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Lecture 5:  Rules of 
Differentiation

• First order derivatives
• Higher order derivatives
• Partial differentiation
• Higher order partials
• Differentials
• Derivatives of implicit functions
• Generalized implicit function theorem
• Exponential and logarithmic functions
• Taylor series approximation

First Order Derivatives

• Consider functions of a single independent 
variable, f : X R, X an open interval of R.

R1(constant function) f(x) = k  f'(x) = 0.

R2 (power function) f(x) = xn  f'(x) = nxn-1

R3 (multiplicative constant) f(x) = kg(x) 
f'(x) = kg'(x).
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Examples R1-R3

#1 Let y = f(x) = x3 .   Find dy / dx x3  = (x)1/ 3.  Hence, d / dx (x)1/3 =   

 1/3(x)1/3-1 = 1/3(x)-2/3 . 

  #2 Let y = f(x) = 3, where f: R+   R.  Find dy /dx = 0 

      #3          Let y = f(x) = 10x0.  Find dy / dx = (10) x0-1 = 0  1
x  = 0. 

 #4 Let y = f(x) = 20 x4/5.  Find dy /dx = 16x-1/5. 

= 0

Two or more functions of the same 
variable: sum-difference

• Def 1. By the sum (difference) of any two 
real-valued functions f(x) and g(x), where 
f: D  R and g: E  R, we mean the real-
valued function f  g: D  E  R whose 
value at any x  D  E is the sum 
(difference) of two real numbers f(x) and 
g(x).  In symbols we have

(f  g) (x) = f(x)  g(x), for any x  D  E.
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Rules

R4 (sum-difference) g(x) = i fi(x)  g'(x) = 

i fi'(x).

Remark: To account for differences, simply 
multiply any of the fi by -1 and use the  
multiplicative constant rule.

Examples

#1 What is the slope of the curve y= f(x) = x3  - 3x + 5, when it crosses the y   

 -axis? 

   First find 

    
dy
dx

d
dx

x
d
dx

x
d

dx
  3 3 5  

    dy / dx = 3x2 - 3 = f(x). 

   When the curve crosses the y - axis, we have x = 0.  Hence, evaluate  

   f(x) for x = 0. 

    f(0) = -3   .  

   Thus the slope at x = 0 is -3. 
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Examples

#2 Find f(x) if f(x) = .5x7
x

x 2/1
2

3

   

   Clearly we may write f(x) as  

    f(x) = x -7x -1/2 + 5 

   Hence 

    f(x) = 
d

dx
x

d

dx
x

d

dx
 7 51 2/  

    f(x) = 1 + 
7
2

 x -3/2 

Product

• Def  By the product of any two real valued 
functions f(x) and g(x), where f: D  R  
and g: E  R, we mean the real function

fg : D  E  R

whose value at any x  D  E is the 
product of the two real numbers f(x) and 
g(x).
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Product Rule

R5 (product) h(x) = f(x)g(x) 
h'(x) = f'(x)g(x) + f(x)g'(x)

Remark: This rule can be generalized as 

d

dx
[f1(x)  f2(x)  fN(x)] = f1(x)[f2(x)  f3(x)  fN(x)] + f2(x)[f1(x)  f3(x) fN(x)] 

 +  + fN(x)[f1(x)  f2(x)  fN-1(x)]. 

Example
Let f(x) =  x x

5

5
2 (5x + 6) 

Find 
d

dx
f(x).  H ere we may consider f(x) as  the product of two 

functions, say      

                                       h(x) =  x x
5

5
2 , and g(x) = (5x + 6).  

   Hence 
d

dx
f(x) = 

    d h x g x

dx


.   U sing the product rule w e obtain 

   f(x) = (x4 +  2x) (5x +6) + x5 + 5x2 

   = x45x + 6x4 + 10x2 + 12x + x5 +  5x 2 

   = x55 + 6x4 +  15x2 + 12x +x5  

              f (x) =  6x5 + 6x4  + 15x2 + 12x. 
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Quotient

• Def.  The quotient of any two real-valued 
functions f(x) and g(x), where f: D  R, g: 
E  R, is the real-valued function f/g: D 
E  R, defined for g(x)  0, whose value 
at any x  D  E is the quotient of the two 
real numbers f(x) / g(x), g(x)  0.

