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A Proofs of main results

To facilitate the technical presentation, we list two definitions below, where n represents the

network size and dimensionality of eigenvectors.

Definition 1. Let ζ and ξ be a pair of random variables that may depend on n. We say that

they satijsfy ξ = O≺(ζ) if for any pair of positive constants (a, b), there exists some positive

integer n0(a, b) depending only on a and b such that P(|ξ| > na|ζ|) ≤ n−b for all n ≥ n0(a, b).

Definition 2. We say that an event An holds with high probability if for any positive constant

a, there exists some positive integer n0(a) depending only on a such that P (An) ≥ 1 − n−a

for all n ≥ n0(a).

From Definitions 1 and 2 above, we can see that if ξ = O≺(ζ), then it holds that ξ = O(na|ζ|)
with high probability for any positive constant a. The strong probabilistic bounds in the

statements of Definitions 1 and 2 are in fact consequences of analyzing large binary random

matrices given by networks.

Let us introduce some additional notation. Since the eigenvectors are always up to a

sign change, for simplicity we fix the orientation of the empirical eigenvector v̂k such that

v̂Tk vk ≥ 0 for each 1 ≤ k ≤ K, where vk is the kth population eigenvector of the low-rank

mean matrix H in our general network model (2). It is worth mentioning that all the variables

are real-valued throughout the paper except that variable z can be complex-valued. For any

nonzero complex number z, deterministic matrices M1 and M2 of appropriate dimensions,

1 ≤ k ≤ K, and n-dimensional unit vector u, we define

P(M1,M2, z) = zR(M1,M2, z), P̃k,z =
[
z2(Avk,k,z/z)

′]−1
, (A.1)

bu,k,z = u−V−k
[
(D−k)

−1 +R(V−k,V−k, z)
]−1RT (u,V−k, z), (A.2)

where R(M1,M2, z) is defined in (7),

Au,k,z = P(u,vk, z)− P(u,V−k, z)
[
z(D−k)

−1 + P(V−k,V−k, z)
]−1 P(V−k,vk, z), (A.3)

(Avk,k,z/z)
′ denotes the derivative of Avk,k,z/z with respect to complex variable z, V−k

represents a submatrix of V = (v1, · · · ,vK) by removing the kth column, and D−k stands

for a principal submatrix of D = diag(d1, · · · , dK) by removing the kth diagonal entry.
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A.1 Proof of Theorem 1

We first prove the conclusion in the first part of Theorem 1 under the null hypothesis

H0 : πi = πj , where (i, j) with 1 ≤ i < j ≤ n represents a given pair of nodes in the

network. In particular, Lemma 9 in Section B.8 of Supplementary Material plays a key

role in the technical analysis. For the given pair (i, j), let us define a new random matrix

X̃ = (x̃lm)1≤l,m≤n based on the original random matrix X = (xlm)1≤l,m≤n by swapping the

roles of nodes i and j, namely by setting

x̃lm =



xlm, l,m ∈ {i, j}c

xim, l = j, m ∈ {i, j}c

xjm, l = i, m ∈ {i, j}c

xli, m = j, l ∈ {i, j}c

xlj , m = i, l ∈ {i, j}c

and x̃lm =


xij , (l,m) = (i, j) or (j, i)

xii, l = m = j

xjj , l = m = i

, (A.4)

where {i, j}c stands for the complement of set {i, j} in the node set {1, · · · , n}. It is easy

to see that the new symmetric random matrix X̃ defined in (A.4) is simply the adjacency

matrix of a network given by the mixed membership model (10) by swapping the ith and

jth rows, πi and πj , of the community membership probability matrix Π = (π1, · · · ,πn)T .

By the above definition of X̃, we can see that under the null hypothesis H0 : πi = πj , it

holds that

X̃
d
= X, (A.5)

where
d
= denotes being equal in distribution. The representation in (A.5) entails that for each

1 ≤ k ≤ K, the ith and jth components of the kth population eigenvector vk are identical;

that is,

vk(i) = vk(j).

This identity along with the asymptotic expansion of the empirical eigenvector v̂k in (B.25)

given in Lemma 9 results in

v̂k(i)− v̂k(j) =
(ei − ej)

TWvk
tk

+O≺(
α2
n√

n|dk|2
+

1√
n|dk|

). (A.6)

Note that although the expectation of eTi Wvk can be nonzero, the difference of expec-

tations E(ei − ej)
TWvk = 0 under the null hypothesis by (A.5). It follows from Lemma 7

in Section B.6 and Lemma 15 in Section C.6 of Supplementary Material that

n1−c2θ . dk ∼ tk . nθ and αn = O(
√
nθ),
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where ∼ denotes the same asymptotic order. Condition 3 ensures that there exists some

positive constant ε such that

SD
(
(ei − ej)

TWvk
)
∼
√
θ � nεnc2−1/2 & nε

(
α2
n√

n|dk|
+

1√
n

)
, (A.7)

which guarantees that O≺( α2
n√
nd2
k

+ 1√
n|dk|

) in (A.6) is negligible compared to the first term

on the right hand side. Here SD represents the standard deviation of a random variable.

Moreover, by Lemma 6 in Section B.5 of Supplementary Material we have ‖V‖∞ = O( 1√
n

)�
min1≤k≤K SD((ei− ej)

TWvk) ∼
√
θ, and hence ((ei− ej)

TWvk)
K
k=1 satisfies the conditions

of Lemma 4 in Section B.3 of Supplementary Material with hn = θ. Then it holds that

Σ
−1/2
1 (V̂(i)− V̂(j))

= Σ
−1/2
1 D−1

(
(ei − ej)

TWv1

t1/d1
, · · · , (ei − ej)

TWvK
tK/dK

)T
+ op(1)

D−→ N(0, I), (A.8)

which proves (12).

We next establish (13) under the condition of
√
nθ‖πi−πj‖ → ∞. By (B.25) in Lemma

9, we have

D(V̂(i)− V̂(j))

= D(V(i)−V(j)) +

(
(ei − ej)

TWv1

t1/d1
, · · · , (ei − ej)

TWvK
tK/dK

)T
+O≺(

α2
n√

n|dK |
). (A.9)

In view of (A.7), it holds that(
(ei − ej)

TWv1

t1/d1
, · · · , (ei − ej)

TWvK
tK/dK

)
= Op(

√
θ).

Thus it suffices to show that

‖D(V(i)−V(j))‖ �
√
θ.

In fact, it follows from (B.17) that

D(V(i)−V(j)) = DB(πi − πj).

This along with (B.18) and Condition 2 leads to

‖D(V(i)−V(j))‖ = ‖D(πi − πj)
TB‖ ≥ |dK |

√
(πi − πj)T (ΠTΠ)−1(πi − πj)

& ‖π1 − π2‖n1/2−c2θ �
√
θ,

which concludes the proof of (13).

3



Finally, we prove (14). The conclusion follows immediately from (A.9) and (V(i) −
V(j))TΣ−1

1 (V(i)−V(j))→ µ as n→∞. This completes the proof of Theorem 1.

A.2 Proof of Theorem 2

As guaranteed by Slutsky’s lemma, the asymptotic distributions of test statistics after replac-

ing Σ1 with Ŝ1 stay the same. Thus we need only to prove that the asymptotic distributions

are the same after replacing K with its estimate K̂ in the test statistics.

To ease the presentation, we write Tij = Tij(K) and T̂ij = Tij(K̂) to emphasize their

dependency on K and K̂, respectively. By (12) of Theorem 1, we have for any t > 0,

lim
n→∞

P(Tij(K) < t) = P(χ2
K < t). (A.10)

By the condition on K̂, it holds that

P(K̂ = K) = 1− o(1). (A.11)

Then by the properties of conditional probability, we deduce

P(Tij(K̂) < t) = P(Tij(K̂) < t|K̂ = K)P(K̂ = K) + P(Tij(K̂) < t|K̂ 6= K)P(K̂ 6= K)

= P(Tij(K) < t|K̂ = K)P(K̂ = K) + o(1)

= P(Tij(K) < t|K̂ = K)P(K̂ = K) + P(Tij(K) < t|K̂ 6= K)P(K̂ 6= K) + o(1)

= P(Tij(K) < t) + o(1). (A.12)

Observe that the o(1) term comes from (A.11) and thus it holds uniformly for any t. Com-

bining (A.12) with (A.10), we can show that

lim
n→∞

P(Tij(K̂) < t) = P(χ2
K < t). (A.13)

Therefore, the same conclusion as in (12) of Theorem 1 is proved. Results in (13) and (14)

can be shown using similar arguments and are omitted here for simplicity. This concludes

the proof of Theorem 2.

A.3 Proof of Corollary 2

Recall that in the proof of Theorem 2, we denote by Tij = Tij(K) and T̂ij = Tij(K̂) to

emphasize their dependency on K and K̂. It suffices to prove that the impact of the use of
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K̂ in place of K is asymptotically negligible. In fact, we can deduce that

P(Tij(K̂) > χ2
K̂,1−α) = P(Tij(K̂) > χ2

K̂,1−α|K̂ = K)P(K̂ = K)

+ P(Tij(K̂) > χ2
K̂,1−α|K̂ 6= K)P(K̂ 6= K)

= P(Tij(K) > χ2
K,1−α|K̂ = K)P(K̂ = K) + o(1)

= P(Tij(K) > χ2
K,1−α|K̂ = K)P(K̂ = K)

+ P(Tij(K) > χ2
K,1−α|K̂ 6= K)P(K̂ 6= K) + o(1)

= P(Tij(K) > χ2
K,1−α) + o(1). (A.14)

By (A.14), under the null hypothesis we have

lim
n→∞

P(T̂ij > χ2
K̂,1−α) = lim

n→∞
P(Tij > χ2

K,1−α) = α (A.15)

for any constant α ∈ (0, 1). Moreover, by (A.12), under the alternative hypothesis, for any

arbitrarily large constant C > 0 it holds that

lim
n→∞

P(T̂ij > C) = lim
n→∞

P(Tij > C) = 1. (A.16)

Therefore, combining (A.15) and (A.16) completes the proof of Corollary 2.

