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Lecture 8:  Probability Distributions  
 

Random Variables  

 Let us begin by defining a sample space as a set of outcomes from an experiment.  We 

denote this by S.  A random variable is a function which maps outcomes into the real line.  It is 

given by x: S→R.  It assigns to each element in a sample space a real number value.  Each 

element in the sample space has an associated probability and such probabilities sum or integrate 

to one. 

Probability Distributions 

1.  Let A  R and let Prob(x  A) denote the probability that x will belong to A. 

2.  Def.  The distribution function of a random variable x is a function defined by  

 F(x')  Prob(x  x'), x'  R.   

3.  Key Properties of a Distribution Function 

P.1  F is nondecreasing in x. 

P.2  lim
x→

F(x) = 1 and  lim
x→−

F(x) = 0. 

P.3  F is continuous from the right. 

P.4  For all x', Prob(x > x') = 1 - F(x'). 

P.5  For all x' and x'' such that x'' > x', Prob(x' < x  x'') = F(x'') - F(x'). 

P.6  For all x', Prob(x < x') = lim
'x x→ −

F(x). 

P.7  For all x', Prob(x=x') = lim
'x x→ +

F(x) - lim
'x x→ −

F(x). 

Discrete Random Variables 

1.  If the random variable can assume only a finite number or a countable infinite set of values, it 

is said to be a discrete random variable.  The set of values assumed by the random variable has a 

one-to-one correspondence to a subset of the positive integers.  In contrast, a continuous random 

variable has a set of possible values which consists of an interval of the reals. 
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2.  With a discrete random variable, x, x takes on values as  

 {x1,...,xk} (finite) or  {x1,x2,...} (countable but infinite) 

3.  There are three key properties of discrete random variables. 

P.1  Prob(x = x')  f(x')  0. (f is called the probability mass function or the probability function.) 

P.2  f x ob x xi
i

i
i

( ) Pr ( )
=



=



 = = =
1 1

1 . 

P.3  Prob(x  A) = f x i
x Ai

( ).


  

4.  Graphically, the distribution function of a discrete random variable is a step-dot graph with 

jumps between points equal to f(xi). 

Example:  #1  Consider the random variable associated with 2 tosses of a fair coin.  The possible 

values for the #heads x are {0, 1, 2}.  We have that f(0) = 1/4, f(1) = 1/2, and f(2) = 1/4.  

f(x)                                                                         F(x) 

 

                       

                                                                                  1                                                     X  

 

 1/2                   X                                                     3/4                           X  

 

 

 1/4  X                                  X                                 1/4  X   

 

 

        0                1                   2                                           0                       1                        2                

 

#2  A single toss of a fair die.   

 

 f(x) = 1/6 if xi  = 1,2,3,4,5,6. 

 

 F(xi) =  xi/6. 
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Continuous Random Variables and their Distributions  

1.  A continuous random variable takes on real number values.  We have  

 

Def.  A random variable x has a continuous distribution if there exists a nonnegative function f 

defined on R such that for any interval A of R 

 Prob (x  A) = f x dx
x A

( )


 . 

The function f is called the probability density function of x and the domain of f is called the 

support of the random variable x. 

2.  Probability density must satisfy the following properties. 

P.1  f(x)  0, for all x. 

P.2  f x dx( ) .
−

+

 = 1  

P.3  If  dF/dx exists, then dF/dx = f(x), for all x. 

In terms of geometry F(x) is the area under f(x) for x'  x. 

3.  Example:  The uniform distribution on [a,b]. 

              1/(b-a), if x  [a,b] 

 f(x) =  

                           0, otherwise 

Note that F is given by  

 F(x) =  [ / ( )]
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|
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Discrete Joint Distributions 

1.  Let the two random variables x and y have a joint probability function  

 f(xi',yi') = Prob(xi = xi' and yi = yi'). 

The set of values taken on by (x,y) is  

 X  Y   { (xi,yi) : x  X and y  Y}. 

The probability function satisfies  

P.1  f(xi, yi)  0. 

P.2  Prob((xi,yi)  A) = f x yi i
x y Ai i

( , )
( , )

 . 

P.3  f x yi i
x yi i

( , )
( , )

 = 1. 