Quotient Rule

• R6 (quotient) h(x) = f(x)/g(x) 

h'(x) = [f'(x)g(x) – g'(x)f(x)]/[g(x)]2
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Examples

#1 Find f(x), where f(x) = 
x

g x

3

( )
, g(x) differentiable fn of x. 

   
 

3 2 3

2

x g x g x x

g x

( ) ( )

( )

 
 

  #2 Find 
d

dx

x x

x

( )( )
,

2 3

2

1 4 







  where x  0 

   Here we must use the product rule and the quotient rule. 

   
   2 4 3 1 2 1 43 2 2 2 2 3

4

x x x x x x x x

x

( ) ( ) ( )( )     
 

Composite functions

Remark: The notation f o g is used to denote the composite function f(g(x)).

Def The composite function of any two functions z = f(y) and y = g(x), where 

  X Y Zg f    

such that the domain of f coincides with the range of g, is a function h(x), where 

  h : X  Z,  

defined by h(x) = f(g(x)) for every member x  X. 
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Example

• max u(x1,x2) st I = p1 x1 + p2 x2

• x2 = I/p2 - (p1/p2) x1 = g(x1)

• u(x1, I/p2 - (p1/p2) x1 ) = u(x1,g(x1))

• max u(x1,g(x1))

Example

Consider the two functions g: R   R and f: R  R defined by 

   y = g(x) = 3x -1 

   z = f(y) = 2y + 3 

   for any real numbers x, y.  From our definition we may form the   

                                     function f  g or f[g(x)]: 

   f  g = f[g(x)] = 2(3x-1) + 3 = z, 

   where f  g is defined for every real x. 
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Composite function rule

• R7 (chain) If z = f(y) is a differentiable 
function of y and y = g(x) is a differentiable 
function of x, then the composite function  
f  g or h(x) = f[g(x)] is a differentiable 
function of x and

h'(x) = f[g(x)] g(x).
Remark: This rule can be extended to any 

finite chain. e.g., h = f(g(r(x))) 
h' = f'(g)g'(r)r'(x)

Examples

#1 Let z = 6y + 1/2y2 and y =3x.  Then

    
dz

dx
= 

dz

dy

dy

dx
 

    =(6 + y)3 

      but y = 3x 

    
dz
dx

= (6 + 3x) 3 = 9x + 18 
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Examples

#2 Let z = 
y

y

 1
2 ,  y = 5x 

   
dz
dx

 = 
1 2 12

2 2

( ) ( )

( )

y y y

y

 
(5) 

   = 
5 2 2 5 2 5 10 5 102 2

4

2

4

2

4 4

( ) ( ) ( )y y y

y

y y

y

y y

y

y y

y

 


 

 


 

 

   
dz

dx
 = 

 ( )5 10
3

y

y
 

   but y = 5x 

   
dz

dx
 = 

 5 5x 10

5x 3

( )

( )
 

Inverse function

• Def. The inverse function of a function y = 
f(x), where f: X  Y, is a function x = f-1(y), 
where f-1: f[X]  X.  We have that y = f(x) 
if and only if x = f-1(y) for all (x,y)  Gr(f).

• Proposition. The function y = f(x) is one-to-
one if and only if the inverse function          
x = f-1(y) exists.
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Inverse function

• A one-to-one function defined on real 
numbers is called monotonic. A monotonic 
function is either increasing or decreasing. 

• Def.  A monotonic function f(x), f: R  R is 
monotonically increasing iff for any x, x 
R, x > x implies f(x) > f(x).

• Def.  A monotonic function f(x), f: R  R is 
a monotonically decreasing function iff for 
any x, x  R,  x > ximplies f(x) < f(x).

Inverse function

• Remark:  A practical method of 
determining whether a particular 
differentiable function is monotonic is to 
see if its derivative never changes sign.   
(> 0 if  , < 0 if )
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Example

• Direct demand Q = D(p)

• Inverse demand p = D-1(Q) = p(Q)

• Q = 5-p. What is inverse demand?

Inverse function rule 

• R8 (inverse function) Given y = f(x) and x 
= f-1(y), we have 

f-1'(y) = 1/f'(x).

