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Lecture 7:  Integration Techniques 

Antiderivatives and Indefinite Integrals 

1.  In differential calculus, we were interested in the derivative of a given real-valued function, 

whether it was algebraic, exponential or logarithmic.  Here we are concerned with the inverse of 

the operation of differentiation.  That is, the operation of searching for functions whose 

derivatives are a given function. 

2.  Consider any arbitrary real-valued function 

   f: X → R 

defined on a subset x of the real line, i.e. X  R. By the antiderivative (primitive) of f; we mean 

any differentiable function 

   F: X → R 

whose derivative is the given function f.   Hence, 

   
dF

dx
 = F(x) = f(x). 

3.  Let c be any real number c  R, (which is constant).  Now since the derivative of c with 

respect to x or dc/dx = 0, we have: 

Theorem 1.  If a function F: X → R is an antiderivative of f: X → R, so is the function F + c: X 

→ R defined by 

   (F + c) (x) = F(x) + c, 

for every x  X  R. 

Remark 1:  Hence, the derived function f(x) is traceable back to an infinite number of possible 

primary, antiderivative or primitive functions of the form F(x) + c. 

Remark 2:  However, here there is a subtle point.  Every antiderivative fn of f is of the form F(x) 

+ c if X  R is a connected subset of the real line R. 
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Def 1:   A set X  R is connected if and only if, for any two real  numbers a, b  X with a < b, X 

contains the closed interval [a, b]. 

Example:  Consider the function f(x) = x2, where f: X → R, X = [0, ).  It has an antiderivative 

function defined by 

   F(x) = 
1

3
x3 + 10, 

since F(x) = dF/dx = x2.  However, it also has an antiderivative function defined by 

   G(x) = 1/3 x3 + 100, 

since 
dG x

dx

( )
= x2. In fact, any function of the form  

   F(x) = 
1

3
x3 + c, 

for any c  R is an antiderivative function of f(x) = x2. 

Theorem 2.  If F: X → R is an antiderivative function of a real-valued function f: X → R, where 

X  R is connected, then {F + c: c  R} is the set of all antiderivatives of f. 

Def. 2. The set of all antiderivative functions of a real valued function f: X → R, X  R, is 

called the indefinite integral of f and is denoted by 

   f x dx( ) .  

Remark 3:  The symbol  is the integral sign.  If f has no antiderivative (nonintegrable), then its 

indefinite integral is .  The f(x) part is the integrand. The f(x) dx may be taken as the 

differential dF of a primary or antiderivative  function. 

Remark 4:  The process of determining the indefinite integral of a given  real-valued function say 

f: X → R is termed the indefinite integration of f.  We have that 

   
d

dx
F(x) = f(x) implies f x dx F x c( ) ( )= +  
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for any real c, where X connected. The constant x will be referred to as the arbitrary constant of 

integration. If X is not connected, then 

   f x dx( )  = F + c 

means only that F + c is an antiderivative of f for some x. 

Counterexample. 

  Let x denote the subset of R which consists of all non-zero real numbers: 

   X = {x  R: x  0} 

  (1) Consider the fn f(x) = 1/x2, f: X → R. 

    Then the fn. F(x) 

     F(x) = -x-1, F: X → R 

   is an antiderivative of f. 

  (2) Consider the function G(x), G: X → R, 

    ( )G x
x if x

x if x

− + 

− − 





−

−

1

1

1 0

1 0
 

   Note dG/dx = G(x) is given by: 

    G(x) = 1/x2 = f(x). 

     G(x) is also an antiderivative of f. 

   However, 

    G - F = -
1

x
 + 1 + 

1

x
;  if x > 0 

    G - F = − −










1
1

x
+ 

1

x
;  if x < 0 

   Hence 

    G - F = 
+ 

− 





1 0

1 0

if x

if x
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Thus, G - F  c, where c represents a constant function, for all x.  Hence, G is not of form                        

F(x) + c, for all x. 

Basic Rules of Integration 

1.  Theorem 1. If F is an antiderivative of f and G is an antiderivative of g, then F + G  is an 

antiderivative of f + g.  Hence, 

   [f(x) + g(x)] dx =  f(x) dx +  g(x) dx. 

(holds for finite sum) 

2.  Theorem 2. If F is an antiderivative of f, then cF is an antiderivative of cf for every c  R. 

Thus, 

   cf(x) dx = c f(x) dx. 

