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Lecture 2:  Matrix Algebra 

General 

1.  A matrix, for our purpose, is a rectangular array of objects or elements.  We will take these 

elements as being real numbers and indicate an element by its row and column position.   A 

matrix is then an ordered set. 

2.  Let aij  R denote the element of a matrix which occupies the position of the ith row and jth 

column.  The dimension of the matrix is defined or stated by indicating first the number of rows 

and then the number of columns.  We will adopt convention of indicating a matrix by a capital 

letter and its elements by the corresponding lower case letter. 

Example 1. A
a a

a a2 2

11 12

21 22

=








  

Example 2.  A a
1 1

11

=  

Example 3. Anxn = [

a11 ⋯ a1n

⋮ ⋱ ⋮

an1 ⋯ ann

] 

Example 4. A
a a a

a a a2 3

11 12 13

21 22 23

=








  

3.  A matrix is said to be (i) square if # rows = # columns and a square matrix is said to be (ii) 

symmetric if aij = aji i, j, i  j. 

Example.  The matrix 
0 3

2 0









  is square but not symmetric, since a21 = 2  3 = a12.  The square 

matrix 

1 2 4

2 1 3

4 3 1

















 is symmetric since a12 = a21 = 2, a31 = a13 = 4, and a32 = a23 = 3. 
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4.  The principle diagonal elements of a square matrix A are given by the elements aij, i = j.  The 

principle diagonal is the ordered n-tuple (a11, ..., ann).  The trace of a square matrix is defined as 

the sum of the principal diagonal elements.  It is denoted tr(A) = 
i

iia . 

5.  A diagonal matrix is a square matrix whose only nonzero elements appear on the principal 

diagonal.   

6.  A scalar matrix is a diagonal matrix with the same value in all of the diagonal elements. 

7.  An identity matrix is a scalar matrix with ones on the diagonal.   

8.  A triangular matrix is a square matrix that has only zeros either above or below the principal 

diagonal.  If the zeros are above the diagonal, then the matrix is lower triangular and conversely 

for upper triangular.  

Remark:  The following notations for indicating an n  m matrix A are equivalent 

[aij]i=1,…,n
j=1,…m

, (
⋯

⋮ ⋱ ⋮

⋯

) , [
⋯

⋮ ⋱ ⋮

⋯

] ,or ‖ ‖ . 

9.  If a matrix A is of dimension 1  n, then it is termed a row vector, A = [a11,…,a1n]. Since there 

is only one row, the row index is sometimes dropped and A is written [a1,…,an] = a’.  A matrix A 

of dimension n  1 is termed a column vector, A= [

a11

⋮

an1

]. Likewise, since there is only one 

column, this is sometimes written as a = [

a1

⋮

an

]. 

 

Algebraic Operations on Matrices 

1.  Equality.   Two matrices say A and B,    a bij i n
j m

ij i n
j m

=
=

=
=

1
1

1
1

,
, ,

, ,
, ,

,





 are said to be equal iff aij = bij 

i, j. 

2.  Addition and Subtraction.  Take A and B as above with the same dimensions we have 
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 Anxm± Bnxm= [
a11±b11 ⋯ a1m±b1m

⋮ ⋱ ⋮

an1±bn1 ⋯ ann±bnn

] 

3.  Scalar Multiplication.  Let k  R.   k A ka
n m

ij

= .  

4.  Multiplication.  Two matrices A and B can be multiplied to form AB, only if the column 

dimension of A = row dimension of B.  If this conformability requirement is met, then it is 

possible to define the product AB.  In words, the column dimension of the lead matrix must equal 

the row dimension of the lag matrix, for conformability. 

Example  If A
2 3

 and B
4 2

,  then AB cannot be defined, but B A
4 2 2 4 

 can be defined. 

 In order to precisely present the mechanics of matrix multiplication, let us introduce the 

idea of an inner (dot) product of two n-tuples of real numbers.  Suppose x, y  Rn.  Then the 

inner product of x and y is defined by 

 x∙y= ∑ xi
n
i=1 yi 

Note that x x xi

i

 = 2
 and x y y x =  .  That is, the dot product is commutative.  Given an n  

m matrix A, let us associate the kth column of A with the ordered n-tuple aok = (a1k,…,ank). 

Moreover associate the jth row of A with the ordered m-tuple ajo = (aj1,…,ajm).  

