Lecture 5: Rules of
Differentiation

* First order derivatives

 Higher order derivatives

» Partial differentiation

 Higher order partials

» Differentials

* Derivatives of implicit functions

» Generalized implicit function theorem
» Exponential and logarithmic functions
* Taylor series approximation

First Order Derivatives

« Consider functions of a single independent
variable, f : X—» R, X an open interval of R.

R1(constant function) f(x) = k = f'(x) = 0.
R2 (power function) f(x) = x" = f(x) = nx""
R3 (multiplicative constant) f(x) = kg(x) =

f(x) = kg'(x).
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Examples R1-R3

#1  Lety=f(x) = ¥x. Find dy/dx ¥x =(x)"*. Hence,d /dx (x)"* =

13(x)""=1/3(x)".

#2 Lety = f(x) = 3, where f: R, > R. Find dy/dx =0

#3 Lety=f(x)=10x". Find dy/dx =0

#4 Lety = f(x) =20 x*°. Finddy /dx = 16x"".

Two or more functions of the same
variable: sum-difference

« Def 1. By the sum (difference) of any two
real-valued functions f(x) and g(x), where
f:D > Rand g: E »> R, we mean the real-
valued function f+ g: D n E - R whose
value at any x € D n E is the sum
(difference) of two real numbers f(x) and
g(x). In symbols we have

(f+g) (x) =f(x) = g(x), forany x e D n E.
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Rules

R4 (sum-difference) g(x) = Z;f(x) = g'(x) =
% f'(x).

Remark: To account for differences, simply

multiply any of the f; by -1 and use the
multiplicative constant rule.

Examples

#1 What is the slope of the curve y= f(x) = x° - 3x + 5, when it crosses the y

-axis?

First find
&4 4,0
dx dx dx d

dy/dx=3x"-3 = f(x).
When the curve crosses the y - axis, we have x =0. Hence, evaluate
f'(x) for x =0.

f)=-3 .

Thus the slope at x =0 is -3.
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Examples

3
#2 Find f'(x) if f(x) = =~ 7x "2 + 5.
X

Clearly we may write f(x) as
fx) =x-7x " +5
Hence

f(x) = ix —71)(’”2 +iS
dx dx dx

7
fx)=1+—=x32
) 2

Product

« Def By the product of any two real valued
functions f(x) and g(x), where f: D > R
and g: E > R, we mean the real function

fg:DNE—>R

whose value at any x e D n E is the
product of the two real numbers f(x) and

g(x).
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Product Rule

R5 (product) h(x) = f(x)g(x) =
h'(x) = f(x)g(x) + f(x)g'(x)
Remark: This rule can be generalized as
% [£:00) - £) ... 5G] = FIGIIHE) - B9 - &0 + P2 - 509 - K()]

o APNHE) - BX) - )]

Example

Let f(x) = (x—;+ XZ)(SX +6)
. d .
Find d—f(x). Here we may consider f(x) as the product of two
X

functions, say

h(x) = (35Lz + xz), and g(x) = (5x + 6).

d(h(x) - g(x)

d
Hence — f(x) = —————=. Using the product rule we obtain
dx dx

f(x) = (x* + 2x) (5x +6) + x° + 5x?
=x*5x + 6x*+ 10x*+ 12x + x* + 5x°
=x5 +6x*+ 15x% + 12x +x°

f'(x) = 6x° + 6x* + 15x* + 12x.
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Quotient

« Def. The quotient of any two real-valued
functions f(x) and g(x), where f: D - R, g:
E — R, is the real-valued function f/g: D n
E — R, defined for g(x) # 0, whose value
at any x € D n E is the quotient of the two
real numbers f(x) / g(x), g(x) = O.

Quotient Rule

* R6 (quotient) h(x) = f(x)/g(x) =

h'(x) = [f(x)g(x) — g'(X)fx)g(X)?




Examples

3
#1 Find f'(x), where f(x) = —
g(x)

, g(x) differentiable fn of x.

3x’g(x) - g'(x)x’

[s0]
2 3
#  Find i{w} where x # 0
dx X

Here we must use the product rule and the quotient rule.

[2x(x3 +4)+3x3(x2 + 1)]x2 - 2x[(x2 +D(x + 4)]

X4

Composite functions

Def  The composite function of any two functions z = f(y) and y = g(x), where
X—25y—157

such that the domain of f coincides with the range of g, is a function h(x), where
h:X->7Z,

defined by h(x) = f(g(x)) for every member x € X.