• Proposition. If a function y = f(x), f : X Y, 
is one-to-one, then

(i)  the inverse function x = f-1(y) exists,

(ii) f-1(y) is one-to-one,

(iii)  (f-1)-1 = f.                                                      
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Examples
Let  y =  f(x ) =  5x  +  4, f:  R    R . 

   f i s b i jec tiv e      f  -1(y) . 

    f -1(y ) =  
y  4

5
 =  x  

   N o w  fin d 
d

d x
f (x ) and  

d

dy
f -1( y) an d  com p are . 

   
d

dx
f(x ) =  5 , th en  b y  in ver se  f n ru le 

d

dy
f   -1(y ) sh ou ld  =  1/5 . 

    
d

dy
f - 1( y)  =  

( )1 5 0

25

5

25

1

5


   

   F ro m  ab o v e w e s ee th at  

    y =  5 x  + 4  

    x  = 1
5 y - 4 /5  

   a re  b o th  bij ec tiv e . 

Higher Order Derivatives

• If a function is differentiable, then its 
derivative function is itself a function which 
may possess a derivative. 

• If this is the case, then the derivative 
function may be differentiated.  This 
derivative is called the second derivative. 

• If a derivative of the second derivative 
function exists, then the resultant 
derivative is called the third derivative. 
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Higher Order Derivatives

• Generally, if successive derivatives exist, 
a function may have any number of higher 
order derivatives. 

• The second derivative is denoted f''(x) or 
d2f/dx2 and the nth order derivative is 
given by dnf/dxn.

• Example:   Let f(x) = 3x5 + 10x. We have 
that f' = 15x4 + 10, f'' = 60x3, and d3f/dx3

= 180x2. 

Partial derivatives

• Here we consider a function of the form

y = f(x1, , xn), f: Rn  R.

• Short-hand notation: y = f(x), where x 
Rn.
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Partial derivative: definition

• Def.  The partial  derivative of the function 
f(x1,x2,, xn), f: Rn  R, at a point (x1

o

,xo
2,, xo

n) with respect to xi is given by

 
lim

( ,. .. , , , ) ( , , )






x

y
x

o
i i N N

ii
i

f x x x x f x x
x


 

0

1
0 0

1
0 0 

Notation

Notation:  We denote the partial derivative, lim





x

y
x

i
i0
,  in  each of the following ways. 

 fi(x),  f(x)/xi   or 
ix


f(x). 
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Illustration 

xo
2

xo
1

f

f1

Summary

The mechanics of differentiation are very 
simple:

• When differentiating with respect to xi, 
regard all other independent variables as 
constants

• Use the simple rules of differentiation for 
xi.
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Examples

#1  Let  y  =  f(x 1,x 2) =  x 1
2  +  x 2 +  3  

   then  



f

x 1

 =  2x1  and  



f

x 2

 = 1  

  #2  L et y =  f(x 1, x 2 ,x 3) =  (x 1 +  3 ) ( x 2
2  +  4 ) (x 3) 

   



f
x 1

 = 1  ( x 2
2  +  4)  (x3)  

  #3  L et  y =  f(x 1,x 2)  = x x1
2

2
4  +  10x 1 

   



f

x 1

 = 2x 1 x 2
4  + 10  

Extensions of the chain rule

a.  Let y = f(x1,...,xn), where xi = xi(x1), for i = 2,...,n. We have that  

 dy/dx1 = f/x1 + 



f
xii

n




2

dx
dx

i

1

. 

b .  L et y  = f( x1,...,x n), w here   i  x i =  x i(u ).  T hen  w e have that 

 dy /du  =  f
dx

dui
i

i

n




1
. 
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Extensions of the chain rule

c. Let y = f(x1,...,xn), where xi = xi(v1,...,vm), for all i.  Then we have that 

 y/vj = f
x
vi

i

n
i

j


1




. 

Example

• Let y = f(x1,x2) = 3x1 + x2
2, where x1 = v2

+u and x2 = u + 5v. Find 



vyuy  /,/
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Higher order partial derivatives 

• A first order partial derivative function is 
itself a function of the n independent 
variables of the original function.  Thus, if 
this function has partial derivatives, then 
we can define higher order partial 
derivative functions. 

• The most interesting are the second order 
partial derivative functions denoted 

fij(x) = x  Rn.ji xxf  /2

Higher order partial derivatives

• If i and j are equal, then fii is called a direct 
second order partial derivative and if ij, fij is 
called a cross second order partial derivative. 

