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Summary. Many contemporary large-scale applications involve building interpretable models
linking a large set of potential covariates to a response in a non-linear fashion, such as when the
response is binary. Although this modelling problem has been extensively studied, it remains
unclear how to control the fraction of false discoveries effectively even in high dimensional
logistic regression, not to mention general high dimensional non-linear models. To address
such a practical problem, we propose a new framework of ‘model-X ’ knockoffs, which reads
from a different perspective the knockoff procedure that was originally designed for controlling
the false discovery rate in linear models. Whereas the knockoffs procedure is constrained to
homoscedastic linear models with n � p, the key innovation here is that model-X knockoffs
provide valid inference from finite samples in settings in which the conditional distribution of the
response is arbitrary and completely unknown. Furthermore, this holds no matter the number
of covariates. Correct inference in such a broad setting is achieved by constructing knockoff
variables probabilistically instead of geometrically. To do this, our approach requires that the
covariates are random (independent and identically distributed rows) with a distribution that is
known, although we provide preliminary experimental evidence that our procedure is robust to
unknown or estimated distributions.To our knowledge, no other procedure solves the controlled
variable selection problem in such generality but, in the restricted settings where competitors
exist, we demonstrate the superior power of knockoffs through simulations. Finally, we apply
our procedure to data from a case–control study of Crohn’s disease in the UK, making twice as
many discoveries as the original analysis of the same data.

Keywords: False discovery rate; Generalized linear models; Genomewide association study;
Knockoff filter; Logistic regression; Markov blanket; Testing for conditional independence in
non-linear models

1. Introduction

1.1. Panning for gold
Certain diseases have a genetic basis, and an important biological problem is to find which
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genetic features (e.g. gene expressions or single-nucleotide polymorphisms) are important for
determining a given disease. In healthcare, researchers often want to know which electronic med-
ical record entries determine future medical costs. Political scientists study which demographic
or socio-economic variables determine political opinions. Economists are similarly interested in
which demographic or socio-economic variables affect future income. Those in the technology
industry seek specific software characteristics that they can change to increase user engagement.
In the current data-driven science and engineering era, a list of such problems would go on and
on. The common theme in all these instances is that we have a deluge of explanatory variables,
often many more than the number of observations, knowing full well that the outcome that
we wish to understand better actually depends on only a small fraction of them. Therefore, a
primary goal in modern ‘big data analysis’ is to identify those important predictors in a sea of
noise variables. Having said this, a reasonable question is why do we have so many covariates
in the first place? The answer is twofold: first, because we can. To be sure, it may be fairly easy
to measure thousands if not millions of attributes at the same time. For instance, it has become
relatively inexpensive to genotype an individual, collecting hundreds of thousands of genetic
variations at once. Second, even though we may believe that a trait or phenotype depends on
a comparably small set of genetic variations, we have a priori no idea about which are relevant
and therefore must include them all in our search for those nuggets of gold, so to speak. To
complicate matters further, a common challenge in these big data problems, and a central focus
of this paper, is that we often have little to no knowledge of how the outcome even depends on
the few truly important variables.

To cast the ubiquitous (variable) selection problem in statistical terms, call Y the random vari-
able representing the outcome whose determining factors we are interested in, and X1, : : : , Xp

the set of p potential determining factors or explanatory variables. The object of study is the
conditional distribution of the outcome Y given the covariates X = .X1, : : : , Xp/, and we shall
denote this conditional distribution function by FY |X. Ideally we would like to estimate FY |X,
but in general this is effectively impossible from a finite sample. For instance, even knowing that
the conditional density depends on 20 known covariates makes the problem impossible unless
either the sample size n is astronomically large, and/or we are willing to impose a very restrictive
model. However, in most problems FY |X may realistically be assumed to depend on a small
fraction of the p covariates, i.e. the function FY |X.y|x1, : : : , xp/ depends only on a small number
of co-ordinates xi (or is well approximated by such a lower dimensional function). Although this
assumption does not magically make the estimation of FY |X easy, it does suggest consideration
of the simpler problem: which of the many variables does Y depend on? Often, finding a few of
the important covariates—in other words, teasing out the relevant factors from those which are
not—is already scientifically extremely useful and can be considered a first step in understanding
the dependence between an outcome and some interesting variables; we regard this as a crucial
problem in modern data science.

1.2. A peek at our contribution
This paper addresses the selection problem by considering a very general conditional model,
where the response Y can depend in an arbitrary fashion on the covariates X1, : : : , Xp. The only
restriction that we place on the model is that the observations .Xi1, : : : , Xip, Yi/ are independently
and identically distributed (IID), which is often realistic in high dimensional applications such
as genetics, where subjects may be drawn randomly from some large population, or client
behavioural modelling, where experiments on a service or user interface go out to a random
subset of users. Therefore, the model is simply
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.Xi1, : : : , Xip, Yi/
IID∼ FXY , i=1, : : : , n, .1:1/

for some arbitrary .p + 1/-dimensional joint distribution FXY . We shall assume no knowledge
of the conditional distribution of Y |X1, : : : , Xp, but we do assume that the joint distribution
of the covariates is known, and we shall denote it by FX. As a concrete example, consider a
case–control experiment to determine the genetic factors which contribute to a rare disease,
with diseased subjects oversampled to 50% to increase power. Then the joint distribution of
features and disease status obeys model (1.1), where FX is a 50%–50% mixture of the genetic
distributions of diseased and healthy subjects, and Y is the subjects’ binary disease state.

In Section 1.3 we shall discuss the merits of this model but we immediately remark on an
important benefit: namely, one can pose a meaningful problem. To do this, observe that when we
say that the conditional distribution of Y actually depends on a (small) subset S ⊂{1, : : : , p} of
the variables X1, : : : , Xp, which we would like to identify, we mean that we would like to find the
‘smallest’ subset S such that, conditionally on {Xj}j∈S , Y is independent of all other variables.
Another way to say this is that the other variables do not provide additional information about
Y. A minimal set S with this property is usually called a Markov blanket or Markov boundary for
Y in the literature on graphical models (Pearl (1988), section 3.2.1). Under very mild conditions
about the joint distribution FXY , the Markov blanket is well defined and unique (see Section 2
for details) so that we have a cleanly stated selection problem. Note also that the Markov blanket
can be defined purely in terms of FY |X without any reference to FX, so that in our case–control
example the problem is defined in exactly the same way as if FX were the true population genetic
distribution instead of the oversampled mixture of diseased and healthy genetic distributions.

In most problems of interest, even with the knowledge of FX, it is beyond hope to recover the
blanket S with no error. Hence, we are naturally interested in procedures that control a type I
error, i.e. we would like to find as many variables as possible while not having too many false
positive results. In this paper, we focus on controlling the false discovery rate (FDR) (Benjamini
and Hochberg, 1995), which we can define here as follows: letting Ŝ be the outcome of a selection
procedure operating on the sampled data (we have used a circumflex because Ŝ is random), the
FDR is

FDR :=E[FDP], FDP= #{j : j ∈ Ŝ \S}
#{j : j ∈ Ŝ} , .1:2/

where FDP is the false discovery proportion, with the convention 0/0 = 0. Procedures that
control the FDR are interpretable, as they roughly bound what fraction of discoveries are false,
and they can be quite powerful as well.

One achievement of this paper is to show that we can design quite powerful procedures
that rigorously control the FDR (1.2) in finite samples. This holds no matter the unknown
relationship between the explanatory variables X and the outcome Y. We achieve this by re-
thinking the conceptual framework of Barber and Candès (2015), who originally introduced the
knockoff procedure (throughout this paper, we shall sometimes use ‘knockoffs’ as shorthand
for the knockoff framework or procedure). Their salient idea was to construct a set of so-called
‘knockoff’ variables which were not (conditionally on the original variables) associated with the
response, but whose structure mirrored that of the original covariates. These knockoff variables
could then be used as controls for the real covariates, so that only real covariates which appeared
to be considerably more associated with the response than their knockoff counterparts were se-
lected. Their main result was achieving exact finite sample FDR control in the homoscedastic
Gaussian linear model when n�2p (along with a nearly exact extension to when p�n<2p). By
reading the knockoffs framework from a new perspective, the present paper places no restriction
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on p relative to n, in sharp constrast with the original knockoffs work which required the low
dimensional setting of n�p. The conceptual difference is that the original knockoff procedure
treats the Xij as fixed and relies on specific stochastic properties of the linear model, precluding
consideration of p > n or non-linear models. By treating the Xij as random and relying on that
stochasticity instead, the ‘model-X’ (MX) perspective allows treatment of the high dimensional
setting which is increasingly the norm in modern applications. We refer to the new approach
as MX knockoffs, and by contrast we refer to the original knockoffs approach of Barber and
Candès (2015) as ‘fixed-X ’ (FX) knockoffs. In a nutshell:

(a) we propose a new knockoff construction that is amenable to the random covariate setting
(1.1);

(b) as in Barber and Candès (2015) and further reviewed in Section 3, we shall use the knockoff
variables as controls in such a way that we can tease apart important variables from noise
while controlling the FDR, and we place no restriction on the dimensionality of the data
or the conditional distribution of Y |X1, : : : , Xp;

(c) we apply the new procedure to real data from a case–control study of Crohn’s disease in
the UK; see Section 6, where we show that the new knockoff method makes twice as many
discoveries as the original analysis of the same data.