Remark: The notation f o g is used to denote the composite function f(g(x)).
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Example

max u(xy,X;) st 1= py X;+ P, X,
Xo = 1/py - (P4/P2) X1 = 9(X4)

U(Xy, 1/py - (P4/P2) X4 ) = U(X4,9(X4))
max u(x4,9(x4))

Example

Consider the two functions g: R — R and f: R — R defined by
y =g(x)=3x-1
z=1(y)=2y +3
for any real numbers x,y. From our definition we may form the
function f o g or fg(x)]:
fog=flgx] =203x-1)+ 3=z,

where f o gis defined for every real x.
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Composite function rule

« R7 (chain) If z = f(y) is a differentiable
function of y and y = g(x) is a differentiable
function of x, then the composite function
f o g or h(x) = f[g(x)] is a differentiable
function of x and

h'(x) = flg(x)] -g'(x).

Remark: This rule can be extended to any

finite chain. e.g., h = f(g(r(x))) =

h'=1(g)g'(Nr(x)

Examples

#1 Letz = 6y + 1/2y* and y =3x. Then

dz_ dzdy
dx dy dx

=(6+y)3
buty =3x

d—Z=(6+3x)3=9x+ 18
dx




Examples

#2 Letz=——, y=15x

dz _ 1(y*)-2y(y+1) )

dx (y*)

_5(y’ -2y’ -2y) 5(=y’-2y) -5y’ —10y y(-5y-10)
y' y* y* y*

dz _ ~(Sy+10)

dx y?

buty =5x

dz  —5(5x)-10

dx (5x)°

Inverse function

« Def. The inverse function of a function y =
f(x), where f: X = Y, is a function x = f(y),
where f1: f{X] - X. We have that y = f(x)
if and only if x = f1(y) for all (x,y) € Gr(f).

» Proposition. The function y = f(x) is one-to-
one if and only if the inverse function
x = f1(y) exists.
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Inverse function

* A one-to-one function defined on real
numbers is called monotonic. A monotonic
function is either increasing or decreasing.

« Def. A monotonic function f(x), : R > R is
monotonically increasing iff for any x’, X" €
R, X" > x"" implies f(x’) > f(x"").

« Def. A monotonic function f(x), : R > Ris
a monotonically decreasing function iff for
any X', X" € R, x" > x"implies f(x’) < f(x"").

Inverse function

« Remark: A practical method of
determining whether a particular
differentiable function is monotonic is to
see if its derivative never changes sign.
(>0if T,<0ifl)
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Example

 Direct demand Q = D(p)
* Inverse demand p = D-'(Q) = p(Q)

* Q= 5-p. What is inverse demand?

Inverse function rule

* R8 (inverse function) Given y = f(x) and x
= f1(y), we have

1(y) = 1/f(x).
» Proposition. If a functiony = f(x), f: X =Y,
is one-to-one, then
(i) the inverse function x = f1(y) exists,
(ii) f1(y) is one-to-one,
(iii) (F1)1=A1.
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Examples

Lety=f(x)=5x +4,f:R > R.

fisbijective . 3 f'(y).

i y-4
£ = — =X
() 3
. d d
Now find —f(x) and — f " (y) and compare.
dx dy

if(x) =5, then by inverse fn rule if “(y) should = 1/5.
dx dy

d .. 1)5-0 5 1

oy ()25 T2 s
From above we see that

y=5x+4

x=+ty-4/5

are both bijective.

Higher Order Derivatives

 |f a function is differentiable, then its
derivative function is itself a function which
may possess a derivative.

* |f this is the case, then the derivative
function may be differentiated. This
derivative is called the second derivative.

 |f a derivative of the second derivative
function exists, then the resultant
derivative is called the third derivative.
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Higher Order Derivatives

» Generally, if successive derivatives exist,
a function may have any number of higher
order derivatives.

» The second derivative is denoted f"(x) or
d?f/dx? and the nth order derivative is
given by d"f/dx".

« Example: Let f(x) = 3x> + 10x. We have
that f' = 15x* + 10, ' = 60x3, and d3f/dx3
= 180x2.

Partial derivatives

 Here we consider a function of the form
y =f(xq, ..., X,), . R" > R.

« Short-hand notation: y = f(x), where x e
Rn.

