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This Supplementary Material contains extended discussions, additional technical details on the sequen-
tial conditional independent pairs algorithm, an example of logistic regression producing invalid p-
values, implementation details for Bayesian knockoff statistics, some computational speed-ups/shortcuts
for conditional randomization, and more detailed results from genetic analysis of Crohn’s disease sum-
marized in Section 6.

A. Difference from work on inference after selection
The main differences between our work and those on inference after selection are as follows:

e First, our focus is on selecting the right variables, whereas the goal of this line of work is to adjust
inference after some selection has taken place. In more detail, these works presuppose a selection
procedure has been chosen (for reasons that may have nothing to do with controlling Type I error)
and then compute p-values for the selected variables, taking into account the selection step. In
contrast, MX knockoffs is by itself a selection procedure that controls Type I error.

e Second, inference after selection relies heavily on parametric assumptions about the conditional
distribution, namely that

Y|X17 s 7Xp ~ N(/J’(le s 7Xp)7 02)7
making it unclear how to extend it to the more general setting of the present paper.

e The third difference stems from their objects of inference. In the selection step, a subset of size
m < n of the original p covariates is selected, say X ,..., X} , and the objects of inference
are the coefficients of the X, ’s in the projection of x onto the linear subspace spanned by the
n X m matrix of observed values of these X, ’s. That is, the kth null hypothesis is that the
aforementioned coefficient on X, is zero—note that whether or not inference on the jth variable
is produced at all, and if it is, the object of that inference, both depend on the initial selection
step. In contrast, if MX knockoffs were restricted to the homoscedastic Gaussian model above,
the jth null hypothesis would be that ;. does not depend on X, and there would be p such null
hypotheses, one for each of the original variables.

B. Marginal testing
Some specific drawbacks of using marginal p-values are:

1. Power loss Even when the covariates are independent, so that the hypotheses of conditional and
unconditional independence coincide, p-values resulting from marginal testing procedures may be
less powerful than those from conditional testing procedures. This phenomenon has been reported
previously, for example in statistical genetics by Hoggart et al. (2008) and many others. Intuitively,
this is because a joint model in X1, ..., X, for Y will have less residual variance than a marginal
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model in just X;. There are exceptions, for instance if there is only one important variable, then
its marginal model is the correct joint model and a conditional test will be less powerful due to the
uncertainty in how the other variables are included in the joint model. But in general, marginal
testing becomes increasingly underpowered relative to conditional testing as the absolute number
of important covariates increases (Frommlet et al., 2012), suggesting particular advantage for
conditional testing in modern applications with complex high-dimensional models.

There are also cases in which important Varlables are in fact fully marginally independent of
the response. As a toy example, if X7, Xo id Bernoulli(0.5) and Y = 1y, 4 x,—1), then Y is
marginally independent of each of X; and X5, even though together they determine Y perfectly.
X1 and X5 are certainly conditionally dependent on Y, however, so a conditional test can have
power to discover them.

2. Interpretability When the covariates are not independent, marginal and conditional independence

do not correspond, and we end up asking the wrong question. For example, in a model with a few
important covariates which determine the outcome, and many unimportant covariates which have
no influence on the outcome but are correlated with the important covariates, marginal testing
will treat such unimportant covariates as important. Thus, because marginal testing is testing the
wrong hypotheses, there will be many “discoveries” which have no influence on the outcome.

The argument is often made, especially in genetics, that although discovering an unimportant
covariate just because it was correlated with an important one is technically incorrect, it can still
be useful as it suggests that there is an important covariate correlated with the discovered one.
While this is indeed useful, especially in genetics where correlated SNPs tend to be very close
to one another on the genome, this comes at a price since it significantly alters the meaning of
the FDR. Indeed, if we adopt this viewpoint, the unit of inference is no longer a SNP but, rather,
a region on the genome, yet FDR is still being tested at the SNP level. A consequence of this
mismatch is that the result of the analysis may be completely misleading, as beautifully argued in
Pacifico et al. (2004); Benjamini and Heller (2007); Siegmund et al. (2011), see also Chouldechova
(2014) and Brzyski et al. (2016) for later references.

3. Dependent p-values Marginal p-values will, in general, have quite complicated joint dependence, so

C.

that BHq does not control FDR exactly. Although procedures for controlling FDR under arbitrary
dependence exist, their increased generality tends to make them considerably more conservative
than BHq. In practice, however, the FDR of BHq applied to dependent p-values is usually below
its nominal level, but the problem is that it can have highly variable FDP. Recall that FDR is the
expectation of FDP, the latter being the random quantity we actually care about but cannot control
directly. Therefore, FDR control is only useful if the realized FDP is relatively concentrated
around its expectation, and it is well-established (Efron, 2010, Chapter 4) that under correlations
BHq can produce highly skewed FDP distributions. In such cases, with large probability, FDP = 0
perhaps because no discoveries are made, and when discoveries are made, the FDP may be much
higher than the nominal FDR, making it a misleading error bound.