A.4 Proof of Theorem 3

We begin with listing some basic properties of vk and dk:

1). We can choose a direction such that all components of v1 are nonnegative. Moreover,

min1≤l≤n{v1(l)} ∼ 1√
n

.

2). max1≤k≤K ‖vk‖∞ ≤ C√
n

for some positive constant C.

3). αn ≤
√
nθmax.

4). |dK | ≥ cn1−2c2θ2
min and |d1| ≤ c−1nθ2

max for some positive constant c.

Here the second statement is ensured by Lemma 6. The third and fourth statements are

guaranteed by Lemma 7, and the remaining properties are entailed by Lemma B.2 of Jin

et al. (2017). One should notice that the proof of Lemma B.2 of Jin et al. (2017) does not

require {dk}Kk=1 have the same order.

By Condition 5 and Statement 4 above, we have

1

n1/2−c2 |tk|
�

min1≤k≤K, t=i,j
√

var(eTt Wvk)

|tk|
.
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By (B.19), there exists some K ×K matrix B such that

V = ΘΠB. (A.17)

Recall that Θ is a diagonal matrix. Then it follows from (A.17) that under the null hypoth-

esis, we have
vk(i)

v1(i)
=

vk(j)

v1(j)
, k = 1, · · · ,K. (A.18)

Here we use the exchangeability between rows i and j of matrix ΠB under the null hypothesis

as argued under the mixed membership model (see the beginning of the proof of Theorem 1).

In light of the asymptotic expansion in Lemma 9, we deduce

v̂k(i) = vk(i) +
eTi Wvk
tk

+O≺(
1

n1/2−c2 |tk|
). (A.19)

Moreover, it follows from Corollary 3 in Section C.2 of Supplementary Material, Condition

4, and the statements at the beginning of this proof that

eTs Wvk
tk

= O≺(
θmax

|tk|
), s = i, j, k = 1, · · · ,K. (A.20)

Thus, by (A.18)–(A.20) and Statement 1 above we have under the null hypothesis that

Y(i, k)−Y(j, k) =
v̂k(i)

v̂1(i)
− v̂k(j)

v̂1(j)

=
vk(i) +

eTi Wvk
tk

+O≺( 1
n1/2−c2 |tk|

)

v1(i) +
eTi Wvk

t1
+O≺( 1

n1/2−c2 |t1|
)
−

vk(j) +
eTj Wvk

tk
+O≺( 1

n1/2−c2 |tk|
)

v1(j) +
eTj Wvk

t1
+O≺( 1

n1/2−c2 |t1|
)

=
eTi Wvk
tkv1(i)

−
eTj Wvk

tkv1(j)
− vk(i)e

T
i Wv1

t1v2
1(i)

+
vk(j)e

T
j Wv1

t1v2
1(j)

+O≺(
nc2

|tk|
)

=
eTi W[vk − tkvk(i)

t1v1(i) v1]

tkv1(i)
−

eTj W[vk − tkvk(j)
t1v1(j) v1]

tkv1(j)
+O≺(

nc2

|tk|
). (A.21)

Denote by yk =
vk−

tkvk(i)

t1v1(i)
v1

tkv1(i) and zk =
vk−

tkvk(j)

t1v1(j)
v1

tkv1(j) . Then we have fk = eTi Wyk−eTj Wzk

with fk defined in (22), and

Y(i, k)−Y(j, k) = fk +O≺(
nc2

|tk|
). (A.22)

To establish the central limit theorem, we need to compare the ord4er of the variance of fk

with that of the residual term O≺(n
2c2

t2k
). The variance of fk is

var(fk) =

n∑
l=1

var(wil)y
2
k(l) +

n∑
l=1

var(wjl)z
2
k(l)− var(wij) [yk(i)zk(j) + yk(j)zk(i)] . (A.23)
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By Statements 1 and 2 at the beginning of this proof and (A.18), we can conclude that

max1≤l≤n{|yk(l)|, |zk(l)|} = O( 1
|tk|) and yk(l) ∼ zk(l), l = 1, · · · , n. Consequently, we obtain

var(wij) [yk(i)zk(j) + yk(j)zk(i)] = O(
1

t2k
). (A.24)

By Condition 6, it holds that (nθ2
max)−1d2

kvar(fk) = (nθ2
max)−1d2

kvar(eTi Wyk−eTj Wzk) ∼ 1.

Combining the previous two results and by Statement 4, the last term on the left hand side

of (A.23) is asymptotically negligible compared to the right hand side.

Note that under the null hypothesis πi = πj and model (6), we have Hil
θi

=
Hjl

θj
. Since

X = H+W with W a generalized Wigner matrix, it follows from the properties of Bernoulli

random variables that var(wil) ∼ var(wjl). Thus the first two terms on the left hand side of

(A.23) are comparable and satisfy that

(nθ2
max)−1d2

kvar
(
eTi Wyk

)
= (nθ2

max)−1d2
k

n∑
l=1

2var(wil)y
2
k(l)

∼ (nθ2
max)−1d2

k

n∑
l=1

2var(wjl)z
2
k(l) = (nθ2

max)−1d2
kvar

(
eTj Wzk

)
∼ (nθ2

max)−1d2
kvar(fk) ∼ 1. (A.25)

Consequently, var(eTi Wyk) ∼ var(eTi Wzk) ∼ var(fk).

Now we are ready to check the conditions of Lemma 4. By maxl{|yk(l)|, |zk(l)|} =

O( 1
|tk|) (see (A.24) above) and noticing that the expectations of the off-diagonal entries

of W are zero, we have |E(fk)| = |E(eTi Wyk − eTj Wzk)| = |E(wiiyk(i) − wjjzk(j))| ≤
|yk(i)|+ |zk(j)| = O( 1

|tk|), which means that the expectation of eTi Wyk − eTj Wzk is asymp-

totically negligible compared to its standard deviation. Moreover, by (A.25) it holds that

maxl{|yk(l)|, |zk(l)|} � min1≤k≤K min{SD(eTi Wyk), SD(eTj Wzk)} and hence they satisfy

the conditions of Lemma 4 with hn = nθ2
max. Thus we arrive at

cov(eTi Wy2, e
T
j Wz2, · · · , eTj WzK)−1/2(eTi Wy2, e

T
j Wz2, · · · , eTj WzK)T

D−→ N(0, I).

(A.26)

Using the compact notation, (A.26) can be rewritten as

Σ
−1/2
2 (f2, · · · , fK)T

D−→ N(0, I). (A.27)

Furthermore, there exists some positive constant ε such that SD(fk) ∼
√
nθmax

|tk| � nε n
c2

|tk| by

Condition 4. Hence O≺(n
c2

|tk| ) involved in (A.22) is negligible compared to fk. Finally, we can

obtain from (A.22) and (A.27) that

Σ
−1/2
2 (Yi −Yj)

D−→ N(0, I),
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which completes the proof for part i) of Theorem 3.

It remains to prove part ii) of Theorem 3. Under the alternative hypothesis that πi 6= πj ,

we have the generalized asymptotic expansion

Y(i, k)−Y(j, k) =
vk(i)

v1(i)
− vk(j)

v1(j)
+ eTi Wyk − eTj Wzk +O≺(

nc2

|tk|
). (A.28)

In view of (A.26), to complete the proof it suffices to show that∥∥∥∥V(i)

v1(i)
− V(j)

v1(j)

∥∥∥∥� 1

n1/2−c2θmin
. (A.29)

Denote by B(i) the ith column of matrix B in (A.17). It follows from (A.17) that

V(i)

v1(i)
=

πTi B

πTi B(1)
and

V(j)

v1(j)
=

πTj B

πTj B(1)
.

Let ai = πTi B(1) and aj = πTj B(1). Note that by Statements 1 and 2 at the beginning of

this proof, we have v1(i) ∼ v1(j) ∼ 1√
n

. In light of (A.17), it holds that v1(i) = θiai and

v1(j) = θjaj . Combining these two results yields

ai ∼ aj ∼
1√
nθmin

.

Moreover, it holds that

πTi B

πTi B(1)
−

πTj B

πTj B(1)
= (a−1

i ,−a−1
j )(πi,πj)

TB,

which entails that∥∥∥∥V(i)

v1(i)
− V(j)

v1(j)

∥∥∥∥2

≥ ‖(a−1
i ,−a−1

j )‖2λmin((πi,πj)
T (πi,πj))λmin(BBT ).

Here λmin(·) stands for the smallest eigenvalue. By (A.17), similar to (B.18) we can show

that

BBT = (ΠTΘ2Π)−1.

Thus λmin(BBT ) ∼ 1
nθ2

min
. By the condition that λ2(πiπ

T
i +πjπ

T
j )� 1

n1−2c2θ2
min

in Theorem

3, it holds that

λmin((πi,πj)
T (πi,πj)) = λ2(πiπ

T
i + πjπ

T
j )� 1

n1−2c2θ2
min

.

Therefore, combining the above arguments results in∥∥∥∥V(i)

v1(i)
− V(j)

v1(j)

∥∥∥∥2

� 1

n1−2c2θ2
min

,
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which concludes the proof of Theorem 3.