Before turning to the presentation of our method and results, we pause to discuss the mer-
its and limitations of our model, the relationships between this work and others on selective
inference and the larger problem of high dimensional statistical testing.

1.3. Relationship with the classical set-up for inference
It may seem to the statistician that our model appears rather different from what she is used to.
Our framework is, however, not as exotic as it looks.

1.3.1. Classical set-up
The usual set-up for inference in conditional models is to assume a strong parametric model for
the response conditional on the covariates, such as a homoscedastic linear model, but to assume
as little as possible about, or even to condition on, the covariates. We do the exact opposite
by assuming that we know everything about the covariate distribution but nothing about the
conditional distribution Y |X1, : : : , Xp. Hence, we merely shift the burden of knowledge. Our
philosophy is, therefore, to model X , not Y , whereas, classically, Y (given X ) is modelled and
X is not. In practice, the parametric model in the classical approach is just an approximation
and does not need to hold exactly to produce useful inference. Analogously, we do not need to
know the covariate distribution exactly for our method to be useful, as we shall demonstrate in
Sections 5 and 6.

1.3.2. When are our assumptions useful?
We do not claim that our assumptions will always be appropriate, but there are important cases
when it is reasonable to think that we know much more about the covariate distribution than
about the conditional distribution of the response, including the following cases.

(a) One case is when we in fact know exactly the covariate distribution because we control
it, such as in gene knockout experiments (Cong et al., 2013; Peters et al., 2016), genetic
crossing experiments (Haldane and Waddington, 1931) or sensitivity analysis of numerical
models (Saltelli et al., 2008) (e.g. climate models). In some cases we may also essentially
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know the covariate distribution even when we do not control it, such as in admixture
mapping (Tang et al., 2006).

(b) Another case is when we have a large amount of unsupervised data (covariate data without
corresponding responses or labels) in addition to the n labelled observations. This is quite
common in genetic or economic studies, where many other studies will exist that have
collected the same covariate information but different response variables.

(c) A third case is when we simply have considerably more prior information about the
covariates than about the response. Indeed, the point of many conditional modelling
problems is to relate a poorly understood response variable to a set of well-understood
covariates. For instance, in genetic case–control studies, scientists seek to understand the
genetic basis of an extremely biologically complex disease by using many comparatively
simple single-nucleotide polymorphisms as covariates.

1.3.3. Pay-off
There are substantial pay-offs to our framework. Perhaps the main advantage is the ability to use
the knockoff framework in high dimensions: a setting that was impossible by using the original
approach. Even in high dimensions, previous inference results rely not only on a parametric
model that is often linear and homoscedastic, but also on the sparsity or ultrasparsity of the
parameters of that model to achieve some asymptotic guarantee. In contrast, our framework
can accommodate any model for both the response and the covariates, and our guarantees are
exact in finite samples (non-asymptotic). In particular, our set-up encompasses any regression,
classification or survival model, including any generalized linear model (GLM), and allows for
arbitrary non-linearities and heteroscedasticity, such as are found in many machine learning
applications.

1.4. Relationship with work on inference after selection
There is a line of work on inference after selection, or post-selection inference, for high di-
mensional regression, the goal of which is first to perform selection to make the problem low
dimensional, and then to produce p-values that are valid conditionally on the selection step (Berk
et al., 2013; Lockhart et al., 2014; Lee et al., 2016). These works differ from ours in various ways
so we largely see them as complementary activities; see section A of the on-line supplementary
material for more detailed explanation of the differences.

1.5. Obstacles to obtaining p-values
Our procedure does not follow the canonical approach to FDR control and multiple testing in
general. The canonical approach is to plug p-values into the Benjamini–Hochberg (BH) pro-
cedure, which controls the FDR under p-value independence and certain forms of dependence
(Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001). Although these works have
seeded a wealth of methodological innovations over the past two decades (Benjamini, 2010), all
these procedures act on a set of valid p-values (or equivalent statistics), which they assume can
be computed. (Benjamini and Gavrilov (2009) and Bogdan et al. (2015) transformed the p-value
cut-offs of common FDR controlling procedures into penalized regression analogues to avoid
p-values altogether. They only provably control the FDR in homoscedastic linear regression
when the design matrix has orthogonal columns (necessitating, importantly, that n � p) but
Bogdan et al. (2015) empirically retained control more generally whenever the signal obeys
sparsity constraints. In a very different setting with spatial hypotheses, Li et al. (2016) used
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approximations from Gaussian random-field theory to control the FDR heuristically.) The
requirement of having valid p-values is quite constraining for general conditional modelling
problems.

1.5.1. Regression p-value approximations
In low dimensional (n � p) homoscedastic Gaussian linear regression, p-values can be com-
puted exactly even if the error variance is unknown, although the p-values will not in general
have any simple dependence properties like independence or positive regression dependence on
a subset. Already for just the slightly broader class of low dimensional GLMs, we must resort to
asymptotic p-values derived from maximum likelihood theory, which we show in section G of
the on-line supplementary material can be far from valid in practice. In high dimensional (n<p)
GLMs, it is not clear how to obtain p-values at all. Although some work (see for example van de
Geer et al. (2014)) exists on computing asymptotic p-values under strong sparsity assumptions
(usually the number of important variables must be o{√

n= log.p/}), like their low dimensional
maximum likelihood counterparts, these methods suffer from highly non-uniform null p-values
in many finite sample problems (see, for example, simulations in Dezeure et al. (2015)). For
binary covariates, the causal inference literature uses matching and propensity scores for ap-
proximately valid inference, but extending these methods to high dimensions is still a topic of
current research, requiring similar assumptions and asymptotic approximations to the afore-
mentioned high dimensional GLM literature (Athey et al., 2016). Moving beyond GLMs to the
non-parametric setting, there are measures of feature importance, but no p-values. (In their on-
line description of random forests (http://www.math.usu.edu/∼adele/forests/),
Leo Breiman and Adele Cutler proposed a way to obtain a ‘z-score’ for each variable, but with-
out any theoretical distributional justification, and Strobl and Zeileis (2008) found ‘that the
suggested test is not appropriate for statements of significance’.)

1.5.2. Marginal testing
Faced with the inability to compute p-values for hypothesis tests of conditional independence,
one solution is to use marginal p-values, i.e. p-values for testing unconditional (or marginal)
independence between Y and Xj. This simplifies the problem considerably, and many options
exist for obtaining valid p-values for such a test. However, marginal p-values are in general invalid
for testing conditional independence, and replacing tests of conditional independence with tests
of unconditional independence is often undesirable; see section B of the on-line supplementary
material for a detailed discussion of the drawbacks of marginal testing. Indeed when p�n, so
that classical (e.g. maximum likelihood) inference techniques for regression give valid p-values
for parametric tests of conditional independence, it would be very unusual to resort to marginal
testing to select important covariates, and we cannot think of a textbook that takes this route.
Furthermore, the class of conditional test statistics is far richer than that of marginal statistics
and includes the most powerful statistical inference and prediction methodology available. For
example, in compressed sensing, the signal recovery guarantees for state of the art l1-based
(joint) algorithms are stronger than any guarantees that are possible with marginal methods.
To constrain oneself to marginal testing is to ignore completely the vast modern literature on
sparse regression that, although lacking finite sample type I error control, has had tremendous
success establishing other useful inferential guarantees such as model selection consistency
under high dimensional asymptotics in both parametric (e.g. lasso (Zhao and Yu, 2006; Candès
and Plan, 2009)) and non-parametric (e.g. random forests (Wager and Athey, 2016)) settings.
Realizing this, the statistical genetics community has worked on several multivariate approaches
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to improve power in genomewide association studies by using both penalized (Wu et al., 2009;
He and Lin, 2011) and Bayesian regression (Guan and Stephens, 2011; Li et al., 2011), but both
approaches still suffer from a lack of type I error control (without making strong assumptions
on parameter priors). We shall see that the MX knockoff procedure can leverage the power
of any of these techniques while adding rigorous finite sample type I error control when the
covariate distribution is known.

