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Abstract 

We examine whether reverse engineering activities undertaken by firms are influenced by the 
extent of trade secrecy in competitor firms. We develop a novel measure for reverse engineering 
based on abnormal purchasing patterns around firm headquarters, using the Nielsen scanner 
database. We validate this measure by showing that firms with greater abnormal purchasing 
behavior near their headquarters are more likely to introduce products and technologies that more 
closely resemble competitors’ offerings, and that competitors experience declines in gross margin 
when they are subject to higher levels of reverse engineering activity. Using this measure, we find 
that competitors’ use of trade secrecy is associated with increased reverse engineering. The effect 
is stronger under heightened competition, when hiring competitors’ employees is restricted, and 
varies with the product life cycle. For identification, we leverage the Defend Trade Secrets Act 
(DTSA). Collectively, our findings highlight reverse engineering as an important but 
underexplored innovation strategy.  
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1. Introduction 

Reverse engineering, the practice of analyzing and reconstructing competitors’ products or 

technologies, is widely employed by firms seeking to gain competitive insights and accelerate their 

own innovation efforts (Raja and Fernandes, 2007). While legal in some contexts, reverse 

engineering is often perceived negatively in the marketplace because it is viewed as appropriating 

others’ innovative ideas, potentially diminishing incentives for future innovation (Samuelson and 

Scotchmer, 2001). Consequently, firms must decide how to protect their innovations—whether 

through formal mechanisms like patents, or informal ones like trade secrecy. Despite its 

importance, surprisingly little is known about reverse engineering activity in general. This study 

addresses this gap by introducing a novel approach to measuring reverse engineering activity, and 

asking whether competitors’ decision to use trade secrecy (hereafter simply trade secrecy) as a 

protection mechanism shapes the extent of reverse engineering activities undertaken by firms. 

The relationship between trade secrecy and reverse engineering activity is not immediately 

obvious. On the one hand, trade secrecy involves less transparency about the innovation, which 

can both reduce competitor awareness of the innovation as well as increase the cost and effort 

required to replicate proprietary technologies, thereby discouraging reverse engineering. On the 

other hand, trade secrets hold weaker legal protections against imitations compared to patenting 

innovations, which may embolden competitors to pursue reverse engineering. Moreover, when 

competitors rely on trade secrecy, firms may view reverse engineering as a necessary substitute 

for acquiring otherwise inaccessible knowledge. The lack of detailed public information can also 

signal hidden value, incentivizing firms to invest in uncovering proprietary technologies. As a 

result, the overall effect of trade secrecy on reverse engineering activities remains theoretically 

ambiguous, highlighting the need for empirical investigation into this relationship.  
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A key obstacle in studying reverse engineering is the difficulty of empirically observing 

such activity directly. To address this, we rely on the insight that reverse engineering typically 

involves firms purchasing competitors’ products to analyze and reconstruct them.1 Building on 

this intuition, we use purchasing behavior as an indirect measure of reverse engineering. 

Specifically, we examine product purchase data from the highly granular Nielsen scanner database 

to detect unusual buying activity near firm headquarters. By comparing purchasing patterns to the 

average purchasing activity across other locations, we can identify abnormal spikes in demand that 

potentially reflect product acquisitions intended for reverse engineering purposes. 

To validate the measure, we examine whether abnormal purchasing activity near firm 

headquarters precedes outcomes consistent with reverse engineering. Reverse engineering is 

expected to result in increased product imitation and a shift in innovation toward competitors’ 

technologies (Samuelson and Scotchmer, 2001). Using a firm-year panel, we find that such activity 

precedes the introduction of products and patents that more closely resemble competitors’ 

innovations, and is also associated with higher R&D intensity and patenting. We further find that 

competitors exposed to greater abnormal purchasing activity experience a decline in gross margins, 

driven primarily by revenue pressures rather than cost increases. Lastly, abnormal purchasing 

activity near firm headquarters intensifies in the period leading up to a firm’s entry into a new 

product market, consistent with firms reverse engineering competitors’ products in anticipation of 

entry. Collectively, these patterns validate that our purchasing-based measure meaningfully 

captures reverse engineering efforts.2 

 
1 See ocpatentlawyer.com – “Reverse engineering is a simple concept: your competitors purchase your product, take 
it apart, and study every element”.  
2 In untabulated analysis, we document a positive correlation (0.059) between abnormal product purchasing activity 
and the number of litigations in which the firm is alleged to have reverse engineered a rival’s product (which we use 
as an alternative proxy for reverse engineering in Section 5.2), strengthening the construct validity of our measure. 

https://ocpatentlawyer.com/protecting-your-product-from-reverse-engineering/#:~:text=Reverse%20engineering%20is%20a%20simple,it%20or%20improve%20upon%20it.
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Having validated the measure, we examine the relationship between peer firm trade secrecy 

and reverse engineering. We measure peer firm trade secrecy using the percentage of TNIC 

competitors that explicitly reference trade secrets in their public filings, following the methodology 

in Glaeser (2018). Using a sample of 75,963 firm-year observations spanning 2006–2020, our 

analysis reveals a significant positive relationship between competitors’ use of trade secrecy and 

activities indicative of reverse engineering. Quantitatively, our results indicate that an interquartile 

increase in competitors’ trade secrecy corresponds to a 9.7% increase in reverse engineering 

activity. This suggests that greater reliance on trade secrecy by competitors increases firm 

incentives to reconstruct proprietary technologies. In contrast, we observe the opposite pattern 

when considering patenting activity—reverse engineering is less prevalent when competitors make 

greater use of patents. Moreover, we do not observe a similar association when we examine 

abnormal purchases of non-related products, reinforcing that our measure captures targeted 

strategic behavior rather than general demand or unrelated purchasing activity. 

To strengthen our ability to draw causal inference, we exploit the adoption of the Defend 

Trade Secrets Act (DTSA) as a quasi-exogenous shock that enhanced federal protection for trade 

secrets. Unlike state-level trade secret laws, the DTSA provides uniform, federal legal protection 

against misappropriation, reducing the variability inherent in disparate state regimes. Since New 

York and Massachusetts did not adopt the Uniform Trade Secrets Act (UTSA), we consider firms 

headquartered in these two states as treated. We posit that these firms faced a more pronounced 

change in trade secrecy protection when the DTSA was enacted. We first demonstrate that affected 

firms increased their explicit references to trade secrecy by approximately 8.5% after the DTSA 

took effect, indicating a deliberate strategic shift towards safeguarding proprietary information and 

validating the shock’s influence on trade secrecy. Building on this validation, we find that firms 
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increase reverse engineering activity by 12% for an interquartile increase in the share of TNIC 

competitors headquartered in the two states treated by the DTSA.  

If trade secrecy prompts competitors to pursue reverse engineering more aggressively, this 

relationship should intensify under heightened competition. Stronger competitive pressures 

increase the value of gaining insights into rivals’ proprietary technologies, as firms face greater 

urgency to maintain their market positions and technological leadership. We test this prediction by 

examining tariff reductions, which introduce a relatively exogenous increase in foreign 

competition (Frésard, 2010). If trade secrecy encourages reverse engineering, we should observe 

a stronger effect following tariff reductions. Consistent with this reasoning, we find that as 

competition intensifies due to tariff reductions, the positive relationship between trade secrecy and 

reverse engineering activity becomes stronger. This result reinforces our primary findings and 

highlights competition as an important factor influencing firm responses to trade secrecy. 

While firms commonly reverse engineer competitor products or technologies to assess rival 

innovations, another distinct strategy involves hiring employees from rival firms to directly obtain 

their knowledge and insights. Although hiring competitor employees does not directly imply 

reverse engineering, it still allows firms to directly learn about rivals’ innovations. As such, we 

examine how limitations on the ability to hire rival employees influence firms’ reverse engineering 

activities by investigating the effects of the Inevitable Disclosure Doctrine (IDD). Since the IDD 

limits a firm’s ability to learn about competitors’ trade secrets by restricting employee flows, firms 

should be more inclined to reverse engineer rival products through direct product purchases. 

Consistent with this expectation, we find that the positive relationship between trade secrecy and 

reverse engineering activity is amplified when a higher percentage of peer firms are headquartered 
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in states enforcing the IDD. This result reinforces our primary findings and highlights the 

substitution effects between hiring rival employees and reverse engineering activities. 

Since reverse engineering involves the examination of products and technologies, we next 

study whether the documented effects depend on the product life cycle stage of (i) the peer firms 

whose products are targeted by reverse engineering and (ii) the firm engaging in reverse 

engineering. The incentive to reverse engineer in response to trade secrecy likely depends on the 

product life cycle of peer firms. Early-stage products embody novel and valuable innovations, 

making them more attractive targets for reverse engineering. Additionally, early-stage peer firms 

may lack the financial resources to effectively defend against reverse engineering efforts through 

legal means. Firms that engage in reverse engineering may also be influenced by the stage of their 

own product development. Firms in the early stages may be more likely to engage in reverse 

engineering, as they face strong pressure to develop competitive technologies but often lack 

extensive internal R&D budgets. Likewise, firms in the declining stage may utilize reverse 

engineering as a last resort strategy to remain competitive or reposition themselves. Using the 10-

K text-based measure of product life cycle stages developed by Hoberg and Maksimovic (2022), 

we find evidence consistent with these predictions.  

