Lecture 4: Continuity and Differentiability

Continuity

• The derivative

1

Continuity

 Let N(x^o) denote neighborhood of x^o, meaning an open interval covering x^o:

 $N(x^{o}) = (x^{o} - \varepsilon, x^{o} + \varepsilon)$

• We have

Def 1A function f(x), $f: X \to R$, is continuous at a point x^0 , in the domain of f, iff for any $N(f(x^0))$ there is a neighborhood $N(x^0)$ such that if (for every) $x \in N(x^0)$, we have $f(x) \in N(f(x^0))$, where $x \in X$.

Continuity: A Result

Proposition 1. If the $\lim_{x\to x^0} f(x) = L$ exists and is finite and the ordered pair $(x^o, L) \in Gr(f)$, then

f(x) is continuous at x^0 .

<u>Proof:</u> If $\lim_{x \to x^0} f(x) = L$ then for every $N(L) \exists N(x^o)$ such that if $x \in N(x^o)$ then $f(x) \in N(L)$. However, we have that $(x^o, L) \in Gr(f)$ which implies that $L = f(x^o)$. Hence, all the conditions of Def 1 are satisfied. ||

Proposition 2. If f(x) is continuous at x^0 , then $\exists \lim_{x \to x^0} f(x) = L$ and $(x^0, L) \in Gr(f)$.

Proof: See Def 1.

3

Continuity

- Def 2 A function, f: X→R, is *continuous* if it is continuous at every point x in the domain of f.
- *Def 3* A function, f: X→R, is *continuous on the interval* (x', x"), x' < x", if it is continuous at all points in this interval.

The Derivative

- Consider a function f : X→ R, where X is an open interval of R
- Consider a change in the independent variable x and the corresponding change in the image of x. Let the change in x be given by ∆x and let the initial value of x be x^o

5

The Derivative

• Form the difference quotient

$$\frac{\Delta y}{\Delta x} \equiv \frac{f(x^{\circ} + \Delta x) - f(x^{\circ})}{\Delta x}$$

 If the following limit exists, it is said to be the *derivative of f at x*^o

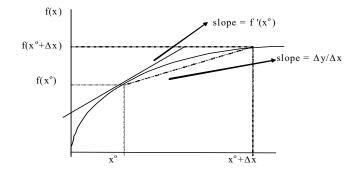
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x^{\circ} + \Delta x) - f(x^{\circ})}{\Delta x}$$

The Derivative

- Notation: $f'(x^{o})$, $df(x^{o})/dx$ or $dy/dx|_{x}^{o}$
- f is said to be differentiable if it is has a derivative at each point in its domain.

7

Illustration



The relationship between differentiability and continuity

Proposition 1. The function y = f(x) is differentiable at a point x^0 in its domain only if f(x) is

continuous at x^0 .

9

Proof

<u>Proof</u> To show necessity of continuity we need to show that differentiability implies continuity. If f(x) is differentiable at x^0 ,

$$f'(x^{0}) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x \to x^{0}} \frac{f(x) - f(x^{0})}{x - x^{0}}$$

Since, $x \rightarrow x^0$ implies $x \neq x^0$, then

$$f(x) - f(x^{\circ}) \equiv \frac{f(x) - f(x^{\circ})}{(x - x^{\circ})} (x - x^{\circ})$$

Take limits as $x \rightarrow x^0$ of both sides

$$\lim_{x \to x^{0}} f(x) - f(x^{0}) = f'(x^{0})(0) = 0$$

H en c e,

$$\lim_{x \to x^{0}} f(x) = f(x^{0})$$

Since $\exists \lim_{x \to x^0} f(x) = f(x^0)$ and since x^0 is contained in the domain of f, f(x) is continuous at $x^0 \parallel$

The converse is not ture

• Although differentiability implies continuity, the converse is not true. To show this, consider the function

 $f(x) = \begin{cases} a x & if x < \overline{x} \\ a\overline{x} & if x \ge \overline{x} \end{cases}$

11