1.6. Obtaining valid p-values via conditional randomization testing
If we insist on obtaining p-values for each Xj, there is a simple method when the covariate
distribution is assumed known, as it is in this paper. This method is similar in spirit to both
propensity scoring (where the distribution of a binary Xj conditional on the other variables is
often estimated) and randomization or permutation tests (where Xj is either the only covariate
or fully independent of the other explanatory variables). Explicitly, a conditional randomization
test for the jth variable proceeds by first computing some feature importance statistic Tj for the
jth variable. Then the null distribution of Tj can be computed through simulation by indepen-
dently sampling XÅ

j s from the conditional distribution of Xj given the others (derived from the
known FX) and recomputing the same statistic T Å

j with each new XÅ
j in place of Xj; see section

F of the on-line supplementary material for details. Despite its simplicity, we have not seen this
test proposed previously in the literature, although it nearly matches the usual randomization
test when the covariates are independent of one another.

1.7. Outline of the paper
The remainder of the paper is structured as follows: Section 2 frames the controlled selection
problem in rigorous mathematical terms. Section 3 introduces the MX knockoff procedure, ex-
amines its relationship with the earlier proposal of Barber and Candès (2015), proposes knock-
off constructions and feature statistics, and establishes FDR control. Section 4 demonstrates
through simulations that the MX knockoff procedure controls the FDR in various settings
where no other procedure does, and that, when competitors exist, the knockoff procedure is
more powerful. Section 5 gives some preliminary simulations using artificial and real data re-
garding the robustness of MX knockoffs to unknown or misspecified covariate distributions.
Section 6 applies our procedure to a case–control study of Crohn’s disease in the UK. Section
7 concludes the paper with extensions and potential lines of future research.

MATLAB and R packages of the code that was used to analyse the data can be found at
https://web.stanford.edu/group/candes/knockoffs/software/knockoff/.

2. Problem statement

To state the controlled variable selection problem carefully, suppose that we have n IID samples
from a population, each of the form .X, Y/, where X = .X1, : : : , Xp/ ∈ Rp and Y ∈ R. If the
conditional distribution of Y actually depends on a smaller subset of these variables, we would
like to classify each variable as relevant or not depending on whether it belongs to this subset or
not. Mathematically speaking, we are looking for the Markov blanket S, i.e. the ‘smallest’ subset
S such that, conditionally on {Xj}j∈S , Y is independent of all other variables. For almost all
joint distributions of .X, Y/, there is a unique Markov blanket but there are pathological cases
where it does not. An example is this: suppose that X1 and X2 are independent Gaussian
variables and that X3 = X1 − X2. Further assume that the distribution of Y depends on the
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vector X only through X1 +X2, e.g. Y |X∼N .X1 +X2, 1/. Then the set of relevant variables—
or, equivalently, the Markov blanket—is ill defined since we can say that the likelihood of Y
depends on X through either .X1, X2/, .X1, X3/ or .X2, X3/, all these subsets being equally
good. To define a unique set of relevant variables, we shall work with the notion of conditional
pairwise independence.

Definition 1. A variable Xj is said to be ‘null’ if and only if Y is independent of Xj conditionally
on the other variables X−j = {X1, : : : , Xp} \ {Xj}. The subset of null variables is denoted by
H0 ⊂{1, : : : , p} and we call a variable Xj ‘non-null’ or relevant if j �∈H0.

From now on, our goal is to discover as many relevant (conditionally dependent) variables as
possible while keeping the FDR under control. (Using the methods of Janson and Su (2016), other
error rates such as the k-familywise error rate can also be controlled by using MX knockoffs,
but we focus on the FDR for this paper.) Formally, for a selection rule that selects a subset Ŝ
of the covariates,

FDR :=E

[ |Ŝ ∩H0|
|Ŝ|

]
: .2:1/

In this example, because of the perfect functional relationship X3 = X2 − X1, all three vari-
ables X1, X2 and X3 would be classified as nulls. Imagine, however, breaking this relationship by
adding a little noise, e.g. X3 =X2 −X1 +Z, where Z is Gaussian noise (independent of X1 and
X2) however small. Then, according to our definition, X1 and X2 are both non-null whereas X3
is null—and everything makes sense. Having said this, we should not let ourselves be distracted
by such subtleties. In the literature on graphical models there, in fact, are weak regularity con-
ditions that guarantee that the (unique) set of relevant variables defined by pairwise conditional
independence exactly coincides with the Markov blanket so there is no ambiguity. In this field,
researchers typically assume that these weak regularity conditions hold (examples would in-
clude the local and global Markov properties) and proceed from there. For example, Edwards
(2000) described these properties on page 8 as holding ‘under quite general conditions’ and then
assumed them for the rest of the book.

Our definition is very natural to anyone working with parametric GLMs. In a GLM, the
response Y has a probability distribution taken from an exponential family, which depends
on the covariates only through the linear combination η =β1X1 +: : :+βpXp. The relationship
between Y and X is specified via a link function g such that E[Y |X]=g−1.η/. In such models and
under broad conditions, Y ⊥⊥Xj|X−j if and only if βj =0. In this context, testing the hypothesis
that Xj is a null variable is the same as testing Hj :βj =0.

Proposition 1. Take a family of random variables X1, : : : , Xp such that one cannot perfectly
predict any of them from knowledge of the others. If the likelihood of Y follows a GLM, then
Y ⊥⊥Xj|X−j if and only if βj =0. Hence, H0 from definition 1 is exactly the set {j :βj =0}.

Proof. We prove proposition 1 in the case of the logistic regression model as the general case
is similar. Here, the conditional distribution of Y is Bernoulli with

E[Y |X]=P.Y =1|X/= exp.η/

1+ exp.η/
=g−1.η/, η =β1X1 +: : :+βpXp;

note that the assumption about the covariates implies that the model is identifiable. Now assume
first that βj =0. Then

pY ,Xj |X−j .y, xj|x−j/=pY |Xj ,X−j .y|xj, x−j/pXj |X−j .xj|x−j/ .2:2/
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and, since the first factor on the right-hand side does not depend on Xj, we see that the con-
ditional probability distribution function factorizes. This implies conditional independence. In
the other direction, assume that Y and Xj are conditionally independent. Then the likelihood
function

exp{Y.β1X1 +: : :+βpXp/}
1+ exp.β1X1 +: : :+βpXp/

must, conditionally on X−j, factorize into a function of Y times a function of Xj. A consequence
of this is that, conditionally on X−j, the odds ratio must not depend on Xj (it must be constant).
However, this ratio is equal to exp.βjXj/ and is constant only if βj = 0 since, by assumption,
Xj is not determined by X−j.

The assumption regarding the covariates is needed. Indeed, suppose that X1 ∼N .0, 1/ X2 =
1{X1 > 0} and Y follows a logistic model as above with η = X1 + X2. Then Y ⊥⊥ X2|X1 even
though β2 = 1. In this example, the conditional distribution of Y depends on .X1, X2/ only
through X1. Therefore, for identifying important variables (recall that our task is to find
important variables and not to learn exactly how the likelihood function depends on these vari-
ables), we would like to find X1 and do not care about X2 since it provides no new information.

3. Methodology

3.1. Model-X knockoffs
3.1.1. Definition

Definition 2. MX knockoffs for the family of random variables X = .X1, : : : , Xp/ are a new
family of random variables X̃= .X̃1, : : : , X̃p/ constructed with the following two properties:

(a) for any subset S ⊂ {1, : : : , p} (=d denotes equality in distribution, and the definition of
the swapping operation is given just below),

.X, X̃/swap.S/
d=.X, X̃/; .3:1/

(b) X̃⊥⊥Y |X if there is a response Y.

Property (b) is guaranteed if X̃ is constructed without looking at Y.

Above, the vector .X, X̃/swap.S/ is obtained from .X, X̃/ by swapping the entries Xj and X̃j

for each j ∈S; for example, with p=3 and S ={2, 3},

.X1, X2, X3, X̃1, X̃2, X̃3/swap.{2, 3}/
d=.X1, X̃2, X̃3, X̃1, X2, X3/:

We see from result (3.1) that original and knockoff variables are pairwise exchangeable: taking
any subset of variables and swapping them with their knockoffs leaves the joint distribution
invariant. Note that our exchangeability condition is on the covariates and thus bears little
resemblance to exchangeability conditions for closed permutation testing (see, for example,
Westfall and Troendle (2008)). To give an example of MX knockoffs, suppose that X∼N .0,Σ/.
Then a joint distribution obeying result (3.1) is

.X, X̃/∼N .0, G/, where G =
(

Σ Σ−diag.s/

Σ−diag.s/ Σ

)
; .3:2/

here, diag.s/ is any diagonal matrix selected in such a way that the joint covariance matrix G
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is positive semidefinite. Indeed, the distribution that is obtained by swapping variables with
their knockoffs is Gaussian with a covariance given by PGP, where P is the permutation matrix
encoding the swap. Since PGP = G for any swapping operation, the distribution is invariant.
For an interesting connection with the invariance condition in Barber and Candès (2015), see
section C of the on-line supplementary material.