The distribution function is given by 
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 F(xi
', yi

') = Prob( xi  xi
' and yi  yi

') = f x yi i
x y Li i

( , )
( , )

 , where 

 L = {(xi, yi) : xi  xi
' and yi  yi

'}. 

2.  Next we wish to consider the marginal probability function and the marginal distribution 

function. 

a.  The marginal probability function associated with x is given by f1(xj)  Prob(x = xj) = 

f x y
y

j i
i

( , ) .  Likewise the marginal probability function associated with y is given by f2(yj)  

Prob(y = yj) = f x y
x

i j
i

( , ) .   

b.  The marginal distribution function of x is given by F1(xj) = Prob(xi  xj) = lim
y j→

Prob(xi  xj 

and yi  yj) =  lim
y j→

F(xj,yj).  Likewise for y, the marginal distribution function is F2(yj) = 

lim
x j → 

F(xj,yj).   

3.  An example.  Let x and y represent random variables representing whether or not two different 

stocks will increase or decrease in price.  Each of x and y can take on the values 0 or 1, where a 1 

means that its price has increased and a 0 means that it has decreased.  The probability function 

is described by  

 f(1,1) = .50  f(0,1) = .35   f(1,0) = .10  f(0,0) = .05. 

Answer each of the following questions. 

a.  Find F(1,0) and F(0,1).  F(1,0) = .1 + .05 = .15.  F(0,1) = .35 + .05 = .40. 

b.  Find F1(0) = lim
y→1

F(0,y) = F(0,1) = .4 

c.  Find F2(1) =  lim
x→1

F(x,1) = F(1,1) = 1. 

d.  Find f1(0) = f y
y

( , )0 = f(0,1) + f(0,0) = .4. 

e.  Find f1(1) = f y
y

( , )1 = f(1,1) +f(1,0) =.6 
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4. Next,  we consider conditional distributions. 

a.  After a value of y has been observed, the probability that a value of x will be observed is 

given by  

 Prob(x = xi | y = yi ) = 
Pr ( & )

Pr ( )

ob x x y y

ob y y

i i

i

= =

=
 . 

In terms of our probability functions, this ratio is given by  

 
Pr ( & )

Pr ( )

ob x x y y

ob y y

i i

i

= =

=
 =

f x y

f y

i i

i

( , )

( )
.

2

 

b.  The function  

 g1(xi | yi) 
f x y

f y

i i

i

( , )

( )
.

2

 

is called the conditional probability function of x, given y. g2(yi | xi) is defined analogously.  

c.  Properties. 

(i)  g1(xi | yi)  0. 

(ii) 
xi

 g1(xi | yi) = 
xi

 f(xi,yi) / 
xi

 f(xi,yi) = 1. 

((i) and (ii) hold for g2(yi | xi)) 

(iii) f(xi,yi) = g1(xi | yi)f2(yi) = g2(yi | xi)f1(xi). 

5.  The conditional distribution functions are defined by the following. 

 G1(xi | yi) = f x y f yi i i
x xi

( , ) / ( )2


 ,  

 G2(yi | xi) = f x y f xi i i
y yi

( , ) / ( )1


 . 

6.  The stock price example revisited. 

a.  Compute g1(1 | 0) = f(1,0)/f2(0).  We have that f2(0) = f(0,0) + f(1,0) = .05 + .1 = .15.  Further 

f(1,0) = .1.  Thus, g1(1 | 0) = .1/.15 = .66. 
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b.  Find g2(0 | 0) = f(0,0)/f1(0) = .05/.4 = .125.  Here f1(0) = f y i
yi

( , )0 = f(0,0) + f(0,1) = .05 + 

.35 = .4. 

Continuous Joint Distributions 

1.  The random variables x and y have a continuous joint distribution if  there exists a 

nonnegative function f defined on R2 such that for any A  R2 

 Prob((x,y) A) = f x y dxdy
A

( , ) . 

f is called the joint probability density function of x and y. 

2. f satisfies the usual properties. 

P.1  f(x,y)  0. 

P.2  
−

+

  
−

+

 f(x,y)dxdy = 1. 

3.  The distribution function is given by  

 F(x',y') = Prob(x  x' and y  y') =   
−


y'

 
−


x'

f(x,y)dxdy. 

