size for estimating σ 2
t , and In,t(i) = {j ∈ N : j 6= i, 1 ≤

j ≤ [t/1], |i − j| ≤ mn} is a local window of length 2mn1 → 0
around i1. A realized truncated p-th variation is used to estimate
A(p)—that is, for α > 0 and γ ∈ (0, 1/2), the estimator is defined
as

Â(p) =
11−p/2

mp

[t/1]∑

i=1

|1n
i X |p1{|1n

i
X |≤α1γ }.

The estimator B̂(p) as defined in (3) is used to estimate B(p). It has
been proved by Jacod (2008) and Aït-Sahalia and Jacod (2009) that
the above three estimators are consistent.

Let

V̂ j =
(2K − 1)(K − 1)p21

6K

D̂(2p− 2)

B̂(p)2
and

V̂ c =
1M(p, K )̂A(2p)

Â(p)2
.

(16)

The following corollary, which is a consequence of Theorems 1 and
2 and the property of stable convergence, gives the asymptotic
distribution of the standardized test statistic.

Corollary 3. Assume that Assumption 1 holds and 1 → 0. We have:

(a) If p > 3, then restricted on the set Ω j the random variable

(V̂ j)−1/2(̃S(p, K)− 1) (17)

converges stably in law to a random variable which, conditional
onF , has mean 0 and variance 1, and which is standard Gaussian
provided that the processes X and σ have no common jumps.

(b) If X is continuous and p ≥ 2, then the random variable

(V̂ c)−1/2(̃S(p, K)− K p/2−1) (18)

converges stably in law to a random variable that is standard
Gaussian conditional on F .

The beauty of the results in Corollary 3 is that they translate
composite hypotheses asymptotically into two simple hypotheses.
When there are jumps in the sample path, S̃(p, K) asymptotically
has conditional distribution N(1, V̂ j), whereas when the model
is continuous, S̃(p, K) asymptotically has conditional distribution
N(K p/2−1, V̂ c). Hence, the Neyman–Person lemma can be used to
test for jumps.

4.2. Testing existence of jumps

Throughout this section, we consider p > 3. We aim at testing
the existence of jumps in a fixed time interval [0, T ] using the

available observations Xi1, i = 0, 1, . . . , n with T = n1. Thus
the null and alternative hypotheses are, respectively,

H0 : There is no jump in the interval [0, T ],
H1 : There are jumps in the interval [0, T ].
Note that the sets under which the null and alternative hypotheses

hold are Ωc
T and Ω

j

T , which are subsets of Ω instead of subsets of
some parameter space.

For a critical value x of the above hypothesis testing problem,
the type I error is given by

αn(x) = P (̃S(p, K) ≤ x|H0),

and the power function is

βn(x) = P (̃S(p, K) ≤ x|H1).

We have the following asymptotic theorem for αn(x) and βn(x).

Theorem 3. Assume that Assumption 1 holds and the critical value

x ∈ (1, K p/2−1). Then, we have:

(a) αn(x) → 0; that is, the critical region {̃S(p, K) ≤ x} has an

asymptotic size 0.

(b) Let P(Ω
j

T ) > 0. Then, the power function satisfies βn(x) → 1 as

n→∞.

Similarly, we can show that the above asymptotic results hold
for the type I error and power function if the roles of null and
alternative hypotheses are switched.

Our new test S̃(p, K) is asymptotically more powerful than the
test Ŝ(p, K)1 by Aït-Sahalia and Jacod (2009). To understand this,
recall that if we want to compare the power of tests, we fix their
sizes at the same level. We add subscripts ‘‘FF’’ and ‘‘AJ’’ to V̂ c and
V̂ j to denote the estimated asymptotic variances of S̃(p, K) and
Ŝ(p, K)1 under H0 and H1, respectively. Then for any critical value

x, the size of S̃(p, K) is approximately Φ( x−Kp/2−1
√
V̂ c
FF

), and the size of

the Aït-Sahalia and Jacod test is approximatelyΦ( x−Kp/2−1
√
V̂ c
AJ

), where

Φ(x) is the cumulative distribution function of standard Gaussian.
If the critical value of our test S̃(p, K) is xFF ∈ (1, K p/2−1), then to
make the Aït-Sahalia and Jacod test have approximately the same

size, the critical value of Ŝ(p, K)1 should be approximately

xAJ = K p/2−1 +
{
V̂ c
AJ

V̂ c
FF

}1/2

(xFF − K p/2−1). (19)

Since we have proved in Corollary 1 that V̂ c
AJ > V̂ c

FF, it follows easily
that xAJ < xFF. Let Z be a standard Gaussian random variable. Then
the corresponding power of our new test is

P (̃S(p, K) ≤ xFF|Ω j
t) ≈ P

(
Z ≤

xFF − 1√
V̂

j

FF

)
,

and the corresponding power of the Aït-Sahalia and Jacod test is

P (̂S(p, K)1 ≤ xAJ|Ω j
t) ≈ P

(
Z ≤

xAJ − 1√
V̂

j

AJ

)
.

In view of Corollary 2, we have V̂
j

FF < V̂
j

AJ. This inequality together

with xFF > xAJ ensures that
xFF−1√

V̂
j
FF

>
xAJ−1√

V̂
j
AJ

, which indicates that

our test is asymptotically more powerful than the Aït-Sahalia and
Jacod test.

Although Theorem 3 shows that asymptotically any constant
between 1 and K p/2−1 can serve as a critical value and yield
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asymptotic size 0 and asymptotic power 1, the finite sample
performance of the test based on these critical values can be very
different. Next, we discuss how to choose the critical value in
practice.

By Corollary 3, conditional on F , the null and alternative distri-
butions of S̃(p, K) are both asymptotically Gaussian. Thus, asymp-
totically the likelihood ratio test rejects H0 whenever

Λ =
ϕ0(̃S(p, K))

ϕ1(̃S(p, K))
(20)

is small, where ϕ0(·) and ϕ1(·) are the conditional asymptotic
densities of S̃(p, K) under H0 and H1, respectively. So the critical
value can be chosen using the classical likelihood ratio test theory.
Another way to choose the critical value is to use the asymptotic
normality of the test statistic S̃(p, K) under the null hypothesis, as
in Aït-Sahalia and Jacod (2009).

An alternative approach is tominimize the sum of the probabil-
ities of type I and type II errors. Unlike other scientific hypothesis
testing problems, we do not have a strong preference here in dis-
tinguishing the null and alternative hypotheses. This is particularly
the case when the test procedure is applied to detecting the loca-
tion of possible jumps, as will be done in the next section. In this
case, the critical value is the minimizer to αn(x)+ (1− βn(x)). By
Corollary 3, asymptotically the critical value minimizes the func-
tion

g(x) = Φ

(
x− K p/2−1

√
V̂ c

)
+ Φ

(
1− x√

V̂ j

)
.

It can be shown that there exists a unique minimizer x0 of g(x),
where x0 ∈ (1, K p/2−1) and solves the equation ϕ0(x) = ϕ1(x)
with ϕ0 and ϕ1 defined in (20). Denote the corresponding rejection
region by

R = {̃S(p, K) ≤ x0}. (21)

In the simulation study and real data analysis of this paper, we will
use the rejection region defined in (21) when testing whether a
fixed time interval has jumps or not.