We shall soon be interested in the problem of constructing knockoff variables, having observed
X. In the above example, a possibility is to sample the knockoff vector X̃ from the conditional
distribution

X̃|X d=N .μ, V/,

where μ and V are given by classical regression formulae, namely

μ=X−XΣ−1 diag.s/,

V =2 diag.s/− diag.s/Σ−1 diag.s/:

There are, of course, many other ways of constructing knockoff variables and, for the time being,
we prefer to postpone the discussion of more general constructions.

In the setting of the paper, we are given IID pairs .Xi1, : : : , Xip, Yi/ ∈ Rp × R of covariates
and responses, which we can assemble in a data matrix X and a data vector y in such a way
that the ith row of X is .Xi1, : : : , Xip/ and the ith entry of y is Yi. Then the MX knockoff matrix
X̃ is constructed in such a way that, for each observation label i, .X̃i1, : : : , X̃ip/ is a knockoff
for .Xi1, : : : , Xip/ as explained above; that is to say the joint vector .Xi1, : : : , Xip, X̃i1, : : : , X̃ip/

obeys the pairwise exchangeability property (3.1).

3.1.2. Exchangeability of null covariates and their knockoffs
A crucial property of MX knockoffs is that we can swap null covariates with their knockoffs
without changing the joint distribution of the original covariates X and their knockoffs X̃,
conditionally on the response Y. From now on, Xi:j for i� j is a shorthand for .Xi, : : : , Xj/.

Lemma 1. Take any subset S ⊂H0 of nulls. Then

.X, X/ |y d= .X, X/swap.S/ |y:

Proof. The proof of lemma 1 can be found in section D of the on-line supplementary material.

3.2. Feature statistics
To find the relevant variables, we now compute statistics Wj for each j ∈ {1, : : : , p}, a large
positive value of Wj providing evidence against the hypothesis that Xj is null. This statistic
depends on the response and the original variables but also on the knockoffs, i.e.

Wj =wj{.X, X̃/, y}
for some function wj. As in Barber and Candès (2015), we impose a flip sign property, which
says that swapping the jth variable with its knockoff has the effect of changing the sign of Wj.
Formally, if .X, X̃/swap.S/ is the matrix that is obtained by swapping columns in S,

wj{.X, X̃/swap.S/, y}=
{

wj{.X, X̃/, y}, j �∈S,
−wj{.X, X̃/, y}, j ∈S:

.3:3/

In contrast with the aforementioned work, we do not require the sufficiency property that wj

depend on X, X̃ and y only through .X, X̃/T.X, X̃/ and .X, X̃/Ty.
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At this point, it may help the reader who is unfamiliar with the knockoff framework to think
about knockoff statistics W = .W1, : : : , Wp/ in two steps: first, consider a statistic T for each
original and knockoff variable,

T � .Z, Z̃/= .Z1, : : : , Zp, Z̃1, : : : , Z̃p/= t{.X, X̄/, y},

with the idea that Zj and Z̃j respectively measure the importance of Xj and X̃j. Assume the
natural property that switching a variable with its knockoff simply switches the components of
T in the same way, namely, for each S ⊂{1, : : : , p},

.Z, Z̃/swap.S/ = t{.X, X̄/swap.S/, y}: .3:4/

Then one can construct a Wj obeying the flip sign condition (3.3) by setting

Wj =fj.Zj, Z̃j/,

where fj is any antisymmetric function. (An antisymmetric function f is such that f.v, u/ =
−f.u, v/.) (Conversely, any statistic Wj verifying the flip sign condition can be constructed in
this fashion.) Adopting this approach, consider a regression problem and run the lasso on the
original design augmented with knockoffs,

min
b∈R2p

1
2‖y − .X, X̄/b‖2

2 +λ‖b‖1 .3:5/

and denote the solution by b̂.λ/ (the first p components are the coefficients of the original
variables and the last p are for the knockoffs). Then the lasso coefficient difference (LCD)
statistic sets Zj =|b̂j.λ/|, Z̃j =|b̂j+p.λ/| and

Wj =Zj − Z̃j =|b̂j.λ/|− |b̂j+p.λ/|: .3:6/

A large positive value of Wj provides some evidence that the distribution of Y depends on Xj,
whereas under the null Wj has a symmetric distribution and, therefore, is equally likely to take
positive and negative values, as we shall see next. Before moving on, however, carefully observe
that the value of λ in equation (3.6) does not need to be fixed in advance and can be computed
from y and (X, X̃) in any data-dependent fashion as long as permuting the columns of X does
not change its value; for instance, it can be selected by cross-validation.

Lemma 2. Conditionally on .|W1|, : : : , |Wp|/, the signs of the null Wjs, j ∈H0, are IID coin
flips.

Proof. Let ε= .ε1, : : : , εp/ be a sequence of independent random variables such that εj =±1
with probability 1

2 if j ∈H0, and εj =1 otherwise. To prove the claim, it suffices to establish that

W
d= ε�W , .3:7/

where ‘�’ denotes pointwise multiplication, i.e. ε�W = .ε1W1, : : : , εpWp/. Now, take ε as above
and put S ={j : εj =−1}⊂H0. Consider swapping variables in S:

Wswap.S/ �w{.X, X̃/swap.S/, y}:

On the one hand, it follows from the flip sign property that Wswap.S/ = ε�W . On the other hand,
lemma 1 implies that Wswap.S/ =d W since S ⊂H0. These last two properties give result (3.7).

In fact, since the pairwise exchangeability property of .X, X̃/ holds conditionally on y accord-
ing to lemma 1, the coin flipping property also holds conditionally on y.
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3.3. False discovery rate control
From now on, our methodology follows that of Barber and Candès (2015) and we simply rehearse
the main ingredients while referring to Barber and Candès (2015) for additional insights. It
follows from lemma 2 that the null statistics Wj are symmetric and that, for any fixed threshold
t> 0,

#{j : Wj �−t}�#{ null j : Wj �−t} d=#{ null j : Wj � t}:

Imagine then selecting those variables such that Wj is sufficiently large, e.g. Wj � t; then the false
discovery proportion FDP

FDP.t/= #{ null j : Wj � t}
#{j : Wj � t} .3:8/

can be estimated via the statistic

̂FDP.t/= #{j : Wj �−t}
#{j : Wj � t}

since the numerator is an upward biased estimate of the unknown numerator in equation (3.8).
The idea of the knockoff procedure is to choose a data-dependent threshold as liberal as possible
while having an estimate of FDP under control. The following theorem shows that estimates of
the FDR process can be inverted to give tight FDR control.

Theorem 1. Choose a threshold τ > 0 by setting

τ =min
{

t> 0 :
#{j : Wj �−t}
#{j : Wj � t} �q

}
.knockoffs/, .3:9/

where q is the target FDR level (or τ =∞ if the set above is empty). (When we write min{t>

0 :: : :}, we abuse the notation since we actually mean min{t ∈W+ :: : :}, where W+ = {|Wj| :
|Wj|> 0}.) Then the procedure selecting the variables

Ŝ ={j : Wj � τ}
controls the modified FDR defined as

mFDR=E

[ |{j ∈ Ŝ ∩H0}|
|Ŝ|+1=q

]
�q:

The slightly more conservative procedure, given by incrementing the number of negatives by
1,

τ+ =min
{

t> 0 :
1+#{j : Wj �−t}

#{j : Wj � t} �q

}
.knockoffs+/, .3:10/

and setting Ŝ ={j : Wj � τ+}, controls the usual FDR,

E

[ |{j ∈ Ŝ ∩H0}|
|Ŝ|∨1

]
�q:

These results are non-asymptotic and hold no matter the dependence between the response
and the covariates—in fact, they hold conditionally on the response y.
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Table 1. Algorithm 1: sequential con-
ditional independent pairs

j =1 while j �p do
sample X̃j from L.Xj |X−j , X̃1:j−1/
j = j +1

end

The proof is the same as that of theorems 1 and 2 in Barber and Candès (2015)—and, therefore,
has been omitted—since all we need is that the null statistics have signs distributed as IID coin
flips (even conditionally on y). Note that theorem 1 tells only one side of the story: type I error
control; the other very important side is power, which leads us to spend most of the remainder
of the paper considering how best to construct knockoff variables and statistics.