Relationship with the knockoffs of Barber and Candés

We can immediately see a key difference with the earlier framework of Barber and Candes (2015). In
their work, the design matrix is viewed as being fixed and setting ¥ = X " X, knockoff variables are
constructed as to obey

> ¥ — diag{s}

X, X]"[X, X]=G, G= > — diag{s} D)

(A.1)
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Imagine the columns of X are centered, i.e., have vanishing means, so that we can think of X ' X
as a sample covariance matrix. Then the construction of Barber and Candes is asking that the sample
covariance matrix of the joint set of variables obeys the exchangeability property—i.e., swapping rows
and columns leaves the covariance invariant—whereas in this paper, it is the population covariance that
must be invariant. In particular, the MX knockoffs will be far from obeying the relationship X ' X =
X TX required in (A.1). To drive this point home, assume X ~ A(0,I). Then we can choose
X ~ N(0,I) independently from X, in which case X "X /n and X' X /n are two independent
Wishart variables. An important consequence of this is that in the MX approach, the sample correlation
between the jth columns of X and X will typically be far smaller than that in the original framework
of Barber and Candes. For example, take n = 3000 and p = 1000 and assume the equicorrelated
construction from Barber and Candes (2015). Then the sample correlation between any variable X ; and
its knockoff X ; will be about 0.65 while in the random case, the average magnitude of the correlation
is about 0.015. This explains the power gain of our new method that is observed in Section 4.

D. Proof of exchangeability of null covariates and their knockoffs

PROOF (LEMMA 3.2). Since y’s marginal distribution is the same on both sides of the equation, it is
equivalent to show that ([ X, X], y) 4 (X, X Jswap(s)» ¥)» Which is how we proceed. Assume without
loss of generality that S = {1,2,...,m}. By row independence, it suffices to show that ((X, X), Y)
4 ((X,X)Swap(s), Y), where X (resp. Y) is a row of X (resp. y). Furthermore, since (X, X) 4
(X, X)swap(s)» We only need to establish that

~ d ~
Y’(XvX)swap(S) =Y [(X, X). (A.D)
Letting py|x (y|z) be the conditional distribution of Y, observe that

pYI(XvX)swap(S) (y‘ (%, f)) = pY\(X,X) (y’ (Q?, i.)swap(S))
= py|x(ylr'),
where 2 = z; if i € S and x} = z; otherwise. The second equality above comes from the fact that Y’

is conditionally independent of X by property (2) in the definition of MX knockoffs. Next, since Y and
X1 are independent conditional on Xs.;,, we have

pY‘Xl;p (y‘jb xé:p) = pY|X2;p (y‘xép)

= pY|X1;p (y|x17 xl2:p)'

This shows that
~ d ~
Y ‘ (X7 X)swap(S) =Y ’ (Xa X)swap(S\{l})-

We can repeat this argument with the second variable, the third, and so on until S is empty. This proves
(A.1).

E. Sequential conditional independent pairs algorithm

We will prove by induction on j that Algorithm 1 produces knockoffs that satisfy the exchangeability
property (3.1). We prove the result for the discrete case; the general case follows the same argument
with a slightly more careful measure-theoretic treatment using Radon—Nikodym derivatives instead of
probability mass functions. Below we denote the probability mass function (PMF) of (X.p, X1, j—1) by
L(X-j, Xj, X1:5-1)-
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INDUCTION HYPOTHESIS 1. After j steps, every pair X, X}, is exchangeable in the joint distribu-
tion of (X1.p, X1:5) fork =1,...,].

By construction, the induction hypothesis is true after 1 step since X; and X, are conditionally inde-
pendent and have the same marginal distribution (this implies conditional exchangeability). Assuming
the induction hypothesis holds until j — 1, we prove that it holds after j steps. Note that by by as-
sumption, £ is symmetric in Xy, X & (that is, the function value remains unchanged when the argument
values X, Xk are swapped) for k = 1, ..., 7 — 1. Also, the conditional PMF of X'j given X1, Xlzj_l
is given by o

L(X-j, X, X1:5-1)

> L(Xoj u, X1jo1)
Therefore, the joint PMF of (X.p, X 1:j) is given by the product of the aforementioned conditional PMF
with the joint PMF of (X1, X1.j_1):

L(X.j, X, X1j-1)L(Xj, X, X1j-1)

>u L(Xoju, Xujo1)
Exchangeability of X, X ; follows from the symmetry of (A.1) to those two values. For & < j, note that
(A.1) only depends on X}, X}, through the function £, and that £ is symmetric in X, Xj. Therefore,

(A.1) is also symmetric in X, X &k, and therefore the pair is exchangeable in the joint distribution of
(X1:p5 X1:5)-

: (A.T)

F. The conditional randomization test

This section presents an alternative approach to the controlled variable selection problem. To describe
our approach, it may be best to consider an example. Assume we are in a regression setting and let
Ej(A) be the value of the Lasso estimate of the jth regression coefficient. We would like to use the
statistic I;j (A) to test whether Y is conditionally independent of X; since large values of \Ej (A\)| provide
evidence against the null. To construct a test, however, we would need to know the sampling distribution
of l;j()\) under the null hypothesis that Y and X; are conditionally independent, and it is quite unclear
how one would obtain such knowledge.

