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General

« A matrix is a rectangular array of objects or
elements. We will take these elements as being
real numbers and indicate an element by its row
and column position.

* Let a; € R denote an element of a matrix which
occupies the position of the ith row and jth
column.

* Denote a matrix by a capital letter and its
elements by the corresponding lower case letter.
If a matrix A is n x m, we write A

nxm




General

a a
Example 1. A ={ 1 12}
2x2 8, 8y
Example 2. A=]a
p 1x1 [ ll]
a,, ... a
Example 3. A=|: :
nxn
aﬂl ann
a a a
Example 4. A :{ e 13}
23 8y 8y 8y

General

« A matrix is said to be

(i) square if # rows = # columns and a
square matrix is said to be

(ii) symmetric if a; = a; Vi, j, i #].

0 3
Example. The matrix [2 0} is square but not symmetric, since a,; = 2 # 3 = a;,. The square

1 2 4
matrix {2 1 3} is symmetric since a;, = a,; = 2,83 = a;3 = 4, and az; = a; = 3.
4 3 1




General

» The principle diagonal elements of a
square matrix A are given by the elements
aj, 1=1].

» The principle diagonal is the ordered n-
tuple (a44,..., anp)-

» The trace of a square matrix is defined as
the sum of the principal diagonal
elements. Itis denoted tr(A) = Xa;.

Example
« principal diagonal is (1,1,1), Tr(A) = 3

1 2 4




General

« A diagonal matrix is a square matrix whose only
nonzero elements appear on the principal
diagonal.

* A scalar matrix is a diagonal matrix with the
same value in all of the diagonal elements.

« Examples:

: 2 0 3 0
Diagonal : A = Scalar : A =
0 3 0 3

General

« The identity matrix is a scalar matrix with
ones on the diagonal.

A triangular matrix is a square matrix that
has only zeros either above or below the
principal diagonal. If the zeros are above
the diagonal, then the matrix is lower
triangular and conversely for upper
triangular.




Examples

* upper triangular

1 3
0 4
0 O
* lower triangular
5 0 0
9 6 0
3) 1

Notation

The following notations for indicating an n x m matrix A are equivalent

ay .- Ay
[aij]izl,...,n, y |: :|: or .
j=1,...m
a, ... a

nm




General

>1f a matrix A is of dimension 1 x n, then it is termed a row vector, le =[a,...a,]. Sincethereis
n

only one row, the row index is sometimes dropped and A is written [a1 ...a, ]: a'.

all

*A matrix A of dimension n x 1 is termed a column vector, A { : } Likewise, since there is

anl

a

n

al
only one column, this is sometimes writtenas a=| : |.

Algebraic Operations on Matrices

* Equality: A=B if a;= b; foralliand j.
* Addition and Subtraction: A £ B = [a; + by].

Note that for these operations, A and B
must be of the same dimension.

(aﬂ+bﬂ) (aJerb]m) a]_l_b]_]_ aj_m_blm
A+ B= : A—-B= : :

nxm nxm




Algebraic Operations on Matrices

* Scalar multiplication: . Letk € R. kA = [kay].

31 4] [3 12
5 6| |15 18

Algebraic Operations on Matrices:
Multiplication

« Conformability: Two matrices A and B can
be multiplied to form AB, only if the column
dimension of A = row dimension of B. (col.
dim. lead = row dim. of lag)

Example If 2@ and 4IXESZ, then AB cannot be defined, but 4sz 264\ can be defined.

I




Multiplication

* Inner product of two n-tuples: Suppose X,
y € R". Then the inner product (also
called the dot product) of x and y is
defined by

n

XY =) XiVi=XY,+ X,¥, +o XY,

i=1

Multiplication

 Associate with the kth col of A (n x m) the
n-tuple
Aok = (A1 8nk) € R
 Associate with the jth row of A the m-tuple
jp = (aj1,...,ajm) e Rm

123
Example. A= an=(24)
23 10 45

o = (0, 4, 5)




Multiplication

The product AB is then given by

{’;110-b01 alo-bOk] Zalibil Zlalibik

Multiplication

» Note that the product matrix is n x k. It
takes on the row dimension of the lead
and the column dimension of the lag.

