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This Supplementary Material contains all the proofs and technical details.

A Proofs of main results

To facilitate the technical presentation, we list two definitions below, where n represents the

network size and dimensionality of eigenvectors.

Definition 1. Let ¢ and & be a pair of random variables that may depend onn. We say that
they satijsfy & = O<(C) if for any pair of positive constants (a,b), there exists some positive

integer no(a,b) depending only on a and b such that P(|¢] > n®[¢]) < n~° for alln > ng(a,b).

Definition 2. We say that an event 2L, holds with high probability if for any positive constant
a, there exists some positive integer no(a) depending only on a such that P (,) > 1—n"¢

for all n > ny(a).

From Definitions 1 and 2 above, we can see that if £ = O<((), then it holds that £ = O(n®((])
with high probability for any positive constant a. The strong probabilistic bounds in the
statements of Definitions 1 and 2 are in fact consequences of analyzing large binary random
matrices given by networks.

Let us introduce some additional notation. Since the eigenvectors are always up to a
sign change, for simplicity we fix the orientation of the empirical eigenvector vj such that
V}:vk > 0 for each 1 < k < K, where vi is the kth population eigenvector of the low-rank
mean matrix H in our general network model (2). It is worth mentioning that all the variables
are real-valued throughout the paper except that variable z can be complex-valued. For any
nonzero complex number z, deterministic matrices M and My of appropriate dimensions,
1 <k < K, and n-dimensional unit vector u, we define

P(M;, My, 2) = 2R(My, My, 2),  Pr. = [22(Av, 2/2)] (A.1)

buk:=u—V_, [D ) ' +R(V_i, Vo, 2)] RT (0, V_y, 2), (A.2)
where R(M1, Mg, z) is defined in (7),
Au,k,z = P(ll, Vi, Z) - P(u) V—k:v Z) [Z(D—k)_l + P(V—kv V—k7 Z)] - P(V—k7 Vi, Z)’ (A3)

(Ay, k,2/%) denotes the derivative of Ay, 1 ./z with respect to complex variable z, V_y
represents a submatrix of V.= (vi,--- ,vg) by removing the kth column, and D_j stands

for a principal submatrix of D = diag(di, - - ,dk) by removing the kth diagonal entry.



A.1 Proof of Theorem 1

We first prove the conclusion in the first part of Theorem 1 under the null hypothesis
Hy : w; = mj, where (i,7) with 1 < i < j < n represents a given pair of nodes in the
network. In particular, Lemma 9 in Section B.8 of Supplementary Material plays a key
role in the technical analysis. For the given pair (i,7), let us define a new random matrix
X = (Xim)1<i,m<n based on the original random matrix X = (X, )1<1,m<n by swapping the

roles of nodes ¢ and j, namely by setting

p
Xim l,mE {i,j}c

Xim, l:j,WG{i,j}C Xigs (l,m):(z,]) or (],Z)
Xim = Xjm, =1, me {i,j}° and Xpn = (x4, l=m=j ) (A.4)
Xiis m:j, l e {i,j}c Xjj, l=m=1

le]’, m = i, l e {Z,]}C

where {7, 7}¢ stands for the complement of set {i,j} in the node set {1,---,n}. It is easy
to see that the new symmetric random matrix X defined in (A.4) is simply the adjacency
matrix of a network given by the mixed membership model (10) by swapping the ith and
jth rows, 7; and 7, of the community membership probability matrix IT = (7, - - - )T
By the above definition of )N(, we can see that under the null hypothesis Hy : m; = m;, it

holds that
S d
X=X, (A.5)

where £ denotes being equal in distribution. The representation in (A.5) entails that for each
1 <k < K, the ith and jth components of the kth population eigenvector v are identical;
that is,

vie(1) = vi(j).

This identity along with the asymptotic expansion of the empirical eigenvector vy in (B.25)
given in Lemma 9 results in
~~ o o~ g (e; — ej)TWVk a? 1

(i) = Vl) = S + O+ e

). (A.6)

Note that although the expectation of e;fFva can be nonzero, the difference of expec-
tations E(e; — ;)T Wvy, = 0 under the null hypothesis by (A.5). It follows from Lemma 7
in Section B.6 and Lemma 15 in Section C.6 of Supplementary Material that

n'720 <dp ~t, <nf and a, = O(Vnh),



where ~ denotes the same asymptotic order. Condition 3 ensures that there exists some

positive constant € such that

SD ((e; — ej)"Wvy,) ~ VO > nn12 > pe (\/géﬂ + ;ﬁ) , (A.7)
which guarantees that OA}T%Z,% + m) in (A.6) is negligible compared to the first term
on the right hand side. Here SD represents the standard deviation of a random variable.
Moreover, by Lemma 6 in Section B.5 of Supplementary Material we have ||V ||o = O( f) <
miny<x<x SD((e; — ;)T Wvy) ~ /0, and hence ((e; —e;)TWvy )X | satisfies the conditions
of Lemma 4 in Section B.3 of Supplementary Material with h,, = 6. Then it holds that

~

V() - V()

_1/2 < - ej TWV1 o (ei - ej)TWvK
t1/dy o tr/dK

T
) +o,(1) L N(0,T),  (A8)

which proves (12).
We next establish (13) under the condition of vné||m; — ;| — co. By (B.25) in Lemma

9, we have

D(V(i) - V(j))

T
(ei — ej)TWvl (ei — ej)TWvK> Oé?l

=D(V()—-V())) + ( t1/dy T tr/dK

In view of (A.7), it holds that

<(ei —)'Wvi (e _ej)TWVK> = 0,(V0).

tl/dl ’ ’ tK/dK

Thus it suffices to show that
ID(V (@) = V(i) > V.
In fact, it follows from (B.17) that
D(V(i) = V(j)) = DB(m; — ;).

This along with (B.18) and Condition 2 leads to

ID(V(i) = V(j))|| = |ID(m; — m;)"B|| > IdKI\/(m — ;) (I T~ (mr; — ;)
> |lmy — mo||nt/2720 > V0,

which concludes the proof of (13).



Finally, we prove (14). The conclusion follows immediately from (A.9) and (V (i) —
V()TEH V(i) — V(4)) — p as n — co. This completes the proof of Theorem 1.

A.2 Proof of Theorem 2

As guaranteed by Slutsky’s lemma, the asymptotic distributions of test statistics after replac-
ing 31 with §1 stay the same. Thus we need only to prove that the asymptotic distributions
are the same after replacing K with its estimate K in the test statistics.

To ease the presentation, we write T;; = T;;(K) and ﬁj = Tl](f?) to emphasize their

dependency on K and K , respectively. By (12) of Theorem 1, we have for any t > 0,
lim P(T;;(K) < t) =P(x% < t). (A.10)
n—oo

By the condition on K , it holds that

P(K = K) =1—o(1). (A.11)

Then by the properties of conditional probability, we deduce

P(T;;(K) < t) = P(T;;(K) < t|K = K)P(K = K) +P(T;;(K) < t|K # K)P(K # K)
= P(Tj;(K) < t|K = K)P(K = K) + o(1)
= P(Ty;(K) < t|K = K)P(K = K) +P(Tj;(K) < t|K # K)P(K # K) 4 o(1)
=P(T;(K) < t) + o(1). (A.12)

Observe that the o(1) term comes from (A.11) and thus it holds uniformly for any ¢. Com-
bining (A.12) with (A.10), we can show that

lim P(T;(K) < t) = P(x% < t). (A.13)

n—o0

Therefore, the same conclusion as in (12) of Theorem 1 is proved. Results in (13) and (14)
can be shown using similar arguments and are omitted here for simplicity. This concludes

the proof of Theorem 2.