F1. The test

A way out is to sample the covariate X; conditional on all the other covariates (but not the response),
where by “sample” we explicitly mean to draw a new sample from the conditional distribution of
X, | X-; using a random number generator. We then compute the Lasso statistic IB;*(A), where the *
superscript indicates that the statistic is computed from the artificially sampled value of the covariate
Xj. Now, under the null hypothesis of conditional independence between Y and X, it happens that
IS;‘(A) and l;j()\) are identically distributed and that, furthermore, this statement holds true conditional
on Y and all the other covariates. This claim is proved in Lemma F.1 below. A consequence of this
is that by simulating a covariate conditional on the others, we can sample at will from the conditional
distribution of any test statistic and compute p-values as described in Algorithm 1.

LEMMA F.1. Let (Zy, Z»,Y) be a triple of random variables, and construct another triple (Z;, Z2,Y’)

as
x d
Z11(Zy,Y) = Zy| Zs.
Then under the null hypothesis Y 1 Z | Zs, any test statistic T = t(Zy, Z2,Y) obeys
d *
T|(Z2,Y) = T"|(Z,Y),

where T* = t(Z3,Z3,Y).
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Algorithm 1 Conditional Randomization Test.

Input: A set of n independent samples (X1, ..., Xjp, Yj)1<i<n assembled in a data matrix X and a
response vector y, a feature importance statistic 7 (X, y) to test whether X; and Y are conditionally
independent.

Loop: for k =1,2,..., K do
Create a new data matrix X (*) by simulating the jth column of X from £(X j|1X-;) (and keeping the
remaining columns the same). That is, X Z-(f) is sampled from the conditional distribution
Xij [{Xi1, ..., Xip} \ {Xi;}, and is (conditionally) independent of X;;.
Output: A (one-sided) p-value
K

1
Pr= g [T 2 M x e x| -
k=1

As with permutation tests, adding one in both the numerator and the denominator makes sure that the
null p-values are stochastically larger than uniform variables.

PROOF. To prove the claim, it suffices to show that Z; and Z7 have the same distribution condition-
ally on (Z,Y"). This follows from

% d d
ZV\(Y,Z2) = Z1|Zy = Z1|(Z2,Y).

The first equality comes from the definition of Z] while the second follows from the conditional inde-
pendence of Y and Z;, which holds under the null.

The consequence of Lemma F.1 is that we can compute the 95% percentile, say, of the conditional
distribution of T denoted by t{; g5(Z2, Y"). Then by definition, under the null,

Since this equality holds conditionally, it also holds marginally.

F.2. Literature review
The conditional randomization test is most closely related to the propensity score (Rosenbaum and Ru-
bin, 1983), which also uses the conditional distribution X; | X_; to perform inference on the conditional
relationship between Y and X; given X-;. However, propensity scores require X; be binary, and the
propensity score itself is normally estimated, although Rosenbaum (1984) shows that when all the co-
variates jointly take a small number of discrete values, propensity score analysis can be done exactly.
Doran et al. (2014) also rely on the data containing repeated observations of X_; so that certain obser-
vations can be permuted nonparametrically while maintaining the null distribution. In fact, the exact
term “conditional randomization test” has also been used in randomized controlled experiments to test
for independence of Y and X; conditioned more generally on some function of X_; (such as a measure
of imbalance in X_; if X; is binary), again relying on discreteness of the function so that there exist
permutations of X; which leave the function value unchanged. Despite the similar name, our condi-
tional randomization test is quite distinct from these, as it does not rely on discreteness or experimental
control in any of the covariates.

Another line of work exists within the linear model regime, whereby the null (without X;) model is
estimated and then the empirical residuals are permuted to produce a null distribution for Y (Freedman
and Lane, 1983). Because this approach is only exact when the empirical residuals match the true
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residuals, it explicitly relies on a parametric model for Y | X_;, as well as the ability to estimate it quite
accurately.

F3. Comparisons with knockoffs

One major limitation of the conditional randomization method is its computational cost. It requires
computing randomization p-values for many covariates and to a high-enough resolution for multiple-
comparisons correction. Clearly, this requires samples in the extreme tail of the p-value distribution.
This means computing a very large number of feature importance statistics 7, each of which can be
expensive since for reasons outlined in the drawbacks associated with marginal testing, powerful 77’s
will take into account the full dimensionality of the model, e.g., absolute value of the Lasso-estimated
coefficient. In fact, the number of computations of 77, tallied over all j, required by the conditional
randomization method is Q(p).f To see this, suppose for simplicity that all R rejected p-values take
on the value of half the BHq cutoff equal to 7 = ¢R/p, and all we need to do is upper-bound them
below 7. This means there are 12 p-values P; for which plugging K = oo into Algorithm 1 would yield
P; = 7/2. After K < oo samples, the approximate p-value (ignoring the +1 correction) is distributed
as K~ Bin(K, P;). We could then use this binomial count to construct a confidence interval for P;. A
simple calculation shows that to be reasonably confident that P; < 7, K must be on the order of at least
1/7. Since there are R such p-values, this justifies the claim.