« Example:




Multiplication: Example

A B — all a12 bll b12 — allbll + a12b21 allblz + a12b22
x2 b a b

aZZ 21 22 aZlbll + a22b21 21712 + a22b22

i=1 i=1
2

ZaZibil zaZibiZ a20. o

i=1 i=

2
z a,by, Z auby, _ |:alo “boy Ay boz}

8y b02

-

Multiplication

« Scalar product:

Suppose that Aisa | x n row vector A =a = (ay a, ... ai,) and B an n x 1 col vector

by
B=b=| : |. Hencewe have
b
bll
ab=[a, ..a,] {Zaﬁbu}
bnl I 1

10



Multiplication: Scalar Product
Continued
* Note that a’b = aeb where a,b € R" (The
scalar product is same as the inner

product of two equivalent ordered n-
tuples.)

* Leti be a column vector of ones and x an
n X 1 column vector, then

I'X = XX

Multiplication: Special Case

» The product of a conformable column
vector (m x 1) and a row vector (1 x n) is
an m x n matrix:

11



Addition and Multiplication:
Properties
» The operation of addition is both commutative
and associative. We have
(Com.Law) A+B=B+A
(Associative) (A+B)+C=A+(B+C)
» The operation of multiplication is not

commutative but it does satisfy the associative
and distributive laws.

(Associative) (AB)C = A(BC)
(Distributive) A(B + C)=AB + AC
(B+C)A=BA+CA

Multiplication is not commutative
* To see that AB = BA consider the example
i
B =
2 0
* We have that

o

-

12



Equation Systems

» Generally, when we take the product of a
matrix and a vector, we can write the
result as

c = Ab.
* In this example, the matrix A is n by n and
the column vectors c and b are n by 1.

Equation Systems

« Taking an example of a 2x2 matrix A, we
have

11 |1 3ja
e i)
« This can be a short-hand way to write two
equations in the unknowns a and b

1=a+3b
4 = 3a + 2b.

13



Equation Systems

» This same system can be written as a
linear combination of the columns of A

HiRHIEH

Transpose

» The transpose of a matrix A, denoted A’, is
the matrix formed by interchanging the
rows and columns of the original matrix A.

1
Examplel. Let A=(1 2)then A’ :(ZJ

1 2
1 35
Example2. Let A =|3 4 then A’ = :
3x2 5 6 2x3 2 4 6

14



Key Properties of Transpose

1. (A’ =A
2. (A+B)y=A"+B
3. (AB) =B'A’

The Identity Matrix

« An identity matrix is a square matrix with ones in
its principle diagonal and zeros elsewhere. An n
x n identity matrix is denoted |,.. For example

(1 0 O]
,=|0 1 0
0 0 1

15



Properties of |

1. LetAbenxp. Thenwe have | A=Al,=A.
2. LetAbenxpandBbepxm. Then we have

A lp B = (Al,)B = AB.

* In general, a matrix is termed idempotent,
when it satisfies the property AA = A.

The Null Matrix

» The null matrix, denoted [0] is a matrix
whose elements are all zero.

16



The Null Matrix: Properties

1. A+[0]=[0]+A=A
2. [0]JA = A[0] = [0].

3. Remark: If AB = [0], it need not be true
that A = [0] or B [0]. Example where AB =
0:

Determinants and Related

Concepts.
» A determinant is defined only for square
matrices. When taking the determinant of

a matrix we attach a sign + or - to each
element:

sign attached to a; = sign (-1) ™.

17



Determinants

* The determinant of a scalar x, is the matrix
itself.

* The determinant of a 2 x 2 matrix A,
denoted |A] or det A, is defined as follows:

a11 a12
AF I RN CHRCTHES
Determinants
Example A:B_) 2} |A| =3-6—(-5)(6) =18 +30 = 48.

18



Determinants n x n: Laplace
Expansion process

* Definition. The minor of the element 3,
denoted |M;| is the determinant of the
submatrix formed by deleting the ith row
and jth column.

ja

» Example: If A =[g;] is 3 x 3, then [M;|=
85483y — @348 |My,| = @y4833 — @z4@0;.

Determinants n x n: Laplace
EXxpansion process

« Definition. The cofactor of the element a;
denoted |C;| given by (-1)™ M| .

« Example: In the above 3 x 3 example
|C 13|~ a5183, — a34a,
|C o] = -851833 + @345

19



Determinants n x n: Laplace
Expansion process

« Laplace Expansion: LetAbenxn,nz 2.
Then

A= Zn: aij‘Cij‘ (expansion by j" col) A=) aij‘Cij‘ (expansion by i" row)
i=1 =1

Examples

* Ais

N O

 What is |A|? (answer: -3)

20



Properties of Determinants

- |Al =|A]

The interchange of any two rows (or two

col.) will change the sign of the
determinant, but will not change its

absolute value.