3.  Theorem 3. For every N  -1, xN+1/N + 1 is the antiderivative of xN.  Thus, 

   xN dx = 
1

1N +
xN+1 + c. 

4.  Examples: 

  #1 Let f(x) = x4, then 

     x4dx = 
x5

5
 + c. 

   check: 

    
( )d x

dx

5 5/
 = x4. 

  #2 Let f(x) = x3 + 5x4, then 

     [x3 + 5x4] dx =  x3 dx + 5 x4 dx 

     = x4/4 + 5(x5/5) + c 

     = x4/4 + x5 + c 

   check. 
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d

dx
(x4/4 + x5) = x3 + 5x4. 

  #3 Let f(x) = x2 - 2x 

    [x2 - 2x] dx =  x2 dx +  -2x dx 

    = x3/3 - 2 x dx + c 

    = x3/3 - 2(x2/2) + c 

    = x3/3 - x2 + c. 

5.   Theorem 4. The antiderivative of ex is given by 

   ex dx = ex + c. 

Theorem 5.  The antiderivative of x-1, x  0 is given by 

   
1

x
dx = ln|x| + c. 

Remark 1:  (Why ln|x| instead of ln x.)  Note that the function f(x) = x-1 is such that 

  f: R - {0} → R. 

That is, f(x) = x-1 is defined on the set of non-zero real numbers.  Now, the natural logarithmic 

function 

G(x) = ln x, is such that  G: P → R, where  P  {x: x  R, x > 0}. That is, ln x is defined only on 

the positive real numbers.  Thus, G(x) = ln x, G: P → R, can not be an antiderivative function of 

f(x) = x-1, where f: R - {0} → R.  This is true since the antiderivative of f must map from the 

same domain.  In this case, clearly, R- {0}  P.  To be able to define an antiderivative function of 

x-1, we must extend the function ln x to the set R - {0} somehow.  Thus, we define the function 

F(x) = ln(|x|), where, of course  F: R-{0} → R. That is, ln (|x|) is defined on all non-zero real 

numbers. 

Example:  Let f(x) = 2ex - x-1. 

    f(x) dx = 2ex dx -  x-1 dx = 2ex - ln|x| + c. 
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The Methods of Integration by Substitution and by Parts. 

1. Method of Substitution:  To determine the indefinite integral of a function f(x), we choose by 

inspection a suitable differentiable function u(x) such that the given function f(x) can be 

expressed as the product g(u(x))  u(x), where g(u(x)) is a function of u and constants.  Then we 

have 

   f(x) dx =  g(u) u(x) dx =  g(u) du. 

Remark :  We have that u = u(x); hence, du = u(x) dx. 

2.  Examples 

  #1 Let f(x) = 
( )

x

x2 1 2

1+
/ , find  f(x) dx. 

   Choose u = u(x) = x2 + 1, then we have that u(x) = 2x, such that 

    du = u(x) dx = 2xdx 

   Now 

    f(x) = g(u) u(x) 

    f(x) = 
( )

x

x

x

u u
u x

2 1 2 1 2 1 2
1

1

2

1

+
= = / / / ( )  

   Here, g(u) = (1/2)(u-1/2).  Thus 

     f(x) dx =  
( )

x

x2 1 2

1+
/ dx =  

1

2

1
1 2u

u x/ ( ) dx 

   but du = u(x) dx, hence 

     f(x) dx =  g(u) du =  
1

2

1
1 2u / du. 

   Now integrate the last result. 

     f(x) dx = 
1
2 u

-1/2du  
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    = 
1
2

1

11
2− +









 u1/2 + c 

    = 
1
2

1
1
2









 u1/2 + c 

    = u1/2 + c 

   Substitute for u = x2 + 1, then 

     
( )

x

x2 1 2

1+
/ dx = (x2+1)1/2 + c. 

   To check, find 

    
d

dx
(x2 +1)1/2 = ½ (x2+1)-1/2 2x 

    = 
x

x( ) /2 1 21+
 

  #2 Let f(x) = 
( )

2

1

3

4 2 1 3

x x

x x

−

− +
/ .  Find f dx. 

   (1) Choose u = (x4 - x2 + 1) 

     u(x) = 4x3 - 2x, such that  

     du = (4x3 - 2x) dx. 