5. Detecting jump locations

We have discussed how to test whether a fixed time interval
contains jumps. Naturally, the next question is to locate these
jumps if there are any. Throughout this section, we assume finite
jump activity, that is, there are only finite jumps in [0, T ].

5.1. Test statistic as a process

Our idea of locating jumps is to apply our test to many small
local time intervals in this period and then decide whether these
time intervals contain jumps or not. Let the width of the local time
interval be fixed at 2W . For each t ∈ [W , T −W ], apply our new
test statistic to the data in the time interval [t−W , t+W ], resulting
in the value S̃(p, K)t . This defines a process S̃(p, K)t over the time
interval [W , T −W ]. Suppose the number of jumps NJ in [0, T ] is
finite. Denote the successive jump times by J1, J2, . . . , JNJ

. Then for
any t ∈ (Ji −W , Ji +W ), the interval [t −W , t +W ], over which
S̃(p, K)t is defined, contains the i-th jump. Define

A
j =

NJ⋃

i=1

(Ji −W , Ji +W ) , (22)

which is the union of a finite number of time intervals with equal
length 2W . Let E = {Ji − W , i = 1, . . . ,NJ} be the union of left

endpoints, and define A
c = [W , T −W ] \ (Aj ∪ E).

Corollaries 1 and 2 give the results of our test statistic S̃(p, K)t
at a fixed time point t . For t ∈ A

j, it should be approximately 1, and

Fig. 2. Test statistics S̃(p, K)t and Ŝ(p, K)1,t , with p = 4 and K = 2 as processes

of time. The price process Xt is generated from model (25), with 1 = 1 min and

Js = 0.05. There are 4 jumps in total, which are located at time points 1115, 4474,

6512, and 6941. (a) Xt in a one-month period; (b) Ŝ(p, K)t with local window size

an = 90; (c) S̃(p, K)t with local window size an = 90.

for t ∈ A
c , it should be approximately K p/2−1. Fig. 2 shows the test

statistic S̃(p, K)t as a process of time for a simulated sample path,
detailed in Section 7. In this simulation, we generate the asset price
process Xt at time points i1, i = 0, 1, . . . , n, and calculate the test

statistic S̃(p, K)i1 for each i ∈ {[W/1], . . . , n−[W/1]} using data
in the local window [i1−W , i1+W ]. It is clear that the process
S̃(p, K)i1 is hovering around two values. The standard deviation
of S̃(p, K)i1 at the state of no jumps is much larger than that at
the state with jumps. It is also clear that our new method is less
volatile than the test statistic inAït-Sahalia and Jacod (2009),which
is consistent with our theory. From Fig. 2(c), it is clear that there
are four jumps in the process, as there are four flat intervals with
values around 1. Themidpoints of these intervals are our estimated
jump locations. Even though the process S̃(p, K)t at several other
locations has a value close to one, they are not jump points, as a
jump point implies the process should be around one in an interval
with width approximately 2W .

5.2. Locating jumps using the FDR approach

Given observations Xi1, i = 0, 1, . . . , n over a fixed time
interval [0, T ], one can first construct the test statistic S̃(p, K)T
using all observations and then test whether there are jumps in
[0, T ] using the rejection region (21). If the hypothesis of jumps
cannot be rejected, one further uses the procedure described in
the previous section to locate the jumps. In practical applications,
one can apply the procedure using non-overlapping local intervals.
More specifically, we divide the time interval [0, T ] into non-
overlapping subintervals each with length 2an1 and construct
test statistic S̃(p, K)(2i−1)an1 using data in the interval [(2i −
2)an1, 2ian1] for i = 1, 2, , . . . , [n/(2an)]. Then, the sequence
of test statistics {̃S(p, K)(2i−1)an1, i = 1, 2, . . . , [n/(2an)]} are
expected to have normal distributions with different means and
standard deviations at intervals with and without jumps. Thus,
locating jumps is equivalent to a multiple comparison problem.
Since S̃(p, K)(2i−1)an1 has a smaller variance (see Fig. 1) when there
are jumps in [2(i − 1)an1, 2ian1], the null hypotheses for this
multiple-comparison problem are chosen to be:

H0i : There are jumps in the interval
(
2(i− 1)an1, 2ian1

]
,

i = 1, . . . , [n/(2an)].
For each H0i, the corresponding test statistic is S̃(p, K)(2i−1)an1,
whose null distribution is asymptotically Gaussian with mean 1
and variance
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(2K − 1)(K − 1)p21

6K

D(2p− 2)2ian1 − D(2p− 2)2(i−1)an1[
B(p)2ian1 − B(p)2(i−1)an1

]2

by Theorem 1. It is well known that controlling the size of each
individual null hypothesis will result in low power in themultiple-
comparison problem, especially when there are many hypotheses.
Thus, using the rejection point given in (21) is not realistic here.
Therefore, we propose to use the adaptive control of the False
Discovery Rate (FDR) procedure byBenjamini andHochberg (1995)
to control the type I error.

The false discovery rate is defined as E (V/R), where R is the
number of hypotheses rejected in total and V is the number
of hypotheses rejected by mistake. The following procedure is
proposed by Benjamini and Hochberg (1995) to control the FDR:

(1) Specify an allowable false discovery rate α.
(2) Estimate the total number of true null hypotheses, i.e., the

number of intervals with jumps N∗J and denote the estimated

value as N̂∗J .
(3) Calculate the p-value Pi corresponding to the null hypothesis

H0i. Rank the [n/(2an)]p-values from low to high: P(1) ≤ P(2) ≤
· · · ≤ P([n/(2an)]).

(4) Let k be the largest i for which P(i) ≤ iα/N̂∗J . Reject all H0i, i =
1, . . . , k.

In practice, N∗J is unknown and needs to be estimated. We propose

to estimate N∗J as

N̂∗J =

[n/(2an)]∑
i=1

1(Pi > c)

1− c
, (23)

where c ∈ (0, 1) is some constant, and 1(Pi > c) is a indicator
function taking a value 1 if Pi > c and taking a value 0 if
Pi ≤ c. To understand why this is an estimator of N∗J note that

among [n/(2an)] hypotheses to be tested, the P-values of true
nulls are uniformly distributed over the interval [0, 1]. For large
c , it is reasonable to assume that all P-values falling in [c, 1] are
contributed by the true null. Then theoretically, the P-value falling
in [c, 1] has density (1 − c)N∗J /[n/(2an)]. On the other hand,
empirically, the estimated density of P-values on the interval [c, 1]
is
∑[n/(2an)]

i=1 1(Pi > c)/[n/(2an)]. By matching the theoretical
density with the empirical density, we obtain the estimator
proposed above. In practical implementations, we find that the
results are not sensitive to c as long as c is not very close to 0.

6. Simulation studies

Throughout this section, the power p is fixed at 4 as it is
the smallest integer greater than 3 (required by Theorem 1).
To simulate the stochastic diffusion process, the Euler scheme
is employed. We discard the burn-in period—i.e., the first 500
data points of the whole series—to avoid the starting value effect.
More accurate simulations can be obtained by using the methods
described in Fan (2005). To ease the presentation, we use ‘‘FF’’ to
denote our new test, ‘‘AJ’’ to denote the Aït-Sahalia and Jacod test,
‘‘LM’’ to denote the Lee and Mykland (2008) test, ‘‘BNS’’ to denote
the Barndorff-Nielsen and Shephard (2006) test, and ‘‘JO’’ to denote
the Jiang and Oomen (2008) test.