Examples of Properties 1 and 2

A= 2

>-|s

|B|= +2

21



Properties of Determinants

3. The multiplication of any p rows (or col) of a
matrix A by a scalar k will change the value of
the determinant to kP |A]|.

4. The addition (subtraction) of any multiple of any
row to (from) another row will leave the value
of the determinant unaltered, if the linear
combination is placed in the initial (the
transformed) row slot. The same holds true if
we replace the word “row” by column.

Examples of Properties 3 and 4

« Take A, 2 x 2, and multiply by 2.
|2A| = 2a442ay, — 22,1 2a,,= 4|A|

« Take A, 2 x 2, and add 2 times the second row
to the first row.

~ a,, +2a a,., +2a ~
|: H 2 o # :|’|A |: Ay —adpdy
ay d

22



Properties of Determinants

5. If one row (col) is a multiple of another
row (col), the value of the determinant will
be zero.

6. If A and B are square, then |AB| = |A||B]|.

Examples of Properties 5 and 6

* Let
{Ba 3b
A=

b},|A|:3ab—3ab:0

* Let

3 3 1 2
A= |A|=-3B= |Bl=-2,A|B|=6.
2 1 3 4

12 18
AB =|"C | IABI=96-90=6.

23



Vector Spaces, Linear
Independence and Rank

* Define

Def. ~ An n-component vector a is an ordered n tuple of real numbers written as a row

a1
: ] The a;, i=1,...,n, are termed the components of
n

(@,...a,)=a’or as a col a=[
a

the vector.

» The elements of such a vector can be viewed as the
coordinates of a point in R" or as the definition of the line
segment connecting the origin and this point. We will
take these as ordered n-tuples:

(as,...,a,) e R"

Two basic operations

 Scalar multiplication: ka = (kay,...,ka,)

& a k>0

(k<0) 0 a

24



Two basic operations

« Addition: a + b =(a;+ by,...,a,+ b,)

2

Vector Space

» Def. A vector space is a collection of
vectors that is closed under the operations
of addition and scalar multiplication.

« Remark: R" is a vector space.

» Def. A set of vectors span a vector space
if any vector in that space can be written
as a linear combination of the vectors in
that set.

25



Basis

A set of vectors spanning a vector space
which contains the smallest number of
vectors is called a basis. This set must be
must be linearly independent. If the set
were dependent, then some one could be
expressed as a linear combination of the
others and it could be eliminated. In this
case we would not have the smallest set.

Linear Independence

Def. A set of vectors a',...,am is said to be
linearly dependent if 3 Al € R not all zero
such that

Aal+---+amgm = (0,...,0) e R".
If the only set of A for which this holds is Al

=0, for all i, then the set a',...,am is said to
be linearly independent.

26



Results

« Proposition 1. The vectors a',...,a" from
R" are linearly dependent iff some one of
the vectors is a linear combination of the
others.

Proof: (i) Let a’ be a lin combo of the
others and show dependence.

(i) Assume dependence and show
that ak can be written as a lin combo of the
others.

Special Case

« Remark: If the set of vectors has but one
member a € R", then a is linearly
dependent if a = 0 and a is linearly
independent, if a = 0.

27



Results

* Proposition 2. No set of linearly
independent vectors can contain the zero

vector.
Proof: Let a' = 0. Set A" = 1 and all others
=0.

Results

» Proposition 3. Any subset of a set of
linearly independent vectors is linearly
independent.

* Proof: Assume to the contrary that 1,...,k
of a' are linearly dependent and show that
they all are.

28



Results

» Proposition 4. Any superset of a set of
linearly dependent vectors is linearly
dependent.

Proof: Use direct proof.

Def of Basis

» Def. A basis for a vector space of n
dimensions is any set of n linearly
independent vectors in that space.

* In R", exactly n vectors can form a basis.
That is, it takes n (independent) vectors to
create any other vector in R" through a
linear combination.

29



Example

 Let a,b be linearly independent in R2. Let
c be any third vector. We can show that c
can be created from a linear combination
of aand b.