3.4. Constructing model-X knockoffs
3.4.1. Exact constructions
We have seen in Section 3.1.1 one way of constructing MX knockoffs in the case where the
covariates are Gaussian. How should we proceed for non-Gaussian data? In this regard, the
characterization below may be useful.

Proposition 2. The random variables .X̃1, : : : , X̃p/ are MX knockoffs for .X1, : : : , Xp/ if and
only if, for any j ∈ {1, : : : , p}, the pair .Xj, X̃j/ is exchangeable conditionally on all the other
variables and their knockoffs (and, of course, X̃⊥⊥Y |X).

The proof consists of simple manipulations of the definition and is, therefore, omitted. Our
problem can thus also be posed as constructing pairs that are conditionally exchangeable. If the
components of the vector X are independent, then any independent copy of X would work, i.e.
any vector X̃ independently sampled from the same joint distribution as X would work. With
dependent co-ordinates, we may proceed as in algorithm 1 (Table 1).

In algorithm 1 L.Xj|X−j, X̃1:j−1/ is the conditional distribution of Xj given .X−j, X̃1:j−1/.
When p=3, this would work as follows: sample X̃1 from L.X1|X2:3/. Once this has been done,
L.X1:3, X̃1/ is available and we, therefore, know L.X2|X1, X3, X̃1/. Hence, we can sample X̃2
from this distribution. Continuing, L.X1:3, X̃1:2/ becomes known and we can sample X̃3 from
L.X3|X1:2, X̃1:2/.

It is not immediately clear why algorithm 1 yields a sequence of random variables obeying the
exchangeability property (3.1), and we prove this fact in section E of the on-line supplementary
material. There is, of course, nothing special about the ordering in which knockoffs are created
and equally valid constructions may be obtained by looping through an arbitrary ordering of the
variables. For example, in a data analysis application where we would need to build a knockoff
copy for each row of the design, independent (random) orderings may be used.

To have power or, equivalently, to have a low type II error rate, it is intuitive that we would
like to have original features Xj and their knockoff companions X̃j to be as ‘independent’ as
possible.

We do not mean to imply that running algorithm 1 is a simple matter. In fact, it may prove
rather complicated since we would have to recompute the conditional distribution at each step;
this problem is left for future research. Instead, in this paper we shall work with approximate
MX knockoffs and will demonstrate empirically that, for models of interest, such constructions
yield FDR control.
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3.4.2. Approximate constructions: second-order model-X knockoffs
Rather than asking that .X, X̃/swap.S/ and .X, X̃/ have the same distribution for any subset S, we
can ask that they have the same first two moments, i.e. the same mean and covariance. Equality
of means is a simple matter. As far as the covariances are concerned, equality is equivalent to

cov.X, X̃/=G, G =
(

Σ Σ−diag.s/

Σ−diag.s/ Σ

)
: .3:11/

.
We, of course, recognize the same form as in expression (3.2) where the parameter s is chosen to
yield a positive semidefinite covariance matrix. (When .X, X̃/ is Gaussian, a matching of the first
two moments implies a matching of the joint distributions so that we have an exact construction.)
Furthermore, section C of the on-line supplementary material shows that the same problem was
already solved in Barber and Candès (2015), as the same constraint on s applies but with the
empirical covariance replacing the true covariance. This means that the same two constructions
as proposed in Barber and Candès (2015) are just as applicable to second-order MX knockoffs.

For the remainder of this section, we shall assume that the covariates have each been translated
and rescaled to have mean 0 and variance 1. To review, the equicorrelated construction uses

s
EQ
j =2λmin.Σ/∧1 for all j,

which minimizes the correlation between variable knockoff pairs subject to the constraint that
all such pairs must have the same correlation. The semidefinite programme construction solves
the convex programme

minimize
∑
j

|1− sSDP
j |

subject to sSDP
j �0

diag.sSDP/�2Σ,

.3:12/

which minimizes the sum of absolute values of variable knockoff correlations between all suit-
able s.

In applying these constructions to problems with large p, we run into some new difficulties.

(a) Except for very specially structured matrices like the identity matrix, λmin.Σ/ tends to
be extremely small as p grows large. The result is that constructing equicorrelated knock-
offs in high dimensions, although fairly computationally easy, will result in very low
power, since all the original variables will be nearly indistinguishable from their knock-
off counterparts.

(b) For large p, problem (3.12), although convex, is prohibitively computationally expensive.
However, if it could be computed, it would produce much larger sjs than the equicorrelated
construction and thus be considerably more powerful.

To address these difficulties, we first generalize the two knockoff constructions by the following
two-step procedure, which we call the approximate semidefinite programme construction.

Step 1: choose an approximation Σapprox of Σ and solve

minimize
∑
j

|1− ŝj|

subject to ŝj �0

diag.ŝ/�2Σapprox:

.3:13/
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Step 2: solve

maximize γ

subject to diag.γŝ/�2Σ,
.3:14/

and set sASDP =γŝ. This problem can be solved quickly by, for example, bisection search over
γ ∈ [0, 1].

Approximate semidefinite programming with Σapprox = I trivially gives ŝj = 1 and γ = 2 ×
λmin.Σ/∧1, reproducing the equicorrelated construction. Approximate semidefinite program-
ming withΣapprox =Σ clearly gives ŝj =sSDP and γ =1, reproducing the semidefinite programme
construction. Note that the approximate semidefinite programme step 2 is always fast, so the
speed of the equicorrelated construction comes largely because the problem separates into p

computationally independent semidefinite programme subproblems of min |1 − ŝj| subject to
0 � ŝj � 2. However, power is lost because of the very naive approximation Σapprox = I which
results in a very small γ.

In general, we can choose Σapprox to be an m-block-diagonal approximation of Σ, so that
the approximate semidefinite programme from step 1 separates into m smaller, more com-
putationally tractable, and trivially parallelizable semidefinite programme subproblems. If the
approximation is fairly accurate, we may also find that γ remains large, so that the knockoffs are
nearly as powerful as if we had used the semidefinite programme construction. We demonstrate
the approximate semidefinite programme construction in Section 6 when we analyse the Crohn’s
disease data.

4. Numerical simulations

In this section we demonstrate the importance, utility and practicality of MX knockoffs for
high dimensional non-parametric conditional modelling. To emphasize the need for a method
like MX knockoffs, we show in section G of the on-line supplementary material that the usual
logistic regression p-values that we might use when n � p can have null distributions that are
quite far from uniform.

4.1. Alternative knockoff statistics
As mentioned in Section 3.2, the new MX knockoffs framework allows for a wider variety of
W -statistics to be used than in the FX framework. Choices of Zj include well-studied statistical
measures such as the coefficient estimated in a GLM but can also include much more ad hoc
or heuristic measures such as random-forest bagging feature importances or sensitivity analysis
measures such as the Monte-Carlo-estimated total sensitivity index. By providing variable selec-
tion with rigorous type I error control for general models and statistics, knockoffs can be used
to improve the interpretability of complex black box supervised or machine learning models.
There are also many available choices for the antisymmetric function fj, such as |Zj|− |Z̃j|,
sgn.|Zj|− |Z̃j|/ max{|Zj|, |Z̃j|}, or log.|Zj|/− log.|Z̃j|/.

The main point of this subsection is that knockoffs can be used as a wrapper around essentially
any data fitting or prediction algorithm, and regardless of the chosen algorithm still provides
rigorous error control for variable selection. We discuss here a few appealing new options for
statistics W , but we defer full exploration of these very extensive possibilities to future work.

4.1.1. Adaptive knockoff statistics
The default statistic that was suggested in Barber and Candès (2015) is the lasso signed max
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Fig. 1. (a) Power and (b) FDR (the target is 10%) for knockoffs with the LCD and LSM statistics: the
design matrix has IID rows and auto-regressive AR(1) columns with auto-correlation coefficient specified by
the x -axes of the plots, and marginally each Xj � N .0, 1=n/; here n D 3000, p D 1000 and y comes from a
binomial linear model with logit link function with 60 non-zero regression coefficients of magnitude 3.5 and
random signs; each point represents 200 replications

(LSM) statistic, which corresponds to Zj being the largest penalty parameter at which the jth
variable enters the model in the lasso regression of y on .X, X̄/, and fj = sgn.|Zj| −
|Z̃j|/ max{|Zj|, |Z̃j|}. In addition to the LSM statistic, Barber and Candès (2015) suggested
alternatives such as the difference in absolute values of estimated coefficients for a variable and
its knockoff:

Wj =|b̂j|− |b̂j+p|,
where the b̂j and b̂j+p are estimated so that W obeys the sufficiency property that is required
by the FX knockoff procedure, e.g. by ordinary least squares or the lasso with a prespecified
tuning parameter. The removal of the sufficiency requirement for MX knockoffs enables us to
improve this class of statistics by adaptively tuning the fitted model. The simplest example is
the LCD statistic that was introduced in Section 3.2, which uses cross-validation to choose the
tuning parameter in the lasso. Note that the LCD statistic can be easily extended to any GLM
by replacing the first term in expression (3.5) by a non-Gaussian negative log-likelihood, such
as in logistic regression; we shall refer to all such statistics generically as LCD. The key is that
the tuning and cross-validation are done on the augmented design matrix .X, X̃/, so that W still
obeys the flip sign property.