A.3 Proof of Corollary 2

Recall that in the proof of Theorem 2, we denote by T;; = Tj;(K) and YA’ij = TZ](IA() to
emphasize their dependency on K and K. Tt suffices to prove that the impact of the use of



K in place of K is asymptotically negligible. In fact, we can deduce that

= P(T;(K) > xk1 ol K = K
=P(T};(K) > X1-al K = K)P(K = K)

+P(T(K) > xk1 ol K # K)P(K # K) +o(1)
=P(T3;(K) > x¥1_0) +o(1). (A.14)

By (A.14), under the null hypothesis we have
Tim B(T, > X%, ) = lim P(Ty; > xky o) =0 (A.15)

for any constant « € (0,1). Moreover, by (A.12), under the alternative hypothesis, for any
arbitrarily large constant C' > 0 it holds that

lim P(T; > C) = lim P(T;; > C) = 1. (A.16)

n—oo

Therefore, combining (A.15) and (A.16) completes the proof of Corollary 2.

A.4 Proof of Theorem 3

We begin with listing some basic properties of vi and dy:

1). We can choose a direction such that all components of v; are nonnegative. Moreover,
minlglgn{vl(l)} ~ %

2). maxj<p<i ||[Villoo < % for some positive constant C'.

3). an < /nbmax-

4). |dg| > ent=2c202

min

and |dy| < ¢~ 1np?

= . for some positive constant c.

Here the second statement is ensured by Lemma 6. The third and fourth statements are
guaranteed by Lemma 7, and the remaining properties are entailed by Lemma B.2 of Jin
et al. (2017). One should notice that the proof of Lemma B.2 of Jin et al. (2017) does not
require {dj}2 | have the same order.

By Condition 5 and Statement 4 above, we have

1 minlSkSK’ t=1,j Var(e?WVk)
nt/2=c2|ty ] [tk




By (B.19), there exists some K x K matrix B such that
V = OIIB. (A.17)

Recall that © is a diagonal matrix. Then it follows from (A.17) that under the null hypoth-

esis, we have
vi(i) _ vi(j)
vi(i)  vi(j)

Here we use the exchangeability between rows ¢ and j of matrix IIB under the null hypothesis

, k=1, K. (A.18)

as argued under the mixed membership model (see the beginning of the proof of Theorem 1).

In light of the asymptotic expansion in Lemma 9, we deduce

T
e; Wvy, 1

Vk(l) = Vk(Z) + (A.lg)

Moreover, it follows from Corollary 3 in Section C.2 of Supplementary Material, Condition

4, and the statements at the beginning of this proof that

TVV
€y Vi Hmax
=0

< |tk

; ), s=ij, k=1, K. (A.20)
k

Thus, by (A.18)—(A.20) and Statement 1 above we have under the null hypothesis that

vi(D) _ Vi(y)

<>

Y(i, k) —Y(5,k) =

vi())  vi(j)
e; Wv TWV

( ) . . +O<(n1/2 c2|t |) ( ) ] i +O<(1/2+2|tk|)
- e Wv e’'wWv

vi(i) + = k+0<( Sy C2|t1\) vi(j) + k+0<(1/a+2|m)
_ e;Fva B €; va Vk( /) TWV1 Vk(])ej WVl (LQ)

tvi(i) i) Vi) tvi(j) ]
tevi (i tvi(7)
_ eri'rw[vk‘ o tlivlf((i))vl] _ e?W[Vk B tlivllg(;) Vl] <(n702) (A.Ql)
tevi(i) trvi(j) 174
vy (3 _tpve ()

Vi — i, Vi
——1)  Then we have f; = e] Wy;, —e]TWzk

MO
Denote by yp = — 32— and z = i)

tevi (7,)

with fi defined in (22), and

ne2

Y (i, k) =Y (5, k) = fi + 0<(m

). (A.22)

To establish the central limit theorem, we need to compare the ord4er of the variance of fi

with that of the residual term O.A”:#). The variance of fj is
k

var(fi,) = Zvar (wi)yr(1) + > var(wi)zi(l) — var(wij) [yr(D)zr(j) + ya(5)ze(i)] . (A.23)
=1



By Statements 1 and 2 at the beginning of this proof and (A.18), we can conclude that
max<i<p{|yr()|, |26 (1)|} = O(|tk‘) and yi(l) ~ zk(l), I =1,--- ,n. Consequently, we obtain

var(wiz) [yr(4)zk(5) + yi(3)zr(i)] = O(3). (A.24)

By Condition 6, it holds that (nf2,,,) " td2var(fi) = (n62,,) " ‘d2var(el Wy, —ejTWzk) ~ 1.
Combining the previous two results and by Statement 4, the last term on the left hand side
of (A.23) is asymptotically negligible compared to the right hand side.

Note that under the null hypothesis 7; = 7; and model (6), we have I';i” = I_;—]” Since

X = H+W with W a generalized Wigner matrix, it follows from the properties of Bernoulli
random variables that var(w;) ~ var(w;;). Thus the first two terms on the left hand side of

(A.23) are comparable and satisfy that

(n@fnax) 1dkvar (e;pryk) (n@?nax 1di22var(wil)y,2€(l)
=1

~ (nh?,.) tds Z 2var(wjl)zz(l) (n?,.) *divar ( jTWzk)
=1
~ (00) " divar(fy) ~ 1. (A.25)

Consequently, var(el Wy;,) ~ var(el Wzy) ~ var(fy).
Now we are ready to check the conditions of Lemma 4. By max;{|yx(])|,|zx()|} =
1
O(W
of W are zero, we have |E(fy)| = |[E(el Wy — eTWzk)| = |[E(wiyr(i) — wjjze(f))] <

ve(t)|+|zk(J)| = which means tha e expectation of e Y —€ Zj 1S asymp-
Ow hich that th tati fel' W TW

) (see (A.24) above) and noticing that the expectations of the off-diagonal entries

totically negligible compared to its standard deviation. Moreover, by (A.25) it holds that
max;{|yx ()], |zx ()|} < minj<p<p min{SD(eiTWyk),SD(e]TWzk)} and hence they satisfy

the conditions of Lemma 4 with h,, = n6? Thus we arrive at

max*

COV(e;-TWyQ,e,erZQ, e ,e;FWzK)_I/Q(eZ-TWyQ, eJTWZQ, e ,eJTWzK)T Z, N(0,1).

(A.26)
Using the compact notation, (A.26) can be rewritten as
— 2
5, 2 (far o )T -5 N(0,T), (A.27)

Furthermore, there exists some positive constant e such that SD(f) ~ ‘/Tf"fax > n“‘ﬁ by
Condition 4. Hence O« (% i |) involved in (A.22) is negligible compared to f. Finally, we can

obtain from (A.22) and (A.27) that

27, - Y;) L N(0,1),



which completes the proof for part i) of Theorem 3.
It remains to prove part ii) of Theorem 3. Under the alternative hypothesis that m; # 7,

we have the generalized asymptotic expansion

nc2

; : vi(i)  ve(d) | 7 T
Y(i,k)—Y(j,k) = = — ~ +e; Wy, —e; Wz, + Os(+—). A28
( ) (J ) V1(Z> Vl(j) Yk ] k _<(‘tk‘) ( )
In view of (A.26), to complete the proof it suffices to show that
V@) V)
e S| > . A.29
Vi (Z) Vi (]) n1/2_c29min ( )

Denote by B(7) the ith column of matrix B in (A.17). It follows from (A.17) that

Vi) _ B V() B
vi(i)  «B(1) vi(j)  wIB(1)

Let a; = w!B(1) and a; = ﬂfJ-FB(l). Note that by Statements 1 and 2 at the beginning of
this proof, we have vi(i) ~ vi(j) ~ % In light of (A.17), it holds that vy (i) = 6;a; and

vi(j) = 6ja;. Combining these two results yields

Qi ~ A5 ~

1
\/ﬁemin )
Moreover, it holds that

T B ™ B 1 1 T
ATB(1)  aTB@) T )
i J

which entails that

MO

vi(i)  vi(j)

2
> [1(a; ", =a; )P Amin (6, 705) T (700, 705)) Amin (BBT).