Note that for knockoffs, the analogous computation of 7" need only be done exactly once. If, for
instance, each 7T’ requires a Lasso computation, then the conditional randomization test’s computational
burden is very challenging for medium-scale p in the thousands and prohibitive for large-scale (e.g.,
genetics) p in the hundreds of thousands or millions. We will see in Section 4.2.1 that there are power
gains, along with huge computational costs, to be had by using conditional randomization in place of
knockoffs, and Section 6 will show that the MX knockoff procedure easily scales to large data sets.

Another advantage of MX knockoffs is its guaranteed control of the FDR, whereas the BHq proce-
dure does not offer strict control when applied to arbitrarily dependent p-values.

G. Logistic regression p-values

Asymptotic maximum likelihood theory promises valid p-values for each coefficient in a GLM only
when n > p. However, these approximate p-values can usually be computed as long as n > p, so
a natural question arising from high-dimensional applications is whether such asymptotic p-values are
valid when n and p are both large with p/n > 0.1, for example. We simulated 10* independent design
matrices (n = 500, p = 200) and binary responses from a logistic regression for the following two
settings:

(1) (X1,...,Xp)isan AR(1) time series with AR coefficient 0.5 and

Y |Xy,...,X, ~ Bernoulli(0.5)

(2) (Xy,...,X))is an AR(1) time series with AR coefficient 0.5 and

Y | X1,..., X, ~ Bernoulli (logit (0.08( X2 + - - - + X21)))

Histograms for the p-values for 81 (null in all cases) are shown in Figure 1. Both histograms are far from
uniform, and Table 1 shows each distribution’s concentration near zero. We see that the small quantiles
have extremely inflated probabilities—over 20 times nominal for P {p-value < 0.1%} in setting (2). We

Ta(N) € Q(b(NN)) means that there exist Ny and C' > 0 such that a(N) > Cb(N) for N > Nj.
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Fig. 1. Distribution of null logistic regression p-values with » = 500 and p = 200; 10,000 replications.

Table 1. Inflated p-value probabilities with estimated Monte Carlo standard errors in parentheses.
See text for meanings of settings (1), (2), (3), (4).

(H (2) (3) “4)

P {p-value < 5%} | 16.89% (0.37%) | 19.17% (0.39%) | 16.88% (0.37%) | 16.78% (0.37%)
P {p-value < 1%} | 6.78% (0.25%) | 8.49% (0.28%) | 7.02% (0.26%) | 7.03% (0.26%)
P {p-value < 0.1%} | 1.53% (0.12%) | 2.27% (0.15%) | 1.87% (0.14%) | 2.04% (0.14%)

also see that the exact null distribution depends on the unknown coefficient sequence s, . . ., 3,, since
the probabilities between settings differ statistically significantly at all three cutoffs.

To confirm that this non-uniformity is not just a finite-sample effect, we also simulated 10% i.i.d.
N(0,1) design matrices with independent Bernoulli(0.5) responses for n = 500, p = 200 and n =
5000, p = 2000 as settings (3) and (4), respectively. Table 1 shows that the distribution does not really
change as n and p are increased with constant proportion.

These results show that the usual logistic regression p-values one might use when n > p can have
null distributions that are quite far from uniform, and even if one wanted to correct that distribution,
it depends in general on unknown problem parameters, further complicating matters. When n < p
the problem becomes even more challenging, with existing methods similarly asymptotic as well as
requiring stringent sparsity assumptions (van de Geer et al., 2014). Thus, despite the wealth of research
on controlling FDR, without a way to obtain valid p-values, even the problem of controlling FDR in
medium-to-high-dimensional GLMs remains unsolved.

H. Bayesian knockoff statistics
The data for the simulation of Section 4.1.2 was drawn from:
X; XN, 1/n), j € {L,....p},
iid .
B] 1’1\/ N<077—2)7 j € {17 s 7p}7
§; % Bernoulli(r), j € {1,...,p},
— ~ Gamma(A, B) (shape/scale parameterization, as opposed to shape/rate),
o
Y~ N Z Xjﬂj, O‘2
ji(;jzl

The simulation used n = 300, p = 1000, with parameter values 7 = %, A =5, B =4, and 7 varied
along the x-axis of the plot.
To compute the Bayesian variable selection (BVS) knockoff statistic, we used a Gibbs sampler on
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the following model (treating X1, ..., X, and Xi,... ,X'p as fixed):

B; M N(0,72), je{1,...,p},

B XN (0,7), j € {L,....p},

Aj i Bernoulli(7), j € {1,...,p},
0,0) if \j =0

(67,0, 4 (0,1)wp. 1/2 ifAj=1 p,j€{l,....p},
(1,0) wp. 1/2 if ;=1
1
— ~ Gamma(A, B) (shape/scale parameterization, as opposed to shape/rate),
(o
YN Y XiBi+ Y XBy 0%

J:6;=1 §io;=1

which requires only a very slight modification of the procedure in George and McCulloch (1997). After

computing the posterior probabilities 5j and Sj with 500 Gibbs samples (after 50 burn-in samples), we
computed the jth knockoff statistic as