• We can associate a matrix of partial derivatives 
to each point (x1,...,xn) in the domain of f. The 
matrix is defined by 

H(xo) =  [fij(xo )]i,j = 1,…,n

and it is called the Hessian of f at the arbitrary 
point xo.
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Examples 
#1.  Let f = (x1 + 3)(x2

2 + 4)x3.  We have that 

 f1 = (x2
2 + 4)x3, f11 = 0, f12 = 2x2x3, f13 =  (x2

2 + 4) 

 f2 = (x1 + 3)(x3)(2x2), f22 = 2(x1 + 3)x3, f21 = 2x2x3, f23 =  (x1 + 3)(2x2). 

 f3 = (x1 + 3)(x2
2 + 4), f32  = (x1 + 3)(2x2), f31 = (x2

2 + 4), f33 = 0. 

#2 .  L et f =  x 1x 2. 

 f1 =  x 2, f12 = 1 , f11 =  0 , 

 f2 =  x 1, f21 = 1 , f22 =  0 . 

 The Hessian  at any  po in t (x 1,x 2) i s given  by  

 H  =  
0 1

1 0








 =  

f f

f f
11 12

21 22









 . 

A result

• Young's Theorem. If f(x), x  Rn, 
possesses continuous partial derivatives 
at a point, then fij = fji at that point. 

• Example: f = x2y2. Show fxy = fyx.
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Differentials

• Given that y = f(x), a x will generate a y 
as discussed above.  When the x is 
infinitesimal we write dx, which, thus, 
generates an infinitesimal change in y, dy. 

• The first order differential of y = f(x) is  

dy = df = f'(x)dx.

Example

f(x) = 3x + x2, find dy: 

   dy = f(x) dx 

   dy = (3 + 2x) dx. 
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Functions of Many Variables

• Given y = f(x1,…xn), the differential of f is 
given by

df = ifi (x) dxi.

Some rules

Proposition 1. If f(x1, x2, , xn) and g(x1, x2, , xn) are differentiable functions of the variables 

xi ( i = 1, , n), then 

  (i) d (fn) = nfn-1df 

  (ii) d (f  g) = df  dg 

  (iii) d (f  g) = gdf + fdg 

  (iv) d 
f

g







  = 

gdf fdg

g


2

, g  0. 
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Example

• Let f = (x1
2 + 3x2)/x1x2, find df.

df = 
x x x

x x
dx

x
x x

dx1
2

2 2
2

1 2
2 1

1
3

1 2
2 2

3


( ) ( )
.  

2nd order differential

• It is also possible to take a differential of a 
first order differential so as to define a 
second order differential. 

• We have that d2f can be expressed as a 
quadratic form in dx:

d2f = 


n

1i

n

1i

fijdxidxj. 

dx'Hdx,  

j=1i=1
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Derivatives of Implicit Functions

• Implicit relationships between two 
variables x and y are often expressed as 
equations of the form

F(x, y) = 0. 
If possible, we would like to define explicit 
functions say x = x(y) and y = y(x) from 
this relation.

• We would also like to define the 
derivatives of such functions. 

Example

• A circle with radius 2 and center 0:

F(x, y) = x2 + y2 – 4 = 0.

                              y  

x  2  

- 2  

- 2  

2
x 2  +  y 2  -  4  =  0  
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Example

• Here every x  (-2, 2) is associated with 
two values of y. 

• It is possible to define two functions:

y = f(x) = 4 2x , where 

   f: [-2, +2]  [0, 2] 

y = g(x) = - 4 2 x , where 

   g: [-2, +2]  [-2, 0]. 

A result: basic IFT

Proposition 1. The relation F(x, y) = 0 defines one or more differentiable implicit functions of 

the form y = f(x), at some point x, if F / y  0. We have that 

  
y/F

x/F

dx

dy




 .  
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Our Example

y = f(x) = 4 2x ; f: [-2, +2]  [0, 2] 

    y = g(x) = - 4 2x ; g: [-2, +2]  [-2, 0] 

f '(x) = -x(4 - x2)-1/2 = -x/y 

g'(x) = +x (4 - x2)-1/2 = -x/y 

Use IFT on x2 + y2 – 4 = 0.

 d y
d x

F x
F y

x
y

x
y

      
 

/
/

,
2

2
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A generalization 

Proposition 2.  The relation F(x1, x2, x3, , xN) = 0 defines one or more differentiable implicit 

functions of the form xi = fi(xj), at xj, if F / xi  0, i, j=1, , N, i  j. We have that 

  
i

j

j

i

x/F

x/F

x

x








 . 

