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Optimization

• Unconstrained

• Constrained with equality constraints

• Constrained with inequality constraints

Unconstrained with a function of a 
single variable

• Given a real valued function, y = f(x) we will be 
concerned with the existence of extreme values 
of the dependent variable y and the values of x 
which generate these extrema.

• f(x) is called the objective function and the 
independent variable x is called the choice 
variable.  

• In order to avoid boundary optima, we will 
assume that f : X  R, where X is an open 
interval of R. 
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Local and global extrema

• Def 1: f has a local maximum at a point xo  X if 
 N(xo) such that f(x) - f(xo) < 0 for all x  N(xo), x 
 xo.

• Def 1: f has a local minimum at a point xo  X if 
 N(xo) such that f(x) - f(xo) > 0 for all x  N(xo), x 
 xo.

• Def 3: A real valued function f(x), f: X  R, has 
an absolute or global maximum (minimum) at a 
point xo  X, if f(x) < f(xo) (f(x) > f(xo)), for all x 
xo, such that x  X.

Illustrations: global
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Illustration: local

Optimization and the First 
Derivative Test 

• Proposition 1. If f has a local maximum or 
minimum at xo  X, then f '(xo) = 0. 

• Points at which f ' = 0 are called critical 
values.  The image f(xo) is called a critical 
value of the function and xo is called a 
critical value of the independent variable. 

• To distinguish maxima and minima we 
must study the curvature of the function.
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Curvature

• In a neighborhood of a maximum, a 
function has the property that it is locally 
concave, and in a neighborhood of a 
minimum it is locally convex.

• Concavity is implied by a nonpositive 
second derivative and convexity is implied 
by a nonnegative second derivative.

Some definitions

• Def 1: A set X  Rn is convex if for any x, x'  X, 
  [0, 1],  x + (1-) x'  X.

• Def 2: A real-valued fn ,f(x), f: X  R, X  R (X 
convex) is concave (convex) if for any x, x'  X, 
  [0, 1], 

f( x + (1- ) x)  (≤) f(x) + (1- ) f(x).
• Def 3: A real-valued fn, f(x), f: X  R, X  R (X 

convex) is strictly concave (strictly convex) if for 
any x x, x,x'  X,   (0, 1), 

f( x + (1 - ) x) > (<) f(x) + (1 - ) f(x).
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A result

• Theorem 1: If a function, f(x), f: X  R, 
such that X is an open interval X  R, is 
differentiable over X, 

(i) it is strictly concave (strictly convex) if 
and only if f(x) is decreasing (increasing) 
over x,  

(ii) if f '' exists and is negative (positive), for 
all x, then f is strictly concave (convex).

Functions of n variables

• The definition of strict concavity for a 
function of n variables is analogous to the 
above definition.  In this case f: X  R, 
where X is a subset of Rn.  We have 

• Def 4. A real-valued fn, f(x), f: X  R, X 
Rn (X convex) is strictly concave (convex)
if for any x  x, x,x'  X,   (0, 1), f( x + 
(1 - ) x) > (<)  f(x) + (1 - ) f(x).
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Derivative characterization

• Theorem 2. Let f: f: X  R, X  Rn (X 
convex).  Suppose that f is twice 
continuously differentiable on X.  If d2f = 
dx'Hdx is negative (positive) definite for all 
xX, then f is strictly concave (convex).  If 
d2f is negative (positive) semidefinite for all 
xX, then f is concave (convex). 

A sufficiency result

• Proposition 2. Let f be twice differentiable.  Let 
there exists an xo  X such that f '(xo) = 0.

(i) If f ''(xo) < 0, then f has a local maximum at xo.  
If, in addition, f '' < 0 for all x or if f is strictly 
concave, then the local maximum is a unique 
global maximum. 

(ii) If f ''(xo) > 0, then f has a local minimum at xo.  
If, in addition, f '' > 0 for all x or if f is strictly 
convex, then the local minimum is a unique 
global minimum. 
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Remark: terminology

• The zero derivative condition is called the 
first order condition (FOC) and the second 
derivative condition is called the second 
order condition (SOC).

Examples

#2.  Let f = ax - bx2, a,b > 0 and x > 0.  Here f' = 0 implies x = a/2b.                              Moreover,

f'' = -2b < 0, for all x.  Thus, we have a global max.  