Q’]U

W, =6; —

. Conditional randomization speedups

In order to make the conditional randomization computation feasible for Figure 3, we had to apply a
number of speed-ups/shortcuts. With these, the serial computation time for the figure was reduced to
roughly three years.

e As mentioned, the LCD statistic is a powerful one for MX knockoffs, so we wanted to compare
it to the analogue for the conditional randomization test, namely, the absolute value of the Lasso-
estimated coefficient. However, choosing the penalty parameter by cross-validation turned out
to be too expensive, so instead we chose a fixed value by simulating repeatedly from the known
model (with amplitude 30), running cross-validation for each repetition, and choosing the median
of the cross-validation-error-minimizing penalty parameters (the chosen value was 0.00053). For
a fair comparison, we did the same for MX knockoffs (except the simulations included knockoff
variables too—the chosen value was 0.00077). This speed-up is of course impossible in practice,
as the true model is not known. It is not clear how one would choose the penalty parameter if
not by cross-validation (at considerable extra computational expense), although a topic of current
research is how to choose tuning parameters efficiently and without explicit reliance on a model
for the response, e.g., (Lv and Liu, 2014).

e Because the statistic used was the (absolute value of the) estimated coefficient from a sparse esti-
mation procedure, many of the observed statistics were exactly zero, and for these, the conditional
randomization p-values can be set to one without further computation. This did not require any
prior knowledge, although it will only work for statistics whose distribution has a point mass at
the smallest possible value.

e Because the power was calibrated, we knew to expect at least around 10 discoveries, and thus could
anticipate the BHq cutoff being at least 0.1 x 10/600. This cutoff gives a sense of the p-value
resolution needed, and we chose the number of randomizations to be roughly 10 times the inverse
of the BHq cutoff, namely, 10,000. However, we made sure that all 10,000 randomizations
were only computed for very few covariates, both using the previous bullet point and also by
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checking after periodic numbers of randomizations whether we can reject the hypothesis that the
true p-value is below the approximate BHq cutoff upper-bound of 0.1 x 44/600 (the 44 comes
from 40 nonzeros with 10% false discoveries). For instance, after just 10 randomizations, if the
approximate p-value so far is greater than 0.2, we can reject the hypothesis that the exact p-value
is below 0.1 x 44 /600 at significance 0.0001 (and thus compute no further randomizations for that
covariate). Speed-ups like this are possible in practice, although they require having an idea of
how many rejections will be made, which is not generally available ahead of time.

J. Robustness Simulations

In Figure 7, the points labeled “100a.% Emp. Cov” represents knockoffs run using the following convex
combination of the true and empirical covariance matrices:

EEC = (1 — 04)2 + aﬁ),

where 3 is the empirical covariance matrix. The point labeled “Graph. Lasso” represents knockoffs run
using the following covariance estimate:

YL = diag(r) ©~ ! diag(r)

where the rescaling vector r has 7; = 1/%;;/ ((':)*1) jj » and © is the inverse covariance estimated by
the graphical Lasso with penalty parameter chosen by 2-fold cross-validation on the log-likelihood.

K. Genetic analysis of Crohn’s disease

The SNP arrays came from an Affymetrix S00K chip, with calls made by the BRLMM algorithm
Affymetrix (2006). SNPs satisfying any of the following conditions were removed:

e minor allele frequency (MAF) < 1%,
e Hardy—Weinberg equilibrium test p-value < 0.01%,
e missing > 5% of values (values were considered missing if the BRLMM score was > 0.5),

e position was listed as same as another SNP (this occured just for the pair rs16969329 and rs4886982;
the former had smaller MAF and was removed),

e position was not in genetic map.

Furthermore, subjects missing > 5% of values were removed. Following the original paper describ-
ing/using this data (WTCCC, 2007), we did not adjust for population structure. Any missing values that
remained after the above preprocessing were replaced by the mean of the nonmissing values for their
respective SNPs.