More generally, MX knockoffs enable us to construct statistics that are highly adaptive to the
data, as long as that adaptivity does not distinguish between original and knockoff variables.
For instance, we could compute the cross-validated error of the ordinary lasso (still of y on
.X, X̃/) and compare it with that of a random forest and choose Z to be a feature importance
measure derived from whichever one has smaller error. Since the lasso works best when the true
model is close to linear, whereas random forests work best in non-smooth models, this approach
gives us high level adaptivity to the model smoothness, whereas the MX knockoff framework
ensures strict type I error control.

Returning to the simpler example of adaptivity, we found that the LCD statistic was uni-
formly more powerful than the LSM statistic across a wide range of simulations (linear and
binomial GLMs, ranging covariate dependence, effect size, sparsity, sample size and total num-
ber of variables), particularly under covariate dependence. We note, however, the importance
of choosing the penalty parameter that minimizes the cross-validated error, as opposed to the
default in some computational packages of using the ‘1-standard-error’ rule, as the latter causes
LCD to be underpowered compared with the LSM statistic in low power settings. Fig. 1 shows a



High Dimensional Variable Selection 567

0.00

0.25

0.50

0.75

1.00

5 10 15

Amplitude
(a) (b)

Po
w

er

Methods
BVS Stat.
LCD Stat. 0.00

0.25

0.50

0.75

1.00

5 10 15

Amplitude

FD
R

Fig. 2. (a) Power and (b) FDR (the target is 10%) for knockoffs with the LCD and BVS statistics: the design
matrix is IID N .0, 1=n/, n D 300, p D 1000 and y comes from a Gaussian linear model with β and the noise
variance randomly chosen (see section H of the on-line supplementary material for the precise model): here,
the non-zero entries of β are Gaussian with mean 0 and standard deviation given on the x -axis; the expected
number of non-zero components is 60; the expected variance of the noise is 1; each point represents 200
replications

simulation with n=3000 and p=1000 of a binomial linear model (with statistics computed from
lasso logistic regression) that is representative of the power difference between the two statistics.
In all our simulations, unless otherwise specified, MX knockoffs are always run by using the
LCD statistic. Explicitly, when the response variable is continuous, we use the standard lasso
with Gaussian linear model likelihood and, when the response is binary, we use lasso-penalized
logistic regression.

4.1.2. Bayesian knockoff statistics
Another very interesting source of knockoff statistics comes from Bayesian procedures. If a
statistician has prior knowledge about the problem, he or she can encode it in a Bayesian model
and use the resulting estimators to construct a statistic (e.g. the difference of absolute posterior
mean coefficients, or the difference or log-ratio of posterior probabilities of non-zero coefficients
with a sparse prior). What makes this especially appealing is that the statistician obtains the
power advantages of incorporating prior information, while maintaining a strict frequentist
guarantee on the type I error, even if the prior is false!

As an example, we ran knockoffs in an experiment with a Bayesian hierarchical regression
model with n=300 and p=1000, and E.‖β‖0/=60 (‖ · ‖0 denotes the l0-norm, or the number
of non-zero entries in a vector); see section H of the on-line supplementary material for details.
We chose a simple canonical model with Gaussian response to demonstrate our point, but the
same principle applies to more complex, non-linear and non-Gaussian Bayesian models as well.
The statistics that we used were the LCD and a Bayesian variable selection statistic, namely
Zj − Z̃j where Zj and Z̃j are the posterior probabilities that the jth original and knock-off
coefficients are non-zero respectively (George and McCulloch, 1997); again see section H of the
on-line supplementary material for details. Fig. 2 shows that the accurate prior information that
is supplied to the Bayesian knockoff statistic gives it improved power over LCD, which lacks
such information, but that they have the same FDR control (and they would even if the prior
information were incorrect).

4.2. Alternative procedures
To assess the relative power of knockoffs, we compare with several alternatives in settings in
which they are valid:
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Fig. 3. (a) Power and (b) FDR (the target is 10%) for MX knockoffs and the BH procedure applied to condi-
tional randomization test p-values: the design matrix has IID rows and AR(1) columns with auto-correlation
0.3, n D 400, p D 600 and y comes from a binomial linear model with logit link function with kβk0 D 40, and
all non-zero entries of β having equal magnitudes and random signs; each point represents 200 replications

(a) the FX knockoff procedure with settings recommended in Barber and Candès (2015) (this
method can only be applied in homoscedastic Gaussian linear regression when n�p);

(b) the BH procedure applied to asymptotic GLM p-values—this method can only be applied
when n�p and, although for linear regression exact p-values can be computed (when the
maximum likelihood estimator exists), for any other GLM these p-values can be far from
valid unless n�p, as shown in section G of the on-line supplementary material;

(c) the BH procedure applied to marginal test p-values—the correlation between the response
and each covariate is computed and compared with its null distribution, which under
certain Gaussian assumptions is closed form but in general can at least be simulated
exactly by conditioning on y and using the known marginal distribution of Xj; although
these tests are valid for testing hypotheses of marginal independence (regardless of n and
p), such hypotheses only agree with the desired conditional independence hypotheses when
the covariates are exactly independent of one another;

(d) the BH procedure applied to the p-values from the conditional randomization test de-
scribed in Section 1.6 and section F of the supplementary material.

Note that we are using knockoffs, not ‘knockoffs+’, in all simulations, and thus we are
technically controlling a slightly modified version of FDR. The FDR is nevertheless effectively
controlled in all simulations except in extremely low power settings, and even then the violations
are small. We could have sacrificed a small amount of power and used ‘knockoffs+’ (both MX
and FX) for exact FDR control, but then a more fair comparison in settings (b)–(d) would
replace the BH procedure with the conservative procedure in Benjamini and Yekutieli (2001),
since the joint distribution of the p-values will not in general satisfy the assumptions for the BH
procedure to control the FDR exactly. However, that conservative procedure had extremely non-
competitive power, so we prefer instead to compare knockoffs and the regular BH procedure,
which are more powerful and still effectively control the FDR.

4.2.1. Comparison with conditional randomization
We start by comparing MX knockoffs with procedure (d), the BH procedure applied to condi-
tional randomization test p-values, for computational reasons. We simulated n=400 IID rows
of p=600 auto-regressive AR(1) covariates with auto-correlation 0.3, and response following a
logistic regression model with 40 non-zero coefficients of random signs. Fig. 3 shows the power
and FDR curves as the coefficient amplitude was varied. We see that the conditional random-
ization test gives higher power with similar FDR control, but this comes at a hugely increased



High Dimensional Variable Selection 569

0.00

0.25

0.50

0.75

1.00
Po

w
er

Methods
BH Marginal
BH Max Lik.
FX Knockoffs
MX Knockoffs

0.00

0.25

0.50

0.75

1.00

2 3 4 5

Coefficient Amplitude

(c) (d)

(a) (b)

FD
R

0.00

0.25

0.50

0.75

1.00

Po
w

er

Methods
BH Marginal
MX Knockoffs

0.00

0.25

0.50

0.75

1.00

3 4 5 6

Coefficient Amplitude
FD

R

Fig. 4. (a), (b) Power and (c), (d) FDR (the target is 10%) for MX knockoffs and alternative procedures:
the design matrix is IID N .0, 1=n/, n D 3000, p D ((a), (c)) 1000 and p D ((b), (d)) 6000 and y comes from a
Gaussian linear model with 60 non-zero regression coefficients having equal magnitudes and random signs;
the noise variance is 1; each point represents 200 replications

computational cost. This simulation has considerably smaller n and p than any other simulation
in the paper, and we still had to apply some computational speed-ups or short-cuts, described
in section I of the on-line supplementary material, to keep the computation time within reason.