« Select A" and A2 such that A1 a + A%b = c.
Thatis A a; + A%b, = ¢, i = 1,2. We have

At= (byCi— bic)/ (b8 — biay) and A% = (1€, — €13,)/ (ash, — b1ay).

Example

 To solve for A, it must be true that (a,b, —
b,a,) # 0. This is true if a,/a, # b,/b,. That
is, a can not be a scale multiple of b.

30



Rank

« Def. The rank of an n x m matrix A, r(A),
is defined as the largest # of linearly
independent columns or rows.

* Proposition 1. Given an n x m matrix A,
we have

(i) r(A) <min {m, n}

(ii) largest # lin indep. col. = largest # lin
indep. rows.

An Operational Test for Rank

» Proposition 2. The rank, r(A), of an m x n
matrix A is equal to the order of the largest
submatrix of A whose determinant is
nonzero. (By submatrix we mean a matrix
selected from A by eliminating rows and
columns of A.)

« An n x n matrix with a nonvanishing det
has n linearly independent rows or
columns.

31



Example

 Determine that the rank is 2

1 2 3 5
4 6 10

Inverse Matrix

» Def. Given an n x n square matrix A, the
inverse matrix of A, denoted A1, is that
matrix which satisfies

ATA=AAT=I,.
When such a matrix exists, A is said to be
nonsingular. If A1 exists it is unique.

32



Result

* Proposition. An n x n matrix A is
nonsingular iff r(A) = n.

Computation of Inverse

Cofactor matrix of A is C =[|C;].
The adjoint matrix is adj A = C'.
A1 =(adjA)/|A].

Assume that Ais n x n and has |A| = 0.

33



Example

« Compute the inverse of

o

1 [2 -3] [-2/25
Alt=— =
~250-9 1 9/25 -1/25

3/25

}.

Key Properties

+ (AB)' =BA"

Proof: B'TA"'AB = | and ABB-'A"= 1.

© (A1) =A
Proof: AA''=1and A 1A= 1.

° |-1 = |
Proof; Il = |

34



Remarks

* Note that AB = 0 does not imply that A=0 or
that B = 0. If either A or B is nonsingular and
AB = 0, then the other matrix is the null matrix.

AB=0and |A|#0 = B=0
Proof : Let |[A] #0 and AB =0. Then A"TAB=B =
0.

Remarks

 If A and B are square, then |AB| = 0 iff |A]
=0, |B| = 0 or both.

Proof: Note that |AB| = |A||B].

35



Linear Equation Systems, the
Inverse Matrix and Cramer’s Rule.

 Let Abe n xn, let x be a column vector of
unknown variables and let d be a column
vector of constants.

« Ax =d is a linear equation system of n
equations in n unknowns, X;.

A unique solution is possible if |[A] = 0 in
which case A exists. That is the rows and
columns of A are linearly independent.

Solution

* The solution can be written

A1Ax = A'd
x = A-d
* Alternatively, define |Aj| =
jth col
a, ... d; [a,,
a,, ... 0, &,

36



Solution

« We have

X; = |Al| /|Al. (Cramer's Rule)

Example

* Solve

3%, +4x,=10
6x, + X, =20

Answer: x, =70/21 and x, =0

37



Characteristic Roots

* Let D be an n x n matrix. Does there exist
a scalar r and an n x 1 vector x # 0 such
that

Dx = rx?
If so, then r is said to be a characteristic
root of D.

Characteristic Roots

Rewrite / Characteristic Matrix of D

(*) [D-rllx =0.
For (*) to be true it is necessary that
|ID -rl| =0, given that x = 0.

Proof: To see that this is true, let A =[D -
rl] and suppose to the contrary that Ax = 0,
x#0,and |A| #0. Then A"Ax=0and x =
0, so that we have a contradiction.

38



Characteristic Roots

» The condition
(**) [D-rl|=0
is called the characteristic equation of D
and x is called a characteristic vector of D.
« By definition, an x is not unique. If [D - rl]x
=0, then [D - rl]kx = 0, for any k.
* To remove the indeterminacy, x is
normalized so that x'x = 1.

Characteristic Roots

* (**) |D-rl] =0 represents an nt"degree
polynomial in r which has n roots.

 If D is symmetric, then these roots are real
numbers.

39



An Example

DE _ZJ.

[D-ri}= {Z;V —12_ r]

Solution

P -r-6=0.