Example.  A
2 3

1 2 3

0 4 5
=








  

 a02 = (2, 4) 

 a20 = (0, 4, 5) 

 With this notation in hand, consider two matrices A B
n m m k 

 which are conformable for 

multiplication in the order AB.  The product AB is then given by 
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 AnxmBmxk = [
a10∙b01 ⋯ a10∙b0k

⋮ ⋱ ⋮

an0∙b01 ⋯ an0∙b0k

] 

That is if AB = C, then  

 c a bjl ji il
i

m

= 
=1

.  

Note it must be that AB
n k

.  

Example 1   

 

A B
a a

a a

b b

b b

a b a b a b a b

a b a b a b a b

a b a b

a b a b

a b a b

a b a b

i i

i

i i

i

i i

i

i i

i

2 2 2 2

11 12

21 22

11 12

21 22

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

1 1

1

2

1 2

1

2

2 1

1

2

2 2

1

2

10 01 10 02

20 01 20 02

 

= =

= =

=

















 =

+ +

+ +











=



















=
 

 











 

 

 

Example 2 

 A B=








 =










 

2 1

0 2

1

4
2 2 2 1

 

 

121222

12 8

6

4

1

20

12
AB












=
















=  

 

 

Example 3.  Suppose that A is a l  n row vector A = a = (a11 a12  a1n) and B an n  1 col vector   

B = b = [
b11

⋮

bn1

].  Hence, we have  

 a’b = ∑ 𝑎1𝑖
𝑛
𝑖=1 𝑏𝑖1. 

This is a scalar and the operation is termed a scalar product.  Note that ab = a • b.  (The scalar 

product is same as the inner product of 2 row vectors.) 
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 Moreover suppose that a’ = (a11,…,a1n) and b = [
b11

⋮

bm1

].  Then 

ba’ = [
b11a11 ⋯ b11a1n

⋮ ⋱ ⋮

bm1a11 ⋯ bm1a1n

]. 

 

5. The operation of addition is both commutative and associative.  We have 

 (Com. Law)  A + B = B + A 

 (Associative) (A + B) + C = A + (B + C) 

 The operation of multiplication is not commutative but it does satisfy the associative and 

distributive laws. 

 (Associative) (AB)C = A(BC) 

 (Distributive) A(B + C) = AB + AC 

   (B + C) A = BA + CA 

 To see that AB  BA consider the example A B=








 =











1 2

1 2

0 1

2 0
,  

  AB =










4 1

4 1
 

  BA =










1 2

2 4
. 

6.  Generally, when we take the product of a matrix and a vector, we can write the result as   

  c = Ab. 

In this example, the matrix A is n by n and the column vectors c and b are n by 1.  This product 

can be interpreted in two different ways.  Taking the case of a 22 matrix A, we have 

  















=









b

a

23

31

4

1
. 

First, this can be a compact way of writing the two equations 
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  1 = a + 3b 

  4 = 3a + 2b. 

Alternatively, we can write the relationship as a linear combination of the columns of A 

  .
2

3
b

3

1
a

4

1








+








=








 

In the general case where A is nn, we have  

  c = Ab 

    = b1a1 + + bnan,  

where ai is the ith column of A. Further, in the product C = AB, each column of the matrix C is a 

linear combination of the columns of A where the coefficients are the elements in the 

corresponding columns of B. That is,  

  C = AB if and only if ci = Abi.   

7.  Transpose of a Matrix.  The transpose of a matrix A, denoted A, is the matrix formed by 

interchanging the rows and columns of the original matrix A. 

Example 1.  Let A = (1  2) then  =







A

1

2
 

Example 2.  Let A
3 2

1 2

3 4

5 6

=

















,  then  =











A
2 3

1 3 5

2 4 6
.  

Properties : 

 (i) (A) = A (obvious) 

 (ii) (A + B) = A + B 

  Proof:  Let A + B = C, then cij = aij + bij.  Let c ij  denote an element of C.  

 Clearly,  = = +c c a bij ji ji ji .   Let  a bij ij,  be elements of A and B respectively such that 

  =a aij ji  and  =b bij ji  
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   = + =  + c a b a bij ji ji ij ij.  

 Thus, the elements of C and A + B are identical. 

 (iii) (AB) = BA 

  Proof:  Let A B
n m m k 

,  then AnxmBmxk = [
a10∙b01 ⋯ a10∙b0k

⋮ ⋱ ⋮

an0∙b01 ⋯ an0∙b0k

]. Then  

(AB)’ = [
a10∙b01 ⋯ an0∙b01

⋮ ⋱ ⋮

a10∙b0k ⋯ an0∙b0k

]. We have that B'kxm= [
b01'
b0k'

] and A'mxn = [a10′ … an0′]. 