If F is twice differentiable, then we have that   

 f(x,y) = 2F(x,y)/xy. 

4. The marginal density and distribution functions are defined as follows. 

a.  F1(x) = lim
y→

F(x,y) and F2(y) = lim
x→

F(x,y).  (marginal distribution functions) 

b.  f1(x) = f x y
y

( , ) dy and f2(y) = f x y
x

( , ) dx. 

Example #1:  Let  

 f(x,y) = cx2y for x2  y  1 and f(x,y) = 0, otherwise. 

Determine the constant c and Prob(x  y). 

Answer:  First note that x2  1 iff x  [-1,1].  To compute the constant c, we use  
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−


1

1

x2

1

  (cx2y)dydx = 1. 

Integrating over y, we obtain  

 
c

x x
2

2 6( )−   

and the integral is  

  
−


1

1 c
x x

2

2 6( )−  dx = c4/21. 

If this is to equal 1, then c = 21/4. 

 Next, we find the probability that x  y.  If x  y, and y   x2, then x  [0,1].  Then  

  
0

1


x

x

2
 (21/4)x2ydydx = 3/20. 

Example #2:  Let f(x,y) = 4xy for x,y [0,1] and 0 otherwise. 

a.  Check to see that 
0

1


0

1

 4xydxdy = 1. 

b.  Find F(x',y').  Clearly, F(x',y') = 4  
0

y'


0

x'

 xydxdy = (x')2 (y')2.  Note also that 2F/xy = 4xy = 

f(x,y). 

c.  Find F1(x) and F2(y).  We have that 

 F1(x) = lim
y

x y
→1

2 2  = x2. 

Using similar reasoning, F2(y) = y2. 

d.  Find f1(x) and f2(y). 

 f1(x) = 
0

1

 f(x,y)dy = 2x   and  f2(x) = 
0

1

 f(x,y)dx = 2y. 

5.  The conditional densities and distribution functions are defined as follows for a continuous 

joint distribution. 

a.  The conditional density function of x, given that y is fixed at a particular value is given by 
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 g1(x | y) = f(x,y)/f2(y). 

Likewise, for y we have 

 g2(y | x) = f(x,y)/f1(x). 

It is clear that g1(x | y)dx = 1.   

                                                  g1(x | y) 

 

 

 

 

                                                                                                                x                    

                                                  y' 

 

 

b. The conditional distribution functions are given by 

 G1(x' | y) =  
−


x'

g1(x |y)dx, 

 G2(y' | x) =  
−


y'

g2(y |x)dy. 

Example:  Let us revisit example #2 above.  We have that f = 4xy with x,y  (0,1). 

 g1(x | y) = 4xy/2y = 2x      and     g2(y | x) = 4xy/2x = 2y. 

Moreover,  

 G1(x' | y) = 2
0

x'

 x dx = 2 
( ' )x 2

2
 = (x')2. 

By  symmetry. G2(y | x) = (y')2.  It turns out that in this example, x and y are independent random 

variables, because the conditional distributions do not depend on the other random variable. 
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Independent Random Variables 

1.  Def.  The random variables (x1, ... ,xn) are said to be independent if for any n sets of real 

numbers Ai, we have 

 Prob(x1  A1 & x2  A2 &...& xn  An) = Prob(x1  A1)Prob(x2  A2)•••Prob(xn  An). 

2.  Given this definition, let Fi and fi represent the joint marginal densities and the marginal 

distribution functions for the random variables x and y.  Let F and f represent the joint 

distribution and density functions.  The random variables x and y are independent iff  

 F(x,y) = F1(x)F2(y) or 

 f(x,y) = f1(x)f2(y). 

Further, if x and y are independent, then  

 g1(x | y) = f(x,y)/f2(y) = f1(x)f2(y)/ f2(y) = f1(x). 

The example #2 above clearly exhibits independence.   

Extensions 

 The notion of a joint distribution can obviously be extended to any number of  random 

variables.  The marginal and condition distributions are easily extended to this case.  Let 

f(x1,...,xn) represent the joint density. The marginal density for the ith variable is given by 

 fi(xi) = ... f(x1,...,xn)dx1...dxi-1dxi+1...dxn. 