We further examine whether our results are robust to using alternative measures of trade 

secrecy and reverse engineering. First, we verify that our results are robust to restricting TNIC 

competitors to innovator firms only. Second, rather than relying on firm-level mentions of trade 

secrecy, we measure trade secrecy using a survey-based approach. Third, we examine a litigation-

based proxy by directly counting legal cases in which firms are accused of reverse engineering 

competitors’ products. Finally, we use the abnormal purchasing behavior around firms’ R&D labs 
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(Glaeser et al., 2023) as an alternative measure. Across each of these alternative approaches, we 

obtain consistent results, which strengthen our main conclusions.  

Our study contributes directly to the literature on innovation and disclosure 

(Roychowdhury et al., 2019; Glaeser and Lang, 2024; Kim and Valentine, 2021, 2023; Dyer et al., 

2023; Boot and Vladimirov, 2025) by highlighting an understudied consequence of trade secrecy: 

competitors’ reverse engineering activities. While prior studies primarily focus on the proprietary 

costs and capital market benefits of patent disclosures (e.g., Glaeser and Landsman, 2019; Kim 

and Valentine, 2021; Hegde et al., 2023; Oh et al., 2024; Valentine et al., 2025), we provide novel 

evidence that greater reliance on trade secrecy significantly increases competitors’ incentives to 

uncover and replicate innovations.3 Our findings provide interesting nuance to the conventional 

view that trade secrecy limits disclosure-related proprietary costs, suggesting instead that while it 

may decrease direct access to innovation details, it simultaneously increases the likelihood that 

competitors reverse engineering such insights indirectly. In this regard, we also make a 

methodological contribution by introducing a novel approach to measuring reverse engineering by 

analyzing unusual purchasing behavior near competitors’ headquarters. Since reverse engineering 

is difficult to track directly, this method offers a valuable way to estimate when firms may be 

analyzing and reconstructing their rivals’ products. 

Beyond innovation and disclosure, our findings respond to the recent call for more research 

on trade secrets (Glaeser and Lang, 2024). While secrecy is traditionally viewed as a means for 

safeguarding proprietary information, our results show that non-disclosure actually encourages 

reverse engineering efforts. This effect is particularly pronounced in highly competitive 

environments, where the incentives for imitation are stronger and the costs of secrecy may be 

 
3 Although not in the context of innovation, Cao et al. (2021) document that mandatory 13F disclosures foster copycat 
trading strategies by investment companies. 
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higher. Consequently, our study underscores the need for a more nuanced assessment of innovation 

disclosure strategies: whether firms should prioritize greater transparency to deter reverse 

engineering or maintain secrecy at the risk of increased imitation through reverse engineering. By 

shedding light on these dynamics, our study provides a deeper understanding of the consequences 

of firm disclosure and the trade-offs between innovation protection and knowledge diffusion. 

2. Related Literature and Economic Predictions 

2.1 Reverse Engineering 

Reverse engineering, the process of analyzing and reconstructing competitors’ products or 

technologies, is commonly employed by firms to gain strategic insights and accelerate their own 

innovation (Raja and Fernandes, 2007). Reverse engineering plays a significant economic role by 

fostering competition, spurring follow-on innovation, and is prevalent across various sectors such 

as manufacturing, semiconductors, and software (Samuelson and Scotchmer, 2001). Survey 

evidence indicates that reverse engineering is perceived by firms as one of the most effective 

methods for learning about competitors’ products (Levin et al., 1987). 

In the U.S., reverse engineering is typically a lawful means of acquiring know-how, 

especially when conducted through legitimate channels, such as the open market purchase of a 

product. According to the 1979 Uniform Trade Secrets Act (UTSA) and the 1995 Restatement of 

Unfair Competition, a trade secret is defined as valuable, secret information that provides a 

competitive advantage, but it is only protected against discovery by “improper” means. Reverse 

engineering a product purchased legally is not considered improper, allowing firms to analyze and 

replicate products they acquire in the marketplace without violating trade secrecy laws.4  

 
4 It is also important to distinguish reverse engineering from the common legal examples of trade secret protection. 
Unlike the disclosure of trade secrets by employees, a person who buys a product in the open market is not bound by 
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From an economic standpoint, the legal right to reverse-engineer presents a tradeoff. On 

one hand, it may reduce incentives for firms to innovate, as it allows competitors to replicate 

products, potentially leading to wasteful expenditures on reverse engineering. On the other hand, 

it may foster market competition, drive down prices, and encourage follow-on innovation. Legal 

frameworks have generally supported reverse engineering, based on the argument that innovators 

retain protection through two key barriers: the cost and time required for effective reverse 

engineering (Samuelson and Scotchmer, 2001). These factors allow the original innovator to 

recoup their R&D investments before competitors can replicate the product. 

Samuelson and Scotchmer (2001) outline the four-stage process that firms undergo when 

engaging in reverse engineering. First, a competitor must be aware that a product is worth reverse 

engineering. This stage varies in speed across industries, influencing how long the innovator can 

exclusively profit from its development (Dreyfuss and Kwall, 1996; Curtis et al., 2011).5 The 

second stage involves obtaining the product and disassembling and analyzing the product to extract 

useful technical knowledge. While this process can be costly and time-consuming6, reverse 

engineers generally incur lower costs than the original innovator, as they bypass unsuccessful 

R&D efforts and benefit from technological advancements. Consequently, reverse engineering, as 

an innovation strategy, has frequently been used by technological laggards to catch-up and learn 

from first movers and market leaders (Ohly, 2009). The third stage, implementation, requires 

integrating the extracted knowledge into a marketable product, which can involve extensive 

 
a contractual duty of confidentiality. Similarly, unlike an industrial spy, the reverse engineering person does not 
unlawfully enter a competitor’s premises. Reverse engineering can only be considered a violation of trade secret law 
if “breaking into a product” is treated the same as unlawfully entering another company’s factory (Ohly, 2009). 
5 Because reverse engineering takes time, both to determine whether a product is worth analyzing and to complete the 
engineering and market launch, the first mover enjoys a period of exclusivity to recover invention costs, build a 
reputation, and establish a loyal customer base (Dreyfuss and Kwall, 1996). 
6 Firms may also deliberately design products to make reverse engineering more difficult by using tactics like 
component encapsulation, mislabeling, custom parts, software locks, or nonfunctional “fingerprints,” especially when 
protecting valuable trade secrets (Samuelson and Scotchmer, 2001; MacAulay and Sharapov, 2025). 
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prototyping, manufacturing adjustments, and iterative refinements. Lastly, the competitor 

introduces its version of the product to the market, triggering competitive pressures that may erode 

the original innovator’s market share and profitability.  

2.2 Economic Predictions 

We posit that the degree to which peer firms use trade secrecy (i.e., the withholding of 

proprietary information to maintain a competitive advantage) may influence the extent of reverse 

engineering activities undertaken by firms. On the one hand, greater innovation disclosure, such 

as through patent filings, can facilitate reverse engineering by reducing the cost and effort required 

to replicate proprietary technologies (Anton and Yao, 2004). Public disclosures can also increase 

the visibility of innovations, increasing attention from competitors and prompting imitation and 

reverse engineering efforts (Kim and Valentine, 2021). On the other hand, reducing disclosure by 

maintaining greater secrecy may also incentivize reverse engineering activity. When competitors 

rely on secrecy, they withhold technical details that would otherwise be accessible through formal 

disclosure. As a result, firms may turn to reverse engineering as a substitute means of acquiring 

the same knowledge (Matutes et al., 1996; Fromer, 2008). Moreover, firms may interpret 

competitors’ secrecy as a signal of valuable innovations, intensifying reverse engineering. In some 

cases, firms may pursue reverse engineering not only to imitate, but also to gain insight into a 

rival’s capabilities or anticipate future strategic moves.  

The extent to which peer firms’ reliance on trade secrecy influences reverse engineering 

activities is also unclear from a legal perspective. Consider two scenarios of innovation disclosure 

regimes: in the first scenario, all firms protect their innovations via patents, and in the second 

scenario, all firms maintain trade secrecy. In the patenting regime, detailed innovation disclosures 

lower the technical barriers to reverse engineering, making it easier for competitors to replicate 
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innovations. However, because products incorporating patented technologies are protected by 

enforceable intellectual property rights, firms that reverse engineer such products may face 

significant litigation risk if they attempt to commercialize the results, potentially offsetting the 

benefits of reverse engineering. Conversely, under trade secrecy regimes, the absence of public 

innovation disclosures increases the technical challenges and costs associated with reverse 

engineering. Yet, since trade secret laws do not prohibit the lawful reverse engineering of products, 

such as those purchased on the open market, firms may ultimately reap higher benefits once they 

successfully reverse engineer a rival’s innovations, even if the initial costs are higher.  

In sum, the overall effect of trade secrecy on reverse engineering activities remains 

ambiguous, both from an economic and legal perspective, highlighting the importance of empirical 

investigation into this relationship. Accordingly, we hypothesize in the following null form: 

H1: Trade secrecy has no effect on the level of reverse engineering activity by peer firms. 

3. Data 

3.1 Reverse Engineering 

We propose a novel measure of reverse engineering that relies on abnormal product 

purchasing activity near competitors’ headquarters. While indirect, this method allows us to infer 

the level of reverse engineering activity at the firm-quarter level for several reasons. 