Here Apmin(+) stands for the smallest eigenvalue. By (A.17), similar to (B.18) we can show
that
BB” = (m”7e%m) L.

Thus Apin(BBT) ~ neé . By the condition that Ao (mimw] + ;7)) > W in Theorem
3, it holds that

min min

1
Amin (774, 7Tj)T(7TZ‘, TI'j)) = /\Q(ﬂ'iWZT + 71']'71'?) > 2602
n min
Therefore, combining the above arguments results in
. . 2
V(@) V()
i) i)l 7 e,




which concludes the proof of Theorem 3.

A.5 Proof of Theorem 4

The arguments for the proof of Theorem 4 are similar to those for the proof of Theorem 2

in Section A.2.

A.6 Proof of Theorem 5

By Lemma 1, (16) holds. Since K is bounded with probability tending to 1, it suffices to
show the entrywise convergence of f]l = 9_1D§1D and 3\32 = (nemax)_nggD. As will be
made clear later, the proof relies heavily on the asymptotic expansions of (21)11, (21)12,
(22)11, and (22)12. We will provide only the full details on the convergence of (21)11. For
the other cases, the asymptotic expansions will be provided and the technical details will be
mostly omitted since the arguments of the proof are similar. Throughout the proof, we will
use repeatedly the results in Lemma 9, and the node indices ¢ and j are fixed.

We start with considering (31)1;. First, by definitions of W we have the following

expansions
D= D =07 > [eRvi0) — 203vi()vi(0)] (A.30)
t=i,j, 1<I<n
and
(S =@"'DSD) =071 3 [@ivi) - 2@ (0()]. (A.31)
t=i,j, 1<I<n

It follows from Lemma 10 in Section B.9 of Supplementary Material that @2]-91 (H)vi(e) =
O(2). In addition, by Lemmas 6 and 7 it holds that

Var[ Z (wfl —aﬁ)v%(l)} =

1<i<n 1<i<n

A
<
e
5
E
I
S
ol
no
)
3N
_|_
=
I
S
|
=
w
N2

The same inequality also holds for Var[Zlglgn(ng‘l - O'JQ-I)V%(Z)]. Thus we have

Vo
>, (wi—ovil) = 0. (A.33)
t=i,j, 1<I<n
which implies that

Y wpvi = > oavi() + Op(—2=). (A.34)

t=i,j,1<I<n t=i,j,1<I<n

B



By Lemmas 7 and 9, we have

el W, 1
J
a— O«( 5753077

V(i) = vi(J) +

It follows from Corollary 3 in Section C.2 and Lemma 13 in Section C.4 of Supplementary

Material that

Yoo wiviO) -viQI=2 Y wivi)vi() = Va(D] + O« (n?= )

t=4,j,1<I<n t=i,j,1<I<n
2 1
= Z wivi(l)el Wvy + O( e —55;)
Ly ji<i<n
Vo

Similarly, by Lemma 10 we have

> w0 = Y @00 (4.36)

t=i,5,1<l<n t=1,5,1<l<n
Combining the equalities (A.30)—(A.36) yields

-~ 1 1

(21)11 = 9_1(D21D)11 + O{(m) + Op(ﬁ) = 9_1(21)11 + Op(l), (A37)

where we have used O<(m) = 0p(1) by Condition 2. This has proved the convergence
of (21)11 to (21)11.

We next consider (§1)12- By definitions, we have the following expansions

(07" DED)1 = 67 3 ofviva(l) B iGIva() +vilva(i)] | (A38)

t=1,7

and

B2 =07 3 @91 (092(0) — T [F1(7)92(0) + 919201 (A.39)

t=i,j

Based on the above two expansions, using similar arguments to those for proving (A.37) we
can show that

(21)12 =071 (DZ;D)12 + 0p(1). (A.40)
Now let us consider 5. Similar as above, we will provide only the asymptotic expansions

for (f]g)ll and (f)g)lg, and the remaining arguments are similar. By definitions, we can

10



deduce that

((nBhax) "' DEaD)11 = (nb3,) ~ ' divar(fo)
d3 {Z Q[VQ(Z) tava(i)v 1(1)}24_202 [V2(l) _ tava(j)vi(D)1?

= o; L= .
Bnfia L i) tiva(i)? — ) ()

o [Va(j) tava(i)vi(j)  va(i) | tava(j)vi(i)]2
+ ij[vl(i) B tlvl(i)Q _Vl(j) tlvl(j)2 } }

and
s\ d3 o [Va(l)  dava(i)vi(D)]2 a2 Va(l)  dava(j)vi(l)72
(22)11 d2n92 . ; il V(’L) C/i\lif\l( )2 i| +; ]l|:<l\1(j) %61(])2 :|
o2 [V20)  dVa(i¥i()  Va(i) | daVa(i)¥i(D)?
+ W[Gl(z’) d1v1(i)?2 o) d191(j)? H

Note that the expression of (nf2, DXsD)i; is essentially the same as (A.30) up to a nor-

max
malization factor involving v (i) and vi(j). Thus applying the similar arguments to those
for proving (17), we can establish the desired result.

Finally, the consistency of (22)12 can also be shown similarly using the following expan-

sions

((77‘61211&)() 1D22D)12
_ dyds o [va(l) tava(i)vi(D)1rvs(l)  tavs(i)vi(l)
OMLEE I }

 totznf2,. v vy (i t1vy(2)? 1() t1vy(4)?
302 [“/’12(5 tzVIQ‘(/iz;fg( )} [ ((j)) t3V3‘EZ2;f)12( )]
FAa i " taGP |
y [V3(J) _ tavs(Ovild) _ vs(d) | t3V3(J);)12(2)}}

v (i) tvi(@D)?  vi()) t1vi(j

and

_, [Val)  daVa(h)Vi(D)
O s ol

2 [Gz(j) B daV(i)¥1(j) _ Va(d) n da¥a ()
vi(i) d1v1 (1) vi(4) div1(5)
[0 dvs()1()  ¥s(i) cisvgu)vl(i)”

) dw? @) awGe

11



This completes the proof of Theorem 5.

B Some key lemmas and their proofs

B.1 Proof of Lemma 1

For each pair (i,7) with ¢ # j, let us define a matrix W (i, j) = wij(eie? +ejel). Fori=j,

we define a matrix W (i, j) = (w;; — ]Ewii)eiejr. Then it is easy to see that

I Y W) — W] = |[diag(W — EW)| < 1. (B.1)

1<i<j<n

It is straightforward to show that

I Y EW(.j)% =aj.

1<i<j<n

By Theorem 6.2 of Tropp (2012), for any constant ¢ > v/2 we have

. —(e/Tog nay, — 1)2
P(]] W (i,j)| > cy/logna, —1) < nexp [ =o(1). (B.2)
1§§§n " 2a2 + 2(cy/log nay, — 1)
This together with (B.1) entails that
P(|[W|| < ey/lognay,) > 1 —o(1). (B.3)

Note that this result is weaker than Lemma 14 in Section C.5.
By (B.3) and |dxk — dx| < ||[W]|, and using the assumption of |dx| > v/Iog nan,, it holds
that

dk| > /log nay, (B.4)

with probability tending to one. Finally, by Weyl’s inequality we have
An(W) = A (W) = Ax1(H) < Axg1(X) = Ag1(H+ W) < M (W) + Ag1 (H) = A (W),

which leads to
ldg+1] = Ak (X)] < [W. (B.5)

Let us choose ¢ = v/2.01 and define

f{:#{@-\ > /2.0Llognam,i =1, - n} (B.6)

12



Then by (B.4)—(B.5), we can show that
P(K = K)=1—o0(1). (B.7)

Recall that X;; follows the Bernoulli distribution. Thus it holds that
S Eu < B,
j=1 j=1
By Lemma 11 in Section C.1, choosing I =1, x = e;, and y = ﬁl yields

Y EXi =) X+ O<(an),
j=1 j=1
where we have used X;; — EX;; = w;;. Thus it holds that

mlaxz;Xij > mlaxZ;IEw?j + 0 () = a2 4+ O<(an).
= j=

This together with (B.6) and (B.7) results in
P(K = K) =1—o0(1), (B.8)
which completes the proof of Lemma 1.