Thus, 𝐵′𝐴′ = [
b01'∙a10′ ⋯ b01'∙an0′

⋮ ⋱ ⋮

b0k'∙a10′ ⋯ b0k'∙an0′
].  || 

 

7.  The Identity and Null Matrices. 

 a. An identity matrix is a square matrix with ones in its principle diagonal and   

   zeros elsewhere.   An n  n identity matrix is denoted In. 

  Properties: 

   (i) Let A be n  p.  Then we have InA = AIP = A. 

     Proof:  Exercise 

   (ii) Let A be n  p and B be p  m.  Then we have 

     ( )A Ip B AI B AB
n p p p p m

p
  

= = . 

   (iii) In∙In∙In⋯In=In . The product of any number of identity   

  matrices is the identity matrix.  In general, a matrix is termed    

  idempotent, when it satisfies the property AA = A.                                                                                                                                               

 b. The null matrix, denoted [0] is a matrix whose elements are all zero.  Subject to  

  dimensional conformability we have 

   Properties: 
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    (i) A + [0] = [0] + A = A 

    (ii) [0]A = A[0] = [0]. 

     Proofs:  Exercise 

Remark : If AB = [0], it need not be true that A = [0] or B [0]. 

Example. 

    A =










2 4

1 2
 

     

    B =
−

−











2 4

1 2
 

It is easy to show that AB = [0]. 

8.  Sums of Values. 

a.  Let i represent a column vector of ones. Then the sum of the elements of any vector x is given 

by 

  
=

n

1i

ix = i'x. 

b. If all of the elements of x are the same and equal to k, then x = ki.  Further, 

  
=

n

1i

ix = i'ki = ki'i= kn. 

c.  Obviously, if a is a constant, then  

  a
=

n

1i

ix = 
=

n

1i

iax  = ai'x. 

Setting a = 1/n, we obtain the simple mean 

  
_

x = 
n

1
i'x. 
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9.  Determinants and Related Concepts. 

a.  A determinant is defined only for square matrices.  When taking the determinant of a matrix 

we attach a sign + or - to each element: 

   sign attached to aij = sign (-1) i+j. 

Thus, for example, sign a12 = - , sign of a43 = -, and sign a13 = +. 

b.  The determinant of a scalar x, x ,is the matrix itself.  The determinant of a 2  2 matrix A,  

denoted A  or det A, is defined as follows: 

  ( )( ) ( )( )A
a a

a a
a a a a=









 = + − 

11 12

21 22

11 22 21 121 1 .  

 Example A =
−











3 6

5 6
.  ( )( )A =  − − = + =3 6 5 6 18 30 48.  

c.  The determinant of an arbitrary n  n ( )n  2 matrix A can be found via the Laplace 

Expansion process.  In order to introduce this process, let us consider some preliminary 

definitions.  Let A
n n

.  

 Definition. The minor of the element aij, denoted M ij ,  is the determinant of the 

 submatrix formed by deleting the ith row and jth column. 

 Example 1. Let A be 2  2, A
a a

a a
=










11 12

21 22

.   M a a11 22 22= = .   Moreover 

 M a M a12 21 21 12= =,  and M a22 11= .  

 Example 2. Let A be 3  3. 

 

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

















.   M
a a

a a
a a a a13

21 22

31 32

21 32 31 22= = − . 

 Definition.  The cofactor of the element aij denoted Cij is given by  
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  ( )−
+

1
i j

ijM .  

 Example  Let A be 3  3.  Then ( ).aaaa1
aa

aa
1C 13323312

3332

1312

21 −−=−=  

 Definition. The principle minor of the principle diagonal element aii, denoted PM i   

 is the determinant of the submatrix formed by retaining only the first i rows and first i 

 columns.  The order of  PM i  is its row = col. dimension. 

 Example  

  

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

















 

  PM a1 11=  PM a a a a2 11 22 21 12= −   PM A3 = .  

10.  Laplace Expansion: Let A be n  n.  Then 

A a Cij ij

i

n

=
=


1

 (expansion by jth col)  A a Cij ij

j

n

=
=


1

 (expansion by ith row) 

Note that eventually cofactors degenerate to the 2  2 case. 

 Example 1. 3  3.  Expansion by 2nd col. 

  A

a a a

a a a

a a a

=

















11 12 13

21 22 23

31 32 33

.   

 A a Ci i

i

=
=

 2 2

1

3

 ( ) ( ) ( )= − − + − − −a a a a a a a a a a a a a a a12 21 33 31 23 22 11 33 31 13 32 11 23 21 13 .    

Next consider expansion via the 3rd row.  