After preprocessing, there were p = 377, 749 single nucleotide polymorphisms (SNPs) measured
onn = 4,913 subjects (1,917 CD patients and 2,996 healthy controls). Although p > n, the joint
dependence of SNPs has a strong spatial structure, and outside data can be used to improve estima-
tion. In particular, we approximated the standardized joint distribution as multivariate Gaussian with
covariance matrix estimated using the methodology of Wen and Stephens (2010), which shrinks the oft-
diagonal entries of the empirical covariance matrix using genetic distance information estimated from
the HapMap CEU population. This approximation was used on each chromosome, and SNPs on differ-
ent chromosomes were assumed to be independent. The statistic we use is the LCD. Although the data
itself cannot be made available, all code is available at http://web.stanford.edu/~msesia/
software.html.
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One aspect of SNP data is that it contains some very high correlations, which presents two chal-
lenges to our methodology. The first is generic to the variable selection problem: it is very hard to
choose between two or more nearly-identical (highly-correlated) variables if the data supports at least
one of them being selected.] To alleviate this, we clustered the SNPs using the estimated correlations
as a similarity measure with a single-linkage cutoff of 0.5, and settle for discovering important SNP
clusters. To do so we choose one representative from each cluster and approximate the null hypothesis
that a cluster is conditionally independent of the response given the other clusters by the null hypoth-
esis that a cluster representative is conditionally independent of the response given the other cluster
representatives. To choose the representatives, we could ignore the observed data altogether and do
something like pick representatives with the highest minor allele frequency (computed from outside
data), and then run knockoffs as described in the paper. Although this produces a powerful procedure
(about 50% more powerful than the original analysis by WTCCC (2007)), a more powerful approach
is to select cluster representatives using a fraction of the observations, including their responses, such
as by marginal testing. Note that such a data-splitting approach appears to make our null hypotheses
random, as in the work on inference after selection reviewed in Section 1.4. However, the approxima-
tion we are making is that each representative stands for its cluster, and each cluster has exactly one
associated null hypothesis, no matter how selection is performed, even if it were nonrandom. That is,
the approximate hypotheses being tested do not actually depend on the selection (unlike Brzyski et al.
(2016) where clusters are selected and where the very definition of a cluster actually depends on the
selection), and our approach remains free of a model for Y | X, which together should make it clear
that it is still quite different from the literature on inference after selection.

Explicitly, we randomly chose 20% of our observations and on those observations only, we ran
marginal t-tests between each SNP and the response. Then from each cluster we chose the SNP with
smallest t-test p-value to be the single representative of that cluster. Because the observations used for
selecting cluster representatives have had their representative covariate values selected for dependence
on the outcome, if we constructed knockoff variables as usual and included them in our procedure, the
required exchangeability established in Lemma 3.2 would be violated. However, taking a page from
Barber and Candes (2016), we can still use these observations in our procedure by making their knock-
off variables just identical copies of the original variables (just for these observations). It is easy to
show (see Section L of the Supplementary Material) that constructing knockoffs in this way, as exact
copies for the observations used to pick representatives and as usual for the remaining observations, the
pairwise exchangeability of null covariates with their knockoffs is maintained. Of course, the observa-
tions with identical original and knockoff covariate values do not directly help the procedure distinguish
between the original and knockoff variables, but including them improves the accuracy of the fitting pro-
cedure used to produce the feature importance statistics, so that power is improved indirectly because
the Z; become more accurate measures of feature importance.

Replacing clusters with single representatives reduces p down to 71,145 (so the average cluster
size was just over five SNPs, although there was substantial variance) and, by construction, upper-
bounds pairwise SNP correlations by 0.5. Note that this is far from removing all dependence among the
SNPs, so considering conditional independence instead of marginal dependence remains necessary for
interpretation. Scientifically, we consider a selected SNP to be a true discovery if and only if it is the
representative of a cluster containing a truly important SNP.

The second challenge is the one discussed in Section 3.4, and we use the approximate SDP knockoff
construction proposed there. The approximate covariance matrix was just the estimated covariance
matrix with zeros outside of the block diagonal, with the blocks chosen by single-linkage clustering on
the estimated correlation matrix, aggregating clusters up the dendrogram as much as possible subject
to a maximum cluster size of 999. In this case, even separating the problem by chromosome, the SDP

1This is purely a problem of power and would not affect the Type I error control of knockoffs.
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construction was computationally infeasible and the equicorrelated construction produced extremely
small s: mean(sEQ) = 0.08. The parallelized approximate SDP construction took just a matter of
hours to run, and increased s on average by almost an order of magnitude, with mean(sASDP) = 0.57.

Although it incorporates strong prior information, our estimate of the joint distribution of the SNPs
is still an approximation, so our first step is to test the robustness of knockoffs to this approximation.

K.1. Simulations with genetic design matrix

In Section 5, the second and third experiments check the robustness of knockoffs to this particular joint
distribution approximation by taking a reasonable model for Y| X7, ..., X}, and simulating artificial
response data using the real covariate data itself. We split the rows of our design matrix into 10 smaller
data sets (re-estimating the joint covariate distribution each time), and for each conditional model we
run knockoffs 10 times and compute the realized FDP each time. Then averaging the 10 FDPs gives
an estimate of knockoffs’ FDR for that conditional model. In an attempt to make each smaller data
set have size more comparable to the n =~ 5,000 in our actual experiment, we combined the healthy
and CD genetic information with that from 5 other diseases from the same data set:§ coronary artery
disease, hypertension, rheumatoid arthritis, type 1 diabetes, and type 2 diabetes. This made for 14, 708
samples altogether. To further increase the effective sample size and match the actual experiment, we
used a random subset of 1000 observations for choosing cluster representatives, but the same 1000 for
each smaller data set, so that each subsampled data set contained ~ 1,400 unique samples, +1000
common samples (for each of these common samples X’ij = X;;). For computational reasons, we used
only the first chromosome in this experiment, so each of our simulations had (pre-clustering) 29, 258
covariates. The conditional model for the response was chosen to be a logistic regression model with 60
nonzero coefficients of random signs and locations uniformly chosen from among the original (not just
representatives) SNPs. In the second experiment (Figure 8), the coefficient amplitude was varied, and
for each amplitude value, 10 different conditional models (different random locations of the nonzero
coefficients) were simulated. Each simulation ran the exact same covariance estimation, SNP clustering
and representative selection, knockoff construction, and knockoff selection procedure as used for the
real data. In the third experiment (Figure 9), the shrinkage was amplified or attenuated by varying
the value m in Wen and Stephens (2010, Equation (2.7)) from its intended value, while the coefficient
amplitude was fixed at 14.