B.2 Proofs of Lemmas 2 and 3

The proofs of Lemmas 2 and 3 involve standard calculations and thus are omitted for brevity.

B.3 Lemma 4 and its proof

Lemma 4. Let m be a fixed positive integer, x; and y; be n-dimensional unit vectors for
1 <i<m, and ¥ = (¥;;) the covariance matriz with ¥;; = cov(x,LTWyi,X?Wyj). As-
sume that there exists some positive sequence (hy) such that [|Z7Y| ~ [|Z|| ~ hn and

maxy{ || Xkl |V lloo } < IZY2|. Then it holds that

12 (xT(W — EW)y1, -+, x5 (W — EW)y,)" -2 N(0,1). (B.9)

Proof. Note that it suffices to show that for any unit vector ¢ = (c1,--- ,¢,)T, we have
TS V2 (xT(W —EW)yy, -+, x5 (W —EW)y,,)" -2 N(0,1). (B.10)
Let x; = (z14,- -+ ,xns)” and y; = (Y16, sYni)%, i = 1,--- ,m. Since W is a symmetric

13



random matrix of independent entries on and above the diagonal, we can deduce

X?Wyi - X?EW}%’ = Z wst($siyti + l'tiysi) + Z (wss - Ewss)xsiysi (Bll)
1<s,t<n, s<t 1<s<n

and

52 = var {CTEfl/Q(xlT(W —EW)yy, -, x5 (W —EW)y,,)T
= c's"2cov [(x{ Wy1, -, x5, Wy,,)T] 2 2c=clec=1. (B.12)

Denote by ¢ = £71/2¢ = (¢1,--- , )T Then it holds that
T m
TR (W —EW)y1, -+ x5 (W = EW)y,)" = tr[(W - EW) Y cy,xT |.
s=1

Let M = (M;;) = Y., Csysx.. By assumption, we have maxy, ||xxy? |0 < [ 22| ~
|21/2||, which entails that
IM||o0 < 1. (B.13)

Then it follows from the assumption of maxi<; j<n |wi;| < 1 and (B.13) that

1 3 3 3 3
PE Z Elwi;|°|M;j + Mj;|” + Z E|wg; — Ew;;|*| M| )
n 1<i,j<n,i<j 1<i<n
2
<0 S ElwgPIMy + Ml + Y Elwg —Ewii|2|Mii|3)
n 1<i,j<n,i<j 1<i<n
2
< PE Z Elwij|*| My; + Mji|* + Z E|w;; — Ewii|2|Mii|2)
Sn 1<i,j<n,i<j 1<i<n
< 2. (B.14)

Since w;; with 1 <14 < j < n and wy; —Ew;; with 1 <7 < n are independent random variables
with zero mean, by the Lyapunov condition (see, for example, Theorem 27.3 of Billingsley
(1995)) we can conclude that (B.10) holds. This concludes the proof of Lemma 4.

B.4 Lemma 5 and its proof

Lemma 5. Under either model (10) and Conditions 1-2, or model (6) and Conditions 1
and 4, it holds that

H(D*k)il + ,R’(V*lﬁvfkaz)u - O(‘Z‘) fO’f’ any z € [akvbk]7 (B15)
where ay, and by, are defined in (8).

Proof. The conclusion of Lemma 5 has been proved in (A.16) of Fan et al. (2020).
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B.5 Lemma 6 and its proof
Lemma 6. Under model (10) and Conditions 1-2, we have

1
Vel = O(7). (B.16)

The same conclusion also holds under model (6) and Conditions 1 and 4.

Proof. We first consider model (10) and prove (B.16) under Conditions 1 and 2. In light of
OTIPII" = VDV, we have ATI(PII’VD~!) = V. This shows that V belongs to the space
expanded by II. Thus there exists some K x K matrix B such that

V =IIB. (B.17)

Since VI'V =1, it holds that BTTI"TIB = I, which entails that BB'II’TIBB? = BB”
and
BB’ = (1’m). (B.18)

By Condition 2, we can conclude that |(IT'TI)~!|| = O(n~') and thus each entry of matrix
B is of order O( ﬁ) Hence in view of (B.17), the desired result can be established.
Now let us consider model (6) under Conditions 1 and 4. For this model, we also have

OIIPII'® = VDV and thus
et (Pri‘evbd!) =v. (B.19)

Since ® is a diagonal matrix, we can see that V belongs to the space expanded by II. Let

Il = (71, -- ,7,)" be the submatrix of IT such that

7r; if there exists some 1 < k < K such that m;(k) = 1,

™, =
0  otherwise.

By Condition 4, it holds that can®I < I = S, < Sp g mml = ITTI, which
leads to ||(TITTI)~!|| = O(n~!). Therefore, an application of similar arguments to those for
(B.17)—(B.18) concludes the proof of Lemma 6.

B.6 Lemma 7 and its proof

Lemma 7. Under model (10) and Condition 2 , it holds that

o2 <nb, dp>n'"20, dy=0nh), k=1,---,K. (B.20)
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Under model (6) and Condition 4, similarly we have

dp 2 n' 7202,

min>

dy = O(nb?

max

), k=1, K. (B.21)

Proof. We show (B.20) first. Tt follows from S 1| 7r;(k) = 1 that |T1]|% = S0, STh | w2 (k) <
n and A\ (IITTI) = O(n). By Condition 2, we have

dx = OAg (PIITTI) > A (TIT T A g (P) > c26n'

and
dy < O\ (ITTII) A (P) = O(6n).

Thus the second result in (B.20) is proved. Next by model (10), the (¢,j)th entry h;; of

matrix H satisfies that

K
Z t)pst < 0. (B.22)

Since the entries of X follow the Bernoulli distributions, it follows from (B.22) that var(w;;) <

f. Therefore, in view of the definition of «a,,, we have

n
2
o = mjax E var(wi;) < nb.
i=1

The results in (B.21) can also be proved using similar arguments. This completes the

proof of Lemma 7.

B.7 Lemma 8

The following 3 Lemmas follow from Lemma 12 and exactly the same proof as Fan et al.
(2020)

Lemma 8. Under either model (10) and Conditions 1-2, or model (6) and Conditions 1

and 4, for u = e; or vy we have the following asymptotic expansions

2 2

S0 > -1 an — an
uTVkV£V]€ = |:7Dk7tk - th 1P]%7th£WVk + O<(W)i| [Au,k,tk — tk: 1b€7k,tkka + O.<(W>
k
2
X | Avts = 15 DY, g WY + O (—225 T ). (B.23)
a2
dk =1+ Vv va + O<(\/>|dk‘) (B.24)
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B.8 Lemma 9

Lemma 9. Under model (10) and Conditions 1-2, we have

2
~ . (6 1
t [eiTvk — Vk(Z)] = eiTWVk + O<x(———

o ﬁ)'

The same conclusion also holds under model (6) and Conditions 1 and 4.

(B.25)

B.9 Lemma 10

Lemma 10. Assume that K = K. Then under the mized membership model (10) and
Conditions 1-2, it holds uniformly over all i,j that

_ 0

By = wis + 020, (B.26)

vn

Under the degree-corrected mized membership model (6), if Conditions 1 and 4—5 are satisfied,

then it holds uniformly over all i,7 that

~ Omax
Wij = Wi + O.<( \/’E ) (B.27)

C Additional technical details

C.1 Lemma 11 and its proof

Lemma 11. For any n-dimensional unit vectors X, y and any positive integer r, we have
T (w7l ol -1 l 112
E|x" (W' —EW")y| < Cp(minfey, ', dxoy,, dya,, })", (C.1)

where | is any positive integer and C). is some positive constant determined only by .