  ( ) ( )A a c a a a a a a a a a aj j
j

= = − − −
=

3 3
1

3

31 12 23 22 13 32 11 23 21 13 ( )+ −a a a a a33 11 22 21 12 .    
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Let’s check the two terms to see if they are equal.  The middle term of the second expression is 

the same as the last term of the first expression.  Checking the remaining two terms, we have the 

following.  In the first case -a12a21a33 +  a12a31a23 + a22a11a33 - a22a31a13.  In the second case a31a12a23 

- a31a22a13 + a33a11a22 - a33a21a12.  Thus, they are the same.  

 Example 2. A is 3  3 and given by  

  

0 4 1

2 1 1

1 1 1

















.   In this case it is easiest to expand via the first col. 

  ( ) ( ) ( )A = − + = − − + − = − + = −2
4 1

1 1
1

4 1

1 1
2 4 1 1 4 1 2 3 3 3.  

11.  Properties of  Determinants. 

 (i) A A=   

 (ii) The interchange of any two rows (or two col.) will change the sign of the 

determinant, but will not change its absolute value. 

 Examples of (i) and (i) 

 #1 A =










1 2

3 4
   =









A

1 3

2 4
 

  A = −2    = −A 2   

 #2 A =










1 2

3 4
,  B =











3 4

1 2
 

  A = −2   B = +2  

 (iii) The multiplication of any p rows (or col) of a matrix by a scalar k will change the 

value of the determinant to k Ap .  
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 (iv) The addition (subtraction) of any multiple of any row to (from) another row will 

leave the value of the determinant unaltered, if the linear combination is placed in the initial (the 

transformed) row slot.  The same holds true if we replace the word “row” by column. 

 (v) If one row (col) is a multiple of another row (col), the value of the determinant 

will be zero. 

            (vi)       If A and B are square, then |AB| = |A||B|. 

 

Vector Spaces, Linear Independence and Rank of a Matrix 

1.  As pointed out above, an n  1 matrix is termed a col vector and a 1  n matrix is called a row 

vector.  In general we have 

 Def. An n-component vector a is an ordered n tuple of real numbers written as a row 

vector a’ or a column vector a. The ai for, i = 1,…,n,  are termed the components of the vector. 

 

The elements of such a vector can be viewed as the coordinates of a point in Rn or as the 

definition of the line segment connecting the origin and this point.   

2.  Rn can be defined as the collection of all vectors a’ = (a1,…,an).  It is the n-fold product of R. 

3.  The two basic operations defined for vectors are scalar multiplication and addition.  Recall that 

for a vector a, ka = 





























n

1

ka

ka

, and that a + b =  .

ba

ba

nn

11























+







+

  The set of all possible scale multiples of 

a vector a is the line through the nn zero vector and a.  Any given scale multiple of a is a 

segment of this line.  We can illustrate these concepts geometrically.    
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                                                                                                        ka       

 

                  a2                                                        a        (k > 0) 

  

 

     (k < 0)     0                                             a1 

                                                   Figure 1 

 

                   2     

 

 

 

 

 

 

 

 

 

                                                                a + b = c         

                      

                          a 

 

 

                                                                    

                                                         b        

                                                                                                             1                      

                                                  Figure 2 

 

To find c = a + b geometrically, we move "a" parallel to the tip of "b" or conversely.   
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A vector space is a collection of vectors that is closed under the operations of addition and scalar 

multiplication.  Clearly Rn is a vector space. 

4. Linear Combinations of Vectors and Basis Vectors 

a. Def. A set of vectors span a vector space if any vector in that space can be written as a linear 

combination of the vectors in that set.  

b. A set of vectors spanning a vector space which contains the smallest number of vectors is 

called a basis. This set must be must be linearly independent. If the set were dependent, then 

some one could be expressed as a linear combination of the others and it could be eliminated. In 

this case we would not have the smallest set. 

 

Def.  A set of vectors a1,⋯,am ∈ Rn is said to be linearly dependent if there exist scalars i  R, 

not all zero such that 

   𝜆1𝑎1+λ2a2+⋯+λmam = 0n. 

If the only set of i for which the above holds is λi = 0, for all i, then the vectors a1,⋯,am ∈ Rn are 

said to be linearly independent. 

5. From this definition we can derive the following result: 

Proposition 1.  The vectors a1,⋯,am  from Rn are linearly dependent iff some one of the vectors is 

a linear combination of the others. 

Proof Suppose one vector, say a1, is a linear combination of the others. Then 

𝑎1= λ2a2+⋯+λmam. Thus, -a1+ λ2a2+⋯+λmam=0, with 1 1 0= −  . Hence, the set is linearly 

dependent. 

