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can shed any light on how their conditions relate to those in Forni et al. (2004) in the context of generalized
dynamic factor models.

Cheng Yong Tang (University of Colorado, Denver) and Yingying Fan (University of Southern
California, Los Angeles)
We most heartily congratulate Fan and his colleagues for their thought-provoking and impactful work
on estimating the large covariance matrix, which is pivotal in many contemporary scientific and practical
studies. Facilitated by a factor model, a parsimonious structure is proposed for the large covariance
matrix by combining a low rank matrix and a sparse covariance matrix. In the authors’ framework, a
factor model is used to characterize the systematic common components underlying the target large-scale
dynamics in various problems, and a sparse covariance matrix is imposed to incorporate the remaining
idiosyncratic contributions to the variations and covariations. Our comments are mainly on the treatment
for the idiosyncratic component, i.e. the remaining dynamics after identifying and removing the systematic
part.

An important assumption of the approach proposed is that a sparse covariance matrix Σu is imposed
for modelling the idiosyncratic component. One may naturally wonder that, in situations when a sparse Σu

is inadequate, what alternative approach can be used for modelling the idiosyncratic component. Further,
can a similar idea of parsimonious modelling by structural decomposition be extended for solving other
problems such as large precision matrix estimation? In the framework of graphical models, Tang and
Fan (2013) investigate the problem of large precision matrix estimation by parsimoniously modelling the
idiosyncratic component by using a sparse precision matrix Ωu =Σ−1

u . They observe that the large-scale
precision matrix Ωu =Σ−1 depends on the idiosyncratic component only through the precision matrix Ωu.
Thus a similar idea of structural decomposition can be equally applied for estimating the large precision
matrix, with the systematic component being captured by a factor model. Facilitated by the interpretation
that 0s in a precision matrix imply conditional independence between the corresponding components,
a sparse Ωu can have useful practical implications. For example, in the famous Fama–French factor
model (Fama and French, 1993) in finance, a non-diagonal sparse precision matrix for the idiosyncratic
component characterizes the interpretable market effects among returns of stocks at different levels, such
as the industrial segmentwise connections, and the intrinsic within-industry associations, say, among
financial firms. Existence of such effects after removing the dynamics corresponding to the systematic
component may result in a non-sparse Σu, yet sparse modelling can still be valid by exploring the sparse
precision matrix Ωu.

Joong-Ho Won (Korea University, Seoul) and Woncheol Jang and Johan Lim (Seoul National University)
We congratulate Fan and his colleagues for a stimulating paper in which they have made a substantial
contribution to challenging problems in large covariance estimation.

As practitioners, we are most interested in finite sample positive definiteness of the estimator proposed
by the authors. They suggest using a scaling constant C in the threshold for the idiosyncratic covariance
matrix ΣT

u,K and adjusting C to render its minimum eigenvalue positive. This idea leads to the univariate
root finding procedure of expression (4.1). Although this procedure looks apparently simple, it requires
computing the minimum eigenvalue of a p×p matrix, which is computationally expensive by itself for even
a modest value of p, for every value of C tried. Furthermore, altering C means that the thresholding must
be recomputed in every iteration, changing the sparsity pattern of the initial ΣT

u,K. Thus we are concerned
that the resulting cost of solving expression (4.1) may not be so cheap, especially when the target function
in it is not smooth (Fig. 1).

Here we consider an alternative procedure that ensures positive definiteness while preserving the ini-
tial sparsity pattern. First, project ΣT

u,K onto a space of positive definite matrices. This can be done by
solving

minimize‖X−ΣT
u,K‖2, subject to λmin.X/�μ, .12/

for a matrix variable X and some μ>0. The solution to problem (12) is given by XÅ =Σp
i=1 max{λi, μ}qiq

′
i

for the spectral decomposition of ΣT
u,K =Σp

i=1 λiqiq
′
i (Boyd and Vandenberghe, 2004). Second, replace the

entries of XÅ that correspond to the zero-thresholded entries of ΣT
u,K with 0. Repeat these two steps until

convergence. This alternating projections procedure is guaranteed to converge, as both steps are convex
(Boyd and Dattorro, 2003). The first step (12) requires a spectral decomposition of ΣT

u,K as in the root
finding procedure, but the second step is free of comparisons with varying thresholds.