First, reverse engineering typically requires firms to acquire multiple units of a 

competitor’s product for destructive testing, teardown analysis, firmware extraction, and 

benchmarking. Firms often purchase additional units to support testing under different 

environmental or usage conditions (e.g., temperature, voltage, wear) or to validate results across 
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multiple iterations.7 Second, reverse engineering activities often involve multiple functional teams 

within a firm, including R&D, engineering, manufacturing, and quality assurance. Each team may 

require independent access to the product for analysis aligned with its function (e.g., materials 

breakdown by engineering, user interface analysis by design, packaging study by marketing). 

Especially in large, decentralized firms, this coordination requires the purchase of multiple units.8 

Lastly, abnormal purchasing is likely to spike near a firm’s headquarters because reverse 

engineering efforts are concentrated where technical decision-making occurs. As Glaeser et al. 

(2023) show, the most valuable innovation activities are disproportionately located near 

headquarters.9 This geographic concentration means that purchasing activity around firm 

headquarters is more likely to reflect reverse engineering, rather than local consumer demand. 

We gather scanner datasets from Nielsen Retail Measurement Services (RMS), made 

available through the Kilts-Nielsen Data Center at the University of Chicago Booth School of 

Business. This dataset is derived from point-of-sale (PoS) systems in grocery, drug, and general 

merchandise stores and spans more than 40,000 stores across the entire U.S. retail market at the 

weekly level over the period 2006–2020. Each store reports weekly quantities purchased for every 

product with recorded transactions during that period. These scanner datasets provide high-

 
7 For instance, anecdotal evidence suggests that reverse engineering consumer products, such as cosmetics, involves 
systematic lab testing, ingredient deconstruction, and iterative formulation replication. These processes typically 
require the acquisition of multiple product units to ensure consistency across sensory attributes, chemical composition, 
and product stability. 
8 An example is General Motors’ teardown of the Lexus RX 400h hybrid SUV. At its Warren Technical Center, 
located near headquarters, GM disassembled multiple units to analyze materials, design, and cost. Separate teams 
handled teardown, structural analysis, and cost benchmarking, highlighting how reverse engineering involves multiple 
units and cross-functional coordination across engineering, design, and procurement divisions. Consistent with this, 
we find that firms with more diverse R&D operations, proxied by the number of unique R&D-related job titles (e.g., 
“Mechanical Engineer,” “Materials Scientist,” “Product Designer”), exhibit a positive association with our reverse 
engineering measure (untabulated). 
9 In Section 5.2, we demonstrate that our inferences are robust to using companies’ R&D labs as an alternative location 
for product purchases.  

https://www.linkedin.com/pulse/discussing-dupe-trend-guide-reverse-engineering-slble
https://www.wired.com/2006/02/teardown/
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frequency purchasing behavior for more than one million unique products (i.e., Universal Product 

Codes [UPCs]), which are categorized into 1,070 detailed product modules.10   

To construct a firm-quarter measure of reverse engineering, we begin with the set of 

Compustat firms with TNIC competitors reported in the Neilsen scanner dataset.11 This identifies 

6,334 firms with at least one competitor reporting sales in the Neilsen data. For each competitor 

firm, we determine the product modules they sell, creating a firm-to-product mapping that 

highlights potential products acquired for reverse engineering purposes. By focusing on product 

modules, we can capture both TNIC competitors’ products and products offered by private firms. 

This broader scope provides a more comprehensive view of reverse engineering activity and 

improves the generalizability of our findings (Armstrong et al., 2022). 

For each firm, we aggregate the total purchase volume of competitor product modules 

every quarter that come from the firm’s headquarter zip code (available at the 3-digit level). To 

account for baseline purchasing patterns across different locations, we scale the total product 

purchases in a geographic region by their respective population to control for potential regional 

variations in demand. Then, we adjust the total volume of purchases by subtracting the average 

volume of purchases (also scaled by their respective populations) in all zip codes during the same 

quarter. This adjustment normalizes the measure, ensuring that it reflects an excess concentration 

of purchases relative to general market trends rather than simply capturing regional demand 

differences. Figure 1 presents an illustration of our methodology using an example.  

We define Reverse Engineering for firm i headquartered in zip code j in quarter t as follows: 

 
10 Nielsen-defined product modules serve as the first level of aggregation beyond individual UPC barcodes, capturing 
detailed product characteristics. For instance, within the pharmaceuticals category, distinct modules may include items 
like “over-the-counter pain relievers,” “allergy medications,” and “digestive health products,” providing a granular 
classification of product markets served by firms. 
11 For matching UPCs to public firms, we follow Zeng (2024) and use data from GS1 US, which maintains a 
comprehensive record of company prefixes issued in the U.S. We initially identify 889 public firms, 515 of which 
have corresponding TNIC data. 
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Reverse Engineeringi,t = 
Pi,j,t

Populationj,t
− ! Pi,k,t

Populationk,t
"###############
k≠j

                                                (1) 

where Pi,j,t refers to the total volume of purchases of products that are competitors to firm i in zip 

code j during quarter t and !
Pi,k,t

Populationk,t"
#################

k≠j
 refers to the average per-capita volume of purchases 

of competitor products to firm i in all non j zip codes during quarter t. Accordingly, the measure 

captures the degree to which competitor products are disproportionately purchased near a firm’s 

headquarters, potentially reflecting product acquisitions intended for reverse engineering 

purposes.12  

Table 1 presents the sample selection procedure in more detail. From the identified 6,334 

unique firms, we remove 1,346 firms without headquarter zip code data required to construct our 

geography-based measure of reverse engineering. We further remove 735 financial firms (i.e., 

firms classified in the 4-digit SIC industries: 6000-6999). Lastly, we remove 685 firms without 

data on firm-level control variables (constructed from Compustat and USPTO datasets). This 

procedure leaves us with 3,568 firms, with which we construct a panel of 75,963 firm-year 

observations for our main analyses.  

3.2 Research Design 

To examine the relationship between peers’ trade secrecy and reverse engineering, we 

estimate the following OLS regression:  

Reverse Engineeringi,t = α + β Peer Trade Secrecyi,t-1 + Xi,t-1 + γi + νt + εi,t                             (2) 

where i and t refer to firm and quarter, respectively. The dependent variable is Reverse Engineering 

measured for firm i in quarter t. The primary explanatory variable of interest is Peer Trade Secrecy, 

 
12 For empirical analyses, we take the inverse hyperbolic sine transformation of the variable since the raw abnormal 
variable can take nonpositive values (Burbidge et al., 1988). 
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which is defined as the percentage of TNIC competitors of firm i that explicitly reference trade 

secrecy in their public filings (Glaeser, 2018).  

We include a host of firm-level control variables (X) to better isolate the effect of peers’ 

trade secrecy on reverse engineering. We categorize these control variables into four groups. First, 

we account for general firm characteristics, including (i) firm size (Size), (ii) return on assets 

(ROA), and (iii) firm age (Firm Age). Second, we control for innovation variables by including 

(iv) R&D intensity (R&D/Assets), (v) number of patents filed (Log(1+#Patents Filed)), (vi) 

average patent economic value (Avg Patent Value), and (vii) selling, general, and administrative 

expenses (SG&A/Sales). Third, we include financial leverage (Leverage) to control for the firm’s 

financial constraints. Lastly, we control for the industry-level competition by including 

Herfindahl-Hirschman Index (HHI).13 All independent variables are lagged by one quarter. In our 

most stringent specification, we include both firm (γ) and quarter (ν) fixed effects to control for 

time-invariant firm characteristics and broader time trends, respectively. We cluster standard errors 

at the industry-year level. If heightened trade secrecy among peer firms incentivizes focal firms to 

engage in more (less) reverse engineering, we expect β to be positive (negative).  

3.3 Descriptive Statistics 

Table 2 presents the descriptive statistics of our sample. Panel A presents the summary 

statistics of the variables used in our main analyses. The mean value of Reverse Engineering is 

0.038, with a standard deviation of 0.083, suggesting substantial variation across firms. Peer Trade 

Secrecy, our primary explanatory variable, has a mean of 0.681, indicating that, on average, 68.1% 

of TNIC competitors explicitly reference trade secrecy in their public filings. The average firm in 

our sample has 573 million in total assets (Firm Size = 6.352; e6.352 = 573 million). The average 

 
13 Variable descriptions are provided in Appendix A. 
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firm’s R&D expenses take up 2.4% of total assets (R&D Intensity = 0.024), whereas the median 

firm exhibits an ROA of 0.6%.  

Panel B of Table 2 presents the industry distribution of firms, showing the most common 

industries based on 4-digit SIC industries, along with their corresponding mean and median values 

of Reverse Engineering. Firms in the Pharmaceutical Preparations (SIC 2834) industry take up the 

largest proportion of our sample (6.21%). Our sample includes a substantial number of firms from 

other innovation-driven sectors, such as Biological Products (SIC 2836) and Prepackaged 

Software (SIC 7372) industries, which each take up 4.5% and 4.27% of the sample, respectively. 

We document significant variation in Reverse Engineering across industries. Semiconductors (SIC 

3674) and Electronic Components (SIC 3670) exhibit relatively high levels of reverse engineering 

(median = 0.076 and 0.074, respectively), consistent with the notion that these industries are 

characterized by rapid technological change and increased incentives to analyze competitors’ 

products. Similarly, Eating Places (SIC 5812) exhibits high levels of reverse engineering (median 

= 0.085), reflecting competitive pressures in the restaurant industry where firms frequently 

replicate successful product offerings.14 In contrast, Computer Programming Services (SIC 7371) 

and Business Services (SIC 7389) industries have relatively lower levels of reverse engineering.  