6.1. Continuous diffusion process

The first model is the following continuous stochastic volatility
process, which is taken from Aït-Sahalia and Jacod (2009):

dXt/Xt = σtdWt ,

vt = σ 2
t , dvt = κ(β − vt)dt + γ v

1/2
t dBt ,

(24)

Table 1

Means and standard deviations of FF test and AJ test when data are generated from

model (24).

Frequency K = 2 K = 3 K = 4

30 s
AJ 2.0006 (0.0800) 3.0068 (0.1633) 4.0188 (0.2608)

FF 2.0020 (0.0568) 3.0042 (0.1214) 4.0059 (0.1960)

1 min
AJ 2.0094 (0.1132) 3.0029 (0.2364) 4.0111 (0.3591)

FF 2.0047 (0.0842) 3.0023 (0.1703) 3.9965 (0.2739)

2 min
AJ 1.9973 (0.1554) 2.9826 (0.3225) 3.9880 (0.5111)

FF 1.9942 (0.1127) 2.98884 (0.2357) 3.9821 (0.3827)

3 min
AJ 1.9964 (0.1917) 2.9971 (0.3928) 4.0203 (0.6109)

FF 1.9965 (0.1397) 2.9946 (0.2930) 3.9973 (0.4836)

where Wt and Bt are both Brownian motions and E[dWtdBt ] =
ρdt . We simulate 1000 sample paths of prices over a half-month(
T = 1

24

)
period with parameters β = 0.52, γ = 0.5, κ = 5, and

ρ = −0.5. The sampling frequencies are 1 = 30 s, 1 min, 2 min,
and 3 min.

In each of the 1000 simulations, for eachK = 2, 3, and4, the test
statistic Ŝ(p, K)ℓ and our new test statistic S̃(p, K) are computed
to test whether there are any jumps in the half-month interval.
We compare the samplemeans and standard deviations of Ŝ(p, K)ℓ
and S̃(p, K) across the 1000 simulations in Table 1. Although for
each fixed K there are K test statistics Ŝ(p, K)ℓ, ℓ = 1, . . . , K , the
simulation results show that they all have very similar means and
variances, as expected. Thus, only themean and standard deviation
of the first one of them are presented in Table 1. It is easy to see
that the standard deviations of our new test statistic are smaller
than those of Ŝ(p, K)ℓ, while the mean values are approximately
the same. The results are in line with our asymptotic theory.

We next check the probabilities of type I error of the AJ test and
the FF test. To better compare these two tests, we first calculate the
rejection point xFF of the FF test using (21), and then we calculate
the rejection point of the AJ test according to (19). Thus, the FF test
and the AJ test have the same type I error. Both the AJ test and the
FF test using all four values of sampling intervals 1 and different
choices of K have a probability of type I error 0, which is consistent
with our Theorem 3. As a comparison, we also list the probabilities
of type I error of the LM test, the BNS test, and the JO testwith three
different significance levels:α = 0.1, 0.01, and 0.001. The rejection
region of the LM test is calculated by using the distribution derived
in Lemma 1 of Lee and Mykland (2008), the rejection point of the
BNS test is calculated based on the asymptotic normal distribution
of the adjusted ratio jump test proposed in Section 2.2 of Barndorff-
Nielsen and Shephard (2006), and the rejection point of the JO
test is derived by using the asymptotic normal distribution of the
ratio test given in Theorem 2.1 of their paper. For all three tests, if
there are any parameters that need to be estimated, we follow the
suggestions of the original papers to estimate them. In all cases,
the LM test, BNS test, and JO test have higher probabilities of type
I error, which, as expected, are close to the size of the test.

6.2. Diffusion process with Poisson jumps

The model we use to generate the data is

dXt/Xt = σtdWt + JtdNt ,

vt = σ 2
t , dvt = κ(β − vt)dt + γ v

1/2
t dBt ,

(25)

where Nt is a Poisson process with intensity λ = 12 × 4, Jt
measures the jump size, andWt and Bt are both Brownianmotions
with E[dWtdBt ] = ρdt . This model is similar to that in Aït-Sahalia
and Jacod (2009). In the simulations, the parameters are chosen to
be the same as before; that is, β1/2 = 0.5, γ = 0.5, κ = 5, and
ρ = −0.5. The jump size Jt is generated as Jt = 0.01β1/2U , where
U is a random variable uniformly distributed over the interval
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Table 2

Probabilities of type I errors of FF test, AJ test, LM test, and BNS test when data are generated from model (24).

Frequency K = 2 K = 3 K = 4 α = 0.1 α = 0.01 α = 0.001

30 s

AJ 0 0 0 BNS 0.090 0.014 0

FF 0 0 0 LM 0.121 0.015 0.001

JO 0.219 0.024 0.002

1 min

AJ 0 0 0 BNS 0.106 0.010 0.001

FF 0 0 0 LM 0.110 0.010 0

JO 0.219 0.026 0.002

2 min

AJ 0 0 0 BNS 0.111 0.005 0.001

FF 0 0 0 LM 0.144 0.011 0.002

JO 0.210 0.020 0.003

3 min

AJ 0 0 0 BNS 0.120 0.010 0

FF 0 0 0 LM 0.145 0.012 0.002

JO 0.219 0.021 0.001

Table 3

Means and standard deviations of FF test and AJ test when data are generated from

model (25).

Frequency K = 2 K = 3 K = 4

30 s
AJ 1.1616 (0.1932) 1.3379 (0.3392) 1.5006 (0.4886)

FF 1.1639 (0.1691) 1.3314 (0.3158) 1.4952 (0.4553)

1 min
AJ 1.2736 (0.2486) 1.5225 (0.4259) 1.8003 (0.6268)

FF 1.2687 (0.2182) 1.5271 (0.3957) 1.7886 (0.5752)

2 min
AJ 1.3921 (0.2944) 1.7825 (0.5425) 2.191 (0.7852)

FF 1.3872 (0.2496) 1.7832 (0.4764) 2.1747 (0.7047)

3 min
AJ 1.4896 (0.3431) 1.9796 (0.6188) 2.4758 (0.9101)

FF 1.4846 (0.2815) 1.9718 (0.5391) 2.4617 (0.8057)

[−2, 1] ∪ [1, 2]. Thus, the jump size is at most 0.02 times the
average volatility level and at least 0.01 times the average volatility
level. Since we consider a half-month period (T = 1/24) and
λ = 12× 4, on average there are 2 jumps in this period.

With the simulated sample paths, we first compare the means
and standard deviations of S̃(p, K) to those of Ŝ(p, K)ℓ. Due to the
similarities of Ŝ(p, K)ℓ for ℓ = 1, . . . , K , only the results of the first
one are presented. Table 2 summarizes the comparison results. The
conclusions are the same as before: our new test statistic has the
same mean values but smaller standard deviations.