Example

• x1
3 x2 + x3 x2 = 0.  Find 




 
 

x

x

F x

F x

x

x x
2

3

3

2

2

1
3

3








/

/ ( )
, for (x1

3  + x3)  0. 

32 / xx 
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A Generalized Implicit Function 
Theorem

• Consider a system of n equations

• The variables y1,...,yn represent n 
independent variables and the x1,...,xm

represent m parameters. Write as y  Rn

and x  Rm.

0 = Fi(y1, ...y n,x 1,... ,x m), i =  1, ...,n. 

The Jacobian of the System

Jy = 

   

   

F y F y

F y F y

n

n n
n

1
1

1

1

/ /

/ /

  
 
 
 

  






















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General IFT

Proposition 3.  Let Fi(y,x) = 0 possess continuous partial derivatives in y and x.  If at a point

(yo,xo), |Jy|  0, then  n functions yi = fi(x1,...,xm) which are defined in a neighborhood of xo.  We 

have  

(i)  Fi(f1,...fn,xo) = 0, i, 

(ii)  yi = fi(  ) are continuously differentiable in x locally 

(iii)  Jy  

 

 

y x

y x

k

n k

1 /

/




























  =  






























 

 

F x

F x

k

n
k

1 /

/

  and  

 

 

y x

y x

k

n k

1 /

/





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
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Cramer's Rule and IFT

Remark:  Using Cramer's Rule, we have that  

 yi/xk = |Jyi|/|Jy|. 
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Example

Example: Solve the following system for system y1/x and y2/x. 

 2y1 + 3y2 - 6x = 0 

  y1 + 2y2 = 0. 

Exponential and Logarithmic 
Functions

• An exponential function is a function in 
which the independent variable appears 
as an exponent:

y = bx, where b > 1 

We take b > 0 to avoid complex numbers.    
b > 1 is not restrictive because we can 
take (b-1)x = b-x for cases in which         
b (0, 1).



8/9/2019

31

Logarithmic

• A logarithmic function is the inverse 
function of bx.  That is, 

x = logby.   (iff y = bx )

A preferred base is the number e  2.72. More formally,  e = lim
n

[1 + 1/n]n.  e is called the 

natural logarithmic base.  It has the desirable property that 
d

dx
ex = ex. The corresponding log 

function is written x = ln y, meaning loge y.  

Illustration

                                                                               bx 

                                         y 

                                            1     

                                                                                                     x 
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Rules of logarithms 

• R. 1: If x, y > 0, then log (yx) = log y + log 
x. 

Proof:  eln x = x and eln y = y so that xy = eln x eln y = elnx+lny.  Moreover xy = elnxy. 

Thus, elnx+lny =  elnxy.  || 

Rules of logarithms

• R. 2: If x, y > 0, then log (y/x) = log y -
log x. 

Proof:  elnx = x and eln(1/y)  = y-1 so that x/y = elnx eln(1/y) .  Moreover x/y = elnx/y. 

Thus, elnx eln(1/y) = elnx/y and lnx + ln(y-1) = lnx/y.  Using rule 3 (to be shown) the 

result holds. 
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Rules of logarithms

• R. 3: If x > 0, then log xa = a log x. 

Proof:  elnx = x  and 
axeln = xa.  However, xa = (elnx)a = ealnx.  Thus, 

axeln = ealnx.  || 

Conversion and inversion of bases 

• conversion

logbu = (logbc)(logcu) (logcu is known)

Proof:  Let u = cp.  Then logc u = p.  We know that logb u = logb c
p = plogb c.  By definition, p = 

logc u, so that logb u = (logc u)(logb c).  || 
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Conversion and inversion of bases

• inversion 

logbc = 1/(logcb)

Proof:   Using the conversion rule,  1 = logb b = (logb c)(logc b).  Thus, logb c = 1/(logc b).  || 

Derivatives of Exponential and 
Logarithmic Functions. 

• R. 1: The derivative of the log function      
y = ln f(x) is given by

 d y
d x

f x
f x


 ( )
( )
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Derivatives of Exponential and 
Logarithmic Functions

• R. 2: The derivative of the exponential 
function y = ef(x) is given by

dy

dx
= f(x)ef(x). 