A.5 Proof of Theorem 4

The arguments for the proof of Theorem 4 are similar to those for the proof of Theorem 2

in Section A.2.

A.6 Proof of Theorem 5

By Lemma 1, (16) holds. Since K̂ is bounded with probability tending to 1, it suffices to

show the entrywise convergence of Σ̂1 = θ−1DŜ1D and Σ̂2 = (nθmax)−1DŜ2D. As will be

made clear later, the proof relies heavily on the asymptotic expansions of (Σ̂1)11, (Σ̂1)12,

(Σ̂2)11, and (Σ̂2)12. We will provide only the full details on the convergence of (Σ̂1)11. For

the other cases, the asymptotic expansions will be provided and the technical details will be

mostly omitted since the arguments of the proof are similar. Throughout the proof, we will

use repeatedly the results in Lemma 9, and the node indices i and j are fixed.

We start with considering (Σ̂1)11. First, by definitions of Ŵ we have the following

expansions

(θ−1DΣ1D)11 = θ−1
∑

t=i,j, 1≤l≤n

[
σ2
tlv

2
1(l)− 2σ2

ijv1(j)v1(i)
]

(A.30)

and

(Σ̂1)11 = (θ−1DŜ1D)11 = θ−1
∑

t=i,j, 1≤l≤n

[
ŵ2
tlv

2
1(l)− 2ŵ2

ijv̂1(l)v̂1(i)
]
. (A.31)

It follows from Lemma 10 in Section B.9 of Supplementary Material that ŵ2
ijv̂1(j)v̂1(i) =

O≺( 1
n). In addition, by Lemmas 6 and 7 it holds that

var
[ ∑

1≤l≤n
(w2

il − σ2
il)v

2
1(l)
]
≤
∑

1≤l≤n
v4

1(l)Ew2
il = O(

1

n2
)(α2

n + 1) = O(
θ

n
). (A.32)

The same inequality also holds for var[
∑

1≤l≤n(w2
jl − σ2

jl)v
2
1(l)]. Thus we have

∑
t=i,j, 1≤l≤n

(w2
tl − σ2

tl)v
2
1(l) = Op(

√
θ√
n

), (A.33)

which implies that

∑
t=i,j, 1≤l≤n

w2
tlv

2
1(l) =

∑
t=i,j, 1≤l≤n

σ2
tlv

2
1(l) +Op(

√
θ√
n

). (A.34)
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By Lemmas 7 and 9, we have

v̂k(j) = vk(j) +
eTj Wvk

tk
+O≺(

1

n3/2−2c2θ
).

It follows from Corollary 3 in Section C.2 and Lemma 13 in Section C.4 of Supplementary

Material that

∑
t=i,j,1≤l≤n

w2
tl[v

2
1(l)− v̂2

1(l)] = 2
∑

t=i,j,1≤l≤n
w2
tlv1(j)[v1(l)− v̂1(l)] +O≺(n2c2−1)

= − 2

t1

∑
t=i,j,1≤l≤n

w2
tlv1(l)eTl Wv1 +O≺(

1

n1−2c2
)

= O≺(

√
θ

n1/2−c2
). (A.35)

Similarly, by Lemma 10 we have

n∑
t=i,j,1≤l≤n

w2
tlv̂

2
1(l) =

n∑
t=i,j,1≤l≤n

ŵ2
tlv̂

2
k(l) +O≺(

√
θ

n1/2−c2
). (A.36)

Combining the equalities (A.30)–(A.36) yields

(Σ̂1)11 = θ−1(DΣ1D)11 +O≺(
1

n1/2−c2
√
θ

) +Op(
1√
nθ

) = θ−1(Σ1)11 + op(1), (A.37)

where we have used O≺( 1
n1/2−c2

√
θ
) = op(1) by Condition 2. This has proved the convergence

of (Σ̂1)11 to (Σ1)11.

We next consider (Σ̂1)12. By definitions, we have the following expansions

(θ−1DΣ1D)12 = θ−1
{∑
t=i,j

σ2
tlv1(l)v2(l)− σ2

ij [v1(j)v2(i) + v1(i)v2(j)]
}

(A.38)

and

(Σ̂1)12 = θ−1
{∑
t=i,j

ŵ2
tlv̂1(l)v̂2(l)− ŵ2

ij [v̂1(j)v̂2(i) + v̂1(i)v̂2(j)]
}
. (A.39)

Based on the above two expansions, using similar arguments to those for proving (A.37) we

can show that

(Σ̂1)12 = θ−1(DΣ1D)12 + op(1). (A.40)

Now let us consider Σ̂2. Similar as above, we will provide only the asymptotic expansions

for (Σ̂2)11 and (Σ̂2)12, and the remaining arguments are similar. By definitions, we can
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deduce that

((nθ2
max)−1DΣ2D)11 = (nθ2

max)−1d2
2var(f2)

=
d2

2

t22nθ
2
max

{∑
l 6=j

σ2
il

[v2(l)

v1(i)
− t2v2(i)v1(l)

t1v1(i)2

]2
+
∑
l 6=i

σ2
jl

[ v2(l)

v1(j)
− t2v2(j)v1(l)

t1v1(j)2

]2

+ σ2
ij

[v2(j)

v1(i)
− t2v2(i)v1(j)

t1v1(i)2
− v2(i)

v1(j)
+
t2v2(j)v1(i)

t1v1(j)2

]2}
and

(Σ̂2)11 =
d2

2

d̂2
2nθ

2
max

{∑
l 6=j

ŵ2
il

[ v̂2(l)

v̂1(i)
− d̂2v̂2(i)v̂1(l)

d̂1v̂1(i)2

]2
+
∑
l 6=i

ŵ2
jl

[ v̂2(l)

v̂1(j)
− d̂2v̂2(j)v̂1(l)

d̂1v̂1(j)2

]2

+ŵ2
ij

[ v̂2(j)

v̂1(i)
− d̂2v̂2(i)v̂1(j)

d̂1v̂1(i)2
− v̂2(i)

v̂1(j)
+
d̂2v̂2(j)v̂1(i)

d̂1v̂1(j)2

]2}
.

Note that the expression of (nθ2
maxDΣ2D)11 is essentially the same as (A.30) up to a nor-

malization factor involving v1(i) and v1(j). Thus applying the similar arguments to those

for proving (17), we can establish the desired result.

Finally, the consistency of (Σ̂2)12 can also be shown similarly using the following expan-

sions

((nθ2
max)−1DΣ2D)12

=
d2d3

t2t3nθ2
max

{∑
l 6=j

σ2
il

[v2(l)

v1(i)
− t2v2(i)v1(l)

t1v1(i)2

][v3(l)

v1(i)
− t3v3(i)v1(l)

t1v1(i)2

]
+
∑
l 6=i

σ2
jl

[ v2(l)

v1(j)
− t2v2(j)v1(l)

t1v1(j)2

][ v2(l)

v1(j)
− t3v3(j)v1(l)

t1v1(j)2

]
+ σ2

ij

[v2(j)

v1(i)
− t2v2(i)v1(j)

t1v1(i)2
− v2(i)

v1(j)
+
t2v2(j)v1(i)

t1v1(j)2

]
×
[v3(j)

v1(i)
− t3v3(i)v1(j)

t1v1(i)2
− v3(i)

v1(j)
+
t3v3(j)v1(i)

t1v1(j)2

]}
and

(Σ̂2)12 =
d2d3

d̂2d̂3nθ2
max

{∑
l 6=j

ŵ2
il

[ v̂2(l)

v̂1(i)
− d̂2v̂2(i)v̂1(l)

d̂1v̂1(i)2

][ v̂3(l)

v̂1(i)
− d̂3v̂3(i)v̂1(l)

d̂1v̂1(i)2

]
+
∑
l 6=i

ŵ2
jl

[ v̂2(l)

v̂1(j)
− d̂2v̂2(j)v̂1(l)

d̂1v̂1(j)2

][ v̂3(l)

v̂1(j)
− d̂3v̂3(j)v̂1(l)

d̂1v̂1(j)2

]
+ ŵ2

ij

[ v̂2(j)

v̂1(i)
− d̂2v̂2(i)v̂1(j)

d̂1v̂1(i)2
− v̂2(i)

v̂1(j)
+
d̂2v̂2(j)v̂1(i)

d̂1v̂1(j)2

]
×
[ v̂3(j)

v̂1(i)
− d̂3v̂3(i)v̂1(j)

d̂1v̂1(i)2
− v̂3(i)

v̂1(j)
+
d̂3v̂3(j)v̂1(i)

d̂1v̂1(j)2

]}
.

11



This completes the proof of Theorem 5.

B Some key lemmas and their proofs

B.1 Proof of Lemma 1

For each pair (i, j) with i 6= j, let us define a matrix W(i, j) = wij(eie
T
j + eje

T
i ). For i = j,

we define a matrix W(i, j) = (wii − Ewii)eieTj . Then it is easy to see that

‖
∑

1≤i≤j≤n
W(i, j)−W‖ = ‖diag(W − EW)‖ ≤ 1. (B.1)

It is straightforward to show that

‖
∑

1≤i≤j≤n
EW(i, j)2‖ = α2

n.

By Theorem 6.2 of Tropp (2012), for any constant c >
√

2 we have

P(‖
∑

1≤i≤j≤n
W(i, j)‖ ≥ c

√
log nαn − 1) ≤ n exp

[ −(c
√

log nαn − 1)2

2α2
n + 2(c

√
log nαn − 1)

]
= o(1). (B.2)

This together with (B.1) entails that

P(‖W‖ ≤ c
√

log nαn) ≥ 1− o(1). (B.3)

Note that this result is weaker than Lemma 14 in Section C.5.