The conditional density for say x1 given x2,...,xn is  

 g1(x1 | x2,...,xn) = f(x1,...,xn)/ f(x1,...,xn)dx1. 
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Summary Measures of Probability Distributions 

1.  Summary measures are scalars that convey some aspect of the distribution.  Because each is a 

scalar, all of the information about the distribution cannot be captured. In some cases it is of 

interest to know multiple summary measures of the same distribution. 

2.  There are two general types of measures. 

a.  Measures of central tendency:  Expectation, median and mode 

b.  measures of dispersion:  Variance 

Expectation 

1.  The expectation of a random variable x is given by 

 E(x) =  xif(xi)  (discrete) 

 E(x) =  xf(x)dx.  (continuous) 

2.  Examples  

#1.  A lottery.  A church holds a lottery by selling 1000 tickets at a dollar each.  One winner wins 

$750.  You buy one ticket.  What is your expected return? 

 E(x) = .001(749) + .999(-1) = .749 - .999 = -.25. 

The interpretation is that if you were to repeat this game infinitely your long run return would be 

-.25. 

#2.  You purchase 100 shares of a stock and sell them one year later.  The net gain is xi.  The  

distribution is given by.  (-500, .03), (-250, .07), (0,.1), (250, .25),(500, .35), (750, .15), and  
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(1000, .05). 

 E(x) = $367.50 

#3.  Let f(x) = 2x for x  (0,1) and = 0 , otherwise.  Find E(x).   

 E(x) = 
0

1

 2x2 dx = 2/3.   

3. E(x) is also called the mean of x.  A common notation for E(x) is . 

4.  Properties of E(x) 

P.1  Let g(x) be a function of x.  Then E(g(x)) is given by  

 E(g(x)) =  g(xi) f(xi)  (discrete) 

 E(g(x)) =   g(x)f(x) dx.  (continuous) 

P.2  If k is a constant, then E(k) = k. 

P.3  Let a and b be two arbitrary constants.  Then E(ax + b) = aE(x) + b. 

P.4  Let x1, ... ,xn be n random variables.  Then E(xi) = E(xi). 

P.5  If there exists a constant k such that Prob(x  k) = 1, then E(x)  k.  If there exists a constant 

k such that Prob(x  k) = 1, then E(x)  k.  

P.6 Let x1, ... ,xn be n independent random variables.  Then E( x i
i

n

=


1

) = E x i
i

n

( )
=


1

. 

Median 

1.  Def.  If Prob(x  m)  .5 and Prob(x  m)  .5, then m is called a median.  

a.  The continuous case 

 f x dx
m

( )
−

  = f x dx
m

( )
+

  = .5. 

b.  In the discrete case, m need not be unique.  Example:  (xi,f(xi)) given by (6,.1), (8,.4), (10, .3), 

(15, .1), (25, .05), (50, .05).  In this case, m = 8 or 10. 
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Mode 

1.  Def.  The mode is given by mo = argmax f(x). 

2.  A mode is a maximizer of the density function.  Obviously, it need not be unique. 

Other Descriptive Terminology for Central Tendency 

1.  Symmetry.  The distribution can be divided into two mirror image halves. 

2.  Skewed.  Right skewed means that the bulk of the probability falls on the lower values of x.  

Left skewed means that the bulk of probability falls on the higher values. 

A Summary Measure of Dispersion:  The Variance  

1.  In many cases the mean the mode or the median are not informative.  

2.  In particular, two distributions with the same mean can be very different distributions.  One 

would like to know how common or typical is the mean.  The variance measures this notion by 

taking the expectation of the squared deviation about the mean.   

Def.  For a random variable x, the variance is given by E[(x-)2]. 

Remark:  The variance is also written as Var(x) or as 2.  The square root of the variance is 

called the standard deviation of the distribution.  It is written as . 

3.  Computation of the variance.   

a.  For the discrete case, Var(x) =  (xi -)2 f(xi).  As an example, if (xi, f(xi)) are given by (0, .1), 

(500, .8), and (1000, .1).  We have that E(x) = 500. 