Proof. The main idea of the proof is similar to that for Lemma 4 in Fan et al. (2020), which
is to count the number of nonzero terms in the expansion of E[x? (W!—EW!)y]?". It will be
made clear that the nonzero terms in the expansion consist of terms such as wfj with s > 2.
In counting the nonzero terms, we will fix one index, say ¢, and vary the other index j which
ranges from 1 to n. Note that for any i = 1,--- ,n and s > 2, we have > "_; Ejw;;|* < a?
since |w;;| < 1. Thus roughly speaking, counting the maximal moment of «,, is the crucial
step in our proof.

)T

Let x = (z1, ,2n), y = (y1,-- - ,yn)T, and C, be a positive constant depending only

on r and whose value may change from line to line. Recall that [, > 1 are two integers. We
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can expand E(x’ W'y — EXTWZy)Z” to obtain the following expression

E(XTle _ EXTle) 2r

= E ]E{ (xilwi1i2wi2’i3 Wiy Yip gy — B Wiy Wiy - - - wiziz+1yiz+1) XKoo

1_9'1,“ 7iz+17iz+2,--_- V9214257
H2r—1)(I+1)+1" s2rl4+1) SN

X (xi(Qr—l)(l+1)+1wi(Qr—l)(l+1)+li(2r—1)(l+1)+2wi(Q'r—1)(l+1)+2i(27‘—1)(l+1)+3 © Wig, g1y —192r(41) Yior41)

- Emi(2r71)(l+1)+1wi(Z'rf1)(l+1)+li(27“71)(l+1)+2wi(Q'rfl)(l+1)+2i(2rf1)(l+1)+3 o 'wi?r(l+1)7li27‘(l+l)yiQT(l+1))] :
(C.2)
Let i) = (iG—1)+1)+15 " 3ja41))> J = 1, -+, 2r, be 2r vectors taking values in {1, - - - ,n}L,

Then for each i), we define a graph G\9) whose vertices represent distinct values of the com-
ponents of /). Each adjacent component of i) is connected by an undirected edge in GU). Tt
can be seen that for each j, GU) is a connected graph, which means that there exists some path
connecting any two nodes in GU). For each fixed i1, - - - ULy s U2r— 1) (D410 s L2014 1)

consider the following term

E[ (xi1wi1i2wi2i3 C Wi Yigpq — E$i1wi1i2wi2i3 T wili1+1yiz+1) Xoees (CS)
x ($i(2r—1)(l+1)+1wi(QT‘—1)(l+1)+1i(2r—1)(l+1)+2wi(?r—1)(l+1)+2i(27‘—1)(l+1)+3 T Wig, g1y —192r(141) Yior41)

- Emi(Qr—l)(l+1)+1wi(Zr—1)(l+1)+1i(27‘—1)(l+1)+2wi(2r—1)(l+1)+2i(27‘—1)(l+1)+3 v 'wizr(z+1)—112r(z+1)yizr(z+1))]

which corresponds to graph G U- - -UG®) | If there exists one graph G that is unconnected
to the remaining graphs G @) 4 # s, then the corresponding expectation in (C.3) is equal to
zero. This shows that for any graph Q(S), there exists at least one connected g<8’) to ensure
the nonzero expectation in (C.3). To analyze each nonzero (C.3), we next calculate how
many distinct vertices are contained in the graph G Wy...u g (2r),

Denote by &(2r) the set of partitions of the integers {1,2,---,2r} and &>2(2r) the
subset of &(2r) whose block sizes are at least two. To simplify the notation, define

..wi

bi = Ti iy WiGonarymiGonesn 2 WYiGonesn12ig-nas s i+ -1% 40 Y-

Let A € &>2(2r) be a partition of {1,2,---,2r} and |A| the number of groups in A. We
can further define A; € A as the jth group in A and |A;| as the number of integers in
Aj;. For example, let us consider A = {{1,2,3},{4,5,---,2r}}. Then we have |A| = 2, set
A; ={1,2,3} € A, and |A;| = 3. It is easy to see that there is a one-to-one correspondence
between the partitions of {1,2,---,2r} and the graphs G, ... G2 guch that G and
G are connected if and only if s and s’ belong to one group in the partition. For any Aj e
A € G>(2r), there are |A;|l edges in the graph UweAj GU) since for each integer w € Aj,

there is a chain containing | edges by . Since Ewgy = 0 for s # s', in order to obtain
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a nonzero value of (C.3) each edge in (J,,¢ 4,9 () should have at least one additional copy.
Thus for each nonzero (C.3), we have [#] distinct edges without self loops in (J,c 4, Gy,
Since the graph (J,,¢ A, GU) is connected, we can conclude that there are at most [lA ‘l] +1
distinct vertices in J,,¢ A, G, Let S(A) be the collection of all choices of Uzzl i*) such
that

1). U ) has the same partition as A such that they are connected within the same
group and unconnected between groups;

2). Within each group Aj, there are at most | AQj !

[l

| distinct edges without self loops and
+ 1 distinct vertices.
Similarly we can define S(A;) since A; can be regarded as a special partition of A; with

only one group. Summarizing the arguments above, (C.2) can be rewritten as

lA|

c2)= Y 3 H[ IT &, - Eb.)]. (C.4)

A€622(27") U 1(5)68(_,4 ’YEA

Let us further simplify E HWGA],(I)A, — Eb,). Let B; be the set of partitions of A; such that
each partition contains exactly two groups. Without loss of generality, let B; = {bj;,,bj,},

where for any w € A;, we have w € bj; or w € bj,. Then it holds that

E T (o, —Bb,)l < IT v IT |Bo.) (C.5)

>
YEA; YEB;  v€bj, Y€bjy

Observe that by definition, b, is the product of some independent random variables, and
b+, and b, may share some dependency through factors w,' and w,?, respectively, for some

wep and nonnegative integers my and mo. Thus in light of the inequality
E‘wab‘m1E|wab|m2 S E|wab‘ml+m27

(C.5) can be bounded as

(C.5) < 2|Aj‘E‘ I1 bv‘- (C.6)
YEA;
y (C.6), we can deduce
| Al
ca<2 Y 3 HE’ I1 bv‘
A€622(2T)U 1(S>eS(A) YEA;
Al

<20 3 E\ IT o) (€.7)

AE€G>,(2r) J=1 i(5)eS(A; YEA;
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Thus it suffices to show that

E} H hv‘ = C’\Aﬂ(min{a%—l,dxaé7dyail})\,4j|’
i®esS(4;) YEA,

using the fact that ZIAl |A;| = 2r. Without loss of generality, we prove the most difficult
case of |A| = 1, that is, there is only one connected chain which is A = {1,2,--- ,2r}. It
has the most components in the chain [[ . 4 h,. Other cases with smaller [A| can be shown
in the same way. Using the same arguments as those for (C.4), we have the basic property

for this chain that there are at most [‘A“]

+ 1 =rl+ 1 distinct vertices and rl distinct edges
without self loops.