8/9/2019
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Partial derivative: definition

« Def. The partial derivative of the function
f(Xq,Xp..., X,), f: R" > R, at a point (x,°
X%,..., X°,) with respect to x; is given by

lim AV B f(Xf,...,x? + Axi,...,xgl)—f(x?,...,x%)
AXI'_

Ax; —>0 AXi

Notation

Notation: We denote the partial derivative, Alim0 A%x‘ , in each of the following ways.
Xi—>

fi(x), 0f(x)/0x; or é)(iif(x).

8/9/2019
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lllustration

Summary

The mechanics of differentiation are very
simple:
» When differentiating with respect to x;,

regard all other independent variables as
constants

» Use the simple rules of differentiation for

X;.

8/9/2019
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#1 Lety = f(x,,x;) = X? +x,+3
then = 2x; and =1
Xy X,

#2 Lety = f(xy, X ,%3) = (x; + 3) (x; +4) (x3)
or =1 (x + 4) (x3)
0x,

#3 Let y=f(x;,x2) = x?x3 + 10x,
or =2x,x; +10
0x,

Extensions of the chain rule

a. Lety =1(xy,...,Xn), where x; = xi(x;), for 1 = 2,...,n. We have that

dy/dx, = of/éx, + zﬁﬁ

i dx,

b. Lety = f(xy,...,X,), where ¥V 1 x;= x;(u). Then we have that

0w d
dy/du = 3 f, i
i=1 du

8/9/2019
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Extensions of the chain rule

c. Lety = f(xy,...,X,), where X; = X{(Vy,...,Vm), for all i. Then we have that

oylovi= 38, i
i=l avj

Example

« Lety = f(xq,%,) = 3x, + X,2, where x, = v?
+u and X, = u + 5v. Find dy/du,dy/ov
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Higher order partial derivatives

« A first order partial derivative function is
itself a function of the n independent
variables of the original function. Thus, if
this function has partial derivatives, then
we can define higher order partial
derivative functions.

* The most interesting are the second order
partial derivative functions denoted

fi(x) = o’f/axox; x € RN

Higher order partial derivatives

 Ifiand j are equal, then f; is called a direct
second order partial derivative and if iz}, f; is
called a cross second order partial derivative.

» We can associate a matrix of partial derivatives
to each point (xy,...,X,,) in the domain of f. The
matrix is defined by

H(x®) = [fi(x° )ij=1...n
and it is called the Hessian of f at the arbitrary
point x°.

8/9/2019
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Examples

#1. Let f=(x; + 3)(x,’ + 4)x3. We have that

fi = (x> + 4)x3, fi1 = 0, fi = 2%%3, 3= (%" +4)

f2 = (X1 + 3)(X3)(2X2), f22 = 2(X1 + 3)X3, f21 = 2X2X3, f23 = (Xl + 3)(2X2)

fy=(x1 + 3)(x2* + 4), B3 = (xi + 3)(2x2), 31 = (x2° + 4), £33 =0.
#2. Letf=xx5.

fi=x,, fio=1,f1,=0,
f2:Xl,f2| = 1,f22:0.

The Hessian at any point (x;,X2) is given by

H = 0 1 _ fi, 1, )
1 0 f,,  fy

A result

* Young's Theorem. If f(x), x € R",
possesses continuous partial derivatives
at a point, then fij = 1’ji at that point.

- Example: f = x?y2. Show f, =f,,.

8/9/2019
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Differentials

» Given that y = f(x), a Ax will generate a Ay
as discussed above. When the Ax is
infinitesimal we write dx, which, thus,
generates an infinitesimal change in y, dy.

» The first order differential of y = f(x) is

dy = df = f'(x)dx.

Example

f(x) =3x+x, find dy:

dy =F(x) dx
dy =(3+2x) dx

8/9/2019
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Functions of Many Variables

* Giveny = f(x4,...X,), the differential of f is
given by

df = Zf; (x) dx;.

Some rules

Proposition 1. If f(x), X2, ..., X,) and g(x;, X, ..., X,) are differentiable functions of the variables
x; (i=1,...,n), then

(i) d (f") = nf*'df

(ii) d(ftg)=df+dg

(iii)  d(f-g)=gdf + fdg

v d (£) _gdf-fdg .

g g’
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Example

« Let f = (x,2+ 3x,)/X,X,, find df.

2nd order differential

* |Itis also possible to take a differential of a
first order differential so as to define a
second order differential.

dzf: i i fud.de.XJ
=1 j=1
« We have that d?f can be expressed as a
quadratic form in dx:

dx'Hdx,

8/9/2019
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Derivatives of Implicit Functions

Implicit relationships between two
variables x and y are often expressed as
equations of the form

F(x,y) =0.
If possible, we would like to define explicit
functions say x = x(y) and y = y(x) from
this relation.