 Suppose the set is linearly dependent .  Then the above condition is satisfied and 

 k 0.  Thus, 

 ak=
λ1

-λk a1+⋯+
λk-1

-λk ak-1+
λk+1

-λk ak+1+⋯+
λm

-λk am. 

and ak has been expressed as a linear combination of the other vectors.  || 
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Remark 1.  If the set of vectors under consideration has but one member a  Rn, then a is linearly 

dependent if a = 0 and a is linearly independent, if a  0.  Here, linear dependence means    0 

such that  a = 0  a = 0.  Now, if a is not linearly dependent  we have that the only  for which 

 a = 0 is  = 0.  Thus,    0   a 0  and a  0. 

Proposition 2. No set of linearly independent vectors can contain the zero vector.  

 Proof:  Suppose that a1 = 0n.  Set 2= =m=0 and 1=1.  Then 

𝜆1𝑎1+λ2a2+⋯+λmam = 0n, and the set is linearly dependent.  ||   

Proposition 3. Any subset of a set of linearly independent  vectors is linearly independent. 

Proof: Suppose a subset of a linearly independent set, a1,⋯,am, is linearly dependent. Let this 

subset be a1,⋯,ak  Then ∃ λ1,⋯,λk not all zero such that 

  𝜆1𝑎1+λ2a2+⋯+λkak = 0n. 

Set k+1,,m = 0. Then 𝜆1𝑎1+λ2a2+⋯+λmam = 0n, 𝜆𝑖  not all zero and we contradict linear 

independence.  || 

Proposition 4. Any superset of a set of linearly dependent vectors is linearly dependent. 

Proof: Suppose that a subset of a1, ,am is linearly dependent. Let this subset be given by 

a1,,ak.  Then  1, ,k not all zero such that 𝜆1𝑎1+λ2a2+⋯+λkak = 0n.  Set k+1, ,m = 0  

and the result follows.  || 

We then have the following definition for the basis of a vector space: 

Def.  A basis for a vector space of n dimensions is any set of n linearly independent vectors in 

that space.   

Remark: Can you see why this definition is equivalent to the one given above? In Rn
 exactly n 

independent vectors can form a basis for that space. That is, it takes n independent vectors to 

create any other vector in Rn through a linear combination. 

Example. Let a,b be linearly independent in R2.  Let c be any third vector.  We can show that c 

can be created from a linear combination of a and b.  We only need to select 1 and 2 such that 
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1a + 2b = c.  That is we wish to find 1ai + 2bi
 = ci, for i = 1,2.  Solving these equations for the 

i we have 

 1 = (b2c1 – b1c2)/(b2a1 – b1a2) and 2 = (a1c2 – c1a2)/ (a1b2 – b1a2). 

 

It is possible to solve for the i if  (a1b2 – b1a2)  0.  This is true if a1/a2  b1/b2.  That is, a can not 

be a scale multiple of b. 

6. Def.  The rank of an n  m matrix A, ( )r A , is defined as the largest # of linearly independent 

columns or rows.   

Proposition 1.  Given an n  m matrix A, we have 

(i) ( )  r A n m min ,  

(ii) largest # lin indep. col. = largest # lin indep. rows. 

Proposition 2. The rank, ( )r A  of an m  n matrix A is equal to the order of the largest submatrix 

of A whose determinant is nonzero.  (By submatrix we mean a matrix selected from A by taking 

out rows and columns of A.) 

Remark 1.  If A is n  n and ( )r A = n then A  0 and the n rows or n col each form a set of 

linearly independent  vectors.  Moreover if A  0 , then, from Proposition 1, there are n linearly 

independent rows (col) in A.  We have 

  A
n n

 0 rows (col) of A are lin indep.  ( )r A  = n. 

Example.  Find the rank of  

1 2 3 5

2 4 6 10

5 1 0 0

















.  You should obtain a rank of 2. 

Subspaces 

1.  The set of all linear combinations of a set of vectors is called the vector space spanned by 

those vectors.   
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2.  As an example, the space spanned by a basis for Rn is Rn.  Moreover, if a,b, and c are a basis 

for R3 and d is a fourth vector in R3, then the space spanned by a,b,c,d is R3.  Obviously, d is 

superfluous.   

3.  Consider two vectors a, b  R3, where a3 = b3 = 0. It is clear that a and b can not span R3, 

because all linear combinations of a and b will have a third coordinate equal to zero.  While a and 

b do not span R3, they do span that subspace of R3, namely the set of all vectors in R3 which have 

a zero third coordinate.  This subspace is a plane in R3 and it is called a two dimensional subspace 

of R3. Generally, the space spanned by a set of vectors in Rn has at most n dimensions.  If this 

space has less than n dimensions, it is called a subspace of Rn or a hyperplane in Rn.   