To facilitate our technical presentation, let us introduce some additional notation. Denote
by (r, 1) the set of partitions of the edges {(is,is41),1 < s < 2rl,is # is41} and P>a(r, 1) the
subset of ¥(r, 1) whose blocks have size at least two. Let i = U?T i and P € P>2(20+2)
be the partition of {(is,is4+1),1 < s < 2rl is # is11} that is associated with the equivalence
relation (ig,,%s,41) ~ (isy,%s,+1), Which is defined as if and only if (ig,,4s,+1) = (isy,sy+1) OF
(is,,is41) = (isy41,%s,). Denote by |P(i)| = m the number of groups in the partition P(i)
such that the edges are equivalent within each group. We further denote the distinct edges
in the partition P(i) as (s1,52), (53, 84), - , (S2m—1, S2m) and the corresponding counts in
each group as 11, -+ , T, and define s = (s1, 52, -+ , S2,,). For the vertices, let ¢(2m) be the
set of partitions of {1,2,---,2m} and Q(s) € ¢(2m) the partition that is associated with the
equivalence relation a ~ b, which is defined as if and only if s, = s;. Note that sg;j_1 # s2;

by the definition of the partition. By |wa,| < 1, we can deduce

S B IIn= X 1n

i(9es4) €A ies(4) =1

S Z Z Z Z H (i 1y iy Y500, )

1<|P(i)|=m<rl 1 with partition P(i) Q(S)Ep(2m) s Wlth partltlon Q(s) j=1

P €y (20+2) T, Tm>2 <s1,e,82mSn
m
r
X [Tl wsny—r s, ™ (C.8)
=1

Denote by F5 the graph constructed by the edges of s. Since the edges in s are the same
as those of the edges in Ugrzl G®) with the structure S(A), we can see that Fs is also a

connected graph. In view of (C.8), putting term |z, y;,,, i, ,Yiy ., | aside we need to analyze

m
§ : T
H ]E‘w52j7152j| ’

§ with partition Q(8) j=1
1<s1,,s9m<n

the summation

If index soi_1 satisfies that sop_1 # s for all s € {s1,--+ , 89} \ {S2k—_1}, that is, index sox_1
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appears only in one ws,, ,s,;, we call sop_1 a single index (or single vertex). If there exists

some single index sor_1, then it holds that

m
.
Z HE‘MSijl‘SQj‘ ’

§ with partition Q(8) j=1
1<s1,,89m<n

< Z HE‘wS% 152]‘r Z E|w52k 182k e (C~9)

S\{sop_ 1} with partition Q(8\{sgp_ 1})] 1 S9k— 1=1
1<s71,,89k_92; 12k 42 ,82m <N
g =s; for some 1<;<2m

Note that since graph JF5 is connected and index so;_1 is single, there exists some j such

that s; = soi, which means that in the summation Sn E‘MS%_IS% |k, index sgy, is fixed.

S2k—1=

Then it follows from the definition of «,, ]wij| <1, and r; > 2 that

n

Tk 2
§ : E‘w52k—152k‘ SO‘n'

Sop—1=1

After taking the summation over index sor_1, we can see that there is one less edge in
F(8). That is, by taking the summation above we will have one additional a2 in the upper
bound while removing one edge from graph F(s). For the single index so;, we also have
the same bound. If sox,—; is not a single index, without loss of generality we assume that
S9k,—1 = S2k—1. Then this vertex so_; needs some delicate analysis. By the assumption of

|w;j| <1, we have

Elwog—1,26]" + Elwag, 1,25, |™
5 .

Elwog—1,2% "™ |wak, 1,25, | ™1 <

Then it holds that

ri
Z HE‘U}S?J 182J|

S with partition Q(s 7j=1
1<sq1,,89m<n

m

= % Z H E[wsy, ;"

§\(52k_1,52k.1_1) with partition Q(g\(SQk_l,Sle_l)) 7=1, j#k
1<s1,-,89;<n

m

1 |
+3 > T Elwe, sl (C.10)

8\(s2p 152k, —1) With partition Q\(sgx_1,52k; —1)) j=1, j#k1

1<s1, ,so9m<n
Note that since Fg is a connected graph, if we delete either edge (sor_1,82x) or edge
(Soky—1, S2k,) from graph Fg, the resulting graph is also connected. Then the two sum-
mations on the right hand side of (C.10) can be reduced to the case in (C.9) for the graph
with edge (sox—1, S2k) Or (S2k,—1, Sok, ) removed, since sgi_1 Or Sok,—1 is a single index in the

subgraph. Similar to (C.9), after taking the summation over index sg;_1 or sg,—1 there are
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two less edges in graph Fxz and thus we now obtain 2a2 in the upper bound.

For the general case when there are m; vertices belonging to the same group, without
loss of generality we denote them as wgp,, " - -, Wab,,, - If for any k graph Fy is still connected
after deleting edges (a,b1), -, (a,bk—1), (a,bg+1), -+, (a,bm,), then we repeat the process
in (C.10) to obtain a new connected graph by deleting k& — 1 edges in wap,, -+, Wap,,, and
thus obtain ka2 in the upper bound. Motivated by the key observations above, we carry out

an iterative process in calculating the upper bound as follows.

(1) If there exists some single index in s, using (C.9) we can calculate the summation
over such an index and then delete the edge associated with this vertex in Fz. The
corresponding vertices associated with this edge are also deleted. For simplicity, we

also denote the new graph as Fs. In this step, we obtain o2 in the upper bound.
(2) Repeat (1) until there is no single index in graph Fs.

(3) Suppose there exists some index associated with k edges such that graph Fz is still
connected after deleting any k — 1 edges. Without loss of generality, let us consider the
case of k = 2. Then we can apply (C.9) to obtain o2 in the upper bound. Moreover,

we delete k edges associated with this vertex in F3.
(4) Repeat (3) until there is no such index.
(5) If there still exists some single index, go back to (1). Otherwise stop the iteration.

Completing the graph modification process mentioned above, we can obtain a final graph

Q that enjoys the following properties:
i) Each edge does not contain any single index;
ii) Deleting any vertex makes the graph disconnected.

Let SQ be the spanning tree of graph Q, which is defined as the subgraph of Q with the
minimum possible number of edges. Since SQ is a subgraph of Q, it also satisfies property
ii) above. Assume that SQ contains p edges. Then the number of vertices in SQ isp+ 1.
Denote by q1,--- , gp4+1 the vertices of SQ and deg(g;) the degree of vertex g;. Then by the
degree sum formula, we have Z‘fill deg(q;) = 2p. As a result, the spanning tree has at least
two vertices with degree one and thus there exists a subgraph of SQ without either of the
vertices that is connected. This will result in a contradiction with property ii) above unless
the number of vertices in graph Q is exactly one. Since [ is a bounded constant, the numbers

of partitions P(i) and Q(3) are also bounded. It follows that

(08) S Crdirdif Z H E’w82j7182j ij (C]‘l)

§ with partition Q(8) j=1
1<sq1,,89m<n
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where dyx = ||X[|00, dy = [|X]|0, and C is some positive constant determined by . Combining

these arguments above and noticing that there are at most ! distinct edges in graph Fz, we

can obtain
or 2r 2rl—2
(C.11) < Crda d3raly > B[ Wy, g, |0
1<s2k—1:82k0 <N, (82— 1,52k ) =Q
< Cpdy da oln. (C.12)

Therefore, we have established a simple upper bound of C,. d27”d2ra2”l

r(l—1)

In fact, we can improve the aforementioned upper bound to C,.ay Note that the

process mentioned above did not utilize the condition that both x and y are unit vectors,

that is, ||x|| = |ly|| = 1. Since term []* is involved in (C.8), we

FUSY ORI ()
can analyze them together with random variables w;;. First, we need to deal with some

distinct lower indices with low moments in H If there are two

=1 Uz gy 900 D
distinct lower indices, without loss of generality denoted them as is and iy and then the

corresponding entries are x;, (or y;,) and y; , (or z;,). Moreover, there are only one z;, and

Yi,, involved in H Without loss of generality, let us assume that

=1 g 1900 -
s =1and s’ =1+ 1. Then it holds that

2r 2r
H(|xl (G—1)(I+1)+1 ‘ |ylj(l+1) ’) = ’xil Hyiz+1 ’ H(|xi(j71)(l+1)+1 | ’yij(l+1) D
Jj=1 Jj=2
$2 2r y2 2r
3 1
< % H(|xi<j—1><z+1>+1Hyij(m)D + l2+1 H(’xiu—l)(mmHyimﬂ)‘)' (C.13)
j=2 j=2

That is, if we have two lower indices and each index appears only once in the product above,
we can use (C.13) to increase the moment of z; ( or y;,) and delete the other one. For
(C.13), it is equivalent for us to consider the case when the lower index i; = i;.1. Repeating

the procedure (C.13), finally we can obtain a product ]2~ ) with the

=1 (i vy 195000 |
following properties:

1). Except for one vertex is,, for each is with s # sg there exists some iy such that
is = iy with s # §'.