 Var(x) = (0-500)2(.1) + (500 - 500)2(.8) + (1000 - 500)2(.1) = 50,000. 
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b.  For the continuous case, Var(x) =  (x-)2f(x)dx.  Consider the example above where f = 2x 

with x  (0,1).  From above, E(x) = 2/3.  Thus, 

 Var(x) = 
0

1

  (x - 2/3)22x dx = 1/18. 

4.  Properties of the Variance. 

P.1  Var(x) = 0 iff there exists a c such that Prob(x = c) = 1. 

P.2   For any constants a and b, Var(ax +b) = a2Var(x). 

P.3  Var(x) = E(x2) - [E(x)]2. 

P.4  If xi, i = 1, ... ,n, are independent, then Var(xi) =  Var(xi). 

P.5  If xi are independent, i = 1, ... ,n, then Var(aixi) =  ai
2Var(xi). 

5.  The Standard Deviation and Standardized Random Variables 

a.  Using the standard deviation, we may transform any random variable x into a random variable 

with zero mean and unitary variance.  Such a variable is called the standardized random variable 

associated with x.   

b.  Given x we would define its standardized form as  

 z = 
x − 


. 

z tells us how many standard deviations x is from its mean (i.e., z = (x-)). 

c.  Properties of z.   
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P.1  E(z) = 0. 

P.2  Var (z) = 1.   

Proof: P.2.  Var(z) = E(z-0)2 = E(z2) = E[(x-)2/2] = (1/2)E(x-)2 = 2/2 = 1. 

4.  A remark on moments 

a.  Var (x) is sometimes called the second moment about the mean, with E(x-) = 0 being the first 

moment about the mean.   

b.  Using this  terminology, E(x-)3 is the third moment about the mean.  It can give us 

information about the skewedness of the distribution.  E(x-)4  is the fourth moment about the 

mean and it can yield information about the modes of the distribution or the peaks (kurtosis). 

Moments of Conditional and Joint Distributions 

1.  Given a joint probability density function f(x1, ... , xn), the expectation of a function of the n 

variables say g(x1, ... , xn) is defined as 

 E(g(x1, ... , xn)) =  ••• g(x1, ... , xn) f(x1, ... , xn) dx1 ••• dxn. 

If the random variables are discrete, then we would let xi = (x1
i, ... , xn

i) be the ith observation and 

write 

 E(g(x1, ... , xn)) =  g(xi) f(xi). 

2.  Unconditional expectation of a joint distribution. 

 Given a joint density f(x,y),  E(x) is given by  



 16 

 E(x) = 
−

+

 xf1(x)dx = 
−

+


−

+

 xf(x,y)dxdy. 

Likewise, E(y) is  

 E(y) = 
−

+

 yf2(y)dy = 
−

+


−

+

 yf(x,y)dxdy. 

3.  Conditional Expectation. 

 The conditional expectation of x given that x and y are jointly distributed as f(x,y) is 

defined by (I will give definitions for the continuous case only.  For the discrete case, replace 

integrals with summations) 

 E(x | y) = 
−

+

 xg1(x | y) dx. 

Further the conditional expectation of y given x is defined analogously as  

 E(y | x) =
−

+

 yg2(y | x) dy. 

Note that E(E(x | y)) = E(x).  To see this, compute  

 E(E(x | y)) = 
−

+

 [
−

+

 xg1(x |y)dx]f2dy = 
−

+

 {
−

+

 x[f(x,y)/( f2)]dx}f2dy 

                   = 
−

+


−

+

 xf(x,y)dxdy,  

and the result holds.   
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Correlation and Covariance  

1.  Covariance. 

a. Covariance is a moment reflecting direction of  movement of two variables.  It is defined as  

 Cov(x,y) = E[(x-x)(y-y)]. 

When this is large and positive, then x and y tend to be both much above or both much below 

their respective means at the same time. Conversely when it is negative.   

b.  Computation of  the covariance.  First compute  

 (x-x)(y-y) = xy - xy - yx +xy. 

Taking E, 

 E(xy) - xy - xy + xy = E(xy) - xy. 

Thus, Cov(xy) = E(xy) - E(x)E(y).  If x and y are independent, then E(xy) = E(x)E(y) and 

Cov(xy) = 0.  