   

Inverse Matrix 

1. Def. Given an n  n square matrix A, the inverse matrix of A, denoted A-1, is that matrix 

which satisfies 

  A-1A = AA-1 = In. 

When such a matrix exists, A is said to be nonsingular.  If A-1 exists it is unique.  

Theorem.  An n  n matrix A is nonsingular iff ( )r A  = n. 

Remark.  Now we have the following equivalence.  Let A be n  n 

  A
n n

 0 rows (col) of A lin. indep. ( ) =  −r A n A 1
exists. 

2.  Computing the Inverse. 

a.  Let us begin by assuming that the matrix we wish to invert is an n  n matrix A with A  0.  

b.  Def.  The cofactor matrix of A is given by 

   C Cij= .  

     Def.  The adjoint matrix of A is given by adj A = C. 
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c.  Computation of Inverse:  A
adj A

A

− =1 . 

 Example: Let A =










1 3

9 2
 A = − = −2 27 25,   C Cij= =

−

−











2 9

3 1
,  

 adj A =
−

−











2 3

9 1
.  

 A− =
−

−

−









 =

−

−











1 1

25

2 3

9 1

2 25 3 25

9 25 1 25

/ /

/ /
.  

 AA I− =









−

−









 =

− + −

− + −

















=








 =

1

2

1 3

9 2

2 25 3 25

9 25 1 25

2

25

27

25

3

25

3

25
18

25

18

25

27

25

2

25

1 0

0 1

/ /

/ /
.  

3.  Key Properties of the Inverse Operation 

a.  (AB)-1 = B-1A-1. 

Proof: B-1A-1AB = B-1IB = I and ABB-1A-1 = I.  It follows that B-1A-1 is the inverse of AB.  || 

b.  (A-1)-1 = A. 

Proof:  AA-1 = I and A-1A = I.  Thus, the result holds.  || 

c.  (A')-1 = (A-1)'. 

Proof:  AA-1 = A-1A = I.  Transposing and noting that I' = I, we have (A-1)'A' = I = A'(A-1)'.  || 

d.  I-1 = I. 

Proof:  II = I. 

4.  a.  Note that AB = 0 does not imply that A = 0 or that B = 0.  If either A or B is nonsingular 

and AB = 0, then the other matrix is the null matrix.  That is, the product of two non-singular 

matrices cannot be null. 

Proof:  Let |A|  0 and AB = 0.  Then A-1AB = B = 0.  || 

     b.  For sqaure matrices, it can be shown that |AB| = |A||B|, so that, in this case, |AB| = 0 if and 

only if |A| = 0, |B| = 0, or both.   
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Linear Equation Systems, the Inverse Matrix and Cramer’s Rule. 

1. Consider an equation system with n unknowns xi, i = 1, , n. In matrix notation this system 

can be written as 

  Ax = d, 

where A=[aij]i=1,…,n
j=1,…,n

, x = [

x1

⋮

xn

] ,d = [
d1

⋮

dn

].  If A  0,  A-1 exists and we can write 

  A-1Ax = A-1d 

  In x = A-1d 

  [

x1

⋮

xn

] = A-1d. 

Thus, if there is no linear dependence in the rows or columns of the coefficient matrix we can 

obtain a solution to the equation system.  Since A-1 is unique if it exists, this solution is unique.  

Hence, an easy way to test for existence and uniqueness of a solution to a set of linear equations 

is to determine whether the coefficient matrix has a nonvanishing determinant. 

2.  This solution gives us values of the solution variables, in terms of A-1, in vector form.  A 

formula known as Cramer’s Rule gives explicit solutions for each xi. If A  0,  we have 

   x=A-1d=
1

|A|
[adjA]d=

1

|A|
[
|C11| ⋯ |Cn1|

⋮ ⋱ ⋮

|C1n| ⋯ |Cnn|
] [

d1

⋮

dn

], 

  x =
1

|A|
[
d1|C11| ⋯ dn|Cn1|

⋮ ⋱ ⋮

d1|C1n| ⋯ dn|Cnn|
], 

  [

x1

⋮

xn

] =
1

|A|
[
∑ |𝐶𝑖1|𝑑𝑖

𝑛
𝑖=1

⋮
∑ |𝐶𝑖𝑛|𝑑𝑖

𝑛
𝑖=1

] 

   

Thus, 

  x
A

C dij ij

i

n

=
=


1

1

. 
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Consider the term C diij

i

n

=


1

.   Recall A a Cij ij

i

n

=
=


1

 (expansion by jth col.).  Thus 

  ∑ di|Cij|=| [

a11

⋮

an1

⋯ [
d1

⋮

dn

] …

a1n

⋮

ann

] |n
i=1 ≡|Aj|.   