   (2) Construct the product g(u) u(x) such that f(x) = g(u) u(x) 

          f(x)  = 
( )

2

1

3

4 2 1 3

x x

x x

−

− +
/  = 

2 3

1 3

x x

u

−
/  

     = 
( ) ( )1

2

1
3

u x

u
 

     = 
( )u x

u2
1

3
 

    Here g(u) = 
1

2
1

3u
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   (3) Thus we have that 

      f(x) dx =  g(u) u(x) dx 

     =  
1

2
1

3u
 u(x) dx = 

1

2
1

3u
 du 

    Take last integral: 

      f(x) dx = 
1

2
  u-1/3 du 

      = 
1

2

1
2

3

2
3









u  + c 

      = 
3

4

2
3u  + c 

      = ( )
3

4
14 2

2
3

x x− +  + c 

    To check take d/dx 

     = 
1

2
(x4 - x2 + 1)-1/3 (4x3 - 2x) 

     = 
( )

4 2

2 1

3

4 2 1 3

x x

x x

−

− +
/  

     = 
( ) 3/124

3

1xx

xx2

+−

−
 

2.  Method of Integration by Parts.  To determine the indefinite integral of the fn f(x), we choose 

by inspection two differentiable functions u(x), v(x) such that  

  f(x) dx =  u dv = uv -  v du. 

Remark. If we can find u and v such that f(x) = u v(x), then dv = v(x) dx and 

  f(x) dx =  u v(x) dx =  u dv. 

To see that  u dv = uv - v du, let z  vu, then 

 dz = u dv + v du 
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Integrate both sides 

  dz =  u dv +  v du 

 z =  u dv +  v du 

  u dv = z -  v du 

   u dv = uv -  v du. 

Examples. 

  #1 Let f(x) = xeax 

   (1) Choose dv so that it is the most complicated expression,   

    but is easy to integrate 

     Let dv = eax dx 

     Let u = x such that du = dx 

   (2)  u dv = x
a

eax
1

 -  v du 

    Now since 

            dv = eax dx      

           dv  = v =  eax dx 

              v  = 
1

a
eax

  

    Also since 

              u  = x 

            du  = 1 dx 

     u dv = 
x

a
eax

 -  v du 

     = 
x

a
eax

 -  
1

a
 eax dx 
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     = 
x

a
eax

 - 
1

a
  eax dx 

     = 
x

a
eax

 - 
1

2a
 eax + c 

      x eax dx = 
x

a
eax

 - 
1

2a
 eax + c.  

    check 

     
d

dx

x

a
e

a
e

a
e xe

a
e xeax ax ax ax ax ax−









 = + − =

1 1 1
2  

  #2 Let f(x) = 6
2 2xex +

.  Integrate by parts. 

   (1) Let v = ex2 2+
 

    then dv = 2x ex2 2+
 dx 

    Hence, let 

              u  =3 

            du = 0 dx = 0   

   (2) Then  f(x) dx =  u dv 

     = 3 ex2 2+
-  ex2 2+

 du. 

                                                    However, du = 0. 

    Hence, 

      6x ex2 2+
 dx = 3 ex2 2+

 + c 

    To check: 

     
d

dx
(3 ex2 2+

) = 6x ex2 2+
. 
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Definite Integrals 

1.  Let f(x) be continuous on an interval X  R, where f: X → R. Let F(x) be an antiderivative of 

f, then  f(x) dx = F(x) + c.   

2.  Now choose a, b  X such that a < b.  Form the difference 

   [F(b) + c] - [F(a) + c] = F(b) - F(a). 

   (Note that this is independent of the constant c) 

This difference F(b) - F(a) is called the definite integral of f from a to b.  The point a is termed 

the lower limit of integration and the point b, the upper limit of  integration. 

3.  Notation:  We would write 

 ( ) ( ) ( ) ( ) ( )f x dx F x F x F b F a
a

b

a

b

a

b

   = −  

4.  All that we have described thus far is known as the fundamental theorem of calculus.  We 

state these results formally as follows: 

Theorem 1:  For any antiderivative function F(x), F: X → R, X  R, of a continuous function 

f(x), f: X → R defined on a closed interval I = [a, b], we have 

 ( )f x dx
a

b

  = F(b) - F(a). 