By (B.3) and |d̂K − dK | ≤ ‖W‖, and using the assumption of |dK | �
√

log nαn, it holds

that

|d̂K | �
√

log nαn (B.4)

with probability tending to one. Finally, by Weyl’s inequality we have

λn(W) = λn(W)− λK+1(H) ≤ λK+1(X) = λK+1(H + W) ≤ λ1(W) + λK+1(H) = λ1(W),

which leads to

|d̂K+1| = |λK+1(X)| ≤ ‖W‖. (B.5)

Let us choose c =
√

2.01 and define

K̃ = #
{
|d̂i| >

√
2.01 log nαn, i = 1, · · · , n

}
. (B.6)
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Then by (B.4)–(B.5), we can show that

P(K̃ = K) = 1− o(1). (B.7)

Recall that Xij follows the Bernoulli distribution. Thus it holds that

∑
j=1

Ew2
ij ≤

∑
j=1

EXij .

By Lemma 11 in Section C.1, choosing l = 1, x = ei, and y = 1√
n
1 yields

∑
j=1

EXij =
∑
j=1

Xij +O≺(αn),

where we have used Xij − EXij = wij . Thus it holds that

max
i

∑
j=1

Xij ≥ max
i

∑
j=1

Ew2
ij +O≺(αn) = α2

n +O≺(αn).

This together with (B.6) and (B.7) results in

P(K̂ = K) = 1− o(1), (B.8)

which completes the proof of Lemma 1.

B.2 Proofs of Lemmas 2 and 3

The proofs of Lemmas 2 and 3 involve standard calculations and thus are omitted for brevity.

B.3 Lemma 4 and its proof

Lemma 4. Let m be a fixed positive integer, xi and yi be n-dimensional unit vectors for

1 ≤ i ≤ m, and Σ = (Σij) the covariance matrix with Σij = cov(xTi Wyi,x
T
j Wyj). As-

sume that there exists some positive sequence (hn) such that ‖Σ−1‖ ∼ ‖Σ‖ ∼ hn and

maxk{‖xk‖∞‖yk‖∞} � ‖Σ1/2‖. Then it holds that

Σ−1/2
(
xT1 (W − EW)y1, · · · ,xTm(W − EW)ym

)T D−→ N(0, I). (B.9)

Proof. Note that it suffices to show that for any unit vector c = (c1, · · · , cm)T , we have

cTΣ−1/2
(
xT1 (W − EW)y1, · · · ,xTm(W − EW)ym

)T D−→ N(0, 1). (B.10)

Let xi = (x1i, · · · , xni)T and yi = (y1i, · · · , yni)T , i = 1, · · · ,m. Since W is a symmetric
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random matrix of independent entries on and above the diagonal, we can deduce

xTi Wyi − xTi EWyi =
∑

1≤s,t≤n, s<t
wst(xsiyti + xtiysi) +

∑
1≤s≤n

(wss − Ewss)xsiysi (B.11)

and

s2
n := var

[
cTΣ−1/2(xT1 (W − EW)y1, · · · ,xTm(W − EW)ym)T

]
= cTΣ−1/2cov

[
(xT1 Wy1, · · · ,xTmWym)T

]
Σ−1/2c = cT c = 1. (B.12)

Denote by c̃ = Σ−1/2c = (c̃1, · · · , c̃m)T . Then it holds that

cTΣ−1/2
(
xT1 (W − EW)y1, · · · ,xTm(W − EW)ym

)T
= tr

[
(W − EW)

m∑
s=1

c̃sysx
T
s

]
.

Let M = (Mij) =
∑m

s=1 c̃sysx
T
s . By assumption, we have maxk ‖xkyTk ‖∞ � ‖Σ1/2‖ ∼

‖Σ−1/2‖, which entails that

‖M‖∞ � 1. (B.13)

Then it follows from the assumption of max1≤i,j≤n |wij | ≤ 1 and (B.13) that

1

|sn|3
( ∑

1≤i,j≤n, i<j
E|wij |3|Mij +Mji|3 +

∑
1≤i≤n

E|wii − Ewii|3|Mii|3
)

≤ 2

|sn|3
( ∑

1≤i,j≤n, i<j
E|wij |2|Mij +Mji|3 +

∑
1≤i≤n

E|wii − Ewii|2|Mii|3
)

� 2

|sn|3
( ∑

1≤i,j≤n, i<j
E|wij |2|Mij +Mji|2 +

∑
1≤i≤n

E|wii − Ewii|2|Mii|2
)

≤ 2. (B.14)

Since wij with 1 ≤ i < j ≤ n and wii−Ewii with 1 ≤ i ≤ n are independent random variables

with zero mean, by the Lyapunov condition (see, for example, Theorem 27.3 of Billingsley

(1995)) we can conclude that (B.10) holds. This concludes the proof of Lemma 4.

B.4 Lemma 5 and its proof

Lemma 5. Under either model (10) and Conditions 1–2, or model (6) and Conditions 1

and 4, it holds that

‖(D−k)−1 +R(V−k,V−k, z)‖ = O(|z|) for any z ∈ [ak, bk], (B.15)

where ak and bk are defined in (8).

Proof. The conclusion of Lemma 5 has been proved in (A.16) of Fan et al. (2020).
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B.5 Lemma 6 and its proof

Lemma 6. Under model (10) and Conditions 1–2, we have

max
1≤k≤K

‖vk‖∞ = O(
1√
n

). (B.16)

The same conclusion also holds under model (6) and Conditions 1 and 4.

Proof. We first consider model (10) and prove (B.16) under Conditions 1 and 2. In light of

θΠPΠT = VDVT , we have θΠ(PΠTVD−1) = V. This shows that V belongs to the space

expanded by Π. Thus there exists some K ×K matrix B such that

V = ΠB. (B.17)

Since VTV = I, it holds that BTΠTΠB = I, which entails that BBTΠTΠBBT = BBT

and

BBT = (ΠTΠ)−1. (B.18)

By Condition 2, we can conclude that ‖(ΠTΠ)−1‖ = O(n−1) and thus each entry of matrix

B is of order O( 1√
n

). Hence in view of (B.17), the desired result can be established.

Now let us consider model (6) under Conditions 1 and 4. For this model, we also have

ΘΠPΠTΘ = VDVT and thus

ΘΠ(PΠTΘVD−1) = V. (B.19)

Since Θ is a diagonal matrix, we can see that V belongs to the space expanded by Π. Let

Π̃ = (π̃1, · · · , π̃n)T be the submatrix of Π such that

π̃i =

πi if there exists some 1 ≤ k ≤ K such that πi(k) = 1,

0 otherwise.

By Condition 4, it holds that c2n
c2I ≤ Π̃

T
Π̃ =

∑n
i=1 π̃iπ̃

T
i ≤

∑n
i=1 πiπ

T
i = ΠTΠ, which

leads to ‖(ΠTΠ)−1‖ = O(n−1). Therefore, an application of similar arguments to those for

(B.17)–(B.18) concludes the proof of Lemma 6.

B.6 Lemma 7 and its proof

Lemma 7. Under model (10) and Condition 2 , it holds that

α2
n ≤ nθ, dk & n1−c2θ, d1 = O(nθ), k = 1, · · · ,K. (B.20)
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Under model (6) and Condition 4, similarly we have

α2
n ≤ nθ2

max, dk & n1−c2θ2
min, d1 = O(nθ2

max), k = 1, · · · ,K. (B.21)

Proof. We show (B.20) first. It follows from
∑K

k=1 πi(k) = 1 that ‖Π‖2F =
∑n

i=1

∑K
k=1 π

2
i (k) ≤

n and λ1(ΠTΠ) = O(n). By Condition 2, we have

dK = θλK(PΠTΠ) ≥ θλK(ΠTΠ)λK(P) ≥ c2
0θn

1−c2

and

d1 ≤ θλ1(ΠTΠ)λ1(P) = O(θn).

Thus the second result in (B.20) is proved. Next by model (10), the (i, j)th entry hij of

matrix H satisfies that

hij = θ

K∑
s,t=1

πi(s)πj(t)pst ≤ θ. (B.22)

Since the entries of X follow the Bernoulli distributions, it follows from (B.22) that var(wij) ≤
θ. Therefore, in view of the definition of αn, we have

α2
n = max

j

n∑
i=1

var(wij) ≤ nθ.

The results in (B.21) can also be proved using similar arguments. This completes the

proof of Lemma 7.

B.7 Lemma 8

The following 3 Lemmas follow from Lemma 12 and exactly the same proof as Fan et al.

(2020)

Lemma 8. Under either model (10) and Conditions 1–2, or model (6) and Conditions 1

and 4, for u = ei or vk we have the following asymptotic expansions

uT v̂kv̂
T
k vk =

[
P̃k,tk − 2t−1

k P̃
2
k,tk

vTk Wvk +O≺(
α2
n√
nt2k

)
][
Au,k,tk − t

−1
k bTu,k,tkWvk +O≺(

α2
n√
nt2k

)
]

×
[
Avk,k,tk − t

−1
k bTvk,k,tkWvk +O≺(

α2
n√
nt2k

)
]
, (B.23)

d̂k = tk + vTk Wvk +O≺(
α2
n√

n|dk|
). (B.24)
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B.8 Lemma 9

Lemma 9. Under model (10) and Conditions 1–2, we have

tk
[
eTi v̂k − vk(i)

]
= eTi Wvk +O≺(

α2
n√
n|tk|

+
1√
n

). (B.25)

The same conclusion also holds under model (6) and Conditions 1 and 4.