4. Empirical Results 

4.1 Validation of Measure 

To strengthen confidence in our measure for reverse engineering activity, we conduct a 

series of validation tests. While our measure captures abnormal product purchasing activity near a 

firm’s headquarters, it does not directly reveal whether these purchasing spikes correspond to 

 
14 Anecdotal evidence suggests that many food scientists are tasked with replicating the taste, texture, and composition 
of existing products. For example, the popular Oreo cookie was itself a reverse-engineered version of Hydrox, an 
earlier cream-filled chocolate cookie (see snipettemag.com). 

https://snipettemag.com/reverse-engineering/
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reverse engineering activities. Thus, we evaluate whether abnormal product purchasing behavior 

around firm headquarters precedes outcomes that would be expected if the purchases reflect 

reverse engineering activity (Samuelson and Scotchmer, 2001). We conduct three validation tests. 

First, we examine whether firms with higher abnormal product purchasing behavior are 

more likely to subsequently produce offerings that are more similar to competitors’ products, and 

file patents in overlapping technological domains. Reverse engineering provides firms with 

detailed technical insight into the design, materials, and functionality of competitors’ products. 

Such insight can accelerate the development of related technologies, ultimately leading firms to 

file patents in areas that closely resemble their competitors’ innovations.15 Second, we examine 

whether reverse engineering imposes competitive pressure on peers, as reflected in a decline in 

peer firms’ gross margins. Third, we examine whether abnormal product purchasing around 

corporate headquarters intensifies in the period leading up to a firm’s entry into a new product 

market. If abnormal product purchasing is indeed capturing reverse engineering activity, we should 

observe an uptick in such activity in the period preceding the firm’s announcement of its entry into 

a new product market. 

For the first two tests, we estimate the following regression model at the firm-year level: 

Yi,t+1 = α + βReverse Engineeringi,t + Xi,t + γi + νt + εi,t                                         (3) 

where i and t refer to firm and year, respectively. The dependent variable (Y) is one of the four 

variables measured for the focal firm i at year t+1: Product Similarity, Tech Similarity, or Peer 

Gross Margin. Product Similarity is the equal-weighted average product similarity score between 

 
15 If a firm successfully reverse engineers a competitor’s product—typically protected by a combination of patents 
and trade secrets—it generally cannot patent the already disclosed elements and may face litigation risk if it 
commercializes them. However, the insights gained from reverse engineering can guide related, patentable 
innovations, help the firm innovate around existing patents, or even leapfrog competitors by developing more 
advanced technologies. 
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the focal firm and its TNIC competitors (Hoberg and Phillips, 2010; 2016). Tech Similarity is the 

share of patent portfolios in the same technological classes between the focal firm and its TNIC 

competitors (Jaffe and Trajtenberg, 1996). Peer Gross Margin is the median gross margin of the 

focal firm’s TNIC competitors.16 The primary explanatory variable of interest is the decile-ranked 

Reverse Engineering measured for firm i at year t. We decile-rank the variable to aid interpretation 

of the regression results. We include the same set of firm-level control variables (X) as in Eq. (2), 

as well as firm (γ) and year (ν) fixed effects. 

Table 3 Panel A presents the results. In column 1, we find a positive and statistically 

significant (1% level) coefficient on Reverse Engineering (coeff. = 0.0035; t = 2.97) and product 

similarity. In terms of economic significance, moving from the bottom to top decile of Reverse 

Engineering is associated with a 4.8% (= 0.0035 ÷ 0.072) increase in product similarity in the 

following year. In column 2, we find a positive and statistically significant (10% level) coefficient 

on Reverse Engineering (coeff. = 0.0267; t = 1.82) and technological similarity. In terms of 

economic significance, moving from the bottom to top decile of Reverse Engineering is associated 

with a 5.1% (= 0.0267 ÷ 0.520) increase in technological similarity in the following year. 

Moreover, if firms are using product purchases to reverse engineer competitor offerings, this 

should be reflected in subsequent increases in innovation activity. Consistent with this 

interpretation, we observe a positive and statistically significant association between Reverse 

Engineering and R&D intensity (column 3; coeff. = 0.0104; t = 3.03) and the number of patents 

filed (column 4; coeff. = 0.0562; t = 1.78) in the following year.  

Table 3 Panel B presents the results for profitability. In column 1, we find a negative and 

statistically significant (1% level) relation between Reverse Engineering and peers’ gross margins 

 
16 We use the median value, since gross margins are highly skewed. Our inferences are the same when we use the 
mean value (untabulated). 
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(coeff. = -0.0313; t = 3.48). In terms of economic significance, moving from the bottom to top 

decile of Reverse Engineering leads to an 8.7% (= -0.0313 ÷ 0.072) decrease in peers’ gross 

margins in the following year. We further examine whether the decrease in gross margins is driven 

by changes in sales growth (Peer % Sales Growth) or cost structure (Peer % COGS Growth). If 

peer firms face increased competition due to reverse engineering, the decrease in gross margins 

will be driven by a reduction in sales rather than an increase in costs, as peers may be forced to 

lower prices or lose market share. In column 2, we find a negative and statistically significant (10% 

level) coefficient on Reverse Engineering (coeff. = -0.0133). However, in column 3, we find a 

statistically insignificant coefficient on Reverse Engineering. Thus, the results suggest that the 

decline in gross margins is more likely driven by revenue pressures rather than cost increases.  

Collectively, these results strengthen the construct validity of our measure. Firms with 

higher abnormal product purchasing activity are more likely to launch products that resemble 

competitors’ offerings and file patents in overlapping technological areas. Their activities also 

coincide with a decline in peers’ profitability, consistent with competitive pressures from reverse 

engineering activities.17 These patterns strongly suggest that abnormal product purchasing 

behavior captures (on average) successful reverse engineering activity.18 

We next examine whether abnormal product purchasing around corporate headquarters 

intensifies in the period leading up to a firm’s entry into a new product market. To test this idea, 

we identify firms that enter new product markets during our sample period using the product 

market scope data developed by Hoberg and Phillips (2025). This data provides firm-year 

 
17 We also find that these peers are more likely to include language in the risk factor section of their 10-K filings 
warning that competitors may copy or reverse engineer their products or technology (untabulated).  
18 Note that not all reverse engineering efforts are successful. Abnormal product purchases around headquarters serve 
as a proxy for a firm’s attempt to reverse engineer, but whether these attempts succeed will necessarily depend on the 
firm’s ability to extract, replicate, and integrate the acquired knowledge. If reverse engineering efforts fail, whether 
due to technological complexity or lack of internal capabilities (e.g., Curtis et al., 2011), we should not empirically 
observe these patterns. Therefore, our analyses reveal that, on average, firms are successful in reverse engineering. 
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measures of product market activity by mapping firm business descriptions into a 300-dimensional 

representation of the U.S. product market space. A firm is classified as entering a new product 

market if it begins operating in one of these 300 markets in a year where it had no prior presence. 

To link market entry to the types of products firms are likely to reverse engineer, we map the 

representative keywords for each product market (as defined by Hoberg and Phillips, 2025) to 

product module descriptions in the Nielsen Retail Scanner data.19 This mapping allows us to 

identify the product categories firms may plausibly purchase in anticipation of market entry. We 

then use product release announcements from RavenPack News Analytics to pinpoint the timing 

of entry events.20 This process yields 115 entry events across 99 unique firms. 

For each event, we construct a balanced 96-month event-time panel (i.e., 48 months before 

and after the market entry) centered on the product release announcement month. We measure 

abnormal product purchases in the firm’s headquarters zip code using the methodology described 

earlier and compute the average across all events. Figure 2 presents the event-time analysis. We 

compare two groups: (i) treated firms that announce entry into a new product market and (ii) 

control firms from the same TNIC industry, headquartered in a different zip code, that do not enter 

the product market at any point during the sample period. We observe a clear divergence in 

abnormal product purchases between treated and control firms in the months leading up to market 

entry. Firms that enter a new product market exhibit higher levels of abnormal product purchasing 

relative to control firms as early as 48 months prior to the product announcement, whereas the gap 

narrows substantially following market entry.21 These patterns are suggestive of firms reverse 

 
19 We retain only direct matches where at least one representative keyword from the product market appears exactly 
within the product module name. 
20 We classify a firm’s product release announcement as corresponding to a specific product market using the textual 
similarity between the news headline and the keywords associated with each of the 300 product markets.  
21 This pattern is consistent with prior evidence suggesting that it typically takes one to three years to replicate 
competitors’ innovation (Levin et al., 1987).  
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engineering products in anticipation of market entry. Further, the absence of a similar trend among 

control firms helps mitigate concerns that abnormal product purchasing around firm headquarters 

reflects broader economic conditions or industry-wide shocks.  

4.2 Main Results 

We examine the relation between trade secrecy and reverse engineering by estimating Eq. 