2). Except for one vertex is,, for each is; with s # sp the term x;"'y;"* involved in
H?;l(kci(j_l)(lﬂ)“||yij(l+1) |) satisfies the condition that mj +mgo > 2. Moreover, at least one
of my and ms is larger than one.

By the properties above, let us denote by Y(2r) the set of partitions of the vertices
{iG—1)a+1)+1,%j0+1),J = 1,---,2r} such that except for one group, the remaining groups
in T with T € T(2r) have blocks with size at least two. There are three different cases to

consider.
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Case 1). All the groups in T have block size two. Then it follows that

2r ||
‘ H(“’Bi(jfl)(l+l)+1Hyij(l+1 H ‘$|mlk|y|m2kv (C.14)

j=1

where mqx + mor = 2. In fact, by the second property of Y above, myx = 0 or mgg = 0.
Without loss of generality, we assume that mor = 0. Then we need only to consider the

equation
2r 1T

2
| H(|xi<]~,1)(l+1)+1||yij(l+1) ’)| = H |x’2k

j=1 k=1

Then by (C.8), it remains to bound

||

Z H |x|lk HE|w52] 1525 3. (C.15)

S with partltlon Q) k=1
1<s71,,89m<n

To simplify the presentation, assume without loss of generality that iy = sp, k =
1,---,|Y|. Then the summation in (C.15) becomes
1]

Z H |x’51 HE‘ws% 1323

§ with partition Q(8) j=1
1<s1,,89m<n

By repeating the iterative process (1)—(5) mentioned before, we can bound the summation

for fixed s, -+, sjy| and obtain an alternative upper bound

n n
§ : 2 i § : 2
xS1E‘w32j—132j‘ J S xsl =1
s1=1 s1=1
since x is a unit vector. Thus for this step of the iteration, we obtain term one instead of

in the upper bound. Repeat this step until there is only z2_ left. Since the graph is

o, 5|7

always connected during the iteration process, there exists another vertex b such that We )b
is involved in (C.15). For index sjy|, we do not delete the edges containing sy| in the graph
during the iterative process (1)—(5). Then after the iteration stops, the final graph Q satisfies
properties i) and ii) defined earlier except for vertex s|y|- Since there are at least two vertices
with degree one in SQ, we will also reach a contradiction unless the number of vertices in
graph Q is exactly one. By (C.14), it holds that 2|Y| = 4r. As a result, we can obtain the
upper bound

(C.8) < Cpa2ri=2Tl > Ex3 . [wsypl” < Crap = (C.16)
1<s2,b<n, (s2,b)=Q
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with C}. some positive constant. Therefore, the improved bound Cra,%r(l_l)

is shown for this
case.
Case 2). All the groups in T have block size at least two and there is at least one block

with size larger than two. Then it follows that

2r [T

‘ H(‘$i(jfl)(l+l)+1 Hyij(1+1) |)‘ = H ‘$|Z:le‘y’:::2k
j=1 k=1

Since mqr + mog > 2 by the second property of T above, define the nonnegative integer

ry = Lﬂl(mlk + may, — 2). There are at most [2H2="1]

2rl+2—r1 ]
2

distinct vertices in the graph Fz

and at most [ — 1 distinct edges. Similar to Case 1 with less distinct edges, we have

2rl+2—1r1 }—Q‘T‘

2[2rE2=m o) |—2 2
(C8) < C’an[ 7 AT Z Exgl‘wslb]r < C’an[ 2
1<51,b<n, (51,0)=Q

(C.17)

By the definition of 1 and Z',g:ll(mlk + mgy) = 4r, it holds that
r1+2|Y| = 4r.

Thus 71 is an even number and 2[ZE2="1] — 2|Y| = 27l — ry — 2|Y| + 2 < 27l — 2r. The

2r(l—1)

improved bound Ciay, is also shown for this case.

Case 3). Except for one index ig,, the other groups in T have block size at least two.

Let us define 7} = Z‘kill Ktk (MK + Mok — 2). There are at most [M#] distinct vertices

2rl4+2—r]
2

and at most | ] — 1 distinct edges. For the parameter |z;, | (or |y;, [), we can bound

it by one since x and y are unit vectors. Then similar to Case 2, we can deduce

2rl42—1
2 L1—2|T 2
(C8) < Can[ 212 g Exil‘wslb\T < Can[
1<5s1,b<n, (s1,0)=Q

Sy

By the definition of ] in this case, it holds that
i+ 2|Y| =4r + 1.

Then 7 is an odd number and thus

2rl +2 — 1!

2[ 5 L =2 +2=2rl —ry — 2| +3 < 2rl —2r.

Summarizing the arguments above, for this case we can also obtain the desired bound
C 2r(l-1)
rQin .
In addition, we can also improve the upper bound to C,(min{d2"a2" ,d?foszl ). The

technical arguments for this refinement are similar to those for the improvement to order
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Cra2™Y above. As an example, we can bound the components of y by dy = ||y||c, which
leads to | szr: | <d3| HQT

similar to the three cases above. The only difference is that Zk ;M1 = 2r instead of

Then the analysis becomes

1 (|‘,L’i(j71)(l+1)+1 ‘ |yij(l+1) |) |x’(] D(+1D)+1 |

| | (M1 + may) = 4r. For this case, we have

(C.8) < Cd¥a2r—27] > Ex? |wp|" < CrdZ a2, (C.19)
1<s2,b<n, (52,b)=Q

Thus we can obtain the claimed upper bound C,(min{d2"a?", d?foz%” ). Therefore, combin-

ing the two aforementioned improved bounds yields the desired upper bound of
C, (mln{a% (1-1) d2r 2rl d2’r 2'rl})

which completes the proof of Lemma 11.

C.2 Corollary 3 and its proof

Lemma 11 ensures the following corollary immediately.

Corollary 3. Under the conditions of Lemma 11, it holds that for any positive constants a

and b, there exists some ny(a,b) > 0 such that

sup ]P’(xT(W —EW)y > n®min{al ! dyal, d an}) -0 (C.20)
IxlI=[lyll=1

for any n > ng(a,b) and | > 1. Moreover, we have
xT(W! —EW')y = O (min{al; !, dxal,, dyal }). (C.21)

Proof. 1t suffices to show (C.20) because then (C.21) follows from the definition. For any
positive constants a and b, there exists some integer r such that 2ar > b+ 1. By the

Chebyshev inequality, it holds that

sup  P(jxT(W! —EW!)y| > n®min{al !, dxal,, dyal,})
IxlI=llyll=1

E(xT(W! - EW!)y)?r < Cy

S 2 . 1—1 1 l 2% — b+1?
Ix[|=[lyl|=1 P2 (min{om, *, dxal,, dyai, })*" 1

which can be further bounded by nt as long as n > C,.. It is seen that C, is determined
completely by a and b. This concludes the proof of Corollary 3.
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C.3 Lemma 12 and its proof

Lemma 12. For any n-dimensional unit vectors x andy, we have
ExIW'y = O(cdl), (C.22)

where | > 2 is a positive integer. Furthermore, if the number of nonzero components of x is
bounded, then it holds that
Ex"W'y = O(al,dy), (C.23)

where dy = ||y]|co-

Proof. The result in (C.22) follows directly from Lemma 5 of Fan et al. (2020). Thus it
remains to show (C.23). The main idea of the proof is similar to that for the proof of Lemma

11. Denote by € the set of positions of the nonzero components of x. Then we have

EXTle = Z E (milwimwmg cee wilil+1yil+1) . (C24)

i1 €€,1<ig, i 1 <n
2.S7éis+1

Note that the cardinality of set € is bounded. Thus it suffices to show that for fixed i;, we

have

Z E (xi1wi1i2wi2i3 Cr Wigig g yil+1) = O(dya%)' (0'25)