Using this notation, we obtain for j = 1, , n, xj = 
A

A

j
.   (Cramer’s Rule) 

Remark.  This method does not involve computation of A-1. 

Example 

  

3 4 10

6 1 20

3 4

6 1

10

20

10 80

3 24

70

21

70

21

60 60

21
0

1 2

1 2

1

2

1

1

2

2

x x

x x

x

x

x
A

A

x
A

A

+ =

+ =


















 =











= =
−

−
=
−

−
=

= =
−

−
= .

 

Let's check this by computing A-1  

  










−

+−
=









−

−
−=










−

−
==









−

−
=

−

21/321/6

21/421/1

36

41

21

1

36

41

34

61

1A

AadjCC

 

Check 

  

A A I

x

x

x

−

−

=
−


















 =

− + − +

− −









 =

=
−

−




























 =

− +

−









 =











1

1

21

4

21

6

21

3

21

3

21

24

21

4

21

4

21

18

21

18

21

24

21

3

21

1

21

4

21

6

21

3

21

1

2

10

21

80

21

60

21

60

21

70

21

3 4

6 1

10

20

0
.
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Characteristic Roots and Vectors 

1.  Let D be an n  n matrix.  Does there exist a scalar r and an n  1 vector x  0 such that  

 Dx = rx? 

If so, then r is said to be a characteristic root of D.  Rewriting,  

 (Dx - rx) = 0, or 

(*) [D - rI]x = 0. 

x is called a characteristic vector of D.  Clearly, if x is a solution vector, then so is kx for any 

value of k.  To remove the indeterminacy, x is normalized so that x'x = 1.  The solution then 

consists of r and the n unknown elements of x. 

2.  Equation (*) defines the matrix [D - rI].  This is called the characteristic matrix of D.  For (*) 

to be true, it is necessary that |D - rI| = 0, given that x  0.  (To see that this is true, let A = [D - rI] 

and suppose to the contrary that Ax = 0, x  0, and |A|  0.  Then A-1Ax = 0 and x = 0, so that we 

have a contradiction.)   This condition is called the characteristic equation of D: 

(**)     |D - rI| = 0.   

3.  The characteristic equation is an nth degree polynomial in r which has n roots.  If D is 

symmetric, then these roots are real numbers. 

4.  An Example. 

 Let D = 
2 2

2 1−









 .  [D - rI] =  

2 2

2 1

−

− −











r

r
.  Taking the determinant of the latter and 

setting it equal to zero, we have  

 (2 - r)(-1 - r) -4 = 0. 

Whence,  

 r2 - r - 6 = 0. 

This is a quadratic in r (2nd degree polynomial).  It has the solution1 

 
1 Note that r1, r2 = [-b/2a]  [(b2 –4ac)1/2/2a], for ar2 + br +c = 0. 
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 r1, r2 = 
1 1 4 1 6

2

1 2 −   −( ) /

 = 1/2  5/2 = 3,-2. 

Given that |D - rI| = 0, it is clear that there are an infinity of x satisfying (*), for each 

characteristic root.  We can obtain a unique characteristic vector by normalizing as x i
i

n
2

1

1
=

 = , for 

each root.  Going back to the example, we have, for the first root r1 = 3,  

 [D - rI]
x

x

1

2









  = 

0

0








  

 
−

−











1 2

2 4

x

x

1

2









 = 

0

0








  

 -x1 + 2x2 = 0  

 2x1 - 4x2 = 0. 

Note that equation 1 is just a multiple of equation 2.  They are not independent as expected.  All 

that we can conclude from these is that  

(1) x1 = 2x2. 

If we impose the normalization constraint  

(2) x1
2 + x2

2 = 1, 

then (1) and (2) give us two equations in two unknowns.  Solving2 

 (2x2)
2 + x2

2 = 1  

 x1 = 2/(5)1/2 and x2 =1/(5)1/2. 

The characteristic vector under this normalization is written as v1 = (v1
1, v2

1) = ((2/(5)1/2, 1/(5)1/2).  

Using the same method for r2 = -2 (In this case, x2 = -2x1 from the characteristic equation), we 

can show that v2 = (-1/(5)1/2, 2/(5)1/2).  Figure 1 illustrates this procedure.  The vi are taken on the 

unit circle.  