With these speed-ups, Fig. 3 took roughly 3 years of serial computation time, whereas the
MX knockoffs component took only about 6 h, or about 1/5000 times as much (all computation
was run in MATLAB 2015b (MATLAB, 2015), and both methods used glmnet to compute
statistics). Because of the heavy computational burden, we could not include the conditional ran-
domization test in our further, larger simulations—we show in section F.3 of the supplementary
material that the number of Tj-computations scales optimistically linearly in p. To summarize,
conditional randomization testing appears somewhat more powerful than MX knockoffs but is
computationally infeasible for large data sets (like that in Section 6).

4.2.2. Effect of signal amplitude
Our first simulation comparing MX knockoffs with procedures (a)–(c) is by necessity in a Gaus-
sian linear model with n>p and independent covariates—the only setting in which all procedures
approximately control the FDR. Specifically, Fig. 4(a) plots the power and FDR for the four
procedures when Xij ∼IID N .0, 1=n/, n = 3000, p = 1000, ‖β‖0 = 60 the noise variance σ2 = 1
and the non-zero entries of β have random signs and equal magnitudes, varied along the x-axis.
All methods indeed control the FDR, and the MX knockoff procedure is the most powerful,
with as much as 10% higher power than its nearest alternative. Fig. 4(b) shows the same set-up
but in high dimensions: p = 6000. In the high dimensional regime, neither maximum likeli-
hood p-values nor FX knockoffs can even be computed, and the MX knockoff procedure has
considerably higher power than the BH procedure applied to marginal p-values.

Next we move beyond the Gaussian linear model to a binomial linear model with logit link
function, precluding the use of the original knockoff procedure. Fig. 5 shows the same simu-



570 E. Candès, Y. Fan, L. Janson and J. Lv

0.00

0.25

0.50

0.75

1.00

Po
w

er

Methods
BH Marginal
BH Max Lik.
MX Knockoffs

0.00

0.25

0.50

0.75

1.00

6 8 10

Coefficient Amplitude

FD
R

0.00

0.25

0.50

0.75

1.00

Po
w

er

Methods
BH Marginal
MX Knockoffs

0.00

0.25

0.50

0.75

1.00

8 10 12

Coefficient Amplitude

(c) (d)

(a) (b)

FD
R

Fig. 5. (a), (b) Power and (c), (d) FDR (the target is 10%) for MX knockoffs and alternative procedures;
the design matrix is IID N .0, 1=n/, nD3000, pD ((a), (c)) 1000 and pD ((b), (d)) 6000, and y comes from a
binomial linear model with logit link function, and 60 non-zero regression coefficients having equal magnitudes
and random signs; each point represents 200 replications

lations as Fig. 4 but with Y following the binomial model. The results are similar to those for
the Gaussian linear model, except that the BH procedure applied to the asymptotic maximum
likelihood p-values now has an FDR above 50% (rendering its high power meaningless), which
can be understood as a manifestation of the phenomenon from section G of the supplemen-
tary material. In summary, MX knockoffs continue to have the highest power among FDR
controlling procedures.

4.2.3. Effect of covariate dependence
To assess the relative power and FDR control of MX knockoffs as a function of covari-
ate dependence, we ran similar simulations to those in the previous section, but with co-
variates that are AR(1) with varying auto-correlation coefficient (whereas the coefficient
amplitude remains fixed). It is now relevant to specify that the locations of the non-zero
coefficients are uniformly distributed on {1, : : : , p}. For brevity, we show only the low
dimensional (p=1000) Gaussian setting (where all four procedures can be computed) and the
high dimensional (p=6000) binomial setting, as little new information is contained in the plots
for the remaining two settings. Fig. 6 shows that, as expected, the BH procedure with marginal
testing quickly loses FDR control with increasing covariate dependence. This is because the
marginal tests are testing the null hypothesis of marginal independence between covariate and
response, whereas recall from definition 1 that all conditionally independent covariates are
considered null, even if they are marginally dependent on the response. Concentrating on the
remaining methods and just the left-hand part of the BH marginal curves where the FDR is con-
trolled, Fig. 6 shows that MX knockoffs continue to be considerably more powerful than alter-
natives as covariate dependence is introduced, in low and high dimensional linear and non-linear
models.
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Fig. 6. (a), (b) Power and (c), (d) FDR (the target is 10%) for MX knock-offs and alternative procedures
(the design matrix has IID rows and AR(1) columns with auto-correlation coefficient specified by the x -axes
of the plots, and marginally each Xj �N .0, 1=n/: (a), (c) nD3000, pD1000 and y follows a Gaussian linear
model; (b), (d) nD3000, pD6000 and y follows a binomial linear model with logit link function (in both cases,
there are 60 non-zero coefficients having magnitudes equal to (a), (c) 3.5 and (b), (d) 10 random signs and
randomly selected locations; each point represents 200 replications

5. Robustness

In many real applications, the true joint covariate distribution may not be known exactly, forcing
the user to estimate it from the available data. As already mentioned, this is a challenging problem
by itself, but often we have considerable outside information or unsupervised data that can be
brought to bear to improve estimation. This raises the important question of how robust MX
knockoffs are to error in the joint covariate distribution. Theoretical guarantees of robustness
are beyond the scope of this paper, but we present instead three compelling simulation studies to
demonstrate robustness. The first study investigates error that biases that distribution towards
the empirical covariate distribution, which is often referred to as overfitting error, on simulated
data. We generated knockoffs for Gaussian variables but, instead of using the true covariance
matrix, we used in-sample covariance estimates which ranged in overfitting error. Fig. 7 shows
the power and FDR as the covariance that we use ranges from the true covariance matrix
(AR(1) with auto-correlation 0.3), to a graphical lasso estimator, to convex combinations of the
true and empirical covariance (see section J of the on-line supplementary material for explicit
formulae for the estimators). The plot is indexed on the x-axis by the average relative Frobenius
norm ‖Σ̂−Σ‖Fro=‖Σ‖Fro of the estimator Σ̂. Although the graphical lasso is well suited for this
problem since the covariates have a sparse precision matrix, its covariance estimate is still off by
nearly 50%, and yet surprisingly the resulting power and FDR are nearly indistinguishable from
when the exact covariance is used. The covariance estimate worsens as the empirical covariance—
a very poor estimate of the true covariance given the high dimensionality—is combined in
increasing proportion with the truth. At 75% weight on the empirical covariance, the covariance
estimate is nearly 100% off and yet the power and FDR of MX knockoffs are only slightly
decreased. Beyond this point, MX knockoffs become quite conservative, with power and FDR
approaching 0 as the estimated covariance approaches the empirical covariance. This behaviour
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Fig. 7. (a) Power and (b) FDR (the target is 10%) for knockoffs with the LCD statistic as the covariance matrix
used to generate knockoffs ranges from the truth to an estimated covariance (see the text for details): the
design matrix has IID rows and AR(1) columns with auto-correlation coefficient 0.3, and the matrix (including
knockoffs) is standardized so that each column has mean 0 and Euclidean norm 1; here, n D 800, p D 1500
and y comes from a binomial linear model with logit link function with 50 non-zero entries having magnitude
20 and random signs; each point represents 200 replications

at 100% weight on the empirical covariance is not surprising, since p>n and thus the empirical
covariance is rank deficient, forcing the knockoff variables to be exact replicas of their original
counterparts. (When the knockoff variables are exact copies of the original variables we are
guaranteed zero power and zero FDR since all Wj = 0. Although in principle we could break
ties and assign signs by coin flips when Wj =0, we prefer only to select Xj with Wj >0, as Wj =0
provides no evidence against the null hypothesis.) The main conclusions from this plot are that

(a) the nominal level of 10% FDR is never violated, even for covariance estimates that are
very far from the truth, and

(b) the more overfitting done on the covariance, the more conservative the procedure is,
although, even at almost 100% relative error, MX knockoffs had lost about only 20% of
the power that they would have had if the covariance were known exactly.

Intuitively, instead of treating the variables as coming from their true joint distribution, MX
knockoffs with an overfitted covariate distribution seem to treat them as coming from their
true distribution ‘conditionally’ on being similar to their observed values. Thus FDR should be
roughly controlled conditionally, which implies marginal FDR control, whereas power may be
lost if the conditioning is too great, which matches what we see in the simulations.