1<ig,-ij11<n
lsFig 41

By the definition of graph GV in the proof of Lemma 11, we can also get a similar expression
as (C.6) that

|(C.24)|
< dy Z IE|wi1i2wi2i3
G() with at most [I/2] distinct edges without self loops and [I/2] + 1 distinct vertices, i1 is fixed
o w’ililJrl | (026)

Using similar arguments for bounding the order of the summation through the iterative

process as those for (C.11)—(C.12) in the proof of Lemma 11, we can obtain a similar bound
n
Ex"W'y < Cdyal,? Z E|wi1ik0|m < Cdyal, (C.27)
iy =1

with rg > 2. Here we do not remove the lower index ¢; during the iteration procedure. The
additional factor n on the right hand side of (C.12) can be eliminated since i; is fixed. This

completes the proof of Lemma 12.
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C.4 Lemma 13 and its proof

Lemma 13. Assume that § = O<((), - ,&m = O<(C) with m = |n°| and c some positive

constant. If

P(l&| > n(¢l) < n™° (C.28)
uniformly for &, 1 =1,--- ,m, and any positive constants a,b with n > ng(a,b), then for any
positive random variables Xy, - , X, we have

i Xi& =0 ( i XiC)-
=1 =1

Proof. For any positive constants a and b, let by = ¢+ b. By (C.28), it holds that
Pl > n?|cl) <n ™"

for all n > ng(a,b1), where ng(a,by) is determined completely by a and b;. Then we have

m m m
P> Xl >n) > X | < S Pll&] > n¢l) <n”
i=1 i=1 i=1
for large enough n > ng(a,by). Since by = ¢+ b and c is fixed, the constant ng(a,by) is
determined essentially by a and b. This concludes the proof of Lemma 13.

C.5 Lemma 14 and its proof

Lemma 14. For any positive constant £, it holds that
P(||W|| > aplogn) <n~*

for all sufficiently large n.

Proof. The conclusion of Lemma 14 follows directly from Theorem 6.2 of Tropp (2012). We
can also prove it by (B.1) and the inequality with c¢y/logna, — 1 replaced by a,logn in
(B.2).

C.6 Lemma 15

Lemma 15 (Fan et al. (2020)). There exists a unique solution z = ty, to equation (9) on the
interval [ag, by], and thus ty’s are well defined. In addition, for each k =1,--- | K, we have

tp/dr — 1 as n — oo.
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D Sufficient conditions for Condition 3

D.1 Lemma 16 and its proof

Lemma 16. Under Conditions 1-2, if 6 < 1 and mini<; j<x P;; > ¢ for some positive

constant ¢, then Condition 3 holds.

Proof. The key step of the proof is to calculate cov[(e; —e;)T WV]. Without loss of generality,
let us assume that (i,5) = (1,2). Note that the main difference between the null and
alternative hypotheses is that the mean value of (e; — e3)”’EW is 0 under the former and
is (Ewq,1, —Ews 2,0, ,0)T, which may be nonzero, under the latter. However, since the
main idea of the proof applies to both cases, we will provide only the technical details under
the null hypothesis.

First, some direct calculations show that

07 'DED = 0 cov|(e; — e;)TWV]
=0"'VIE(W(e; —ej)(e; — e;) " W)V
_ HflvTQV’ (Dl)

where Q = diag(E(w;; — wj1)2, o B(wy, — an)z) + sz-zjeiejr + Ew?jeje?. By the as-
sumptions that ¢ < 1 and minj<; j<x P;; > ¢, we see that the entries of the mean matrix
H = (h;) are bounded from below by cf and from above by §. Since Eng ~ h;j and w;y

and wjy are independent for i # j, it holds that
01 < diag(E(wi — wj1)?, -+ E(wiy — wjn)?) S 0L (D.2)
Then it follows from (D.2) that
I <0 'VTidiag(E(wi —wj1)% -+ E(win — win)?)V <L (D.3)
Since ¥; € RE*K with K a finite integer, we can deduce that

HH_lVT(Ew?je,;e]T + Ew?jejeT)VH <

7

. (D.4)

SRS

Therefore, combining (D.1)—(D.4), we can obtain the desired conclusion under the null hy-

pothesis. This completes the proof of Lemma 16.

E Uniform convergence

Theorem 6. Assume that the null hypotheses Hg;; : m; = m; hold for all 1 < i # j < n.
Then
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1) Under Conditions 1-3 and the mized membership model (10), we have for any x € R,

lim sup |P(Tj; <) —P(x%k < )| =0. (E.1)
Nr00 1 <igti<n

2) Under Conditions 1 and 4—7 and DCMM (6), we have for any x € R,

lim sup |P(Gy <2)—P(xk_, <) =0. (E.2)
N0 1 <izti<n

Proof. We provide the detailed proof only for (E.1) since the proof of (E.2) is almost
identical. Recall that T;; = H2;1/2(\A7(i) - \Af(j))H2 Let us investigate the asymptotic
behavior of random vector 21_1/ 2(\7(@) —V(4)). Checking the proof of Theorem 1 in Section

A.1 carefully, we can see that there exists some positive constant e such that

=V -

{\7
_1/2 ( — e] TWV1 o (ei - ej)TWVK
tl/dl ’ ’ tK/dK

T
) + 0 (n"9), (E.3)

where the op,(1) term in (A.8) is replaced by O<(n™¢). By (E.3) and the continuity of
the standard multivariate Gaussian distribution, it suffices to show that for any convex set
S c R¥, we have

- —e;))TWv (e; — )T Wvg r
p(siep-1((Cime) Wy (e —e s|-p S

=0, (E.4)

lim sup

where xg ~ N(0,If).

For an application of Theorem 1.1 in Rai¢ (2019), we need to rewrite

st (= e)"Wvi (e —e) "Wy
! ty/dy T ti/dg

30



as the sum of independent random vectors. Indeed, some direct calculations yield

s/2p-1 ((ei—e)"Wvi (e —e))TWvg !
! t1/dy T ti/dg

n T
_ N\ 2p-t <(wil —wj;) vy (wy — wjz)VKl>
— E N e

p t1/dy tr/dk

T
=> =D (wy — wj) <tVl(li7 ,tvlill )
I£i, 1/ 1 K/ K

T
+ 22D (wy — w; ( AL R MY > , E.5
le%;j} 1 ( l ]l) tl/dl tK/dK ( )

where the first term in the last step is the sum of independent random vectors. Then it

follows from Lemma 6 and Condition 3 that

T

- 1
Z 22D (wy — wji) <v”7 R > =0(—=).
e tl/dl tK/dK m

Combining this with (E.4) and (E.5), we see that it remains to show that

T
lim sup |P >72D " wy — w; (V” o YKl ) eS| —P(xxeS
n%ooi?élj) l;ézij 1 ( ! ﬂ) tl/dl tK/dK (K )

= 0. (E.6)

From Theorem 1.1 in Rai¢ (2019), Condition 3, and Lemma 6, we can deduce that for

any fixed i, j, there exists some positive constant C' (independent of i, j) such that

T
P 72D wy — wyy) [ 2L K s|-p S
Z' 1 (wl w]l) tl/dlv 7tK/dK € (XK € )
l#1i,j
1/2 Vil VKI 4
< E|Z; "D (wy —wy) [ —) - 5
>~ Cl; H 1 (wl wjl) <t]_/d]_’ 9 tK/dK) ||2
Z?]
T
—C 2‘1/2D1<V” L L ) 3 x Elwy — wy |’
Z‘ (” 1 tl/dl tK/dK HZ ‘ l Jl’
l#i,j
2 .
< & axE) Wi Yitys
n 1#i,j N
1
:O( )7

Vnf

which entails (E.6). Therefore, the desired conclusions of the theorem follow immediately,

which concludes the proof of Theorem E.
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