K.2. Results on real data

Encouraged by the simulation results of the previous section, we proceeded to run knockoffs with a
nominal FDR level of 10% on the full genetic design matrix and real Crohn’s disease outcomes. Since
knockoffs is a randomized procedure, we re-ran knockoffs 10 times (after choosing the representatives)
and recorded the selected SNPs over all repetitions, summarized in Table 2. The serial computation
time for a single run of knockoffs was about 6 hours, but the knockoff generation process is trivially
parallelizable over chromosomes, so with 20 available computation nodes, the total parallelized com-
putation time was about one hour. Although in this case we certainly do not know the ground truth,
we can get some sort of confirmation by comparing to the results of studies with newer and much larger
data sets than ours. In particular, we compared with the results of Franke et al. (2010), which used
roughly 22,000 cases and 29,000 controls, or about 10 times the sample size of the WTCCC data. We
also compare to the WTCCC (2007) results, where the p-value cutoff used was justified as controlling
the Bayesian FDR at close to 10%—the same level we use. We consider discovered clusters in differ-
ent studies to correspond (“Yes” in Table 2) if their position ranges overlap, and to nearly correspond

§Bipolar disorder was also part of this data set, but a formatting error in the data we were given prevented us
from including it.
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Table 2.

which uses Human Genome Build 35.

SNP clusters discovered to be important for Crohn’s disease over 10 repetitions of
knockoffs. Clusters not found in Franke et al. (2010) represent promising sites for further investi-
gation, especially rs6601764 and rs4692386, whose nearest genes have been independendently
linked to CD. See text for detailed description. SNP positions are as listed in the original data,

Selection Cluster Repre- | Chrom. | Position Range (Mb) | Confirmed in | Selected in
frequency | sentative (Cluster Franke et al. | WTCCC
Size) (2010)? (2007)?

100% rs11805303 (16) 1 67.31-67.46 Yes Yes
100% rs11209026 (2) 1 67.31-67.42 Yes Yes
100% rs6431654 (20) 2 233.94-234.11 Yes Yes
100% rs6601764 (1) 10 3.85-3.85 No No
100% rs7095491 (18) 10 101.26-101.32 Yes Yes
90% rs6688532 (33) 1 169.4-169.65 Yes No
90% rs17234657 (1) 5 40.44-40.44 Yes Yes
90% rs3135503 (16) 16 49.28-49.36 Yes Yes
80% rs9783122 (234) 10 106.43-107.61 No No
80% rs11627513 (7) 14 96.61-96.63 No No
60% rs4437159 (4) 3 84.8-84.81 No No
60% rs7768538 (1145) 6 25.19-32.91 Yes No
60% rs6500315 (4) 16 49.03-49.07 Yes Yes
60% rs2738758 (5) 20 61.71-61.82 Yes No
50% 187726744 (46) 5 40.35-40.71 Yes Yes
50% rs4246045 (46) 5 150.07-150.41 Yes Yes
50% rs2390248 (13) 7 19.8-19.89 No No
50% rs7186163 (6) 16 49.2-49.25 Yes Yes
40% rs10916631 (14) 1 220.87-221.08 No No
40% rs4692386 (1) 4 25.81-25.81 No No
40% rs7655059 (5) 4 89.5-89.53 No No
40% rs7759649 (2) 6 21.57-21.58 Yes* No
40% rs1345022 (44) 9 21.67-21.92 No No
30% rs6825958 (3) 4 55.73-55.77 No No
30% rs9469615 (2) 6 33.91-33.92 Yes* No
30% rs4263839 (23) 9 114.58-114.78 Yes No
30% rs2836753 (5) 21 39.21-39.23 No No
10% rs459160 (2) 1 44.75-44.75 No No
10% rs6743984 (23) 2 230.91-231.05 Yes No
10% rs2279980 (20) 5 57.95-58.07 No No
10% rs4959830 (11) 6 3.36-3.41 Yes No
10% rs13230911 (9) 7 1.9-2.06 No No
10% rs7807268 (5) 7 147.65-147.7 No No
10% rs2147240 (1) 9 71.83-71.83 No No
10% rs10761659 (53) 10 64.06-64.41 Yes Yes
10% rs4984405 (3) 15 93.06-93.08 No No
10% rs17694108 (1) 19 38.42-38.42 Yes No
10% rs3932489 (30) 20 15.01-15.09 No No
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(““Yes*” in Table 2) if the distance from our discovered cluster to the nearest cluster in the other study
was less than the width of that cluster in the other study.