To further compare the test statistics, we calculate the proba-
bilities of type II errors of both methods with the type I error fixed
at the same level. The rejection points of the FF test are calculated
by using (21). The rejection point of the AJ test is calculated by us-
ing (19) to ensure that it has approximately the same type I er-
ror. The comparison results are shown in Table 4. We see that the
probability of type II error increases when the data are sampled
less frequently, as expected. Table 4 also shows that our new test
statistic outperforms the AJ test statistic in all cases. The probabil-
ities of type II error of the LM, BNS, and JO tests with significance
level α = 0.1, 0.01, and 0.001 are listed in the last three columns
of Table 4. Recall that with critical values xAJ and xFF, the AJ and
the FF tests both have zero probability of type I error (see Table 2).
To fairly compare the type II error, all tests should be evaluated at
a significance level smaller than α = 0.001. In fact, as shown in
Tables 2 and 3, although the LM test has the smallest probabilities
of type II errors, it hasmuch larger probabilities of type I errors (see
Table 2) than the FF test. To better compare the type II error of the
FF test with the LM test, we choose the critical value of the FF test
in a way such that the FF test has the same type I error as that of
the LM test when α = 0.1. That is, we fix the type I error of the
FF test at levels 0.121, 0.110, 0.144 and 0.145 for 1 = 30 s, 1 min,
2 min, and 3 min, respectively. These corresponding type II errors
are listed in the table and marked as FF*. So we only need to com-
pare FF* with the LM test when α = 0.1 for type II errors. It can be
seen that with the same type I error, our FF test has the smallest
type II errors when 1 = 30 s and 1 min, and the LM test has the
smallest type II errors when the sampling frequency is lower.

6.3. Diffusion process with Cauchy jumps

In this subsection we consider a diffusion process with Cauchy
jumps. We generate data from the following model

dXt/Xt = σtdWt + JdYt , (26)

where σt is simulated in the same way as that in Section 6.2, J > 0
measures the size of the jumps relative to the volatility level, and
Yt is a Cauchy process with characteristic function E exp(iuYt) =
exp{−t|u|/2}. Note that the abovemodel has infinite jump activity.
We consider a half month period (T = 1/24) and set J = 0.8. To
save space, we omit the means and standard deviations of the AJ
and FF tests. The probabilities of type II errors for the five tests are
summarized in Table 5. As discussed in the last section, in order
to make the comparison of the probabilities of type II errors fair,
the LM, BNS and JO tests should be evaluated at a significance level
smaller thanα = 0.001. Tomake the comparisonmore precise, we
also calculate the type II errors of the FF test when its type I errors
are fixed at the same levels as those for the LM test with α = 0.1
(see Table 2). These type II errors are marked as FF* in the table.
Thus, we only need to compare FF* with the LM test with α = 0.1.
It can be seen that in this setting, the FF test outperforms the BNS
and JO tests, and the LM test has the best performance.

We would like to note that the LM test is derived under the as-
sumption that under the null hypothesis, the returns are normally
distributed. Such an assumption is hard to validate for data even at
daily frequency. All of our simulations fall in such a scenario, which
gives advantages to the LM test. On the other hand, the AJ and FF
tests do not require such an assumption.

6.4. Estimation of jump locations

In this section, the procedure proposed in Section 5 is used
to identify the locations of jumps in a one-month (T = 1/12)
period. The data are simulated from model (25) with parameter
λ = 12 × 21—i.e., there is one jump per day on average. The
same as that in the previous section, the jump size Jt is generated
as Jt = 0.01β1/2U with U being a random variable uniformly
distributed over [−2,−1] ∪ [1, 2]. We study the performance of
our new test procedure with three different sampling frequencies
1 = 1 min, 3 min, and 5 min.

We use a two-step method to identify the exact location of
jumps. In the first step, we divide the one-month period intomany
non-overlapping intervals with equal length, and then identify the
jump intervals using the FDR approach discussed in Section 6. In
the second step, for each identified jump interval we locate the
jumps by comparing themagnitude of the increment Xi1−X(i−1)1.
More specifically, in the first step we choose the window size
2W = 2an1 with an being a positive integer, and we divide the
one-month period into [n/(2an)] non-overlapping intervals with
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Table 4

Probabilities of type II errors of FF test, AJ test, LM test, and BNS test when data are generated from model (25). FF* represents the FF test with type I errors fixed at levels

0.121, 0.110, 0.144, and 0.145 for 1 = 30 s, 1 min, 2 min, and 3 min, respectively.

Frequency K = 2 K = 3 K = 4 α = 0.1 α = 0.01 α = 0.001

30 s

AJ 0.456 0.565 0.653 BNS 0.103 0.262 0.458

FF 0.095 0.11 0.125 LM 0.015 0.02 0.021

FF* 0 0 0 JO 0.038 0.063 0.084

1 min

AJ 0.669 0.751 0.825 BNS 0.282 0.6 0.792

FF 0.265 0.302 0.333 LM 0.025 0.029 0.032

FF* 0.010 0.005 0.003 JO 0.084 0.149 0.206

2 min

AJ 0.816 0.891 0.915 BNS 0.566 0.851 0.951

FF 0.637 0.692 0.718 LM 0.019 0.054 0.069

FF* 0.038 0.042 0.048 JO 0.15 0.301 0.396

3 min

AJ 0.874 0.926 0.956 BNS 0.671 0.909 0.981

FF 0.637 0.692 0.718 LM 0.042 0.093 0.124

FF* 0.115 0.110 0.111 JO 0.262 0.437 0.561

Table 5

Probabilities of type II errors of FF test, AJ test, LM test, and BNS test when data are generated from model (26). FF* represents the FF test with type I errors fixed at levels

0.121, 0.110, 0.144, and 0.145 for 1 = 30 s, 1 min, 2 min, and 3 min, respectively.

Frequency K = 2 K = 3 K = 4 α = 0.1 α = 0.01 α = 0.001

30 s

AJ 0.280 0.312 0.359 BNS 0.041 0.073 0.106

FF 0.148 0.159 0.167 LM 0 0.003 0.008

FF* 0.015 0.020 0.017 JO 0.058 0.104 0.122

1 min

AJ 0.380 0.437 0.453 BNS 0.069 0.137 0.174

FF 0.210 0.219 0.232 LM 0.009 0.015 0.028

FF* 0.045 0.047 0.041 JO 0.089 0.147 0.174

2 min

AJ 0.506 0.533 0.550 BNS 0.117 0.200 0.250

FF 0.281 0.284 0.293 LM 0.020 0.048 0.071

FF* 0.085 0.081 0.076 JO 0.129 0.199 0.236

3 min

AJ 0.537 0.571 0.604 BNS 0.153 0.248 0.310

FF 0.312 0.325 0.333 LM 0.033 0.082 0.118

FF* 0.126 0.121 0.116 JO 0.148 0.243 0.283

equal length. In each of these intervals, our new test statistic FF and
the test statistic AJ are applied using the data points in that interval.
Section 6 shows that the variance of either test statistic is much
smaller at the jump locations than at the continuous time points.
Thus, the null hypothesis corresponding to the i-th time interval is
chosen to be

H0,i : There are jumps in i-th time interval.