B.9 Lemma 10

Lemma 10. Assume that K̂ = K. Then under the mixed membership model (10) and

Conditions 1–2, it holds uniformly over all i, j that

ŵij = wij +O≺(

√
θ√
n

). (B.26)

Under the degree-corrected mixed membership model (6), if Conditions 1 and 4–5 are satisfied,

then it holds uniformly over all i, j that

ŵij = wij +O≺(
θmax√
n

). (B.27)

C Additional technical details

C.1 Lemma 11 and its proof

Lemma 11. For any n-dimensional unit vectors x, y and any positive integer r, we have

E
[
xT (Wl − EWl)y

]2r
≤ Cr(min{αl−1

n , dxα
l
n, dyα

l
n})2r, (C.1)

where l is any positive integer and Cr is some positive constant determined only by r.

Proof. The main idea of the proof is similar to that for Lemma 4 in Fan et al. (2020), which

is to count the number of nonzero terms in the expansion of E[xT (Wl−EWl)y]2r. It will be

made clear that the nonzero terms in the expansion consist of terms such as wsij with s ≥ 2.

In counting the nonzero terms, we will fix one index, say i, and vary the other index j which

ranges from 1 to n. Note that for any i = 1, · · · , n and s ≥ 2, we have
∑n

j=1 E|wij |s ≤ α2
n

since |wij | ≤ 1. Thus roughly speaking, counting the maximal moment of αn is the crucial

step in our proof.

Let x = (x1, · · · , xn)T , y = (y1, · · · , yn)T , and Cr be a positive constant depending only

on r and whose value may change from line to line. Recall that l, r ≥ 1 are two integers. We
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can expand E(xTWly − ExTWly)2r to obtain the following expression

E(xTWly − ExTWly)2r

=
∑

1≤i1,··· ,il+1,il+2,··· ,i2l+2,··· ,
i(2r−1)(l+1)+1,··· ,i2r(l+1)≤n

E
[ (
xi1wi1i2wi2i3 · · ·wilil+1

yil+1
− Exi1wi1i2wi2i3 · · ·wilil+1

yil+1

)
× · · ·

×
(
xi(2r−1)(l+1)+1

wi(2r−1)(l+1)+1i(2r−1)(l+1)+2
wi(2r−1)(l+1)+2i(2r−1)(l+1)+3

· · ·wi2r(l+1)−1i2r(l+1)
yi2r(l+1)

− Exi(2r−1)(l+1)+1
wi(2r−1)(l+1)+1i(2r−1)(l+1)+2

wi(2r−1)(l+1)+2i(2r−1)(l+1)+3
· · ·wi2r(l+1)−1i2r(l+1)

yi2r(l+1)

)]
.

(C.2)

Let i(j) = (i(j−1)(l+1)+1, · · · , ij(l+1)), j = 1, · · · , 2r, be 2r vectors taking values in {1, · · · , n}l+1.

Then for each i(j), we define a graph G(j) whose vertices represent distinct values of the com-

ponents of i(j). Each adjacent component of i(j) is connected by an undirected edge in G(j). It

can be seen that for each j, G(j) is a connected graph, which means that there exists some path

connecting any two nodes in G(j). For each fixed i1, · · · , il+1, · · · , i(2r−1)(l+1)+1, · · · , i2r(l+1),

consider the following term

E
[ (
xi1wi1i2wi2i3 · · ·wilil+1

yil+1
− Exi1wi1i2wi2i3 · · ·wilil+1

yil+1

)
× · · · (C.3)

×
(
xi(2r−1)(l+1)+1

wi(2r−1)(l+1)+1i(2r−1)(l+1)+2
wi(2r−1)(l+1)+2i(2r−1)(l+1)+3

· · ·wi2r(l+1)−1i2r(l+1)
yi2r(l+1)

− Exi(2r−1)(l+1)+1
wi(2r−1)(l+1)+1i(2r−1)(l+1)+2

wi(2r−1)(l+1)+2i(2r−1)(l+1)+3
· · ·wi2r(l+1)−1i2r(l+1)

yi2r(l+1)

)]
,

which corresponds to graph G(1)∪· · ·∪G(2r). If there exists one graph G(s) that is unconnected

to the remaining graphs G(j), j 6= s , then the corresponding expectation in (C.3) is equal to

zero. This shows that for any graph G(s), there exists at least one connected G(s′) to ensure

the nonzero expectation in (C.3). To analyze each nonzero (C.3), we next calculate how

many distinct vertices are contained in the graph G(1) ∪ · · · ∪ G(2r).

Denote by S(2r) the set of partitions of the integers {1, 2, · · · , 2r} and S≥2(2r) the

subset of S(2r) whose block sizes are at least two. To simplify the notation, define

hj = xi(j−1)(l+1)+1
wi(j−1)(l+1)+1i(j−1)(l+1)+2

wi(j−1)(l+1)+2i(j−1)(l+1)+3
· · ·wij(l+1)−1ij(l+1)

yij(l+1)
.

Let A ∈ S≥2(2r) be a partition of {1, 2, · · · , 2r} and |A| the number of groups in A. We

can further define Aj ∈ A as the jth group in A and |Aj | as the number of integers in

Aj . For example, let us consider A = {{1, 2, 3}, {4, 5, · · · , 2r}}. Then we have |A| = 2, set

A1 = {1, 2, 3} ∈ A, and |A1| = 3. It is easy to see that there is a one-to-one correspondence

between the partitions of {1, 2, · · · , 2r} and the graphs G(1), · · · ,G(2r) such that G(s) and

G(s′) are connected if and only if s and s′ belong to one group in the partition. For any Aj ∈
A ∈ S≥2(2r), there are |Aj |l edges in the graph

⋃
w∈Aj G

(j) since for each integer w ∈ Aj ,
there is a chain containing l edges by hw. Since Ewss′ = 0 for s 6= s′, in order to obtain
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a nonzero value of (C.3) each edge in
⋃
w∈Aj G

(j) should have at least one additional copy.

Thus for each nonzero (C.3), we have [
|Aj |l

2 ] distinct edges without self loops in
⋃
w∈Aj G

(j).

Since the graph
⋃
w∈Aj G

(j) is connected, we can conclude that there are at most [
|Aj |l

2 ] + 1

distinct vertices in
⋃
w∈Aj G

(j). Let S(A) be the collection of all choices of
⋃2r
s=1 i(s) such

that

1).
⋃2r
s=1 G(s) has the same partition as A such that they are connected within the same

group and unconnected between groups;

2). Within each group Aj , there are at most [
|Aj |l

2 ] distinct edges without self loops and

[
|Aj |l

2 ] + 1 distinct vertices.

Similarly we can define S(Aj) since Aj can be regarded as a special partition of Aj with

only one group. Summarizing the arguments above, (C.2) can be rewritten as

(C.2) =
∑

A∈S≥2(2r)

∑
⋃2r
s=1 i(s)∈S(A)

|A|∏
j=1

[
E
∏
γ∈Aj

(hγ − Ehγ)
]
. (C.4)

Let us further simplify E
∏
γ∈Aj (hγ − Ehγ). Let Bj be the set of partitions of Aj such that

each partition contains exactly two groups. Without loss of generality, let Bj = {bj1 , bj2},
where for any w ∈ Aj , we have w ∈ bj1 or w ∈ bj2 . Then it holds that

|E
∏
γ∈Aj

(hγ − Ehγ)| ≤
∑
γ∈Bj

E
∣∣∣ ∏
γ∈bj1

hγ

∣∣∣ ∏
γ∈bj2

∣∣∣Ehγ∣∣∣. (C.5)

Observe that by definition, hγ is the product of some independent random variables, and

hγ1 and hγ2 may share some dependency through factors wm1
ab and wm2

ab , respectively, for some

wab and nonnegative integers m1 and m2. Thus in light of the inequality

E|wab|m1E|wab|m2 ≤ E|wab|m1+m2 ,

(C.5) can be bounded as

(C.5) ≤ 2|Aj |E
∣∣∣ ∏
γ∈Aj

hγ

∣∣∣. (C.6)

By (C.6), we can deduce

(C.4) ≤ 22r
∑

A∈S≥2(2r)

∑
⋃2r
s=1 i(s)∈S(A)

|A|∏
j=1

E
∣∣∣ ∏
γ∈Aj

hγ

∣∣∣
≤ 22r

∑
A∈S≥2(2r)

|A|∏
j=1

(
∑

i(s)∈S(Aj)

E
∣∣∣ ∏
γ∈Aj

hγ

∣∣∣). (C.7)
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Thus it suffices to show that

∑
i(s)∈S(Aj)

E
∣∣∣ ∏
γ∈Aj

hγ

∣∣∣ = C|Aj |(min{αl−1
n , dxα

l
n, dyα

l
n})|Aj |,

using the fact that
∑|A|

j=1 |Aj | = 2r. Without loss of generality, we prove the most difficult

case of |A| = 1, that is, there is only one connected chain which is A = {1, 2, · · · , 2r}. It

has the most components in the chain
∏
γ∈A hγ . Other cases with smaller |A| can be shown

in the same way. Using the same arguments as those for (C.4), we have the basic property

for this chain that there are at most [ |A|l2 ] + 1 = rl+ 1 distinct vertices and rl distinct edges

without self loops.