(2). Table 4 Panel A presents the results. In column 1, we present results for the baseline 

specification without firm or quarter fixed effects. The coefficient on Peer Trade Secrecy is 0.0065 

and statistically significant at the 5% level (t = 2.36), suggesting a positive association between 

trade secrecy and reverse engineering. In column 2, we introduce firm and quarter fixed effects 

and continue to document a positive and statistically significant (1% level) coefficient on Peer 

Trade Secrecy (coeff. = 0.0057; t = 2.83). In column 3, we further include firm-level control 

variables and continue to find that the coefficient for Peer Trade Secrecy remains positive (0.0060) 

and statistically significant at the 1% level (t = 2.93). Focusing on column 3, in terms of economic 

magnitude, an interquartile increase in Peer Trade Secrecy is associated with a 9.7% (= (0.967-

0.350) × 0.006 ÷ 0.038) increase in reverse engineering activities, relative to the sample mean. 

Overall, our findings support the hypothesis that firms engage in more reverse engineering when 

competitors rely on trade secrets. 

In terms of control variables, we also find that Leverage is positively associated with 

reverse engineering (t = 3.20), suggesting that more financially constrained firms have stronger 

incentives to reverse engineer competitors’ products. These firms may have stronger urgency to 

generate cash flows and stay solvent, which incentivize them to supplement formal innovation 

channels with reverse engineering. In contrast, HHI is negatively associated with reverse 
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engineering (t = -3.43), indicating that firms in more concentrated industries engage in less reverse 

engineering, possibly due to higher barriers to entry or reduced competitive pressures.  

We further examine the relation between competitors’ patenting activities and reverse 

engineering. Table 4 Panel B presents the results. In column 1, we find a negative and statistically 

significant association between the average number of patents filed by peer firms (Peer 

Log(1+#Patents Filed)) and reverse engineering (coeff. = -0.0117; t = -7.55). In column 2, we use 

the average value of patents filed by peer firms (Peer Avg Patent Value) and similarly document 

a significant negative relation (coeff. = -0.1824; t = -5.81). In terms of economic magnitude, an 

interquartile increase in Peer Log(1+#Patents Filed) (Peer Avg Patent Value) is associated with a 

23% (19%) decrease in reverse engineering, relative to the sample mean. These results suggest 

that when competitors rely more heavily on patents (or have more valuable patents), reverse 

engineering activity is curtailed. Patents publicly disclose detailed specifications and legal 

boundaries, which may either deter reverse engineering attempts due to litigation risk or reduce 

the need for reverse engineering by providing access to technological knowledge directly.   

However, the extent to which patents deter reverse engineering may depend on how clearly 

they disclose technical information. To explore this possibility, we examine the vagueness of peer 

firms’ patent filings (Arinas, 2012). While patents are meant to disseminate knowledge in 

exchange for legal protection, claims may be strategically drafted using broad or ambiguous 

language to obscure key details. We expect industries with more vague patents to exhibit greater 

reliance on reverse engineering, as firms may need to analyze physical products to understand 

competitors’ innovations. We measure Peer Vague Patents as the percentage of patents by peer 
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firms that contains vague language.22 In column 3 of Table 4 Panel B, we find a positive and 

statistically significant association between Peer Vague Patents and reverse engineering (coeff. = 

0.1831; t = 3.54), consistent with the idea that obfuscation in peers’ patent filings incentivizes 

competitors toward reverse engineering as an alternative information-gathering strategy. 

4.3 Defend Trade Secrets Act (DTSA) as a Shock to Trade Secrecy 

Identifying the causal effect of competitors’ trade secrecy on reverse engineering is 

challenging in a panel regression setting due to potential endogeneity concerns. First, competitors’ 

reliance on trade secrecy is likely not random and may be influenced by the nature of innovation 

and the risk of reverse engineering (Moser, 2012). This introduces the reflection problem, making 

it difficult to disentangle the direction of causality (e.g., Manski, 1993). Second, unobserved firm 

characteristics could drive both trade secrecy adoption and reverse engineering. While including 

firm fixed effects in Eq. (2) helps mitigate such time-invariant unobserved heterogeneity, these 

fixed effects do not address time-varying shocks that may simultaneously affect peers’ reliance on 

trade secrecy and the focal firm’s reverse engineering.  

To address these challenges, we exploit the Defend Trade Secrets Act (DTSA) of 2016 as 

a quasi-exogenous shock to trade secrecy, allowing us to establish a more credible causal link 

between trade secrecy and reverse engineering (Sran, 2025; Cunningham and Kapacinskaite, 

2025). The DTSA provides stronger federal legal protections for trade secrets, particularly 

affecting firms in states that had not previously adopted the UTSA.23 In particular, at the time of 

 
22 See Appendix A for the list of keywords or phrases that indicate vagueness in patent filing descriptions. Patents are 
matched to industries following Kim and Valentine (2023) using the crosswalk file developed by Goldschlag et al. 
(2016). We exclude firm-years with no patents matched to any industries for this analysis.  
23 It is important to note that the DTSA does not prohibit reverse engineering from legally acquired products in the 
open market, as this remains a lawful means of obtaining know-how (see our discussion in Section 2.1). Therefore, 
while the DTSA strengthens trade secret protection against unlawful misappropriation, it does not extend to restricting 
competitive practices like reverse engineering that we capture via our scanner dataset. As such, our analysis treats the 
DTSA as a general shock prompting affected firms to shift toward trade secrecy, but we do not interpret this shift as 
due to an increase in protection from reverse engineering based on open-market purchases. 
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DTSA passage in 2016, two states (New York and Massachusetts) have not adopted UTSA. Thus, 

for treated firms, we consider firms headquartered in NY or MA and posit that these firms are 

more likely to rely on trade secrecy following the enactment of DTSA. We implement a difference-

in-differences (DiD) design to compare firms in affected and unaffected states over a four-year 

period, excluding the year of adoption (2016), with two years before and after its passage. 

We first validate the shock’s premise by examining whether these firms make more explicit 

references to trade secrecy in their public filings following the passage of DTSA. Specifically, we 

estimate the following DiD specification using a Poisson regression at the firm-year level24: 

# Trade Secrecy Wordsi,t = α + βPost DTSAt × Affected Statesi  + Xi,t  + γi + νt + εi,t              (4) 

where i and t index firm and year, respectively. The dependent variable is # Trade Secrecy Words, 

defined as the number of trade secrecy-related words in firm i’s public 10-K filing in year t 

(Glaeser, 2018). The primary explanatory variable of interest is the interaction term (Post DTSA × 

Affected States). Post DTSA is an indicator variable that equals one (zero) for observations that fall 

in 2017 or 2018 (2014 or 2015). Affected States is an indicator variable that equals one for firms 

headquartered in the state of NY or MA, else zero.25 X refers to the same set of firm-level control 

variables included in Eq. (2). We include firm (γ) and year (ν) fixed effects. If DTSA passage 

increases affected firms’ propensity for trade secrecy, we expect β to be positive. 

Table 5 Panel A presents results of Eq. (4). In column 1, we present the findings without 

control variables to mitigate the “bad controls” problem in a DiD specification (e.g., Angrist and 

Pischke, 2009; Gormley and Matsa, 2016). In column 2, we estimate the DiD specification with 

the inclusion of firm-level control variables. In both columns, we document a positive and 

 
24 We employ a firm-year panel as the dependent variable (# Trade Secrecy Words) is measured at the firm-year level. 
We also conduct a Poisson regression since the dependent variable is a count variable (Cohn et al., 2022).  
25 To fix the set of treated firms over the span of the DiD window, we exclude TNIC competitors that changed their 
headquarters to or from NY or MA during the DiD period.  
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statistically significant coefficient on Post DTSA × Affected States, indicating that affected firms 

did shift towards trade secrecy following the enactment of DTSA. Regarding economic magnitude, 

affected firms increase references to trade secrecy by approximately 8.5% (=e0.0815 – 1) after the 

DTSA (column 2). We further conduct a pre-trends analysis by replacing Post DTSA with indicator 

variables for each year pre-DTSA and two years post-DTSA (with year 2015 omitted and used as 

the benchmark). Figure 3 Panel A shows no evidence of pre-trends: the coefficients on the 

interaction terms become statistically significant in the two years following the DTSA passage.  

Having established that DTSA passage increases affected firms’ propensity to rely on trade 

secrecy, we next turn to our main test of examining whether peer firms’ trade secrecy (via DTSA 

passage) affects focal firm’s reverse engineering activities. We create a continuous treatment 

variable (% Affected Peers) that captures the percentage of TNIC competitors headquartered in the 

state of NY or MA.26 We then estimate an analogous DiD specification to Eq. (4) but at the firm-

quarter level employing an OLS regression (with 2016Q2, the quarter of DTSA passage, omitted):  

Reverse Engineeringi,t = α + βPost DTSAt × % Affected Peersi  + Xi,t  + γi + νt + εi,t                  (5) 

where i and t index firm and quarter, respectively. The dependent variable is Reverse Engineering 

measured for firm i in quarter t. We include firm-level control variables (X) as in Eq. (2) along 

with firm (γ) and quarter (ν) fixed effects.27  

 Table 5 Panel B presents the results of Eq. (5). Our findings show that after DTSA 

enactment, firms with a large share of peers headquartered in NY or MA (i.e., affected states) saw 

an increase in reverse engineering activity. In both columns, the interaction term coefficient is 

 
26 We acknowledge that, in principle, all firms could be treated under the DTSA due to the ability to stack federal and 
state-level claims. To address this concern, we conduct an untabulated robustness check using a continuous treatment 
variable, which captures cross-state variation in the strength of UTSA prior to the DTSA’s passage (Png, 2017). Our 
inferences remain robust.  
27 Post DTSA and Affected States are absorbed by quarter and firm fixed effects, respectively.  
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statistically significant at the 1% level. Further, the results are economically significant: firms’ 

reverse engineering activities increase by 12% for an interquartile increase in % Affected Peers 

after the DTSA passage (= (0.225-0.031) × 0.0234 ÷ 0.038). Further, Figure 3 Panel B presents no 

evidence of pre-trends surrounding the DTSA passage. Overall, the DiD findings corroborate the 

panel regression results and support the notion that heightened trade secrecy leads competitors to 

intensify their reverse engineering efforts.  

