Lecture 3: Limits

Limits

1. Let y = f(x) be a function mapping a subset of R into R, $f : X \rightarrow R$, where $X \subset R$. In studying limits we shall be concerned with a sequence of x's say x^q tending towards some x^0 and the corresponding sequence of images say $f(x^q)$. Loosely speaking, if as $x^q \rightarrow x^0$, $f(x^q) \rightarrow L$, then we say that L is the limit of f(x) as x approaches x^0 and write $\lim_{x \rightarrow x^0} f(x) = L$.

2. Let us now consider the more rigorous definitions of the various types of limits which can occur.

Def 1 The right-hand limit of a function f(x) as x approaches a finite number x^0 is a finite number L such that for any $\varepsilon > 0$ there exists a $\delta > 0$ such that if $x' \in (x^0, x^0 + \delta)$, then $|L - f(x')| < \varepsilon$, where x' is in the domain of f.

<u>Notation</u>: If L is the right-hand limit of f(x) as $x \to x^0$ we write $\lim_{x \to x^{0^+}} f(x) = L$.

Def 2: The left-hand limit of a function f(x) as x approaches a finite number x^0 is a finite number L' such that for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $x' \in (x^0 - \delta, x^0)$, then $|L' - f(x')| < \varepsilon$, where x' is in the domain of f.

<u>Notation</u>: If L' is a left-hand limit we write $\lim_{x \to x^{0-}} f(x) = L'$.

<u>Remark</u>: In general the left and right hand limits of a function f(x) as $x \to x^0$ need not be equal. However, if they are we say that f(x) has a limit as $x \to x^0$ and write $\lim_{x \to x^0} f(x) = L$, where

$$L = \lim_{x \to x^{0+}} f(x) = \lim_{x \to x^{0-}} f(x).$$

<u>Remark</u>: One point made implicit in definitions 1 and 2 is that the sequence of x's, x^q , must be contained in the domain of f and, hence every x in such a sequence must have an image. However, it is not necessary that the point x^0 be contained in the domain of f nor that the limit L be contained in the range of f. Hence, we can have $\lim_{x\to x^0} f(x) = L$ and at the same time have the ordered pair $(x^{\circ}, L) \notin Gr(f)$.

Def 3 A function f(x) has the finite limit L as x approaches a finite number x^0 if, for every positive number ϵ , there is a number $\delta > 0$ such that if $0 < |x^1 - x^0| < \delta$, then $|f(x^1) - L| < \epsilon$, where x^1 is in the domain of f.

Remark: We may illustrate the definitions 1,2 and 3 graphically

х

An equivalent definition of a limit may be formulated using the concept of a Remark : neighborhood.

Def 4 A neighborhood of a number L is an open interval containing L. We denote a neighborhood of L by N(L) where N(L)=(L- ϵ ,L+ ϵ), and where ϵ is a positive number. Hence $N(L) = \{x \mid x - L \mid < \varepsilon\}$.

Def 5 The $\lim_{x \to x^0} f(x) = L$ if for every N(L) there exists a N(x^o), in the domain of f, such that for every $x' \in N(x^0)$, $f(x') \in N(L)$.

Remark: We note that Def 5 is not applicable in the following illustration.

However, Def 3 is applicable. Seeing that only the left-hand limit is relevant in this case, we can conclude that $\lim_{x \to x^{0-}} f(x) = L$ by Def 2.

Limits and Nonconvergent Sequences

1. Def 6 The function f(x) has a finite *limit* L as |x| becomes infinite if, for every positive number ε , \exists a number $\delta > 0$ such that if $|x^1| > \delta$ then $|f(x^1) - L| < \varepsilon$, where $x^1 \in$ domain of f. Remark: We may illustrate Def 6 with the following graph.

Def 7 The function f(x) has an infinite limit as $x \to x^0$, x^0 finite, if for any positive number ε there exists a number $\delta > 0$ such that if $0 < |x^1 - x^0| < \delta$, then $|f(x^1)| > \varepsilon$, where $x^1 \in$ domain of

<u>Remark:</u> In Def 7 we would write $\lim_{x \to x^0} f(x) = \pm \infty$.

Remark: Definition 6 may be augmented to define such limits as

$$\lim_{|\mathbf{x}|\to+\infty} \mathbf{f}(\mathbf{x}) = \pm\infty \,.$$

We consider this next

Def 8 The function f(x) has an infinite limit as |x| becomes infinite if, for every positive number ε there exists a number $\delta > 0$ such that if $|x^1| > \delta$, then $|f(x^1)| > \varepsilon$, where $x^1 \varepsilon$ domain of f.

3. With these definitions in hand, let us consider the properties of limits.

Proposition 1. If y = f(x) is such that

- (i) f(x) = ax + b, then $\lim_{x \to x^0} f(x) = ax^0 + b$,
- (ii) f(x) = b, then $\lim_{x \to x^0} f(x) = b$,

(iii)
$$f(x) = x$$
, then $\lim_{x \to x^0} f(x) = x^0$,

(iv)
$$f(x) = x^k$$
, then $\lim_{x \to x^0} f(x) = (x^0)^k$

Suppose now that we have two functions of the same variable x say $y_1 = f_1(x)$ and $y_2 = f_2(x)$.

Proposition 2. If $\lim_{x \to x^0} f_1(x) = L_1$ and $\lim_{x \to x^0} f_2(x) = L_2$ both exist and are finite, then

(i)
$$\lim_{x \to x^0} (f_1(x) \pm f_2(x)) = L_1 \pm L_2,$$

(ii)
$$\lim_{x \to x^0} f_1(x) \cdot f_2(x) = L_1 L_2,$$

. .

(iii)
$$\lim_{x \to x^0} \frac{f_1(x)}{f_2(x)} = \frac{L_1}{L_2}, \text{ if } L_2 \neq 0.$$

4. Algebraic example.

Find $\lim_{x\to 3} f(x)$ where

$$f(x) = \frac{x^2 - 9}{x - 3}$$

Here, if we substitute x = 3 in f(x) we obtain

$$\frac{9-9}{3-3} = \frac{0}{0},$$

which is meaningless. However, from the definition of a limit we know that f(3) need not be defined. All that counts is what happens to f(x) when x approaches 3. Hence, manipulate f(x), for all $x \neq 3$.

$$f(x) = \frac{(x-3)(x+3)}{x-3} = (x+3), \forall x \neq 3$$

We conclude that as $x \mapsto 3$, $f(x) \to 6$ and write

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} (x + 3) = 6.$$

We next wish to consult definition 3 and see if L = 6 qualifies as a limit:

For every $\varepsilon > 0$, $\exists \delta > 0$ such that $0 < |x^1 - 3| < \delta \Rightarrow |f(x^1) - 6| < \varepsilon$. Substitute, $f(x^1) = x^1 + 3$ in the second expression $|x^1 + 3 - 6| < \varepsilon$, or $|x^1 - 3| < \varepsilon$. Then $0 < |x^1 - 3| < \delta \Rightarrow |x^1 - 3| < \varepsilon$

will hold if we choose $\delta = \epsilon$, for example. We conclude that L = 6 is the limit.