Examples 

   #1 Let f(x) = x3, find 

    ( ) ( )x dx x3

0

1
4

0

1 4 41

4

1

4
1

1

4
0 = = −  

    =
1

4
. 

   #2 f(x) = 2x ex2

, find ( )f x dx
3

5

 , 

    2
2 2

3

5

3

5

xe ex x

 =  = e25 - e9 
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5.  The absolute value of the definite integral represents the area between f(x) and the x-axis 

between the points a and b.   

                                     f(x) 

 

 

 

 

 

 

 A 

 

 

                                                      a                   b   c    B    d                             x 

 

 

The area A = ( )
b

a
dxxf  and the area B = ( )−

d

c
dxxf)( 1 . 

  

6.  Properties of Definite Integrals. 

 P. 1 If f(x) is such that  ( )f x
a

b

 dx over [a, b], then 

  ( ) ( )f x dx f x dx
b

a

a

b

= − . 

 P. 2 If f(x) is defined and continuous at the point a, then 

  ( )f x dx
a

a

= 0 . 

 P. 3 If f(x) is defined and continuous on each of the closed intervals [x1, x2], , [xN,  

  xN+1], where N, the number of subintervals, is finite and     

     
i

i i NU x x x x, ,+ +=1 1 1 , then 

   ( ) ( ) ( ) ( )f x dx f x dx f x dx f x dx
x

x

x

x

x

x

x

x

N

NN

= + + +
++

 
1

2

3

1

2

1

1

. 

 P. 4 If f(x) and g(x) are such that  ( )f x
a

b

 dx and  ( )g x
a

b

 dx, then 

  (i) ( ) ( )kf x dx k f x dx
a

b

a

b

=  , for any k  R 
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  (ii) ( ) ( )  ( ) ( )f x g x dx f x dx g x dx
a

b

a

b

a

b

+ = +  . 

Improper Integrals 

1. Consider a function f(x) and the definite integral ( )f x dx
a

b

 .  If a or b or both are infinite or if 

f(x) is undefined for some x  [a, b], the above expression is termed improper. 

Def 1. If f(x) is defined for x  [a, +), then the expression ( )f x
a



 dx is defined as 

( )lim
b a

b

f x
→
 dx.  If f(x) is defined for x  (-, b], then ( )f x

b

− dx is defined as ( )lim
a a

b

f x
→−+  dx. 

Def 2. If f(x) is defined for x  [a, b] then the expression ( )f x
−

+

 dx is defined as 

( )
b

a

a

b
f x

→+

→−

−

+

lim dx. 

Def 3. If f(x) is defined for x  [a, b), b  R, but not defined for x = b, then ( )f x dx
a

b

 is 

defined as ( )lim
c b a

c

f x dx
→ −  .  If f(x) is defined for x  (a, b], a  R, but not defined for x = a, then 

the expression ( )f x dx
a

b

  is defined as ( )lim
c a c

b

f x dx
→ +  . 

Def 4. If the limit of the improper integrals called for in Def. 1, 2 or 3 exists, the improper 

integral is said to be convergent, otherwise divergent. 

2.  Examples: 

  #1 Evaluate x dx−



7

2
. Hence, by Definition 1,     

                                                x dx x dx
b

b
−



→

−

 =
−

7

2

7

2
lim  

   = lim lim
b

b

b
x

b→

−

→− −
−






= − +







1

6

1

6

1 1

6

1

2
6

2 6 6  
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   = 
1

6
2 6 6−

→

−−

 


lim

b
b  

   = 
1

6
2 6−

 

   our integral is convergent and = 
( )

1

6 26  

  #2 Evaluate 
−

→

−

+
=

1

a

2

0a

1

0

2 dxxlimdxx  

   







+−=






−=
→

−

→

−

→  a

1
1limxlimdxxlim

0a

1

a

1

0a

1

a

2

0a
 

   lim
a a→

−








 = 

0

1
1  

   Hence our integral is divergent and has no value. 

  #3 Compute #2 for x dx−

−

+


2

1

1

 

   
−

−

−
+

−

− +=
1

0

2
0

1

2
1

1

2 dxxdxxdxx , 

   but we found above that 

   lim lim
a a a

x dx
a→

−

→
 = −









 = 

0

2
1

0

1
1  

    it diverges. 

                          #4          Let f(x) be a continuous probability density function with 

                                        support (domain) (-,+).   We know that the following improper  

                                        integral is convergent.    