#1  Let f(x) = x + x-1 we know that f(x) = 1 - x-2 and x = 1. Now calculate f ''(x) 

f  (x) = 2x-3. At x = 1, f ''(1) = 2 > 0, so that 1 is a local min.  At x = -1, f '' = -2, so that -1 is a 

local max.  
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Existence

• In the above discussion, we have assumed the 
existence of a maximum or a minimum.  In this 
section, we wish to present sufficient conditions 
for the existence of an extremum.  

• Proposition. Let f: X  R, X  R, where X is a 
closed interval of R.  Then if f is continuous, it 
has a maximum and a minimum on X.  If f is 
strictly concave, then there is a unique maximum 
on X.  If f is strictly convex, then it has a unique 
minimum on X.  

Remarks

• This proposition includes boundary optima in its 
assertion of existence. 

• To insure existence of interior optima, one must 
show that boundary points are dominated by 
some interior point. 

• If those boundary points are not part of the 
domain of the function, then one can take the 
limit of the function at boundary points and show 
that those limit points are dominated by some 
interior point. 
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An n-Variable Generalization

• A set X is an open subset of Rn if  x  X 
 N(x)  X.  In this case N(xo) is defined as 
the set of points  within an  distance of xo:

• Let y = f(x), where x  Rn and f : X  R, 
where X is an open subset of Rn. 

N(xo)  {x | [ ( ) ] , }/x xi i
o

i

n
  



2 1 2

1
0  . 

A local extremum

• Def.  f has a local maximum (minimum) at 
a point xo  X if  N(xo) such that for all 
xN(xo), f(x) - f(xo) < 0. (f(x) - f(xo) > 0 for a 
minimum.)
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The FOC

• Proposition 1.  If a differentiable function f 
has a maximum or a minimum at xo  X, 
then fi(xo) = 0, for all i.

• Remark: The n equations generated by 
setting each partial derivative equal to 
zero represent the first order conditions. If 
a solution exists, then they may be solved 
for the n solution values xi

o. 

The SOC

• The SOC for a max is

(*) d2f(xo) =  
i

n




1 j

n




1
fij(x

o) dxidxj < 0 for all (dx1,...,dxj)  0. 

This condition is that the quadratic form 
i

n




1 j

n




1
fij(x

o) dxidxj is negative definite. 
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SOC for a max

• In (*), the discriminate is the Hessian 
matrix of f (the objective function). 

• As discussed above, the rather 
cumbersome (*) condition is equivalent to 
a fairly simple sign condition. 

(SOC) (max)      |PMi | of  H = 

  

 
 
 

  























f f

f fn1 nn

11 1n

, evaluated at xo, have signs (-1)i
. 

The SOC for a min

• The analogous conditions for a minimum 
are that 

• The matrix condition is 

(**) d2f(xo) =  
i

n




1 j

n




1
fij(x

o) dxidxj > 0 for all (dx1,...,dxn)  0 

(SOC) (min)       |PMi | of  H = 

  

 
 
 

  























f f

f fn1 nn

11 1n

, evaluated at xo, have positive signs 
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SOC

• If f satisfies the SOC for a maximum 
globally, then f is strictly concave. If it 
satisfies the SOC for a minimum globally, 
then f is strictly convex. 

A sufficiency result

 Proposition 2.  If at a point xo we have  

(i) fi(x
o) = 0, for all i, and  

(ii) SOC for a maximum (minimum) is satisfied at xo, 

Then xo is a local maximum (minimum).  If in addition the SOC is met for all x  X or if f is 

strictly concave (convex), then xo is a unique global maximum (minimum). 
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Examples

#1  Maximizing a profit function over two strategy variables.  Let profit be a function of  the two

variables xi, i =1,2.  The profit function is (x1,x2) = R(x1,x2) - rixi, where ri is the unit cost of xi

and R is revenue.  We wish to characterize a profit maximal choice of xi.  The problem is written 

as  

 Max
x x{ , }1 2

 (x1,x2). 

#1

• Show FOC and SOC

• Characterize ,              using Cramer's rule.1/ rxi 
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#1

The FOC are  

 1(x1,x2) = 0  

 2(x1,x2) = 0. 

The second order conditions are  

 11 < 0, 1122 - 12
2 > 0 (recall Young's Theorem ij = ji). 