4.4 Cross-sectional Variations 

4.4.1 Product Market Competition 

We posit that the trade secrecy-reverse engineering relation will exhibit cross-sectional 

variation depending on the level of competitive pressure faced by firms. Firms in highly 

competitive industries face stronger incentives to quickly replicate rivals’ innovations to maintain 

market position, and such incentives will be especially magnified when peers are maintaining 

greater secrecy regarding their innovations (Vives, 2008; Spulber, 2013). To examine this 

conjecture, we use tariff reductions as a relatively exogenous proxy for increased product market 

competition (Frésard, 2010). Tariff reductions are known to expose firms to an increase in foreign 

competition.28 We define significant tariff reductions as instances where the industry-level tariff 

falls by more than three times the median tariff decrease and is neither preceded nor followed by 

a tariff increase of comparable magnitude (I (Signif. Tariff Reduction) = 1).  

To explore this prediction, we extend Eq. (2) by introducing I (Signif. Tariff Reduction), 

an indicator variable that equals one if the firm’s industry experienced a significant tariff reduction 

in the previous year, else zero. We then interact this indicator with Peer Trade Secrecy. The results 

are tabulated in Table 6. We find a positive and statistically significant coefficient on the 

 
28 It is well established that tariff reductions are shocks that increase product market competition for domestic firms 
(e.g., Valta, 2012; Huang et al., 2017; Bernard et al., 2020; Glaeser and Landsman, 2021; Afrin et al., 2024).  



26 
 

interaction term, Peer Trade Secrecy × I (Signif. Tariff Reduction), at the 10% level (coeff. = 

0.0084), which indicates that the relationship between trade secrecy and reverse engineering is 

strengthened following a significant tariff reduction. These results are consistent with competitive 

forces reinforcing firms’ incentives to reverse engineer in the presence of peer trade secrets. 

4.4.2 Talent-Based Knowledge Acquisition 

Reverse engineering is a widespread tactic for assessing competitors’ innovations, but 

hiring employees from rival firms offers another route to similar proprietary knowledge. While 

this approach doesn’t constitute reverse engineering, it enables firms to tap directly into the 

expertise of their rivals. As such, we examine how limitations on the ability to hire rival employees 

influence firms’ reverse engineering activities by investigating the effects of the Inevitable 

Disclosure Doctrine (IDD) (Klasa et al., 2018). We anticipate that the relationship between trade 

secrecy and reverse engineering is more pronounced when a larger share of peer firms is 

headquartered in states enforcing the IDD (High % of IDD Peers = 1). By increasing the cost of 

acquiring proprietary knowledge through labor mobility, IDD enforcement may push firms to rely 

more heavily on reverse engineering through product purchases. 

To explore this prediction, we extend Eq. (2) by introducing High % of IDD Peers, an 

indicator variable that equals one if the percentage of TNIC competitors headquartered in states 

that enforce the IDD is above the sample median, else zero. We then interact this indicator with 

Peer Trade Secrecy. In Table 7, we find a positive and statistically significant coefficient on the 

interaction term, Peer Trade Secrecy × High % of IDD Peers, at the 5% level (coeff. = 0.0050), 

indicating that the relationship between competitor trade secrecy and reverse engineering is more 

pronounced when firms face greater restrictions on hiring rival employees. 
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4.4.3 Product Life Cycle Stage 

Since reverse engineering involves the examination of products and technologies, we next 

examine whether the effects documented depend on the product life cycle stage of (i) the rival 

firms whose products are being targeted by reverse engineering and (2) the firm engaging in 

reverse engineering (Klepper, 1996). To explore these cross-sections, we employ the 10-K text-

based measure of product life cycle used by Hoberg and Maksimovic (2022) and Chen et al. 

(2023). Hoberg and Maksimovic (2022) propose a four-stage product life cycle that consists of the 

following stages: (i) product innovation (Life1), (ii) process innovation (Life2), (iii) product 

maturity (Life3), and (iv) product decline/discontinuation (Life4) and measure a firm’s exposure 

to each of these stages using the discussions in 10-K filings.29  

First, we categorize peer firms (i.e., firms targeted by reverse engineering) into one of the 

four product life cycle stages (pLife1 to pLife4). We identify the TNIC competitors of each focal 

firm. For each competitor grouping, we take the average of their Life1 to Life4 loadings, denoted 

as pLife1, pLife2, pLife3, and pLife4. Next, we determine the maximum value among pLife1 to 

pLife4. The competitor group is then assigned to one of the four life cycle stages based on the 

average with the maximum value. In a similar fashion, we categorize focal firms (i.e., the firm 

engaging in reverse engineering) into one of the four product life cycle stages (Life1 to Life4) by 

identifying the stage that has the highest value for each firm-year. We then take the maximum 

value among the four life cycle stages (Life1, Life2, Life3, and Life4) and categorize the firm-year 

into the stage that corresponds to the maximum value.30 We extend Eq. (2) by introducing 

 
29 For each filing, Hoberg and Maksimovic (2022) create text-based exposures to the four stages of product life cycle 
as a four-element vector, where each element is bounded between [0, 1] and the four elements sum up to 1.  
30 For example, suppose Apple’s TNIC competitors in FY2011 load the highest on pLife3 compared to pLife1, pLife2, 
and pLife4. In such case, Apple’s TNIC competitors are considered to be in the product maturity stage (pLife3) during 
that year. Further, if Apple in FY2011 has the highest value for Life1, compared to Life2, Life3, or Life4, Apple would 
be categorized as being in the product innovation stage (Life1) for that year. Firm-years with tied highest loadings 
across multiple life cycle stages are excluded from the empirical analysis to ensure unique classification.  
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interactions between Peer Trade Secrecy and the peer firm’s product life cycle stage (pLife1 to 

pLife4), as well as the focal firm’s product life cycle stage (Life1 to Life4) in separate regressions. 

To ease interpretation, we rename the indicator variables as Product Innovation Stage, Process 

Innovation Stage, Product Maturity Stage, and Product Decline Stage, respectively.   

Table 8 tabulates the results. In column 1, we find a positive and statistically significant 

coefficient at the 1% level for Peer Trade Secrecy × Product Innovation Stage. This finding 

implies that, when peer firms are innovating, the focal firm is more likely to engage in reverse 

engineering, especially when trade secrecy is prevalent, suggesting that newly developed products 

are particularly attractive for reverse engineering, likely because they represent fresh competitive 

threats. These early-stage targets may also not have sufficient budget to defend themselves legally 

from reverse engineering efforts. Similarly, we also find a positive and statistically significant 

coefficient at the 5% level for Peer Trade Secrecy × Process Innovation Stage, suggesting that 

peers’ process-focused innovations—which are often harder to patent—also invite reverse 

engineering under high trade secrecy environments. In contrast, we find a negative (but not 

statistically significant) coefficient for Peer Trade Secrecy × Product Maturity Stage consistent 

with the idea that when peers are in the mature stage, their products’ technological components 

are well understood, reducing incentives for reverse engineering.  

Column 2 presents the results of interacting Peer Trade Secrecy with separate indicators 

for the focal firm’s product life cycle stage. We document a positive and statistically significant 

coefficient at the 5% (1%) level for the interaction term Peer Trade Secrecy × Product Innovation 

Stage (Process Innovation Stage). This finding suggests that the relation between secrecy and 

reverse engineering is magnified for firms in the earlier stages of the product life cycle. These 

firms face high uncertainty and lack internal knowledge, making them more reliant on reverse 
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engineering to innovate. Intriguingly, we find that the interaction term between Peer Trade Secrecy 

and Product Decline Stage is statistically significant at the 5% level (coeff. = 0.0291). This 

suggests that firms with products in the declining stage may turn to reverse engineering as a lower-

cost alternative to extract value from existing market innovations, rather than investing in costly 

R&D, potentially as a “last-ditch” effort to reposition themselves in the product market.31  

5. Additional Analysis 

5.1 Alternative Measures of Trade Secrecy 

We implement robustness checks using alternative measures of trade secrecy. First, we 

refine our baseline measure of trade secrecy by restricting the TNIC competitors to include only 

firms that report positive R&D expenditures or have patenting activity and measure Peer Trade 

Secrecy (Only Innovators).32 Second, we explore a measure of trade secrecy based on an industry-

level survey (Erkens, 2011; Hui et al., 2025). The U.S. Census surveys on an annual basis and 

queries participants about the significance of trade secrecy in their respective businesses. We 

extract responses from participants in the Business Research and Development Innovation Survey 

tables and measure Peer Trade Secrecy (Survey) as the proportion of survey respondents who 

consider trade secrets to be “very important” within the industry.33 Table 9 Panel A presents the 

results. In column 1, we find a positive and significant association between trade secrecy and 

reverse engineering after limiting the TNIC competitors to firms with R&D or patenting activity. 