* We would also like to define the
derivatives of such functions.

Example

* A circle with radius 2 and center O:
F(x,y)=x2+y?2-4=0.

8/9/2019
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Example

* Here every x € (-2, 2) is associated with
two values of y.

* |tis possible to define two functions:

y=1fx)= 4-x , where

£ [2,42] = [0,2]

y=g(x)=- 4-x", where

g [-2,+2] > [-2,0].

A result;: basic IFT

Proposition 1. The relation F(x, y) = 0 defines one or more differentiable implicit functions of
the form y =£(x), at some point x, if OF / oy # 0. We have that

dy —aF/ox
dx  oF/dy

8/9/2019

25



Our Example

y=fx) = V4 —x* ; f: [-2,42] = [0, 2]

y=g®)=-v4-x"; g [2, 2] >[2,0]

£1(x)=x(4 - X)"* = xly

d® =+ @-x)"*==xy

Use IFT on x?2 + y2—4 = 0.

dy —0F / 0x -2Xx - X
dx OF / 0y 2y y

8/9/2019
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A generalization

Proposition 2. The relation F(x, X,, X3, ..., Xx) = 0 defines one or more differentiable implicit

functions of the form x; = fi(x;), at x;, if OF / 0x; # 0, 1, j=1, ..., N, i # j. We have that

ox, —OF/dx,

ox.  OF/ox,

]

Example

b X13 X2 + X3 X2 = O Flnd aXZ /ax3

ox, -Flox,  -x,
ox, OF/dx, (X +X,)

3

, for (X13 +x;)# 0.

8/9/2019
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A Generalized Implicit Function
Theorem

» Consider a system of n equations
0= Fi(yl,...yn,xl,...,xm), 1=1,...n.

» The variables y,,...,y,, represent n
independent variables and the x,,...,x,
represent m parameters. Write asy € R"
and x e R™.

The Jacobian of the System

(OF' /oy, e e e OF' /oy, |

[ ] [ ]
Iy= ° °
[ ] [

|OF" /0y, o e e OF"/0y, |

8/9/2019
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General IFT

Proposition 3. Let F(y,x) = 0 possess continuous partial derivatives in y and x. If at a point
(¥°,x%), Iy # 0, then 3 n functions y; = fi(x1,...,X,y) which are defined in a neighborhood of x°. We
have

() F(,..f,x°) =0, Vi,

(ii) y;=f(+ ) are continuously differentiable in x locally

0y, / 0%y —0F' / 0%, 0y, / 0xy —OF' / 0%,
[ ] ) (] L]
(iii) J, . = . and . =7 .
] [} L] [ ]

oy, 0%, ~OF" / 0%, dy, 1 0x, ~0F" / 0x,

Cramer's Rule and IFT

Remark: Using Cramer's Rule, we have that

Oy{Ox = Wyl/[Jy/.

8/9/2019
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Example

Example: Solve the following system for system Oy,/0x and Oy»/0x.

2y;+ 3y, -6x=0

Y1 +2}I2: 0

Exponential and Logarithmic
Functions

* An exponential function is a function in
which the independent variable appears
as an exponent:

y = bX, where b > 1

We take b > 0 to avoid complex numbers.
b > 1 is not restrictive because we can
take (b"1)* = b for cases in which
b e (0,1).

8/9/2019
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Logarithmic

* A logarithmic function is the inverse
function of b*. That is,

X =log,y. (iffy=Db*)
A preferred base is the number e = 2.72. More formally, e = lim[1 + 1/n]" e is called the

natural logarithmic base. It has the desirable property that % e"= ¢". The corresponding log

function is written x = In'y, meaning log. y.

lllustration
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Rules of logarithms

« R.1:1fx,y>0, then log (yx) =log y + log
X.

In x

Proof: ¢™*=x and ¢"Y=y sothatxy=e

Thus, elnx+lny: elnxy. ”

i Inx+In Inx
e Y=e"™"™. Moreover xy =¢ .

Rules of logarithms

* R.2: Ifx,y>0,thenlog (y/x) =logy -
log x.

Proof: €™ =x and ™" =y' so that x/y = ™ ™" . Moreover x/y = ™.
Thus, ™ e"' =™ and Inx + In(y™") = Inx/y. Using rule 3 (to be shown) the

result holds.