#1

H
 
 

x r

x r
1 1

2 1

/

/








  = 

1

0







 , where H is the relevant Hessian. 

Using Cramer's rule, 

 x1/r1 = 

1

0
12

22




| |H
 = 22/|H| < 0. 

Likew ise  

 x2/r1 = 




11

21

1

0

| |H
 = -21/|H | . 
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Remark

• The comparative static derivative

has a sign which depends on whether 1 and 2 
are complements or substitutes. It is negative in 
the case of complements and positive in the case 
of substitutes.

12 / rx 

Examples
#2.  Min

x y}{ ,
 x2 + xy +2y2.  The FOC are  

 2x + y = 0, 

 x + 4y = 0. 

Solving for the critical values x = 0 and y = 0.  f11 = 2, f 12 = 1 and f22 = 4.  The Hessian is  

 H = 
2 1

1 4








 , with f11 = 2 > 0 and |H | = 8 - 1 = 7 > 0. 

Thus, (0,0)  is a minimum.  Further, it  is global, because the H ess ian sign conditions are met for 

any x,y. 
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Existence with n Choice Variables

• Def. 1.  A set X  Rn is said to be open if for all x 
 X  N(x) such that N(x)  X.  The set X is said 
to be closed if its complement is open. 

• Def. 2. A set X  Rn is said to be bounded if the 
distance between any two of its points is finite.  
That is,

for all x, x'  X.

 




n

1i

2/12'
ii ])xx([

Existence

• Def. 3 A set X  Rn is said to be compact
if it is both closed and bounded. 
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Existence result

• Proposition. Let f: X R, where X is a 
subset of Rn.  If X is compact and f is 
continuous, then f has a maximum and a 
minimum on X.  If X is both compact and 
convex and f is strictly concave, then f has 
a unique maximum on X.  If X is both 
compact and convex and f is strictly 
convex, then f has a unique minimum on 
X. 

Existence

• Remark: This proposition does not 
distinguish between boundary optima and 
interior optima.  

• The results presented here can be used to 
show the existence of interior optima by 
showing that boundary optima are 
dominated.  The technique is as described 
above. 
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Constrained Optimization

• The basic problem is to maximize a 
function of at least two independent 
variables subject to a constraint. 

• We write the objective function as f(x) and 
the constraint as g(x) = 0. 

• The constraint set is written as C = { x | 
g(x) = 0} .

• f maps a subset of Rn into the real line. 

Examples

• Max u(x1, x2) subject to I-p1x1 – p2x2 = o

• Min r1x1 +r2 x2 subject to q – f(x1, x2) = 0

35
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The basic problem

• The optimization problem is written as 

Max
x x n{ ,..., }1

f(x) subject to g(x) = 0.   

A local constrained extremum

• Def. xo is a local maximum (minimum) of 
f(x) subject to g(x) = 0 if there exists N(xo) 
such that N(xo)  C   and  x  N(xo) 
C, f(x) < (>) f(xo).
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The FOC

Proposition 1.  Let f be a differentiable function whose n independent variables are restricted by

the differentiable constraint g(x) = 0.  Form the function L(,x)  f(x) + g(x), where  is an 

undetermined multiplier.  If xo is an interior maximizer or minimizer of f subject to g(x) = 0, then 

there is a o such that 

(1)  L(o, xo)/xi = 0, for all i, and  

(2) L(o, xo)/ = 0. 

The SOC

• The relevant SOC for a maximum is that 

• Condition (*) says that the quadratic form d2f is 
negative definite subject to the constraint that dg 
= 0.  This is equivalent to d2L = d2f being 
negative definite subject to dg = 0, because dL = 
df +dg + gd = df, if dg = g = 0. 

(*) d2f(xo) =  
i

n




1 j

n




1
fij(x

o) dxidxj < 0 for all (dx1,...,dxn)  0 such that dg = 0. 
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SOC

• Condition (*) is equivalent to a rather 
convenient condition involving the 
bordered Hessian matrix.  The bordered 
Hessian is given by 

 H (o, xo) = 

0 1

1 11 1n

g g

g L L

g L L

n

n n1 nn

. . .

. . .

. . .

. . .

. . .

. . .



























. 

Remark

• The bordered Hessian is the Jacobian of the 
FOC in variables (,xi)

The picture can't be displayed.