In column 2, we continue to find a robust relation using the survey-based measure of trade secrecy. 

These findings suggest that our main inferences are not sensitive to how we measure trade secrecy.  

 
31 Hoberg and Maksimovic (2022) document a negative correlation between Life4 and firms’ R&D intensity.  
32 We do not use this approach throughout our empirical analysis given that firms with missing R&D expenses may 
still conduct R&D activity (e.g., Koh and Reeb, 2015; Glaeser et al., 2025) and patenting only represents successful 
R&D efforts. 
33 This survey question is available between 2008 and 2015. In untabulated analysis, we document a positive 
correlation (0.20) between our text-based measure of trade secrecy and the survey-based measure of trade secrecy.  
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5.2 Alternative Measures of Reverse Engineering 

We acknowledge that our primary measure of estimating reverse engineering activities 

based on abnormal product purchases near corporate headquarters does not directly capture the 

intention behind these purchases. To bolster our inferences, we examine the robustness of our main 

findings to two alternative measures of reverse engineering. 

First, we use a more direct measure of reverse engineering activity by examining legal 

cases in which firms are accused of reverse engineering competitors’ products. Assuming that 

reverse engineering efforts are successful, a litigation-based measure allows us to directly identify 

actual reverse engineering activities of the firm. We identify all legal cases where the firm is a 

defendant in such litigations.34 # Reverse Engineering Litigations is defined as the number of 

litigations initiated during the year where the firm (as a defendant) is accused of reverse 

engineering.35 Second, we employ an alternative indirect measure of reverse engineering by 

analyzing abnormal purchasing behavior near firms’ R&D labs. R&D labs are primarily dedicated 

to innovation-related activities, making them another precise geographic indicator for identifying 

reverse engineering efforts. We follow Glaeser et al. (2023) and consider R&D labs as 3-digit zip 

codes that have at least two inventors filing the firm’s patents.36  

Table 9 Panel B presents the results using the two alternative proxies of reverse 

engineering. In column 1, using a litigation-based measure of reverse engineering, we find a 

 
34 We identify such litigations by conducting a comprehensive text search of judicial opinions, rulings, and summaries 
on Casetext, utilizing keywords such as "reverse engineer" and "reverse engineering." We identify around 100 unique 
litigations (after manually matching the defendants to public firms).  
35 Because litigation is costly and firms are selective about pursuing legal action, not all reverse engineering efforts 
result in litigation. Thus, a litigation-based measure likely understates the true prevalence of reverse engineering (i.e., 
failing to detect instances where reverse engineering occurred but no lawsuit followed).  
36 Inventor locations are sourced from PatentsView. When multiple R&D labs are identified using this procedure, we 
calculate the weighted average of abnormal product purchases across these locations, using the number of inventors 
in each 3-digit zip code as weights. This approach assigns greater influence to areas with higher inventor 
concentrations (e.g., locations indicative of more intensive R&D activities by the firm). 
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positive and statistically significant coefficient on Peer Trade Secrecy (at the 5% level), suggesting 

that peers’ trade secrecy encourages reverse engineering activities. In column 2, we also find that 

the coefficient on Peer Trade Secrecy is positive and statistically significant (at the 1% level) using 

the R&D labs-based measure of reverse engineering. Overall, these findings demonstrate that our 

main inferences are robust regardless of how we measure reverse engineering.  

5.3 Falsification Test 

To further validate that our reverse engineering measure is not simply capturing general 

consumer demand or unrelated purchasing behavior, we conduct a falsification test using abnormal 

purchases of non-related products. Specifically, we construct a pseudo dependent variable, 

Abn(Purchase of Non-Related Products), which captures abnormal purchasing activity in product 

modules not associated with TNIC competitors’ products. The construction mirrors our main 

measure, but we match the product modules to those unrelated to the focal firm’s TNIC 

competitors. If our main results are driven by broader demand shocks or purchasing trends around 

the firm’s headquarters, we would expect a similar association using this pseudo dependent 

variable. However, as shown in Table 10, we find no statistically significant relationship between 

Peer Trade Secrecy and the abnormal purchases of non-related products around firms’ 

headquarters. This result supports the interpretation that our reverse engineering measure likely 

captures targeted, strategic behavior and rules out confounding explanations based on local 

demand conditions.  

6. Conclusion 

This paper examines how firms’ reverse engineering relates to their competitors’ reliance 

on trade secrecy. We propose a novel measure of reverse engineering activity based on abnormal 

product purchases near firm headquarters. To validate our proxy, we demonstrate that firms 



32 
 

exhibiting greater abnormal purchasing behavior are more likely to introduce products and 

technologies that more closely resemble competitors’ offerings, and is associated with the erosion 

of peers’ gross margins, all of which align with reverse engineering activities. Applying this 

measure, we find that greater reliance on trade secrecy by competitors leads to increased reverse 

engineering efforts by firms. This finding is further supported by using the DTSA as a quasi-

exogenous shock to peer firm trade secrecy. 

Our analysis further shows that this relation is amplified under conditions of heightened 

proprietary costs and competitive pressure. The relation is also pronounced when rivals are subject 

to restrictions on employee mobility (via the IDD) and when product market competition 

intensifies following tariff reductions. Moreover, both the firm’s and its peers’ positions in the 

product life cycle play a critical role. Taken together, our findings offer new insights into the costs 

of trade secrecy and highlight how firm characteristics and market conditions shape the dynamic 

interplay between trade secrecy and competitive knowledge acquisition. 
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Appendix A: Variable Definitions 
Variable Description 
Reverse Engineering The number of peer firm product purchases at the firm’s headquarters 

(measured at the 3-digit zip code) during the quarter, subtracted by the 
average number of peer firm product purchases in all 3-digit zip codes during 
the same period. We take the inverse hyperbolic sine transformation for 
regression analysis.  

Reverse Engineering (R&D Lab) An alternative measure of Reverse Engineering using R&D labs as an 
alternative location of product purchases. R&D labs are identified as 3-digit 
zip codes that have at least two inventors filing the firm’s patents (Glaeser 
et al., 2023). If a firm has multiple R&D labs, we take the weighted average 
of the abnormal number of peer firm product purchases, where the weights 
are the number of inventors in each R&D lab. Data on patent filings are 
sourced from PatentsView.  

# Reverse Engineering Litigations The number of litigations where the firm (i.e., the defendant) is alleged to 
have reverse engineered a competitor’s product. We manually identify 
litigations with allegations to reverse engineering from Casetext using a 
keyword search (“reverse engineer” or “reverse engineering”) within all 
judicial opinions, rulings, and summaries of the litigation. 

Peer Trade Secrecy The percentage of TNIC competitors that possess trade secrets. Firms are 
considered to possess trade secrets if their public filings mention trade 
secrets (Glaeser, 2018). 

Peer Trade Secrecy (Only 
Innovators) 

The percentage of TNIC competitors engaged in innovation that possess 
trade secrets. A TNIC competitor is included if it has non-missing R&D 
expenditures or has filed at least one patent during the sample period. Firms 
are considered to possess trade secrets if their public filings mention trade 
secrets (Glaeser, 2018).  

Peer Trade Secrecy (Survey) The proportion of survey respondents who consider trade secrets to be "very 
important" in the 4-digit NAICS industry. Data is sourced from the Census’ 
Business Research and Development Innovation Survey tables.  

Peer Log(1+#Patents Filed) The natural logarithm of one plus the number of patents filed (Kogan et al., 
2017), averaged over all TNIC competitors.  

Peer Avg Patent Value The sum of economic value of patents filed scaled by total assets (Kogan et 
al., 2017), averaged over all TNIC competitors. 

# Trade Secrecy Words The number of trade secrecy-related words in the firm’s public filings 
following Glaeser (2018).  

Post DTSA An indicator variable that equals one (zero) for firm-quarters that fall in the 
eight quarters after (before) the passage of DTSA in 2016Q2. For firm-year 
panel tests, an indicator variable that equals one (zero) for firm-years that 
fall in the two years after (before) the passage of DTSA in 2016.  

Affected States An indicator variable that equals one for firms headquartered in the state of 
NY or MA (i.e., the two states that have not adopted the UTSA before 2016), 
else zero. 

% Affected Peers The percentage of TNIC competitors that are headquartered in the state of 
NY or MA.  

Product Similarity The average product similarity score between the firm and TNIC competitors 
(Hoberg and Phillips, 2010; 2016).  

Tech Similarity The average technological similarity between the firm and TNIC 
competitors (Hoberg and Phillips, 2010; 2016). Technological similarity is 
measured using the share of patent portfolios that are in the same 
technological classes following the method in Jaffe and Trajtenberg (1996). 

Peer Gross Margin The median gross margin of the focal firm’s TNIC competitors.  
Peer % Sales Growth The median sales growth rate of the focal firm’s TNIC competitors. 
Peer % COGS Growth The median cost of goods sold (COGS) growth rate of the focal firm’s TNIC 

competitors. 

https://www.census.gov/programs-surveys/brds.html
https://www.census.gov/programs-surveys/brds.html
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I (Signif. Tariff Reduction) An indicator variable that equals one if the firm’s industry experiences a 
significant tariff reduction in the prior year, else zero. A tariff reduction is 
considered as significant if the three-digit SIC level tariff decreases relative 
to the prior year by more than three times the median tariff rate decrease and 
is not preceded or followed by a tariff increase of equivalent magnitude 
(Frésard 2010). Data on industry-level tariffs (i.e., ad valorem most favored 
nation tariff rate) are collected from the USITC. Following Glaeser and 
Landsman (2019), we use the crosswalk file developed by Pierce and Schott 
(2012) to link HTS8 classifications to the three-digit SIC level. 