1/2
o, = 1% (1_421 0" _1pisp=3-2

Recall that the solution to ax2 + bx +c=0is

X4, X, = (-b £ (b2 -4ac)'?)/2a

40



Solution

© -l = )
PRI H

2X1 '4X2 = 0.

Solution

« Equation 1 is just a multiple of equation 2. They
are not independent as expected. All that we
can conclude from these equations is that

(1) Xy = 2%, .
* If we impose the normalization constraint
(2) X2+ x,2=1,

then (1) and (2) give us two equations in two
unknowns. Solving (1) and substituting

(2x)? + Xxp* = 1
X, =2/(5)"2 and x, = 1/(5)"2.

41



Solution

 The characteristic vector is
V= vy, vo') = (20(5)12, 1/(5)12).

 Using the same technique forr, = -2, we
can show that (x, = -2x,)

V2 = (V42 V5,2) = (- 1/(5)12 | 2/(5)"2).

lllustration

42



General Results for Characteristic
Roots and Vectors

« For a symmetric matrix, characteristic
vectors corresponding to distinct
characteristic roots are pairwise
orthogonal.

vi-vi =1andvi-vi =0.
« |If the characteristic roots of a symmetric

matrix nxn are distinct, then they form a
basis (orthonormal basis ) for R".

General Results for Characteristic
Roots and Vectors
* The matrix of characteristic vectors of a
matrix A is (v'is n x 1 here)
Q=[vl... v"].
By definition,
Q'Q=IsothatQ =Q™"
When this condition is met Q is said to be
orthogonal.

43



General Results for Characteristic
Roots and Vectors

* From the characteristic equation,

1
i)

0 O
0

o O O

AQ = QR, whereR = 0

o O o o
]

I
o O O o
o -
—

=]

To see this, note that AQ = [Av'... Av"] = [r,v'... r,v"'] = QR

General Results for Characteristic
Roots and Vectors

* We conclude that
(*) QAQ=QQR=R.

 (*) is called the diagonalization of A. We
have found a matrix Q such that the
transformation Q'AQ produces a diagonal
matrix with A's characteristic roots along
the diagonal.

44



General Results for Characteristic
Roots and Vectors

» For a square matrix A, we have

i. The product of the characteristic roots is equal to the
determinate of the matrix.

ii. The rank of A is equal to the number of nonzero
characteristic roots.

iii. The characteristic roots of A2 are the squares of the
characteristic roots A, but the characteristic vectors of
both matrices are the same.

iv. The characteristic roots of A-! are the reciprocal of the
characteristic roots of A, but the characteristic vectors of
both matrices are the same.

General Results on the Trace of a
Matrix

o tr(l) = k.
« tr(AB) = tr(BA).
(Note this can be extended to any

permutation: tr(ABCD) = tr(BCDA) =
tr(CDAB) = tr(DABC).

45



Quadratic Forms

A quadratic form is a homogeneous
polynomial of the second degree.

It takes on the form x'Ax, where A is
symmetric and n by n, and x is n by 1.

We have X'Ax = XX agXx;.

x'Ax is termed negative definite if it is
negative for all x # O". The form and the
matrix are termed negative definite in this
case.

Quadratic Forms

The definitions for positive definite are
analogous with the inequality sign
reversed.

Next we consider a new concept defined

as the principal minor of an n x n matrix A:

|PM,| is the determinant of the submatrix
of A formed by retaining only the first |
rows and columns of A.

46



Example of PM,

Example
all alZ a'13
aZ 1 aZ 2 a23
aSl a32 aSS

|PM1|:all |PM2|:alla22_a21a12

P, = A]

Operational Tests for Definite

Quadratic Forms

» Proposition 1. A and its quadratic form are
negative definite if and only if principal

minors of order i are of sign (-1)'.

* |s the following definite?

1 12
12 4|
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Operational Tests for Definite
Quadratic Forms
* Proposition 2. A and its quadratic form are

positive definite if and only if principal
minors of order i are of positive sign.

Example: Is the following definite?
4 1
1 2

48



Example

» If Alis 2 x 2 and negative definite, is it true
that a,, < 07?

« If Ais 2 x 2 and positive definite, is it true
that a,, > 07?

Other Operational Tests for Definite
Quadratic Forms and Matrices

Another equivalent condition is given in

» Proposition 3. A matrix A is negative
(positive) definite if and only if all of its
characteristic roots are negative (positive).

« Remark: Semidefinite matrices are
defined as above with > replacing >.
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