Derivatives of Exponential and 
Logarithmic Functions

• R. 3: The derivative of the exponential 
function y = bf(x) is given by

dy

dx
= f(x)bf(x)ln b. 
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Derivatives of Exponential and 
Logarithmic Functions

• R. 4: The derivative of the logarithmic 
function y = logbf(x) is given by

 d y
d x

f x
f x b


 ( )
( ) l n

1

Examples

#1  L e t  y  =  e x2 42  , th en   

   
d y
d x

 =  4x e x2 42  . 

# 2  L e t  y  =  [ l n  ( 1 6 x 2 ) ] x 2  

       
d y

d x
 =

3 2

1 6 2

x

x
x 2  +  2 x  l n ( 1 6 x 2 )  

   =  2 x  +  2 x  l n 1 6 x 2  =  2 x  +  2 x ( l n 1 6  +  2 l n x )  

   =  2 x  ( 1  +  l n 1 6 )  +  4 x  l n x .  
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Examples

#3 Let y = 6
2 17x x , then f' = (2x + 17) 6

2 17x x ln 6. 

The Taylor Series Approximation

• It is sometimes of interest to approximate 
a function at a point with the use of a 
polynomial function.  

• Linear and quadratic approximations are 
typically used. 

• Let y = f(x). 
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The Taylor Series Approximation

• A Taylor's Series Approximation of f at xo

is given by

f(x)  f(xo) + .)xx(
dx

)x(fd

!i

1 io
i

oik

1i




 

Linear Approximation

• A linear approximation takes k = 1.  This is given 
by 

• Defining, a  [f(xo) – f '(xo)xo ] and b  f '(xo), we 
have 

f(x)  a + bx.

f(x)  f(xo) + [df(xo)/dx](x-xo) = [f(xo) – f '(xo)xo] + f '(xo)x. 



8/9/2019

39

Illustration

 
 
  
                              f(xo) 
                                                                         A    Note that A = f – (f – f 'x) and A/x = f ' 
            [f(xo) – f ' (xo)xo]                                    
 
 
 
 
 
                                                              xo 

Quadratic Approximation

• A quadratic approximation takes k = 2.  
We have that 

• or 

• This is of the form

f(x)  f(xo) + f '(xo)(x-xo) + .)xx(
2

)x(''f 2o
o

  

f(x)  [f(xo) – f '(xo)xo + f ''(xo)(xo)2/2] + [f '(xo) – xof ''(xo)]x + [f ''(xo)/2]x2 

f(x)  a + bx + cx2. 
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Functions of many variables

• General linear

f( x)   f( xo) +  



n

1i

o
ii

o
i ).xx)(x(f  

Define  f(x)'  (f1(x)…fn(x)) and term this the gradient of f.  Then we have  

 f(x)  f(xo) + f(xo)'(x – xo),  

Functions of many variables

• Quadratic

• or

f( x )    f ( x o )  +   f (x o ) '(x  –  x o )  +  

'

) .xx)(xx)(x(f
2

1 o
jj

o
ii

o

i j i j    

f ( x )    f ( x o )  +   f ( x o ) '( x  –  x o )  +  
2

1
( x  – x o ) 'H ( x o ) ( x  -  x o ) .  
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Examples

Consider the function y = 2x2.  Let us construct a linear approximation at x = 1. 

 f   2 + 4(x – 1) = -2 + 4x. 

A quadratic approximation at x = 1 is  
 
 f   2 + 4(x – 1) + (4/2)(x-1)2 = 2 + 4x – 4 + 2(x2 –2x + 1) = 2 + 4x – 4 + 2x2 –4x + 2) 
 
 f = 2x2. 
 
Given that the original function is quadratic, the approximation is exact.

Examples
.  Let y =  x1

3x2.  Construct a linear and a quadratic approximation of f at (1,1).  The linear 

approximation is given by 

      f  1 + 3(x1 – 1) + 1(x2 – 1). 

Rewriting, 

 f  -3 + 3x1  + x2. 

A quadratic approximation is constructed as follows: 

 f  1 + 3(x1 – 1) + 1(x2 – 1) + 
2

1
 [x1 – 1  x2 – 1] 








03

36











1x

1x

2

1 . 

Expanding terms we obtain the following expression. 

 f  3 - 6x1 - 2x2 + 3 x1x2 + 3x1
2.  