If the i-th null hypothesis is rejected, we conclude that there is no
jump in the i-th interval. The procedure introduced in Section 6
is used to control the FDR of this multiple-comparison problem.
The FDR is controlled at 5% and the number of true hypotheses is
estimated by using (23) with c = 0.05. Practical implementation
suggests that the result is not sensitive to c as long as c is not very
close to 0. Since the local window size an chosen in the first step is
usually small, it is reasonable to assume that with high probability
each identified jump interval has at most one jump. Thus in the
second step we locate the jump in each interval by identifying the
largest increment |Xi1 − X(i−1)1| in that interval. The BNS and JO
tests are applied in the same way to locate jumps.

Since we are interested in classifying between ‘‘jump’’ and
‘‘non-jump’’, our problem is essentially a two-class classifica-
tion problem. Thus, we borrow measures from the two-class
classification—that is, sensitivity and specificity—to evaluate our
test procedure. These two measures are defined as

Sensitivity =
# of correctly identified jumps by a test

# of true jumps in total
,

Specificity =
# of correctly identified non-jumps by a test

# of true non-jumps in total
.

Although larger values of these two measures indicate a better
performance of a test, in practice there are tradeoffs between
sensitivity and specificity. To understand this, just imagine that if a

test rejects all null hypotheses, then the sensitivity defined above
will be 1, but the specificity defined above will be 0. On the other
hand, if a test fails to reject any null hypothesis, then the sensitivity
is 0 and the specificity is 1. So to compare different tests, we need
to combine the results of sensitivity and specificity.

Specificity for the LM test is different from the specificity for
other tests. To understand this, notice that the FF, AJ, BNS, and
JO tests are all defined over local windows with 2an observations,
while the LM test is defined over each sampling interval [i1, (i +
1)1]. If according to the FF, AJ, or BNS test, there is no jump
in a local window, then none of the sampling intervals in that
local window contain jumps. Thus, the specificities for these four
tests are defined by considering each local window as a test unit,
while the specificity for the LM test is defined by considering each
sampling interval as a test unit. To make it more comparable, we
redefine the specificity of the LM test using each local window as a
unit aswell. That is, if any time point in a local window is identified
by the LM test as a jump time point, then the whole interval is
identified by the LM test as a jump interval. Thus, the specificity
we use in this paper takes the form

Specificity

=
# of correctly identified non-jump intervals by a test

# of true non-jump intervals in total
.

Since sensitivity and specificity usually trade off between each
other, we report the weighted averages of sensitivities and
specificities. For window sizes 2an = 30, 60, 90, and 120, the
sensitivities and specificities of the test statistics are computed and
the weighted averages of them are calculated. To save space, we
only list the results when the weight for sensitivity is fixed at 0.5.
See Tables 6–9. The significance level α for the LM test is chosen to
be 0.001, as explained before.

It can be seen from Table 6 that the weighted averages of
sensitivity and specificity of the FF test are larger than other tests in
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Table 6

Weighted averages of means of sensitivities and specificities when 1 = 1min over

1000 simulations. The weight for sensitivity is 0.5, and the data are generated from

model (25) with λ = 12× 21.

K = 2 K = 4 K = 6 BNS JO

an = 15 AJ 0.5069 0.559 0.5557 0.547 0.6075

FF 0.5930 0.6179 0.6078

an = 30 AJ 0.5383 0.5893 0.582 0.5595 0.5945

FF 0.6286 0.6090 0.5884

an = 45 AJ 0.5634 0.5952 0.5811 0.5595 0.5842

FF 0.6209 0.5633 0.543

an = 60 AJ 0.5872 0.5885 0.57 0.5562 0.5744

FF 0.5981 0.535 0.5194

LM 0.5897

Table 7

Weighted averages of means of sensitivities and specificities when 1 = 3min over

1000 simulations. The weight for sensitivity is 0.5, and the data are generated from

model (25) with λ = 12× 21.

K = 2 K = 4 K = 6 BNS JO

an = 15 AJ 0.3308 0.3939 0.3958 0.5049 0.516

FF 0.4196 0.4660 0.4658

an = 30 AJ 0.3542 0.4282 0.4354 0.504 0.5093

FF 0.4706 0.4976 0.4964

an = 45 AJ 0.3892 0.4636 0.4669 0.5034 0.5062

FF 0.4936 0.5025 0.5014

an = 60 AJ 0.4154 0.4782 0.483 0.5032 0.5043

FF 0.5002 0.5015 0.5008

LM 0.5043

Table 8

Weighted averages of means of sensitivities and specificities when 1 = 5min over

1000 simulations. The weight for sensitivity is 0.5, and the data are generated from

model (25) with λ = 12× 21.

K = 2 K = 4 K = 6 BNS JO

an = 15 AJ 0.2645 0.3392 0.3438 0.5017 0.502

FF 0.3635 0.4221 0.4283

an = 30 AJ 0.3002 0.3897 0.4009 0.5005 0.5001

FF 0.4299 0.4767 0.4794

an = 45 AJ 0.343 0.4375 0.4451 0.4996 0.4992

FF 0.4669 0.4954 0.4971

an = 60 AJ 0.3714 0.462 0.4681 0.4989 0.4987

FF 0.4797 0.4988 0.4993

LM 0.5013

most cases when K = 2. Unreported simulation results show that
the FF and AJ tests have much higher sensitivities than other tests,
while the LM test usually has low sensitivity andhigh specificity. To
better illustrate the idea, we plot the weighted averages of the FF,
AJ, and LM tests when an = 30 in Fig. 3. The x-axis represents the
weight for sensitivity, ranging from 0 to 1. It can be seen that most
of the time, the FF test has largerweighted averages than either the
AJ test or LM test. The LM test has almost 1 specificity and less than
0.2 sensitivity, indicating that the LM test classifies most intervals
as non-jump intervals.

When the sampling frequency 1 becomes 3 min, all tests have
worse performance. In fact, as shown in Table 7, the weighted
averages become smaller than those in Table 6. Note that for LM,
BNS, and JO tests, their weighted averages are close to 0.5. After

Fig. 3. Mean of weighted averages of sensitivity and specificity for FF, AJ, and LM

tests over 1000 simulations when 1 = 1 min and an = 30. The x-axis represents

theweight for sensitivity. The data are generated frommodel (25)withλ = 12×21.

Fig. 4. Mean of weighted averages of sensitivity and specificity for FF, AJ, and LM

tests over 1000 simulations when 1 = 3 min and an = 30. The x-axis represents

theweight for sensitivity. The data are generated frommodel (25)withλ = 12×21.

inspecting the simulation results, we found that the LM, BNS, and
JO tests classify almost all intervals as non-jump intervals, resulting
in 1 specificity and 0 sensitivity. This can be confirmed by Fig. 4,
which shows the weighted averages of the FF, AJ, and LM tests as
a function of weights when an = 30. The same as before, the x-
axis represents the weight for sensitivity. It can be seen that the FF
and AJ tests have much higher sensitivities. And most of the time,
the FF test has larger weighted averages than the other two tests.
The BNS and JO tests perform very similarly to the LM test in this
setting. When 1 = 5 min, the results are very similar to the ones
for 1 = 3 min.