2.  Correlation Coefficient. 

a.  The covariance is a good measure when dealing with just two variables.  However, it has the 

flaw that its size depends on the units in which the variables x and y are measured.  This is a 

problem when one wants to compare the relative strengths of two covariance estimates, say 

between x and y and z and w. 

b.  The correlation coefficient cures this problem by standardizing the units of the covariance.  

The correlation coefficient is defined by   
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  = Cov(x,y)/xy. 

c.  Generally,   [-1,1].  If y and x are perfectly linearly related then || → 1.  The less linearly 

related are x and y, the closer is  to zero. 

3.  Other useful results. 

a.  Proposition 1. (Schwarz Inequality)  [E(xy)]2  E(x2)E(y2). 

b.  Proposition 2.  Var(x + y) = Var(x) + Var(y) + 2Cov(x,y).  More generally, Var(xi) = 

Var(xi) + 2Cov(xi,xj), where the double sum is taken over i < j. 

c.  Proposition 3.  If x and y are independent, Cov(x,y) = (x,y) = 0, if x and y are finite. 

The Normal Distribution 

1.  The normal distribution is an important specific probability distribution. It is a continuous 

distribution defined on the extended real line.  Its mean and variance will be denoted as  and 2, 

as usual.  The specific density function for a normal distribution is  

 f(x | , 2)  
1

2 1 2( ) / 
e

x− −1

2

2( )


 , where x  R. 

2.  It can be shown that xfdx =  and that Var(x) = 2.  We say that x is distributed N(,2). 

3.  The shape of f is that of a bell-shaped curve with a single peak (mode) at the mean, .  The 

mean turns out to also be the median as well as the mode.  That is the distribution is symmetric 

with half the probability mass above the mean and half below.  At the points x =     there are 

inflection points.  For x  (-, +), f is concave and for x outside this interval, f is convex.  As 

 becomes less, the density becomes more concentrated about  and has a greater f(). 
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4.  We can standardize this distribution by performing the transformation z = (x-)/.  Then z 

will be distributed N(0,1).  The density is given by 

 f(z) = (2)-1/2 e z( / )−1 2 2

. 

Clearly, Prob(x  a) = Prob(z  (a-)).  Given that the density of z is easy to manipulate, 

calculation of probabilities is easier under the standard normal.  Further, by differentiating the 

standard normal, one can discern the shape of the normal.  Let a = (2)-1/2.  Then f(z) can be 

written as  

 f(z) = a e z− 2 2/
. 

We have that  

 f ' = -a z e z− 2 2/ 


 0 as z 




 0. 

Further, f '' = a e z− 2 2/
(z2 -1), so that  

 f '' > 0 if |z| > 1 and f '' < 0 if |z|  (0,1). 

This says that the inflection points for f ' occur at one standard deviation from the mean.  It is 

where f changes from concave to convex.   

5.  Linear transformations of normally distributed random variables. 

Theorem 1.  If x has a normal distribution with mean  and variance 2 then y = ax + b has a 

normal distribution with mean a + b and variance a22. 
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Theorem 2.  If xi, i = 1, ... ,n, are independent random variables and if xi is distributed N(i,i
2), 

then z = aixi + b, ai not all zero, has a normal distribution with mean aii + b and variance 

ai
2i

2. 

Corollary 1.  Suppose that xi, i = 1, ... ,n, are independent random variables each with the same 

distribution N(,2).  Then xi/n is distributed normally with mean  and variance 2/n. 

Remark:  Note that z = xi/n is the random variable under consideration.  It follows, from 

Theorem 2, that its mean is /n = n/n = .  Moreover, the variance is 2/n2 = n2/n2 = 2/n. 

The Central Limit Theorem 

Theorem 3.  Let each of xi be distributed independently each with the same mean and variance,  

and 2, respectively.  Define x   xi/n.  Then  

 z = 
x E x

Var x

− ( )

( )
 = 

x

n

− 

 /
 

has a probability distribution which approaches the standard normal as n→ +.   

Interpretation:  The average value of n independent random variables from any probability 

distribution has a normal distribution as the sample size n becomes very large.  The average, x , 

has mean  and variance 2/n.  In other words, if a large random sample is taken from any 

distribution with mean  and variance 2 (regardless of whether this distribution is discrete or 

continuous), then the sample mean will be approximately normal.  