0/

0/




ixL

L 
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SOC

• The sign condition for a max is 

SOC (max)     |PMi| of | H | of order i  3, evaluated at (o, xo), has sign (-1)i+1 

SOC

• For a minimum, the second order 
condition is 

• The equivalent sign condition is 

(**) d2f(xo) =  
i

n




1 j

n




1
fij(x

o) dxidxj > 0 for all (dx1,...,dxn)  0 such that dg = 0 

SOC (min)     |PMi| of  | H | of order i  3, evaluated at (o, xo), are all negative.  
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Sufficiency Result

Proposition 2. Let f be a differentiable function whose n independent variables are restricted by

the differentiable constraint g(x) = 0.  Form the function L(,x)  f(x) + g(x), where  is an 

undetermined multiplier.  Let there exist an xo and a o such that  

(1)  L(o,xo)/xi = 0, for all i, and  

(2) L(o,xo)/ = 0. 

Then xo is a local maximum (minimum) of f(x) subject to g(x) = 0, if, in addition to (1) and (2)

the SOC for a maximum (minimum) is satisfied.  If SOC is met for all x  C, then xo is a unique 

global maximizer (minimizer). 

Curvature conditions and the SOC

• In the above maximization problem, as long as 
the relevant constraint set is convex, the 
maximum will be a global maximum if the 
objective function is strictly quasi-concave. 

• The latter property means that the sets {x : f(x) 
f(x')} = U(x') are strictly convex. These set are 
called upper level sets.

• A set X in Rn is strictly convex if x + (1-)x' 
interior X for all   (0,1) and all x  x' with x, x' 
 X. 
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Curvature conditions and the SOC

• If the lower level sets ( {x : f(x) f(x')} = 
L(x')) of a function are strictly convex sets, 
then the function is said to be strictly 
quasi-convex. 

• When the relevant constraint set is convex 
and the objective function is strictly quasi-
convex (strict quasi-concave), then the 
minimum (maximum) is unique. 

An operational check 

• If a function is defined on the nonnegative 
orthant of Rn (Rn

+ = {x Rn |xi ≥ 0 for all i}) 
and is twice continuously differentiable, 
then there is an easy operational check for 
quasi-concavity or quasi-convexity.   Let 
f(x1,…,xn) be such a function. 
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A Bordered Hessian Condition

• The function f is strictly quasi-concave if 

• For strict quasi-convexity, the condition is 
that |PMi| are all negative for i  2. 

B = 























NN2N1NN

N222122

N112111

N21

f.fff

.....

f.fff

f.fff

f.ff0

 has |PM i| with sign (-1)i+1 for i    2 . 

A Bordered Hessian Condition

• It is important to note that the condition 
pertains only to functions defined on R+

n = 
{x  Rn : xi  0 for all i}.  

• The condition on B is equivalent to the 
statement that d2f is negative definite (or 
positive definite) subject to df = 0. 
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Example

• Display the 2 x 2 condition and show that it 
is equivalent to an iso-surface being 
strictly convex. 

Existence

• The conditions for existence of a constrained 
optimum are the same as those for the 
unconstrained problem except that the set X  C 
is the relevant set for which we assume 
boundedness and closedness (compactness).  

• Further, the objective function is assumed to be 
continuous over this set.  Under these 
conditions, a constrained optimum will exist. 
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Examples

• Max f(L,K) st C-wL-rK = 0

• Min wL+rK st q- f(L,K)  = 0

Extension to Multiple Constraints

• Suppose that there are m < n equality
constraints gj(x) = 0, j = 1 , ..., m.

• The Lagrangian is written as L(1, ... , m, 
x1, ... , xn) = f(x) + jgj(x). 

• The FOC are that the derivatives of L in xi

and j vanish: 

fi +  jgj/x i =  0,  fo r all i, 

            gj(x)  = 0 , for all j.  
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Multiple Constraints

• The bordered Hessian becomes

• where Jg is the Jacobian of the constraint  
system in x, and [Lij] is the Hessian of the 
function L in x.  

| H | = 
0

m m
g

g ij

J

J L














' , 

RemarkRemark

• The bordered Hessian is the Jacobian of the 
FOC in variables (j,xi)

The picture can't be displayed.