6.5. Impact of microstructure noise

In this subsection, we compare the performance of the AJ, FF,
LM, BNS, and JO testswhenmarketmicrostructure noise is present.
The underlying asset price process is generated from (25) over
a one-month period (T = 1/12), and the observed asset price
process is generated as

X∗t = Xt + εt , (27)

where εt ∼i.i.d. N(0, σ 2
0 β) are the market microstructure noises

and β is defined in (25) representing the mean volatility level.
Three different noise levels are considered: small (σ0 = 0.01%),
medium (σ0 = 0.1%), and large (σ0 = 1%). Due to the space limit,
we only present the resultswhen the localwindow size is 2an = 30
and1 = 1minute. The comparison results can be found in Table 9.
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Table 9

Means of sensitivities and specificities of different methods when small, medium, and large microstructure noises are presented. The local window size is 2an = 30, and the

sampling frequency 1 = 1 min.

an = 15 Sensitivity Specificity

K = 2 K = 4 K = 6 K = 2 K = 4 K = 6

Small

AJ 0.7404 0.628 0.5933 0.2568 0.4693 0.4946

FF 0.6275 0.4854 0.4451 0.5282 0.7126 0.7304

BNS 0.1044 0.9971

LM 0.1769 1

JO 0.2356 0.9749

Medium

AJ 0.7389 0.6498 0.6147 0.152 0.3423 0.3845

FF 0.6698 0.5473 0.5002 0.3175 0.5355 0.5842

BNS 0.0004 0.996

LM 0.1218 1

JO 0.2 0.9776

Large

AJ 0.0582 0.0173 0.011 0.5357 0.8685 0.9083

FF 0.0121 0.0009 0.0006 0.9114 0.995 0.996

BNS 0.0017 0.9964

LM 0 1

JO 0.0021 0.9968

Fig. 5. Top panel: stock price data of Microsoft Corporation from May 1, 2007 to

May 31, 2007 with 1-min frequency. Bottom panel: S̃(p, K)t as a process of time

with 2an = 78.

With large noise, almost all tests fail to identify any jumps. For
small and moderate noise levels, the LM, BNS, and JO tests tend to
miss most of the true jumps and thus have low sensitivities, while
the FF and AJ tests have much higher sensitivities.

7. Data analysis

We apply our new test to the high-frequency stock price data
of Microsoft Corporation from May 1, 2007 to May 31, 2007. The
sampling frequency is chosen to be 1 min. The total sample size is
8591. We first apply our new test with K = 2 to the entire data
set, and the value of our new test statistic is 1.195. The rejection
region of the null hypothesis that there are no jumps in this one-
month period is obtained by using (21), and the value of x0 is
1.244. Thus, the null hypothesis is rejected. We then locate the
jumps. To this end, we calculate our new test S̃(p, K)t at each
data point with indices in {an, an + 1, . . . , 8591 − an}. Jumps
occurring when market closes and opens are not very interesting.
To exclude these jumps, we choose the local window size 2an =
78, that is, there are roughly 5 local windows per day for the
FF test. As discussed in Section 5, if there is no microstructure
noise the process S̃(p, K)t should hover around two values 1 and
2 with some flat regions corresponding to the jumps. Due to the
influence of themicrostructure noise, the sample path of S̃(p, K)t is
a little bit wiggling. To avoid the influence of the noise, we smooth

the process S̃(p, K)t using the wavelet method. Fig. 5 shows the

smoothed curve of S̃(p, K)t as a process of time. We see that there
are a few flat regions in the plot that may indicate jump intervals.
However, due to themarketmicrostructure noise in the real data, it

Table 10

Identified time periods with jumps using the stock price data of Microsoft

Corporation from May 1, 2007 to May 31, 2007 with 1-min frequency.

5/1/2007 10:52:55

5/2/2007 9:38:57

5/2/2007 14:37:57

5/4/2007 9:39:58

5/4/2007 13:41:57

5/11/2007 9:52:59

5/14/2007 10:50:58

5/15/2007 10:02:59

5/17/2007 15:34:57

5/30/2007 13:59:58

5/31/2007 13:30:57

is still somewhat hard to inspect which time intervals have jumps
by solely looking at the plot. Thus,we further divide the one-month
period into many small non-overlapping time intervals with equal
length 2an = 78. The FDR procedure is employed to identify the
intervals with jumps with false discovery rate controlled at 5%
level. Among the 110 time periods, 11 are detected with jumps,
and the corresponding jump locations are listed in Table 10. We
see that most of these identified intervals by the FDR approach
correspond to a flat region in the plot of S̃(p, K)t , which is in line
with our theory.

8. Discussions

We have observed that several nonparametric test statistics
similar to the one in Aït-Sahalia and Jacod (2009) can be con-
structed to detect whether a continuous-time process has a con-
tinuous sample path or not.We have derived their asymptotic joint
distribution, which shows that they are not highly correlated. As
a consequence, we have proposed to linearly combine these test
statistics to form a new one that has the same asymptotic proper-
ties as the original ones but with smaller variance. We have given
explicitly the optimalweights. The critical region for testing the ex-
istence of jumps in a fixed time period is constructed by minimiz-
ing the summation of type I and type II errors. A new test procedure
based on a test process, which is transformed from the original as-
set price process by applying the new test locally over the time, is
proposed. This test process concentrates around two known con-
stants indicating whether a jump occurs at a time point. Thus, the
problem of jump identification becomes a multiple-comparison
problem. The FDR procedure has been proposed to control the type
I error. Simulation studies and a real data application have justified
the theoretical results and further demonstrated the performance
of our new test method.
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Appendix. Proofs

A.1. A general result

Before proving Theorem 1, we first prove a more general result.
Let n be the number of observations in the time interval [0, t].
Define

V n(f )t =
n∑

i=1

f (1n
i X),

V
n

ℓ+1(f )t =
[n/K ]∑

j=1

f (X(ℓ+jK)1 − X(ℓ+(j−1)K)1),

for ℓ = 0, . . . , K − 1, and V (f )t =
∑

s≤t f (1Xs). Consider an

auxiliary space (Ω ′, F
′, P

′)which supports the following variables
and processes:

• a sequence of uniform random variables on [0, 1] denoted by
(κq);

• 3K sequences of i.i.d. standard Gaussian variables denoted by
(Ūq,−K+1), (Ūq,−K+2), . . . , (Ūq,2K−1); another two sequences of
i.i.d. standard Gaussian variables denoted by (Uq) and (U ′q);

• a sequence of uniform random variables on the finite set
{0, 1, . . . , K − 1} denoted by (Lq);

• three standard Brownian motionsW
1
,W

2
, andW

3
;

and all these processes or variables aremutually independent. Next
define Ω̃ = Ω × Ω ′, F̃ = F ⊗ F

′, P̃ = P ⊗ P
′. Extend the

variables Xt , bt , . . . defined onΩ andW
1
,W

2
,W

3
,Uq, . . . defined

on Ω ′ to the product space Ω̃ . For simplicity, we use the same
notations to denote these variables. Hereinafter we write Ẽ for the
expectation with respect to P̃. Let (Sq)q≥1 be the successive jump

times ofX , which are stopping times. Define F̃t as the smallest right
continuous filtration of F̃ containing the filtration (Ft), and with

respect to F̃t , the processes W
1

t ,W
2

t and W
3

t are adapted, and all

random variables and processes defined above are F̃Sq-measurable

for all q. Therefore, we have an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of the
original space (Ω, F , (F )t≥0, P). Then, the following results hold

for V n(f )t , V
n

ℓ(f )t , ℓ = 1, . . . , K , and V (f )t .