Our second and third experiments use real covariate data from a genomewide association
study, the details of which are given in Section 6 and section K of the on-line supplementary
material. In brief, it is a high dimensional setting with Xij ∈{0, 1, 2} and strong spatial structure,
whose covariance we estimate in sample by using the genomewide association study tailored
covariance estimator of Wen and Stephens (2010). We check the robustness of constructing
second-order MX knockoffs by approximate semidefinite programming (from Section 3.4.2) by
choosing a reasonable but artificial model for Y |X1, : : : , Xp and simulating artificial response
data by using the real covariate data. The exact details of the simulation are given in section
K.1 of the supplementary material, but note that this simulation used the same covariance
estimation, single-nucleotide polymorphism clustering and representative selection, knockoff
construction and knockoff selection procedure as used for the real data analysis of the next
section. Our second experiment varies the signal amplitude in a binomial linear model, and Fig.
8 shows the FDR and power. As hoped, the FDR is consistently controlled over a wide range
of powers. Our third experiment, instead of varying the signal strength of our artificial model
for Y |X1, : : : , Xp, deliberately corrupts the covariance estimate of Wen and Stephens (2010) by
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Fig. 8. (a) FDR and (b) power (the target is 10%) for knockoffs with the LCD statistic applied to subsamples of
a real genetic design matrix: each boxplot represents 10 different logistic regression models with 60 non-zero
coefficients with amplitudes given by the x -axis, and, for each model, 1000 common observations were used
for picking cluster representatives, and the remaining 13708 observations were divided into 10 disjoint parts
and knockoffs run on each part, with power and FDR for that model then computed by averaging the results
over those 10 parts
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Fig. 9. Set-up the same as Fig. 8 except with the amplitude fixed at 14 and the amount of off-diagonal
shrinkage in the covariance estimate varied on the x-axis

varying a shrinkage parameter that is not meant to be varied. That parameter is m in Wen and
Stephens (2010), equation (2.7), and we vary it from 1/10 to 10 times its intended value. This
variation has a huge effect on how much shrinkage is applied off the diagonal, with the average
correlation varying by a factor of about 13 over the range of shrinkage. Fig. 9 shows that, even
as we range from substantial undershrinkage to substantial overshrinkage, the MX knockoff
procedure never significantly violates FDR control, with only a little conservativeness when the
undershrinkage is most drastic (the same phenomenon as in Fig. 7(b)).

6. Genetic analysis of Crohn’s disease

To test the robustness and practicality of the new knockoff procedure, we applied it to a data
set containing genetic information on cases and controls for Crohn’s disease. The data were
provided by the Wellcome Trust Case Control Consortium and have been studied previously
(Wellcome Trust Case Control Consortium, 2007). They contain p≈400000 single-nucleotide
polymorphisms measured on n≈ 5000 subjects (approximately 2000 CD patients and approx-
imately 3000 healthy controls). Details of the analysis, including preprocessing, generation of
knockoffs, simulations confirming robustness and a full table of discoveries can be found in
section K of the supplementary material.
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In summary, we ran knockoffs with a nominal FDR level of 10% and the results display some
advantages over the original marginal analysis in Wellcome Trust Case Control Consortium
(2007), where the p-value cut-off that was used was justified as controlling the Bayesian FDR
at close to the same level as we use: 10%.

(a) First, the power is much higher, with Wellcome Trust Case Control Consortium (2007)
making nine discoveries, whereas knockoffs made 18 discoveries on average, doubling the
power.

(b) Quite a few of the discoveries made by knockoffs were confirmed by a larger genomewide
association study (Franke et al., 2010) and were not discovered in the Wellcome Trust
Case Control Consortium (2007) original analysis.

(c) Knockoffs made some discoveries that were not found in either Wellcome Trust Case
Control Consortium (2007) or Franke et al. (2010). Of course we expect some (roughly
10%) of these to be false discoveries. However, especially given the evidence from the
simulations of Section 5 suggesting that the FDR is controlled, it is likely that many
of these correspond to true discoveries. Indeed, evidence from independent studies about
adjacent genes shows that some of the top unconfirmed hits are promising candidates. For
example, the closest gene to rs6601764 is KLF6, which has been found to be associated
with multiple forms of irritable bowel disease, including Crohn’s disease and ulcerative
colitis (Goodman et al., 2016), and the closest gene to rs4692386 is RBP-J, which has been
linked to Crohn’s disease through its role in macrophage polarization (Barros et al., 2013).

7. Discussion

This paper has introduced a novel approach to variable selection in general non-parametric
models, which teases apart important from irrelevant variables while guaranteeing type I er-
ror control. This approach is a significant rethinking of the knockoff filter from Barber and
Candès (2015). A distinctive feature of our approach is that selection is achieved without ever
constructing p-values. This is attractive since

(a) p-values are not needed and
(b) it is unclear how they could be efficiently constructed, in general.

(The conditional randomization approach that we proposed is one way of obtaining such p-
values but it comes at a computational cost.)

7.1 Deployment in highly correlated settings
We posed a simple question: which variables does a response of interest depend on? In many
problems, there may not be enough ‘resolution’ in the data to tell whether Y depends on X1
or, instead, on X2 when the two are strongly correlated. This issue is apparent in our genetic
analysis of Crohn’s disease from Section 6, where co-located single-nucleotide polymorphisms
may be extremely correlated. In such examples, controlling the FDR may not be a fruitful
question. A more meaningful question is whether the response appears to depend on a group
of correlated variables while controlling for the effects of a number of other variables (e.g. from
single-nucleotide polymorphisms in a certain region of the genome while controlling for the
effects of single-nucleotide polymorphisms elsewhere on the chromosomes). In such problems,
we envision applying our techniques to grouped variables: one possibility is to develop an MX
group knockoff approach following Dai and Barber (2016). Another is to construct group
representatives and to proceed as we have done in Section 6. It is likely that there are several
other ways to formulate a meaningful problem and solution.
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7.2. Open questions
Admittedly, this paper may pose more problems than it solves; we close our discussion with a
few of them below.

7.2.1. How do we construct model-X knockoffs?
Even though we presented a general strategy for constructing knockoffs, we have essentially
skirted this issue except for the important case of Gaussian covariates. It would be important
to address this problem, and to write down concrete algorithms for some specific distributions
of features of practical relevance.

7.2.2. Which model-X knockoffs?
Even in the case of Gaussian covariates, the question remains about how to choose corr.Xj, X̃j/

or, equivalently, the parameter sj from Section 3 since corr.Xj, X̃j/= 1 − sj. Should we make
the marginal correlations small? Should we make the partial correlations small? Should we take
an information theoretic approach and minimize a functional of the joint distribution such as
the mutual information between X and X̃?

7.2.3. What would we do with multiple model-X knockoffs?
As suggested in Barber and Candès (2015), we could in principle construct multiple knockoff
variables .X̃

.1/
, : : : , X̃

.d/
/ in such a way that the .d +1/p-dimensional family .X, X̃

.1/
, : : : , X̃

.d/
/

obeys the following extended exchangeability property: for any variable Xj, any permutation
in the list .Xj, X̃

.1/

j , : : : , X̃
.d/

j ) leaves the joint distribution invariant. On the one hand, such
constructions would yield more accurate information since we could compute, among multiple
knockoffs, the rank with which an original variable enters a model. On the other hand, this would
constrain the construction of knockoffs a little more, perhaps making them less distinguishable
from the original features. What is the right trade-off ?

Another point of view is to construct several knockoff matrices exactly as described in the
paper. Each knockoff matrix would yield a selection, with each selection providing FDR control
as described in this paper. Now an important question is this: is it possible to combine or
aggregate all these selections leading to an increase in power while still controlling the FDR?

7.2.4. Can we prove some form of robustness?
Although our theoretical guarantees rely on knowledge of the joint covariate distribution, Sec-
tion 5 showed preliminary examples with remarkable robustness when this distribution is simply
estimated from data. For instance, the estimation of the precision matrix for certain Gaussian
designs seems to have rather secondary effects on the FDR and power levels. It would be inter-
esting to provide some theoretical insights into this.

7.2.5. Which feature importance statistics should we use?
The knockoff framework can be seen as an inference machine: the statistician provides the test
statistic Wj and the machine performs inference. It is of interest to understand which statistics
yield high power, as well as to design new ones.

7.2.6. Can we speed up the conditional randomization testing procedure?
Conditional randomization provides a powerful alternative method for controlling the FDR
in MX variable selection, but at a computational cost that is currently prohibitive for large
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problems. However, there are several promising directions for speeding it up, including impor-
tance sampling to estimate small p-values with fewer randomizations, faster feature statistics
Tj with comparable or higher power than the absolute value of lasso-estimated coefficients and
efficient computation reuse and warm starts to take advantage of the fact that each randomiza-
tion changes only a single column of the design matrix.

7.3. Conclusion
Much remains to be done. On the up side, though, we have shown how to select features in high
dimensional non-linear models (e.g. GLMs) in a reliable way. This arguably is a fundamental
problem, and it is really not clear how else it could be achieved.
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