One thing to notice in the table is that a small number of the discovered clusters actually overlap with
other clusters, specifically the clusters represented by rs11805303 and rs11209026 on chromosome
1, and rs17234657 and rs7726744 on chromosome 5. And although they don’t overlap one another,
the three nearby clusters represented by rs3135503, rs6500315, and rs7186163 on chromosome 16 all
overlap the same discovered region in Franke et al. (2010). Although puzzling at first, this phenomenon
is readily explained by one of four possibilities:

e By construction, the representatives of overlapping clusters are not very highly-correlated (less
than 0.5), so the fact that knockoffs chose multiple clusters in the same region may mean there
are multiple important SNPs in this region, with one (or more) in each cluster. Focusing on the
clusters on chromosome 1, the same region on the IL23R gene was reported in Franke et al. (2010)
to have by far the strongest signal (estimated odds ratio of 2.66, next highest was 1.53) among all
the regions they identified. If we conclude from this that the region or gene is fundamentally
important for Crohn’s disease, it stands to reason that mutations at multiple nearby but distinct
loci could have important detrimental effects of their own.

e There could be an important SNP located between the two clusters, but which was not in the data.
Then the two clusters on either side would both be conditionally dependent on the response, and
knockoffs would be correct to reject them.

e One or more of the overlapping clusters could be mundane false discoveries caused by null covari-
ates that happened to take values more conditionally related to the response than would be typical.
This would be a facet of the data itself, and thus an unavoidable mistake.

e The tandem discoveries could also be due to a breakdown in our covariate distribution estimate.
If the covariance between the two representatives were substantially underestimated and one had
a large effect while the other was null, then the Lasso would have a (relatively) hard time dis-
tinguishing the two original variables, but a much easier time separating them from the knockoff
of the null representative, since it is less correlated with the signal variable. As a result, the null
variable and its knockoff would not be exchangeable as required by knockoffs, and a consistent
error could be made. However, given that the empirical and estimated correlations between the
two representatives on chromosome 1 were -0.1813 and -0.1811, respectively, and for the two
on chromosome 5 were -0.2287 and -0.2286, respectively, it seems unlikely that we have made a
gross estimation error. Also, note that the separation of nearly all the discovered regions, along
with the simulations of the previous subsection, suggest this effect is at worst very small among
our discoveries.

Overlapping clusters aside, the knockoffs results display a number of advantages over the original
marginal analysis in WTCCC (2007):

e First, the power is much higher, with WTCCC (2007) making 9 discoveries, while knockoffs made
18 discoveries on average, doubling the power.

e Quite a few of the discoveries made by knockoffs that were confirmed by Franke et al. (2010)
were not discovered in WTCCC (2007)’s original analysis.

e Knockoffs made a number of discoveries not found in either WTCCC (2007) or Franke et al.
(2010). Of course we expect some (roughly 10%) of these to be false discoveries, particularly
towards the bottom of the table. However, especially given the evidence from the simulations of
the previous subsection suggesting the FDR is controlled, it is likely that many of these correspond
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to true discoveries. Indeed, evidence from independent studies about adjacent genes shows some
of the top hits to be promising candidates. For example, the closest gene to rs6601764 is KLF6,
which has been found to be associated with multiple forms of IBD, including CD and ulcerative
colitis (Goodman et al., 2016); and the closest gene to rs4692386 is RBP-J, which has been linked
to CD through its role in macrophage polarization (Barros et al., 2013).

Note that these benefits required relatively little customization of the knockoff procedure. For instance,
WTCCC (2007) used marginal tests specifically tailored to SNP case-control data, while we simply used
the LCD statistic. We conjecture that the careful use of knockoffs by domain experts would compound
the advantages of knockoffs, as such users could devise more powerful statistics and better model/cluster
the covariates for their particular application.

L. Knockoffs with selection

First, recall that the results of Theorem 3.4 hold if for any subset S C Hg, we have

([X’ X]swap(S)7?/) i ([Xv X]vy) (A.D)

In fact, MX knockoffs are defined in such a way that this property holds. Now, the procedure employed
in Section 6 to construct knockoffs is slightly different from that described in the rest of the paper.
Explicitly, the data looks like

where y(Y is 983 x 1, X1 is 983 x 71,145, y?) is 3930 x 1 and X @ is 3930 x 71, 145; recall that
the set of samples labeled (1) is used to select the cluster representatives, and that the two sets (1) and
(2) are independent of each other. The knockoffs X@ for X@ are generated as described in the paper
(using the ASDP construction) and for (1), we set XM = xM 1o verify (A.1), it suffices to show
that for any subset S € H, and each i € {1, 2},

~ 7. . i

(X0, XD 50) £ (XD, XOliwap(s),u'?) (a2

since the sets (1) and (2) are independent. (A.2) holds for 7 = 2 because we are following the classical
knockoffs construction. For 7 = 1, (A.2) actually holds with exact equality, and not just equality in
distribution.

We can also argue from the perspective of MX knockoffs from Definition 3.1. By construction, it
is clear that X are valid MX knockoffs for X (). We thus study X (): since X = X1, the
exchangeability property is trivial; also, X 1) 1 y() | X (1) since X determines X ).
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