                                         
+

−

=1dx)x(f . 

                                        Both the expectation and the variance of the random variable x 

                                        are convergent improper integrals. 
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                                             E(x) =  ,dx)x(xf
+

−

 

                                             Var(x) = .dx)x(f))x(Ex( 2


+

−

−  

                                          Likewise, the distribution function of x is a convergent improper  

                                          integral. This function is defined by  

                                               F(x') = 
−

=

'x

).'xx(obPrdx)x(f    

                                                                                                                       

Differentiation of an Integral 

1.  The following rule applies to the differentiation of an integral. 

 )y('p)y,p(f)y('q)y,q(fdx)y,x(fdx)y,x(f
y

q

p

y

)y(q

)y(p

−+=



 . 

 

2.  Example:  In Economics, we study a consumer's demand function in inverse form 

 p = p(Q),  

where Q is quantitiy demanded and p denotes the maximum uniform price that the consumer is 

willing to pay for a given quantity level Q.  We assume that p' is negative. The definite integral  

  =

Q

0

)Q(TVdz)z(p  

is called total value at Q. It gives us the maximum revenue that could be extracted from the 

consumer for Q units of the product.  The dollar amount  

 TV(Q) – p(Q)Q = CS(Q) 

is called consumer's surplus.  Let C(Q) be the cost of supplying Q units.  If a firm could extract 

maximum revenue from the consumer, its profit function would be 
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    −

Q

0

).Q(Cdz)z(p  

The output level maximizing the firm's profit sets the derivative of the previous definite integral 

equal to zero.  This implies  

 p(Q) = C'(Q). 

The firm should set the last quantity unit sold, so that price is equal to marginal cost.  Each unit 

should have a price equal to the maximum price the consumer is willing to pay.  This is called a 

perfectly discriminating monopolist.   

Some Notes on Multiple Integrals 

1.  In this section, we will consider the integration of functions of more than one independent 

variable.  The technique is analogous to that of partial differentiation.  When performing 

integration with respect to one variable, other variables are treated as constants.  Consider the 

following example: 

 
d

c

b

a

dxdy)y,x(f . 

We read the integral operators from the inside out.  The bounds a,b refer to those on x, while the 

bounds c,d refer to y.  Likewise, dx appears first and dy appears second.  The integral is 

computed in two steps: 

#1.  Compute  =

b

a

).y(gdx)y,x(f  

#2.  Compute  =

d

c

dy)y(g   
d

c

b

a

dxdy)y,x(f . 

If there were n variables, you would follow the same recursive steps n times.  Each successive 

integration eliminates a single independent variable.   

2.  Some Examples. 
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Example 1: Suppose that z = f(x,y).  We wish to compute integrals of the form 

 .dxdy)y,x(f

d

c

b

a

   

Consider the example f = x2y, where c = a = 0 and d = 2, b = 1.  We have 

 .ydxdyx

2

0

1

0

2

   

Begin by integrating with respect to x, treating y as a constant 

 .y
3

1
|yx

3

1
dxyx 1

0
3

1

0

2 ==  

Next, we integrate the latter expression with respect to y. 

 .
3

2
4

6

1
|y

2

1

3

1
ydy

3

1 2
0

2

2

0

===  

Example 2:  Compute   

 ,dxdydz)z2xy3( +  

where the limits of integration are 0 and 1, in each case.  Begin with x. 

 .z2
2

y3
|)zx2

2

yx3
( 1

0

2

+=+  

Next, y 

 .z2
4

3
|)zy2

4

y3
( 1

0

2

+=+  

Finally, z 

 .
4

7
|)z

4

z3
( 1

0
2 =+  

Example 3.  Let f(x,y) be a joint probability density function defined on the continuous random 

variables (x,y) with support R2.  The unconditional expectation of x is defined as the double 

integral 
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 E(x) = dydx)y,x(xf
+

−

+

−

. 

This expectation can be rewritten in terms of the marginal probability density function for x 

 f1(x) = dy)y,x(f
+

−

. 

Thus,  

 E(x) = dx)x(xf1
+

−

. 

The conditional expectation of x for a given value of y is quite different.  The conditional density 

of x, given y, is  

 g1(x | y) = f(x,y)/f2(y),  

and the conditional expectation is  

 E(x | y) = 
+

−

dx)y|x(xg1 . 