To facilitate our technical presentation, let us introduce some additional notation. Denote

by ψ(r, l) the set of partitions of the edges {(is, is+1), 1 ≤ s ≤ 2rl, is 6= is+1} and ψ≥2(r, l) the

subset of ψ(r, l) whose blocks have size at least two. Let ĩ =
⋃2r
s=1 i(s) and P (̃i) ∈ ψ≥2(2l+2)

be the partition of {(is, is+1), 1 ≤ s ≤ 2rl, is 6= is+1} that is associated with the equivalence

relation (is1 , is1+1) ∼ (is2 , is2+1), which is defined as if and only if (is1 , is1+1) = (is2 , is2+1) or

(is1 , is1+1) = (is2+1, is2). Denote by |P (̃i)| = m the number of groups in the partition P (̃i)

such that the edges are equivalent within each group. We further denote the distinct edges

in the partition P (̃i) as (s1, s2), (s3, s4), · · · , (s2m−1, s2m) and the corresponding counts in

each group as r1, · · · , rm, and define s̃ = (s1, s2, · · · , s2m). For the vertices, let φ(2m) be the

set of partitions of {1, 2, · · · , 2m} and Q(s̃) ∈ φ(2m) the partition that is associated with the

equivalence relation a ∼ b, which is defined as if and only if sa = sb. Note that s2j−1 6= s2j

by the definition of the partition. By |waa| ≤ 1, we can deduce

∑
i(s)∈S(A)

E
∣∣∣ ∏
γ∈A

hγ

∣∣∣ =
∑

i(s)∈S(A)

E
∣∣∣ 2r∏
γ=1

hγ

∣∣∣
≤

∑
1≤|P (̃i)|=m≤rl
P (̃i)∈ψ≥2(2l+2)

∑
ĩ with partition P (̃i)

r1,··· ,rm≥2

∑
Q(s̃)∈φ(2m)

∑
s̃ with partition Q(s̃)

1≤s1,··· ,s2m≤n

2r∏
j=1

(|xi(j−1)(l+1)+1
||yij(l+1)

|)

×
m∏
j=1

E
∣∣ws2j−1s2j |rj . (C.8)

Denote by Fs̃ the graph constructed by the edges of s̃. Since the edges in s̃ are the same

as those of the edges in
⋃2r
s=1 G(s) with the structure S(A), we can see that Fs̃ is also a

connected graph. In view of (C.8), putting term |xi1yil+1
xil+2

yi2l+2
| aside we need to analyze

the summation ∑
s̃ with partition Q(s̃)

1≤s1,··· ,s2m≤n

m∏
j=1

E
∣∣ws2j−1s2j |rj .

If index s2k−1 satisfies that s2k−1 6= s for all s ∈ {s1, · · · , s2m} \ {s2k−1}, that is, index s2k−1
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appears only in one ws2j−1s2j , we call s2k−1 a single index (or single vertex). If there exists

some single index s2k−1, then it holds that

∑
s̃ with partition Q(s̃)

1≤s1,··· ,s2m≤n

m∏
j=1

E
∣∣ws2j−1s2j |rj

≤
∑

s̃\{s2k−1} with partition Q(s̃\{s2k−1})
1≤s1,··· ,s2k−2,s2k+2,s2m≤n

s2k=sj for some 1≤j≤2m

m∏
j=1

E
∣∣ws2j−1s2j |rj

n∑
s2k−1=1

E
∣∣ws2k−1s2k |

rk . (C.9)

Note that since graph Fs̃ is connected and index s2k−1 is single, there exists some j such

that sj = s2k, which means that in the summation
∑n

s2k−1=1 E
∣∣ws2k−1s2k |rk , index s2k is fixed.

Then it follows from the definition of αn, |wij | ≤ 1, and rk ≥ 2 that

n∑
s2k−1=1

E
∣∣ws2k−1s2k |

rk ≤ α2
n.

After taking the summation over index s2k−1, we can see that there is one less edge in

F(s̃). That is, by taking the summation above we will have one additional α2
n in the upper

bound while removing one edge from graph F(s̃). For the single index s2k, we also have

the same bound. If s2k1−1 is not a single index, without loss of generality we assume that

s2k1−1 = s2k−1. Then this vertex s2k−1 needs some delicate analysis. By the assumption of

|wij | ≤ 1, we have

E|w2k−1,2k|rk |w2k1−1,2k1 |rk1 ≤
E|w2k−1,2k|rk + E|w2k1−1,2k1 |rk1

2
.

Then it holds that

∑
s̃ with partition Q(s̃)

1≤s1,··· ,s2m≤n

m∏
j=1

E
∣∣ws2j−1s2j |rj

≤ 1

2

∑
s̃\(s2k−1,s2k1−1) with partition Q(s̃\(s2k−1,s2k1−1))

1≤s1,··· ,s2m≤n

m∏
j=1, j 6=k

E
∣∣ws2j−1s2j |rj

+
1

2

∑
s̃\(s2k−1,s2k1−1) with partition Q(s̃\(s2k−1,s2k1−1))

1≤s1,··· ,s2m≤n

m∏
j=1, j 6=k1

E
∣∣ws2j−1s2j |rj . (C.10)

Note that since Fs̃ is a connected graph, if we delete either edge (s2k−1, s2k) or edge

(s2k1−1, s2k1) from graph Fs̃, the resulting graph is also connected. Then the two sum-

mations on the right hand side of (C.10) can be reduced to the case in (C.9) for the graph

with edge (s2k−1, s2k) or (s2k1−1, s2k1) removed, since s2k−1 or s2k1−1 is a single index in the

subgraph. Similar to (C.9), after taking the summation over index s2k−1 or s2k1−1 there are
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two less edges in graph Fs̃ and thus we now obtain 2α2
n in the upper bound.

For the general case when there are m1 vertices belonging to the same group, without

loss of generality we denote them as wab1 , · · · , wabm1
. If for any k graph Fs̃ is still connected

after deleting edges (a, b1), · · · , (a, bk−1), (a, bk+1), · · · , (a, bm1), then we repeat the process

in (C.10) to obtain a new connected graph by deleting k − 1 edges in wab1 , · · · , wabm1
and

thus obtain kα2
n in the upper bound. Motivated by the key observations above, we carry out

an iterative process in calculating the upper bound as follows.

(1) If there exists some single index in s̃, using (C.9) we can calculate the summation

over such an index and then delete the edge associated with this vertex in Fs̃. The

corresponding vertices associated with this edge are also deleted. For simplicity, we

also denote the new graph as Fs̃. In this step, we obtain α2
n in the upper bound.

(2) Repeat (1) until there is no single index in graph Fs̃.

(3) Suppose there exists some index associated with k edges such that graph Fs̃ is still

connected after deleting any k−1 edges. Without loss of generality, let us consider the

case of k = 2. Then we can apply (C.9) to obtain α2
n in the upper bound. Moreover,

we delete k edges associated with this vertex in Fs̃.

(4) Repeat (3) until there is no such index.

(5) If there still exists some single index, go back to (1). Otherwise stop the iteration.

Completing the graph modification process mentioned above, we can obtain a final graph

Q that enjoys the following properties:

i) Each edge does not contain any single index;

ii) Deleting any vertex makes the graph disconnected.

Let SQ be the spanning tree of graph Q, which is defined as the subgraph of Q with the

minimum possible number of edges. Since SQ is a subgraph of Q, it also satisfies property

ii) above. Assume that SQ contains p edges. Then the number of vertices in SQ is p + 1.

Denote by q1, · · · , qp+1 the vertices of SQ and deg(qi) the degree of vertex qi. Then by the

degree sum formula, we have
∑p+1

i=1 deg(qi) = 2p. As a result, the spanning tree has at least

two vertices with degree one and thus there exists a subgraph of SQ without either of the

vertices that is connected. This will result in a contradiction with property ii) above unless

the number of vertices in graph Q is exactly one. Since l is a bounded constant, the numbers

of partitions P (̃i) and Q(s̃) are also bounded. It follows that

(C.8) ≤ Crd2r
x d

2r
y

∑
s̃ with partition Q(s̃)

1≤s1,··· ,s2m≤n

m∏
j=1

E
∣∣ws2j−1s2j |rj , (C.11)
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where dx = ‖x‖∞, dy = ‖x‖∞, and Cr is some positive constant determined by l. Combining

these arguments above and noticing that there are at most l distinct edges in graph Fs̃, we

can obtain

(C.11) ≤ Crd2r
x d

2r
y α

2rl−2
n

∑
1≤s2k0−1,s2k0

≤n, (s2k0−1,s2k0
)=Q

E
∣∣ws2k0−1s2k0

|rk0

≤ Crd2r
x d

2r
y α

2rl
n n. (C.12)

Therefore, we have established a simple upper bound of Crd
2r
x d

2r
y α

2rl
n n.

In fact, we can improve the aforementioned upper bound to Crα
r(l−1)
n . Note that the

process mentioned above did not utilize the condition that both x and y are unit vectors,

that is, ‖x‖ = ‖y‖ = 1. Since term
∏2r
j=1(|xi(j−1)(l+1)+1

||yij(l+1)
|) is involved in (C.8), we

can analyze them together with random variables wij . First, we need to deal with some

distinct lower indices with low moments in
∏2r
j=1(|xi(j−1)(l+1)+1

||yij(l+1)
|). If there are two

distinct lower indices, without loss of generality denoted them as is and is′ and then the

corresponding entries are xis (or yis) and yis′ (or xis′ ). Moreover, there are only one xis and

yis′ involved in
∏2r
j=1(|xi(j−1)(l+1)+1

||yij(l+1)
|). Without loss of generality, let us assume that

s = 1 and s′ = l + 1. Then it holds that

2r∏
j=1

(|xi(j−1)(l+1)+1
||yij(l+1)

|) = |xi1 ||yil+1
|

2r∏
j=2

(|xi(j−1)(l+1)+1
||yij(l+1)

|)

≤
x2
i1

2

2r∏
j=2

(|xi(j−1)(l+1)+1
||yij(l+1)

|) +
y2
il+1

2

2r∏
j=2

(|xi(j−1)(l+1)+1
||yij(l+1)

|). (C.13)

That is, if we have two lower indices and each index appears only once in the product above,

we can use (C.13) to increase the moment of xis( or yis′ ) and delete the other one. For

(C.13), it is equivalent for us to consider the case when the lower index i1 = il+1. Repeating

the procedure (C.13), finally we can obtain a product
∏2r
j=1(|xi(j−1)(l+1)+1

||yij(l+1)
|) with the

following properties:

1). Except for one vertex is0 , for each is with s 6= s0 there exists some is′ such that

is = is′ with s 6= s′.