0/

0/





i

j

xL

L 
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SOC

• For a maximum, the condition is 

(SOC)( max)   PMi of  | H | of order i > 2m has sign (-1)r, where r is the order of the largest order 

square [Lij] embedded in   | PMi|. 

SOC

• For a minimum, the condition is 

(SOC)( min)    |PMi| of  | H | of order i > 2m has sign (-1)m.  
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Example

• Presented in class

Inequality Constrained Problems

• In many problems the side constraints are  
best represented as inequality constraints:

gj(x)  0.

• We wish to characterize the FOC to this 
extended problem: 

Max
x{ }

 f(x) subject to gj(x)  0, j = 1,…m. 
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Inequality Constrained Problems

• The first step is to form the Lagrangian

L( , x) = f(x)  + 


m

j
jj xg

1

)( . 

FOC

(1 )     L/ xi =  fi + 
 

m

j i

j
j x

xg

1

)(
 =  0 for  a ll  i , 

(2 )     L/ j =  gj   0 ,  j   0 an d g j j = 0 , j  = 1 ,… , M  and   

(3 )      Th e  C onstra int Qu alif icatio n h olds. 
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A Min

• These same conditions are used for a 
minimum.  If one were to solve Min f(x) 
subject to gj(x)  0, then to use the above 
conditions one would rewrite the problem 
as Max -f(x) subject to – gj(x)  0. 

Constraint qualification

• The FOC (1) and (2) are necessary 
conditions only if the Constraint 
Qualification holds.  This rules out 
particular irregularities by imposing 
restrictions on the boundary of the feasible 
set. 

• These irregularities would invalidate the 
FOC (1) and (2) should the solution occur 
there. 
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Constraint qualification

• Let xo be the point at which (1) and (2) 
hold and let index set k = 1,…, K represent 
the set of gj which are satisfied with 
equality at xo. 

Constraint qualification

• The matrix

• has rank K  n. That is the gradient vectors of 
the set of equality constraints are linearly 
independent. 

 J =  

n

o
K

o
K

n

oo

x

xg

x

xg

x

xg

x

xg













)()(
...

...

...

)(
...

)(

1

1

1

1
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Example: #1
Nonnegativity constrain ts on x i 

 L =  f + 1x 1 + 2x2.  

The F OC are  

 f i +  i = 0 

 x i  0,  i  0  and   ix i = 0. 

If  all x i > 0, then  i = 0  and  we have the prev ious conditions.   

If  i >  0,  then it must be true that xi =  0 and fi <  0 at the optimum. 

It can be true that  i =  0 and x i =  0. 

Examples #2
Consider the problem where we seek to Max f(x), x  R2,  subject to  p1x1 + p2x2  c, where  c is 

a constant and xi  0.  Assume that c,pi > 0,    We should set up the Lagrangian as  

 L = f(x) + [c - p1x1 - p2x2 ] + ixi. 

The relevant first order conditions are as follows: 

fi - pi + i = 0, i = 1,2,  

c - p1x1 - p2x2  0,   0, [c - p1x1 - p2x2 ] = 0, and  

xi  0, i  0, ixi = 0, i = 1,2. 
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Examples #2

• Note that if the nonnegativity constraints 
are nonbinding and, at optimum, it is true 
that [c – p1x1 – p2x2 ], xi > 0, then the 
optimum is defined as a free optimum with 
fi = 0. 

Examples #2

• Next, suppose that the constraint p1x1 + 
p2x2  c is binding, 2 > 0, and that x1 > 0.  
In this case, x2 = 0, 1 = 0, and p1x1 + p2x2

- c = 0 and the first order conditions read
f1 =  p1  

 f2 = p2 - 2 which implies that f2 < p2. 

Thus, we have that  

 f1/f2 > p1/p2, c = p1x1  x1 = c/p1 and x2 = 0. 
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Illustration

                     x2          

 

 

                                

                c\p2                                |slope| = p1/p2                

                                                                              constant  y surface                   

                                                                                |slope| = f1/ f2        

 

 

                                                                       c\p1                                    x1        

#2

• If it were true that i = 0 and  > 0, then  

f1/f2 = p1/p2, c = p1x1 + p2x2, and x1, x2 > 0.

• This is an interior optimum.  The 
illustration is as follows:
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Illustration
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                c\p2                                |slope| = p1/p2 =f1/f2               

                                                                               

 

 

 

                                                                       c\p1                                    x1        
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