

$$\begin{array}{l} \textbf{Dultiplication} \\ \textbf{one of two n-tuples: Suppose x,} \\ y \in \mathbb{R}^{n} . \ Then the inner product (also called the dot product) of x and y is defined by \\ x \cdot y = \sum_{i=1}^{n} x_{i} y_{i} = x_{1} y_{1} + x_{2} y_{2} + \ldots + x_{n} y_{n} \end{array}$$

$\begin{array}{l} \textbf{Multiplication} \\ \textbf{associate with the kth col of A (n x m) the n-tuple} \\ \textbf{a}_{ok} = (\textbf{a}_{1k}, \dots, \textbf{a}_{nk}) \in \mathbb{R}^{n} \\ \textbf{associate with the jth row of A the m-tuple} \\ \textbf{a}_{jo} = (\textbf{a}_{j1}, \dots, \textbf{a}_{jm}) \in \mathbb{R}^{m} \\ \textbf{Example:} \begin{array}{l} \textbf{A}_{23} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \end{bmatrix} \\ \textbf{a}_{02} = (2, 4) \\ \textbf{a}_{00} = (0, 4, 5) \end{array}$

Key Properties of Transpose

1.
$$(A')' = A$$

2.
$$(A + B)' = A' + B'$$

3.
$$(AB)' = B'A'$$

Properties of I_n

- Definition. The cofactor of the element a_{ij} denoted |C_{ii}| given by (-1)^{i+j} |M_{ii}|.
- Example: In the above 3 x 3 example $|C_{13}| = a_{21}a_{32} - a_{31}a_2$ $|C_{12}| = -a_{21}a_{33} + a_{31}a_{23}$

Basis

 A set of vectors spanning a vector space which contains the smallest number of vectors is called a basis. This set must be must be linearly independent. If the set were dependent, then some one could be expressed as a linear combination of the others and it could be eliminated. In this case we would not have the smallest set.

Linear Independence

 Def. A set of vectors a¹,...,a^m is said to be *linearly dependent* if ∃ λⁱ ∈ R not all zero such that

 $\lambda^1 a^1 + \cdots + \lambda^m a^m = (0, \dots, 0) \in \mathbb{R}^n.$

If the only set of λ^i for which this holds is $\lambda^i = 0$, for all i, then the set $a^1, ..., a^m$ is said to be *linearly independent*.

Results

 Proposition 1. The vectors a¹,...,aⁿ from Rⁿ are linearly dependent iff some one of the vectors is a linear combination of the others.

Proof: (i) Let a¹ be a lin combo of the others and show dependence.

(ii) Assume dependence and show that a^k can be written as a lin combo of the others.

Results

• *Proposition 2*. No set of linearly independent vectors can contain the zero vector.

Proof: Let $a^1 = 0^n$. Set $\lambda^1 = 1$ and all others = 0.

Results

• *Proposition 4.* Any superset of a set of linearly dependent vectors is linearly dependent.

Proof: Use direct proof.

Def of Basis

- *Def.* A *basis* for a vector space of n dimensions is any set of n linearly independent vectors in that space.
- In Rⁿ, exactly n vectors can form a basis. That is, it takes n (independent) vectors to create any other vector in Rⁿ through a linear combination.

Result

 Proposition. An n x n matrix A is nonsingular iff r(A) = n.

Computation of Inverse

- Assume that A is n x n and has $|A| \neq 0$.
- Cofactor matrix of A is C =[|C_{ii}|].
- The *adjoint matrix* is adj A = C'.
- A⁻¹ = (adj A) / |A|.

Solution $[D - rI] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} -1 & 2 \\ 2 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $-x_1 + 2x_2 = 0$ $2x_1 - 4x_2 = 0.$

General Results for Characteristic Roots and Vectors

 The matrix of characteristic vectors of a matrix A is (vⁱ is n x 1 here)

 $Q = [v^1 \dots v^n].$

• By definition,

Q'Q = I so that $Q' = Q^{-1}$.

When this condition is met Q is said to be *orthogonal*.

General Results for Characteristic Roots and Vectors

• From the characteristic equation,

$$AQ = QR, \text{ where } R \equiv \begin{bmatrix} r_1 & 0 & 0 & 0 & 0\\ 0 & . & 0 & 0 & 0\\ 0 & 0 & . & 0 & 0\\ 0 & 0 & 0 & . & 0\\ 0 & 0 & 0 & 0 & r_n \end{bmatrix}.$$

To see this, note that $AQ = [Av^{1}...Av^{n}] = [r_{1}v^{1}...r_{n}v^{n}] = QR$

General Results for Characteristic Roots and Vectors We conclude that (*) Q'AQ = Q'QR = R. (*) is called the *diagonalization of A*. We have found a matrix Q such that the transformation Q'AQ produces a diagonal matrix with A's characteristic roots along the diagonal.

General Results for Characteristic Roots and Vectors

- For a square matrix A, we have
- i. The product of the characteristic roots is equal to the determinate of the matrix.
- ii. The rank of A is equal to the number of nonzero characteristic roots.
- iii. The characteristic roots of A² are the squares of the characteristic roots A, but the characteristic vectors of both matrices are the same.
- iv. The characteristic roots of A⁻¹ are the reciprocal of the characteristic roots of A, but the characteristic vectors of both matrices are the same.

General Results on the Trace of a Matrix

- tr(cA) = c(tr(A)).
- tr(A') = tr(A).
- tr(A+B) = tr(A) + tr(B).
- $tr(I_k) = k$.
- tr(AB) = tr(BA).

(Note this can be extended to any permutation: tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC).