Theorem 4. Let f be C2 with f (0) = f ′(0) = f ′′(0) = 0.
Given Assumption 1, the following multivariate process
(

1
√

1
(V n(f )t − V (f )1[t/1]),

1
√

1
(V

n

1(f )t − V (f )K1[n/K ]),

. . . ,
1
√

1
(V

n

K (f )t − V (f )(K [n/K ]+(K−1))1)

)

converges stably in law to the process (Z(f ′)t , Z(f ′)t + Z ′1(f
′)t , . . . ,

Z(f ′)t + Z ′K (f ′)t), where

Z(f )t =
∑

q:Sq≤t

f (1XSq)Rq and

Z ′ℓ(f )t =
∑

q:Sq≤t

f (1XSq)(R−(q, ℓ− 1)+ R+(q, ℓ− 1))

with Rq, R−(q, ℓ− 1) and R+(q, ℓ− 1) defined in the proof below.

Proof. This proof, which has two steps, is an extension of the proof
of Theorem 8 in Aït-Sahalia and Jacod (2009). First, we prove the
results for a special class of f , and then we extend the results to a
more general function f .

Step 1. Assume that f vanishes on [−2Kε, 2Kε] for some ε >
0. Let Sq be the successive jump times of the Poisson process
µ([0, t] × {x : γ (x) > ε}). Let 1XSq be the size of the q-th jump,
and set

X(ε)t = Xt −
∑

{q:Sq≤t}
1XSq .

Define Ωn(t, ε) to be the set of all ω such that each interval
[0, t] ∩ (i1, (i+ 2K − 1)1] contains at most one Sq(ω), |X(ε)i1 −
X(ε)(i−1)1| ≤ 2ε for all i ≤ t/1, the first jump time S1(ω) > K1,
and |X(ε)i1 − X(ε)(i−2K+1)1| ≤ 2ε for all 2K − 1 ≤ i ≤ t/1. Next,
for each q, on the set {(iK + j)1 < Sq ≤ (iK + j + 1)1} for i ≥ 1
and 0 ≤ j < K , define

L(n, q) = j and M(n, q) = Sq/1− (iK + j).

We further define

α−(n, q) =
1
√

1
(WSq −W(iK+j)1),

α+(n, q) =
1
√

1
(W(iK+j+1)1 −WSq),

β−(n, q, ℓ) =
1
√

1
(W(iK+j)1 −W(iK+ℓ−K1{ℓ>j})1),

β+(n, q, ℓ) =
1
√

1
(W(iK+ℓ+K1{ℓ≤j})1 −W(iK+j+1)1),

where 0 ≤ ℓ ≤ K−1. For the process X(ε)t , define the increments

R−(n, q, ℓ) = X(ε)(iK+j)1 − X(ε)(iK+ℓ−K1{ℓ>j})1 and

R+(n, q, ℓ) = X(ε)(iK+ℓ+K1{ℓ≤j})1 − X(ε)(iK+j+1)1

with 0 ≤ ℓ ≤ K − 1, and

Rn
q = 1n

iK+j+1X(ε) = X(ε)(iK+j+1)1 − X(ε)(iK+j)1.

Finally, for each ℓ = 0, . . . , K − 1 we define

Rq =
√

κqUqσSq− +
√
1− κqU

′
qσSq ,

R′
n

q,ℓ = Rn
q + R−(n, q, ℓ)+ R+(n, q, ℓ),

R−(q, ℓ) =
Lq∑

l=ℓ−K1{ℓ>Lq}
Ūq,lσSq− ,

R+(q, ℓ) =
ℓ+K1{ℓ≤Lq}∑

l=Lq+1

Ūq,lσSq .

Using a similar idea as that in Aït-Sahalia and Jacod (2009)—that
is, extending the proof of Lemma 6.2 of Jacod and Protter (1998)—
we obtain
(
L(n, q),M(n, q), α−(n, q), α+(n, q), β−(n, q, 0),

β+(n, q, 0), . . . , β−(n, q, ℓ), β+(n, q, ℓ), . . . , β−(n, q, K − 1),

β+(n, q, K − 1)
)
q≥1

L−(s)−→
(
Lq, κq,

√
κqUq,

√
1− κqU

′
q,

Lq∑

l=0

Ūq,l,

K∑

l=Lq+1

Ūq,l, . . . ,

Lq∑

l=ℓ−K1{Lq<ℓ}
Ūq,l,

ℓ+K1{Lq≥ℓ}∑

l=Lq+1

Ūq,l, . . . ,
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Lq∑

l=K1{Lq≥K−1}−1

Ūq,l,

K−1+K{Lq≥K−1}∑

l=Lq+1

Ūq,l

)

q≥1

,

where
L−(s)−→ denotes the stable convergence in law. The above result

yields

1
√

1

(
Rn
q, R−(n, q, 1), R+(n, q, 1), . . . ,

R−(n, q, K), R+(n, q, K)

)
q≥1

L−(s)−→
(
Rq, R−(q, 1), R+(q, 1), . . . , R−(q, K), R+(q, K)

)
q≥1

. (28)

Since f (x) = 0 for |x| ≤ 2Kε, we obtain that on the set Ωn(t, ε)
and for all s ≤ t ,

V n(f )s − V (f )1[s/1] =
∑

q,Sq≤1[s/1]

[
f (1XSq + Rn

q)− f (1XSq)
]

=
∑

q,Sq≤1[s/1]
f ′(1XSq + R̃n

q)R
n
q,

where R̃n
q is between1XSq and1XSq+Rn

q . Similarly, it can be shown
that

V
n

ℓ(f )s − V (f )K1[s/(K1)]+(ℓ−1)1

=
∑

q,Sq≤1[s/K1]+(ℓ−1)1

f ′(1XSq + R̃′
n

q,(ℓ−1))R
′n
q,(ℓ−1),

where R̃′
n

q,ℓ is between 1XSq and 1XSq +R′nq,ℓ. Since R
n
q, R−(n, q, ℓ)

and R+(n, q, ℓ) converge to 0 for all ℓ = 0, . . . , K − 1, we have R̃n
q

and R̃′
n

q,ℓ also converging to 0 and Ωn(t, ε) → Ω . The continuity

of f ′ together with (28) leads to the results in Theorem 4.
Step 2. For the general case, the idea of the proof is the same as

that in Aït-Sahalia and Jacod (2009).
Combining Steps 1 an 2 above yields the stable convergence

results in Theorem 4. �

A.2. Proof of Theorem 1

The proof in Theorem 4 applied with the function f (x) = |x|p
yields the stable convergence in law of the process
(

1
√

1

[̂
B(p, 1)t − B(p)1[t/1]

]
,

1
√

1

K∑

ℓ=1

aℓ

[̂
B(p, K1)ℓ,t − B(p)K1[t/K1]+(ℓ−1)1

])

to
(
Z(f ′)t , Z(f ′)t +

∑K

j=1 ajZ
′
j (f

′)t

)
with f ′(x) = p|x|p−1sgn(x).