8/9/2019
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Rules of logarithms

* R.3: Ifx>0,thenlog x? = alog x.

Proof: e™=x and ™ =x* However, x*= (€™ = "™ Thus, €"¥ =™ |

Conversion and inversion of bases

« conversion
log,u = (log,c)(log.u) (log.u is known)

Proof: Let u=c’. Thenlog u=p. We know that log, u=log, ¢’ =plog, c. By definition, p=

log: u, so that log, u = (log: u)(log, ¢). ||
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Conversion and inversion of bases

* inversion
log,c = 1/(log.b)

Proof: Usingthe conversionrule, 1 =log, b=(log, c)(log. b). Thus, log, c=1/log.b). ||

Derivatives of Exponential and
Logarithmic Functions.

« R. 1: The derivative of the log function
y = In f(x) is given by

dy ~ f'(x)
d x f(x)
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Derivatives of Exponential and
Logarithmic Functions
* R. 2: The derivative of the exponential
function y = ef® is given by

y
— =7 )
ix (x)e

Derivatives of Exponential and
Logarithmic Functions
* R. 3: The derivative of the exponential
function y = bf®)is given by

d
& pxb™Inb.
dx

8/9/2019
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Derivatives of Exponential and
Logarithmic Functions
* R. 4: The derivative of the logarithmic
function y = log,f(x) is given by

dy  f'(x) 1
dx  f(x) Inb

Examples

#1 Lety= ez"z“‘,then

d >
—y:4xezx .
X

#2 Lety= [In (16x?%)]x?

d 32
d—y " Te Xz x? + 2x In(16x?%)
X X

=2x +2xInl6x*=2x +2x(Inl6 + 2Inx)

=2x (1 +1In16) + 4x Inx.

8/9/2019
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Examples

#3 Lety= 6*" then f =(2x +17) 6 *'™*1n 6.

The Taylor Series Approximation

* |t is sometimes of interest to approximate
a function at a point with the use of a
polynomial function.

 Linear and quadratic approximations are
typically used.

« Lety =1f(x).
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The Taylor Series Approximation

« A Taylor's Series Approximation of f at x°
is given by

51 dif(x°)

: i
= 1! dx

f(x) = f(x°) +

(x—x°)".

Linear Approximation

* Alinear approximation takes k = 1. This is given
by

f{x) = fx) + [dTx’Ydx](x-x") = [f(x) - £'()XT] + ()X

» Defining, a = [f(x°) —f'(x°)x°] and b = f'(x°), we
have

f(x) » a + bx.

8/9/2019
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lllustration

fix°)
() - XN

A Notethat A=f—(f—f'x) and A/x = f'

Quadratic Approximation

« A quadratic approximation takes k = 2.
We have that

£'(x°)

f(x) ~ f(x0) + f '(x°)(x-x°) + (x—x°).

° Or

flx) ~ [f(x) — £'(x)x° + T W) 72] + [ () — XL ") Jx + [ "(x)2]x°
e This is of the form

f(x) ~a+bx +cx’.

8/9/2019
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Functions of many variables
» General linear

00 = £x) + 3 £,(x")(x, - x0).

Define V{(x)'= (fi(x)...fu(x)) and term this the gradient of f. Then we have

fx)  £(x%) + VX)) (x - X°),

Functions of many variables

» Quadratic

1 0 o o
£(x) = f(x%) + VE)(x - x%) + 322 5T (x GG = x D = x ).

* or

f(x) = f(x°) + VI(x°)'(x - x°) + ;—(X -x°)'H(x°)(x -x°).

8/9/2019
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Examples

Consider the functiony =2x”. Let us construct a linear approximation at x = 1.
f=2+4(x—-1)=-2+4x.

A quadratic approximation at x =1 is
fr2+4x—1)+@2)(x-1)F =2 +4x—4+2(x>2x + 1) =2+ 4x — 4+ 2x* 4x +2
f=2x.

Given that the original function is quadratic, the approximation is exact.

Examples

. Lety = x,°X,. Construct a linear and a quadratic approximation of f at (1,1). The linear
approximation is given by
fr1+3x,-1)+1(x,-1).
Rewriting,
f~-3+3x +x,.

A quadratic approximation is constructed as follows:

Frl 43— 1)+ 1)+ - -1 x ¢ 3 X -1
h : ? 2 ! s oflx, 1)

Expanding terms we obtain the following expression.

fa3-6x1-2x2+ 3 xiX2+3x,%
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