 

 

 
2 We take the positive root for each xi or the negative root for each xi. 
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                                                                 2 

                              x2 = -2x1                                                        

 

 

 

                                                                 1                                   x2
 = x1/2                     

                                          v2                         v1 

                                                                                 

 

                                                   -1                                 1                 2                                   

                                                       

 

 

 

 

  

                                                               Figure 1 

 

5.  General Results for Characteristic Roots and Vectors 

a.  Characteristic roots of a symmetric matrix are real, but need not be distinct.   

b.  For a symmetric matrix, characteristic vectors corresponding to distinct characteristic roots are 

pairwise orthogonal.3 If the characteristic roots of a symmetric matrix nn are distinct, then they 

form a basis (orthonormal basis ) for Rn.  We have 

 vivi = 1 and vjvi = 0. 

It is conventional to form the following matrix of characteristic vectors corresponding to A 

 Q = [v1…vn]. 

It is clear that Q'Q = I, so that Q' = Q-1.   Generally, we have  

Def.  The square matrix A is orthogonal if A-1 = A'.  

Thus, the matrix of characteristic vectors is orthogonal.  From the characteristic equation, we 

have that    

 
3 If the roots are repeating, then it is still possible to find orthogonal characteristic vectors. We ignore this 

detail here and assume distinct roots. 
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  AQ = QR, where R   .

r0000

0.000

00.00

000.0

0000r

n

1























 

To see this, note that AQ = [Av1… Avn] = [r1v
1… rnv

n] = QR.  It follows that  

(*) Q'AQ = Q'QR = R. 

Condition (*) is called the diagonalization of A. That is, we have found a matrix Q such that the 

transformation Q'AQ produces a diagonal matrix.  In this case, the matrix diagonalizing A is the 

corresponding matrix of characteristic vectors and the diagonal matrix is the matrix with A's 

characteristic roots along the diagonal. It is always possible to diagonalize a symmetric matrix in 

this way.  As an exercise, it is useful to work through this process for the numerical example 

provided above. 

c.  For a square matrix A, we have  

i.  The product of the characteristic roots is equal to the determinate of the matrix.   

ii.  The rank of A is equal to the number of nonzero characteristic roots. 

iii.  The characteristic roots of A2 are the squares of the characteristic roots A, but the 

characteristic vectors of both matrices are the same.   

iv.  The characteristic roots of A-1 are the reciprocal of the characteristic roots of A, but the 

characteristic vectors of both matrices are the same.   

General Results on the Trace of a Matrix 

1. We defined the trace of a square matrix as the sum of the diagonal elements.   

2.  The following results are easily shown. 

a.  tr(cA) = c(tr(A)). 

b.  tr(A') = tr(A). 

c.  tr(A+B) = tr(A) + tr(B). 

d.  tr(Ik) = k. 
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e. tr(AB) = tr(BA). 

Remark:  The product rule can be extended to any cyclic permutation in a product.   

 tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC). 

3.  It can also be shown that the trace of a matrix equals the sum of its characteristic roots.  

 

Quadratic Forms 

A quadratic form is a homogeneous polynomial of the second degree.  It takes the form 

x'Ax, where A is symmetric and n by n, and x is n by 1.  We have x'Ax =  aijxixj.  Now x'Ax is 

termed negative definite if it is negative for all x  0n.  The form and the matrix are termed 

negative definite in this case.   The matrix A defining the quadratic form is called the discriminate 

of the quadratic form. The definitions for positive definite is analogous with the inequality sign 

reversing.   

The condition given above is not computationally convenient for determining that a form 

is definite.  However, there are more convenient equivalent conditions.  The first involves the 

principal minors of A. 

Proposition 1.  A and its quadratic form are negative definite if and only if principal minors of 

order i are of sign (-1)i.   

Proposition 1 states that  

|a11| < 0,  |[aij]i,j =1,2| > 0, |[aij]i,j =1,2.3| < 0 … . 

 As an example, consider the matrix 
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 








−

−

12/1

2/11
. 

Is this definite? 

Proposition 2.  A and its quadratic form are positive definite if and only if principal minors of 

order i are of positive sign. 

Proposition 2 says that    

|a11| > 0,  |[aij]i,j =1,2| > 0, |[aij]i,j =1,2.3| > 0,…, |[aij]i,j =1,…n| > 0. 

Another equivalent condition is given in  

Proposition 3. A matrix A is negative (positive) definite if and only if all of its characteristic roots 

are negative (positive). 

Remark:  Semidefinite matrices are defined as above with  replacing >.    