Hence, if we let

Z(p)t = Z(f ′)t and Z ′(p, K , ℓ)t = Z ′ℓ(f
′)t (29)

with Z(f ′)t and Z ′(p, K , ℓ)t defined in Theorem 4, then

Ẽ(Z(p)2t |F ) =
1

2
p2
∑

s≤t

|1Xs|2p−2(σ 2
s− + σ 2

s ).

It has been proved in Aït-Sahalia and Jacod (2009) that for any
positive integer K ,

[
B(p)t − B(p)K1[t/K1]+(ℓ−1)1

]
/
√

1
P−→ 0.

Then, the convergence results in Theorem 1 are proved.
We next calculate the variance and covariance of Z ′(p, K , ℓ)t .

Note that for q1 < q2, any pairs of random vectors (R−(q1, ·),
R+(q1, ·)) and (R−(q2, ·), R+(q2, ·)) are independent, regardless of

the value of ℓ. Thus, we only need to consider the correlation
between R−(q, ·) and R+(q, ·) for a fixed q. For ℓ1 ≤ ℓ2,

Ẽ(R−(q, ℓ1)R−(q, ℓ2)|F )

= Ẽ

[
Lq − (ℓ1 − K1{Lq < ℓ1}) ∨ (ℓ2 − K1{Lq < ℓ2})|F

]
σ 2
Sq−

=
{
K − 1

2
−

1

K
[K − (ℓ2 − ℓ1)](ℓ2 − ℓ1)

}
σ 2
Sq−.

Similarly, we have

Ẽ(R+(q, ℓ1)R+(q, ℓ2)|F )

=
{
K − 1

2
−

1

K
[K − (ℓ2 − ℓ1)](ℓ2 − ℓ1)

}
σ 2
Sq

.

Moreover, for any 0 ≤ ℓ1, ℓ2 ≤ K − 1,

Ẽ(R−(q, ℓ1)R+(q, ℓ2)|F ) = 0.

From the above three equations, we deduce that for any ℓ1 ≤ ℓ2,

Ẽ(Z ′(p, K , ℓ1)tZ
′(p, K , ℓ2)t |F )

=
∑

q:Sq≤t

f (1XSq)
2
Ẽ(R−(q, ℓ1 − 1)R−(q, ℓ2 − 1)|F )

+
∑

q:Sq≤t

f (1XSq)
2
Ẽ(R+(q, ℓ1 − 1)R+(q, ℓ2 − 1)|F )

= p2
{
K − 1

2
−

1

K
(K − ℓ2 + ℓ1)(ℓ2 − ℓ1)

}
D(p)t .

This completes the proof. �

A.3. Proof of Corollary 1

This is similar to the proof of Theorem 3 in Aït-Sahalia and Jacod
(2009). �

A.4. Proof of Theorem 2

Consider the 2-dimensional function f = (f1, f2) with f1(x1,
. . . , xK ) = |x1 + · · · + xK |p and f2(x1, . . . , xK ) = |x1|p. Write
ρ⊗K

σ (f ) =
∫
f (x)ρ⊗K

σ (dx) with ρ⊗K
σ the K -fold tensor product of

the law N(0, σ 2). Define

V ′(f , K , 1)t =
n−K+1∑

i=1

f (1n
i X/
√

1, . . . , 1n
i+K−1X/

√
1), (30)

where 1n
i X = Xi1 − X(i−1)1. By Theorem 7.1 of Jacod (2007), the

2-dimensional processes

1
√

1

(
1V ′(f , K , 1)t −

∫ t

0

ρ⊗K
σu

(f )du

)
(31)

converge stably in law to a continuous process V ′(f , K) defined
on an extension (Ω̃, F̃ , P̃) of the original space (Ω, F , P), which
conditionally on the σ -field F is a centered Gaussian R2-valued
process with independent increments, satisfying

Ẽ[V ′(fi, K)tV
′(fj, K)|F ] =

∫ t

0

Rij
σu

(f , K)du. (32)

Here, Rij
σ (f , K) is defined as

Rij
σ (f , K) =

K−1∑

ℓ=−K+1

Ẽ

[
fi(σUK , . . . , σU2K−1)

× fj(σUl+K , . . . , σUl+2K−1)
]

− (2K − 1)̃E [fi(σU1, . . . , σUK )] Ẽ

×
[
fj(σU1, . . . , σUK )

]
,
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where (Ui)i≥1 independent standard Gaussian random variables.
By the definition of f , we can derive that

R11
σ (f , K) = σ 2p

K−1∑

l=0

{
cov(|

√
lU1 +

√
K − lU2|p,

|
√
K − lU2 +

√
lU3|p)+ cov(|

√
K − lU1 +

√
lU2|p,

|
√
lU2 +

√
K − lU3|p)

}

= σ 2pK p(m2p −m2
p)+ 2σ 2p

×
K−1∑

ℓ=1

cov(|
√
K − ℓU1 +

√
ℓU2|p,

|
√

ℓU2 +
√
K − ℓU3|p),

R12
σ (f , K) = σ 2pKcov(|U1 +

√
K − 1U2|p, |U1|p),

R22
σ (f , K) = σ 2p(m2p −m2

p).

Next note that V ′(f2, K , 1)t = 1−p/2̂B(p, 1) and

1−p/2K−1
K∑

l=1

B̂(p, K1)l

= K−1

[n/K ]∑

i=1

f1(1
n
(i−1)K+1X/

√
1, . . . , 1n

(i+1)K−1X/
√

1).

Define Y (p)t = K−1V ′(f1, K)t and Y ′(p, a)t = V ′(f2, K)t with
V ′(f1, K)t and V ′(f2, K)t defined in (32). In view of (30), the bi-
variate process

1−1/2

(
11−p/2̂B(p, 1)−mpA(p),

11−p/2K−1
K∑

ℓ=1

B̂(p, K1)ℓ − K p/2−1mpA(p)

)

converges stably to the 2-dimensional process (Y (p)t , Y
′(p, a)t).

This follows the results in Theorem 2. �

A.5. Proof of Corollary 2

Similar to the proof of Theorem 3 in Aït-Sahalia and Jacod
(2009). �

A.6. Proof of Theorem 3

(a) By Corollary 3, when Xt is continuous, (V̂ c)−1/2(̃S(p, K) −
K p/2−1) converges stably in law to N(0, 1). Since x ∈ (1, K),

K p/2−1 − x√
V̂ j

a.s.−→ +∞.

Thus,

αn,t = P

(
S̃(p, K)− K p/2−1

√
V̂ c

<
x− K p/2−1

√
V̂ c

∣∣∣∣∣H0

)
−→ 0.

In the case when Xt is not continuous but the sample path is con-
tinuous over [0, T ], using a similar technique to that in Theorem 6
of Aït-Sahalia and Jacod (2009) completes the proof.

(b) When the sample path of Xt exhibits jumps, it follows from
Corollary 3 that (V̂ j)−1/2(̃S(p, K) − 1) converges stably in law to

N(0, 1). Since 1 < x < K , we know that x−1√
V̂ c

a.s.−→ +∞ as 1 → 0.

Thus, the following result holds:

P (̃S(p, K) < x|H1) = P

(
S̃(p, K)− 1√

V̂ j

<
x− 1√

V̂ j

∣∣∣∣∣H1

)
−→ 1.

This completes the proof. �
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