2). Except for one vertex is0 , for each is with s 6= s0 the term xm1
is
ym2
is

involved in∏2r
j=1(|xi(j−1)(l+1)+1

||yij(l+1)
|) satisfies the condition that m1 +m2 ≥ 2. Moreover, at least one

of m1 and m2 is larger than one.

By the properties above, let us denote by Υ(2r) the set of partitions of the vertices

{i(j−1)(l+1)+1, ij(l+1), j = 1, · · · , 2r} such that except for one group, the remaining groups

in Υ with Υ ∈ Υ(2r) have blocks with size at least two. There are three different cases to

consider.
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Case 1). All the groups in Υ have block size two. Then it follows that

|
2r∏
j=1

(|xi(j−1)(l+1)+1
||yij(l+1)

|)| =
|Υ|∏
k=1

|x|m1k
is
|y|m2k

ik
, (C.14)

where m1k + m2k = 2. In fact, by the second property of Υ above, m1k = 0 or m2k = 0.

Without loss of generality, we assume that m2k = 0. Then we need only to consider the

equation

|
2r∏
j=1

(|xi(j−1)(l+1)+1
||yij(l+1)

|)| =
|Υ|∏
k=1

|x|2ik .

Then by (C.8), it remains to bound

∑
s̃ with partition Q(s̃)

1≤s1,··· ,s2m≤n

|Υ|∏
k=1

|x|2ik
m∏
j=1

E
∣∣ws2j−1s2j |rj . (C.15)

To simplify the presentation, assume without loss of generality that ik = sk, k =

1, · · · , |Υ|. Then the summation in (C.15) becomes

∑
s̃ with partition Q(s̃)

1≤s1,··· ,s2m≤n

|Υ|∏
j=1

|x|2sj
m∏
j=1

E
∣∣ws2j−1s2j |rj .

By repeating the iterative process (1)–(5) mentioned before, we can bound the summation

for fixed s2, · · · , s|Υ| and obtain an alternative upper bound

n∑
s1=1

x2
s1E
∣∣ws2j−1s2j |rj ≤

n∑
s1=1

x2
s1 = 1

since x is a unit vector. Thus for this step of the iteration, we obtain term one instead of

α2
n in the upper bound. Repeat this step until there is only x2

s|Υ|
left. Since the graph is

always connected during the iteration process, there exists another vertex b such that ws|Υ|b

is involved in (C.15). For index s|Υ|, we do not delete the edges containing s|Υ| in the graph

during the iterative process (1)–(5). Then after the iteration stops, the final graph Q satisfies

properties i) and ii) defined earlier except for vertex s|Υ|. Since there are at least two vertices

with degree one in SQ, we will also reach a contradiction unless the number of vertices in

graph Q is exactly one. By (C.14), it holds that 2|Υ| = 4r. As a result, we can obtain the

upper bound

(C.8) ≤ Crα2rl−2|Υ|
n

∑
1≤s2,b≤n, (s2,b)=Q

Ex2
s|Υ|

∣∣ws|Υ|b|r ≤ Crα2rl−2r
n (C.16)
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with Cr some positive constant. Therefore, the improved bound Crα
2r(l−1)
n is shown for this

case.

Case 2). All the groups in Υ have block size at least two and there is at least one block

with size larger than two. Then it follows that

|
2r∏
j=1

(|xi(j−1)(l+1)+1
||yij(l+1)

|)| =
|Υ|∏
k=1

|x|m1k
is
|y|m2k

ik
.

Since m1k + m2k ≥ 2 by the second property of Υ above, define the nonnegative integer

r1 =
∑|Υ|

k=1(m1k + m2k − 2). There are at most [2rl+2−r1
2 ] distinct vertices in the graph Fs̃

and at most [2rl+2−r1
2 ]− 1 distinct edges. Similar to Case 1 with less distinct edges, we have

(C.8) ≤ Cα2[
2rl+2−r1

2
]−2|Υ|−2

n

∑
1≤s1,b≤n, (s1,b)=Q

Ex2
s1

∣∣ws1b|r ≤ Cα2[
2rl+2−r1

2
]−2|Υ|

n . (C.17)

By the definition of r1 and
∑|Υ|

k=1(m1k +m2k) = 4r, it holds that

r1 + 2|Υ| = 4r.

Thus r1 is an even number and 2[2rl+2−r1
2 ] − 2|Υ| = 2rl − r1 − 2|Υ| + 2 ≤ 2rl − 2r. The

improved bound Crα
2r(l−1)
n is also shown for this case.

Case 3). Except for one index ik0 , the other groups in Υ have block size at least two.

Let us define r′1 =
∑|Υ|

k=1,k 6=k0
(m1k +m2k − 2). There are at most [

2rl+2−r′1
2 ] distinct vertices

and at most [
2rl+2−r′1

2 ]− 1 distinct edges. For the parameter |xik0
| (or |yik0

|), we can bound

it by one since x and y are unit vectors. Then similar to Case 2, we can deduce

(C.8) ≤ Cα2[
2rl+2−r′1

2
]−2|Υ|

n

∑
1≤s1,b≤n, (s1,b)=Q

Ex2
s1

∣∣ws1b|r ≤ Cα2[
2rl+2−r′1

2
]−2|Υ|+2

n . (C.18)

By the definition of r′1 in this case, it holds that

r′1 + 2|Υ| = 4r + 1.

Then r′1 is an odd number and thus

2[
2rl + 2− r′1

2
]− 2|Υ|+ 2 = 2rl − r1 − 2|Υ|+ 3 ≤ 2rl − 2r.

Summarizing the arguments above, for this case we can also obtain the desired bound

Crα
2r(l−1)
n .

In addition, we can also improve the upper bound to Cr(min{d2r
x α

2rl
n , d2r

y α
2rl
n }). The

technical arguments for this refinement are similar to those for the improvement to order
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Crα
2r(l−1)
n above. As an example, we can bound the components of y by dy = ‖y‖∞, which

leads to |
∏2r
j=1(|xi(j−1)(l+1)+1

||yij(l+1)
|)| ≤ d2r

y |
∏2r
j=1 |xi(j−1)(l+1)+1

|. Then the analysis becomes

similar to the three cases above. The only difference is that
∑|Υ|

k=1m1k = 2r instead of∑|Υ|
k=1(m1k +m2k) = 4r. For this case, we have

(C.8) ≤ Cd2r
y α

2rl−2|Υ|
n

∑
1≤s2,b≤n, (s2,b)=Q

Ex2
s1

∣∣ws1b|r ≤ Crd2r
y α

2rl
n . (C.19)

Thus we can obtain the claimed upper bound Cr(min{d2r
x α

2rl
n , d2r

y α
2rl
n }). Therefore, combin-

ing the two aforementioned improved bounds yields the desired upper bound of

Cr(min{α2r(l−1)
n , d2r

x α
2rl
n , d2r

y α
2rl
n }),

which completes the proof of Lemma 11.

C.2 Corollary 3 and its proof

Lemma 11 ensures the following corollary immediately.

Corollary 3. Under the conditions of Lemma 11, it holds that for any positive constants a

and b, there exists some n0(a, b) > 0 such that

sup
‖x‖=‖y‖=1

P
(
xT (Wl − EWl)y ≥ na min{αl−1

n , dxα
l
n, dyα

l
n}
)
≤ n−b (C.20)

for any n ≥ n0(a, b) and l ≥ 1. Moreover, we have

xT (Wl − EWl)y = O≺(min{αl−1
n , dxα

l
n, dyα

l
n}). (C.21)

Proof. It suffices to show (C.20) because then (C.21) follows from the definition. For any

positive constants a and b, there exists some integer r such that 2ar ≥ b + 1. By the

Chebyshev inequality, it holds that

sup
‖x‖=‖y‖=1

P(|xT (Wl − EWl)y| ≥ na min{αl−1
n , dxα

l
n, dyα

l
n})

≤ sup
‖x‖=‖y‖=1

E(xT (Wl − EWl)y)2r

n2ar(min{αl−1
n , dxαln, dyα

l
n})2r

≤ Cr
nb+1

,

which can be further bounded by n−b as long as n ≥ Cr. It is seen that Cr is determined

completely by a and b. This concludes the proof of Corollary 3.
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C.3 Lemma 12 and its proof

Lemma 12. For any n-dimensional unit vectors x and y, we have

ExTWly = O(αln), (C.22)

where l ≥ 2 is a positive integer. Furthermore, if the number of nonzero components of x is

bounded, then it holds that

ExTWly = O(αlndy), (C.23)

where dy = ‖y‖∞.

Proof. The result in (C.22) follows directly from Lemma 5 of Fan et al. (2020). Thus it

remains to show (C.23). The main idea of the proof is similar to that for the proof of Lemma

11. Denote by C the set of positions of the nonzero components of x. Then we have

ExTWly =
∑

i1∈C,1≤i2,··· ,il+1≤n
is 6=is+1

E
(
xi1wi1i2wi2i3 · · ·wilil+1

yil+1

)
. (C.24)

Note that the cardinality of set C is bounded. Thus it suffices to show that for fixed i1, we

have

∑
1≤i2,··· ,il+1≤n

is 6=is+1

E
(
xi1wi1i2wi2i3 · · ·wilil+1

yil+1

)
= O(dyα

l
n). (C.25)

By the definition of graph G(1) in the proof of Lemma 11, we can also get a similar expression

as (C.6) that

|(C.24)|

≤ dy
∑

G(1) with at most [l/2] distinct edges without self loops and [l/2] + 1 distinct vertices, i1 is fixed

E
∣∣wi1i2wi2i3

· · ·wilil+1

∣∣. (C.26)

Using similar arguments for bounding the order of the summation through the iterative

process as those for (C.11)–(C.12) in the proof of Lemma 11, we can obtain a similar bound

ExTWly ≤ Cdyαl−2
n

n∑
ik0

=1

E
∣∣wi1ik0

|r0 ≤ Cdyαln (C.27)

with r0 ≥ 2. Here we do not remove the lower index i1 during the iteration procedure. The

additional factor n on the right hand side of (C.12) can be eliminated since i1 is fixed. This

completes the proof of Lemma 12.
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C.4 Lemma 13 and its proof

Lemma 13. Assume that ξ1 = O≺(ζ), · · · , ξm = O≺(ζ) with m = bncc and c some positive

constant. If

P [|ξi| > na|ζ|] ≤ n−b (C.28)

uniformly for ξi, i = 1, · · · ,m, and any positive constants a,b with n ≥ n0(a, b), then for any

positive random variables X1, · · · , Xm, we have

m∑
i=1

Xiξi = O≺

( m∑
i=1

Xiζ
)
.

Proof. For any positive constants a and b, let b1 = c+ b. By (C.28), it holds that

P [|ξi| > na|ζ|] ≤ n−b1

for all n ≥ n0(a, b1), where n0(a, b1) is determined completely by a and b1. Then we have

P

[
|
m∑
i=1

Xiξi| > na|ζ|
m∑
i=1

Xi

]
≤

m∑
i=1

P [|ξi| > na|ζ|] ≤ n−b

for large enough n ≥ n0(a, b1). Since b1 = c + b and c is fixed, the constant n0(a, b1) is

determined essentially by a and b. This concludes the proof of Lemma 13.

C.5 Lemma 14 and its proof

Lemma 14. For any positive constant L, it holds that

P(‖W‖ ≥ αn log n) ≤ n−L

for all sufficiently large n.

Proof. The conclusion of Lemma 14 follows directly from Theorem 6.2 of Tropp (2012). We

can also prove it by (B.1) and the inequality with c
√

log nαn − 1 replaced by αn log n in

(B.2).

C.6 Lemma 15

Lemma 15 (Fan et al. (2020)). There exists a unique solution z = tk to equation (9) on the

interval [ak, bk], and thus tk’s are well defined. In addition, for each k = 1, · · · ,K, we have

tk/dk → 1 as n→∞.
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D Sufficient conditions for Condition 3

D.1 Lemma 16 and its proof

Lemma 16. Under Conditions 1–2, if θ < 1 and min1≤i,j≤K Pij ≥ c for some positive

constant c, then Condition 3 holds.

Proof. The key step of the proof is to calculate cov[(ei−ej)
TWV]. Without loss of generality,

let us assume that (i, j) = (1, 2). Note that the main difference between the null and

alternative hypotheses is that the mean value of (e1 − e2)TEW is 0 under the former and

is (Ew1,1,−Ew2,2, 0, · · · , 0)T , which may be nonzero, under the latter. However, since the

main idea of the proof applies to both cases, we will provide only the technical details under

the null hypothesis.

First, some direct calculations show that

θ−1DΣ1D = θ−1cov[(ei − ej)
TWV]

= θ−1VTE(W(ei − ej)(ei − ej)
TW)V

= θ−1VTQV, (D.1)

where Q = diag(E(wi1 − wj1)2, · · · ,E(win − wjn)2) + Ew2
ijeie

T
j + Ew2

ijeje
T
i . By the as-

sumptions that θ < 1 and min1≤i,j≤K Pij ≥ c, we see that the entries of the mean matrix

H = (hij) are bounded from below by cθ and from above by θ. Since Ew2
ij ∼ hij and wik

and wjk are independent for i 6= j, it holds that

θI . diag(E(wi1 − wj1)2, · · · ,E(win − wjn)2) . θI. (D.2)

Then it follows from (D.2) that

I . θ−1VTdiag(E(wi1 − wj1)2, · · · ,E(win − wjn)2)V . I. (D.3)

Since Σ1 ∈ RK×K with K a finite integer, we can deduce that

‖θ−1VT (Ew2
ijeie

T
j + Ew2

ijeje
T
i )V‖ . 1

n
. (D.4)

Therefore, combining (D.1)–(D.4), we can obtain the desired conclusion under the null hy-

pothesis. This completes the proof of Lemma 16.

E Uniform convergence

Theorem 6. Assume that the null hypotheses H0,ij : πi = πj hold for all 1 ≤ i 6= j ≤ n.

Then
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1) Under Conditions 1–3 and the mixed membership model (10), we have for any x ∈ R,

lim
n→∞

sup
1≤i 6=j≤n

|P(Tij ≤ x)− P(χ2
K ≤ x)| = 0. (E.1)

2) Under Conditions 1 and 4–7 and DCMM (6), we have for any x ∈ R,

lim
n→∞

sup
1≤i 6=j≤n

|P(Gij ≤ x)− P(χ2
K−1 ≤ x)| = 0. (E.2)

Proof. We provide the detailed proof only for (E.1) since the proof of (E.2) is almost

identical. Recall that Tij = ‖Σ−1/2
1 (V̂(i) − V̂(j))‖2. Let us investigate the asymptotic

behavior of random vector Σ
−1/2
1 (V̂(i)− V̂(j)). Checking the proof of Theorem 1 in Section

A.1 carefully, we can see that there exists some positive constant ε such that

Σ
−1/2
1 (V̂(i)− V̂(j))

= Σ
−1/2
1 D−1

(
(ei − ej)

TWv1

t1/d1
, · · · , (ei − ej)

TWvK
tK/dK

)T
+O≺(n−ε), (E.3)

where the op(1) term in (A.8) is replaced by O≺(n−ε). By (E.3) and the continuity of

the standard multivariate Gaussian distribution, it suffices to show that for any convex set

S ⊂ RK , we have

lim
n→∞

sup
i 6=j

∣∣∣∣∣P
(

Σ
−1/2
1 D−1

(
(ei − ej)

TWv1

t1/d1
, · · · , (ei − ej)

TWvK
tK/dK

)T
∈ S

)
− P (xK ∈ S)

∣∣∣∣∣
= 0, (E.4)

where xK ∼ N(0, IK).

For an application of Theorem 1.1 in Raic̆ (2019), we need to rewrite

Σ
−1/2
1 D−1

(
(ei − ej)

TWv1

t1/d1
, · · · , (ei − ej)

TWvK
tK/dK

)T
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as the sum of independent random vectors. Indeed, some direct calculations yield

Σ
−1/2
1 D−1

(
(ei − ej)

TWv1

t1/d1
, · · · , (ei − ej)

TWvK
tK/dK

)T
=

n∑
l=1

Σ
−1/2
1 D−1

(
(wil − wjl)v1l

t1/d1
, · · · ,

(wil − wjl)vKl
tK/dK

)T
=
∑
l 6=i,j

Σ
−1/2
1 D−1(wil − wjl)

(
v1l

t1/d1
, · · · , vKl

tK/dK

)T
+
∑
l∈{i,j}

Σ
−1/2
1 D−1(wil − wjl)

(
v1l

t1/d1
, · · · , vKl

tK/dK

)T
, (E.5)

where the first term in the last step is the sum of independent random vectors. Then it

follows from Lemma 6 and Condition 3 that

∑
l∈{i,j}

Σ
−1/2
1 D−1(wil − wjl)

(
v1l

t1/d1
, · · · , vKl

tK/dK

)T
= O(

1√
nθ

).

Combining this with (E.4) and (E.5), we see that it remains to show that

lim
n→∞

sup
i 6=j

∣∣∣∣∣∣P
∑
l 6=i,j

Σ
−1/2
1 D−1(wil − wjl)

(
v1l

t1/d1
, · · · , vKl

tK/dK

)T
∈ S

− P(xK ∈ S)

∣∣∣∣∣∣
= 0. (E.6)

From Theorem 1.1 in Raic̆ (2019), Condition 3, and Lemma 6, we can deduce that for

any fixed i, j, there exists some positive constant C (independent of i, j) such that∣∣∣∣∣∣P
∑
l 6=i,j

Σ
−1/2
1 D−1(wil − wjl)

(
v1l

t1/d1
, · · · , vKl

tK/dK

)T
∈ S

− P(xK ∈ S)

∣∣∣∣∣∣
≤ C

∑
l 6=i,j

E‖Σ−1/2
1 D−1(wil − wjl)

(
v1l

t1/d1
, · · · , vKl

tK/dK

)T
‖32

= C
∑
l 6=i,j

(
‖Σ−1/2

1 D−1

(
v1l

t1/d1
, · · · , vKl

tK/dK

)T
‖32 × E|wil − wjl|3

)

≤ C2

√
n

max
l 6=i,j

E|
wil − wjl√

θ
|3

= O(
1√
nθ

),

which entails (E.6). Therefore, the desired conclusions of the theorem follow immediately,

which concludes the proof of Theorem E.
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