High % of IDD Peers An indicator variable that equals one for above-median observations of % of 
IDD Peers. % of IDD Peers is defined as percentage of TNIC competitors 
that are headquartered in states that adopted the Inevitable Disclosure 
Doctrine (IDD) following Klasa et al. (2018). The states (abbreviated) are 
the following: AR, CT, DE, GA, IL, IN, IA, KS, MA, MI, MN, MO, NJ, 
NY, NC, OH, PA, UT, WA. All states have adopted the IDD before the 
beginning of our sample period (2006).  

Product Innovation Stage An indicator variable that equals one if the firm (or TNIC competitors of the 
firms) is in the product innovation stage, else zero. Firm-years with the 
highest value of Life1 (or pLife1) is considered as those in the product 
innovation stage (Hoberg and Maksimovic, 2022).  

Process Innovation Stage An indicator variable that equals one if the firm (or TNIC competitors of the 
firms) is in the process innovation stage, else zero. Firm-years with the 
highest value of Life2 (or pLife2) is considered as those in the process 
innovation stage (Hoberg and Maksimovic, 2022).  

Product Maturity Stage An indicator variable that equals one if the firm (or TNIC competitors of the 
firms) is in the product maturity stage, else zero. Firm-years with the highest 
value of Life3 (or pLife3) is considered as those in the product maturity stage 
(Hoberg and Maksimovic, 2022).  

Product Decline Stage An indicator variable that equals one if the firm (or TNIC competitors of the 
firms) is in the product decline (discontinuation) stage, else zero. Firm-years 
with the highest value of Life4 (or pLife4) is considered as those in the 
product decline (discontinuation) stage (Hoberg and Maksimovic, 2022).  

Peer Vague Patents The percentage of patents by peer firms that contains vague language. A 
patent is classified as containing vague language if its description text 
includes at least one of the following terms or phrases (following Arinas, 
2012): Alternate(ly), Alternative(ly), Another, Still further, A further, 
Illustrative, A predetermined, A preferred, Still another, Yet another, broad, 
Embodiment/aspect of the present invention, Invention/disclosure/present 
invention is not limited by, In this respect/Thereto, The present 
disclosure/invention or This invention relates, Generally/In general to, At 
least, Ranging from, Preferably, Preferred, A 
plurality/ratio/set/subset/member/section/mixture/segment of, Portions of, 
Components of, Embodiments of, May/can (also) be, 
Substantially/Selectively. Patents are matched to industries following Kim 
and Valentine (2023) using the crosswalk file by Goldschlag et al. (2016). 

Abn(Purchase of Non-Related 
Products) 

The number of non-related product purchases at the firm’s headquarters 
(measured at the 3-digit zip code) during the quarter, subtracted by the 
average number of non-related product purchases in all 3-digit zip codes 
during the same period. We take the inverse hyperbolic sine transformation 
for regression analysis. Non-related products are defined as all product 
modules not matched to the focal firm’s TNIC competitors during the firm-
to-product mapping procedure described in Section 3. 

Size The natural logarithm of total assets.  
R&D / Assets Research and development (R&D) expense scaled by total assets.  
Log(1+#Patents Filed) The natural logarithm of one plus the number of patents filed (Kogan et al., 

2017).  

https://dataweb.usitc.gov/tariff/annual
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Avg Patent Value The sum of economic value of patents filed scaled by total assets (Kogan et 
al., 2017). 

ROA Income before income taxes scaled by total assets. 
SG&A / Sales Selling, general, and administrative (SG&A) expense scaled by total sales.  
Firm Age The reciprocal of one plus the number of years the firm has been on the 

Compustat database multiplied by (-1) (Pastor and Pietro, 2003). 
HHI The Herfindahl-Hirschman Index, defined as the sum of squared market 

shares (based on sales) of the 2-digit SIC industry. 
Leverage Book value of financial leverage, defined as long term debt plus debt in 

current liabilities scaled by total assets. 
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Figure 1: Measuring Reverse Engineering 
This figure presents an illustration of how we create Reverse Engineering using example firms. Cardinal Health is a 
Compustat firm with a TNIC peer in the Neilsen Scanner database (McKesson). We begin by identifying all product 
modules sold by McKesson. For simplicity, suppose McKesson sells in four different product modules (8425 – Cough 
Syrups & Tablets; 8502 – Sinus Remedies; 8522 – Dental Floss; and 8530 – First Aid Thermometers). We then 
calculate the total purchase volume for these product modules in the (3-digit) zip code area surrounding Cardinal 
Health’s headquarters during a given quarter, scaled by the local population. We then normalize this measure using 
the average purchase volume of the product modules in all (3-digit) zip codes during the same period. 
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Figure 2: Abnormal Product Purchases around Firm HQ and New Product Market Entry 
This figure compares abnormal product purchases near the headquarters of firms entering a new product market (i.e., 
blue line) with those of control firms (i.e., red line). We plot monthly trends from 48 months before to 48 months after 
the entry to a new product market, defined as the first instance of a product announcement in the new market (t = 0). 
Each series displays the average volume of product purchases near the headquarters of firms, adjusted by the average 
volume of product purchases in all (3-digit) zip codes during the same period. The volume of product purchases is 
scaled by the (3-digit) zip code’s population. The vertical dashed line marks the timing of the product announcement. 
The control firms are defined as TNIC competitors of the focal firm that i) do not enter the new product market, and 
ii) are headquartered in a different (3-digit) zip code as the focal firm.  
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Figure 3: Pre-Trends of Defend Trade Secrets Act (DTSA) 
This figure presents pre-trend analyses for Table 4. For Panel A, we replace Post DTSA with indicator variables for 
each year (with 2015 as the baseline and omitted). For Panel B, we replace Post DTSA with indicator variables for 
each quarter (with quarters before 2015Q2 and quarters after 2017Q2 grouped together). The indicator for the quarters 
before 2015Q1 is used as the baseline and omitted. Each regression includes the respective fixed effects and clusters 
at the industry-year level. We plot the coefficient value for the interaction terms and their 95% confidence interval 
over for each regression.  
 
Panel A: Effect of DTSA on Trade Secrecy 

  
Panel B: Effect of DTSA on Reverse Engineering 
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Table 1: Sample Selection 
This table illustrates the sample selection procedure. We first begin with a sample of 515 public companies whose 
product UPCs are matched to the Nielsen scanner database. We identify a total of 6,334 product market competitors 
of these 515 public companies based on the firm’s text-based network industry (TNIC). We next remove 1,346 firms 
without headquarter zip code data to construct our geography-based measure of reverse engineering. We next remove 
735 financial firms (i.e., 4-digit SIC industries: 6000-6999). We lastly remove 685 firms without data on control 
variables. Our main sample encompasses 3,568 unique firms over the period 2006-2020.  
 

 # Firms # Product Modules  # Peers 
# of firms matched to Nielsen scanner database 515 1,126  
# of peer firms identified based on TNIC   6,334 

Less: Firms without headquarter data   (1,346) 
Less: Financial firms (SIC 6000-6999)   (735) 
Less: Firms with non-missing control variables   (685) 

Main sample   3,568 
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Table 2: Descriptive Statistics 
This table illustrates the descriptive statistics of our panel. Panel A presents the summary statistics of the variables 
used in our analyses. Panel B presents the most common industries in our sample (based on 4-digit SIC industries) 
alongside the mean and median values of Reverse Engineering.  
 
Panel A: Main Sample 

Variable Mean Std P25 P50 P75 
Reverse Engineering 0.038 0.083 0.005 0.036 0.078 
Peer Trade Secrecy 0.681 0.326 0.350 0.857 0.967 
Peer Log(1+#Patents Filed) 0.513 0.528 0.045 0.383 0.791 
Peer Avg Patent Value 0.025 0.025 0.001 0.020 0.041 
Peer Vague Patents 0.041 0.008 0.037 0.042 0.045 
% Affected Peers 0.142 0.121 0.031 0.133 0.225 
Peer Trade Secrecy (Only Innovators) 0.703 0.318 0.400 0.889 0.971 
Peer Trade Secrecy (Survey) 0.349 0.239 0.170 0.210 0.594 
Size 6.352 2.038 4.860 6.263 7.773 
R&D / Assets 0.024 0.039 0.000 0.005 0.032 
Log(1+#Patents Filed) 0.521 0.999 0.000 0.000 0.693 
Avg Patent Value 0.021 0.047 0.000 0.000 0.016 
ROA -0.018 0.074 -0.022 0.006 0.020 
SG&A / Sales 0.375 0.438 0.098 0.267 0.479 
Firm Age -0.082 0.067 -0.111 -0.059 -0.037 
HHI 0.023 0.020 0.010 0.015 0.028 
Leverage 0.211 0.220 0.002 0.161 0.340 
Product Similarity 0.072 0.064 0.023 0.051 0.099 
Tech Similarity 0.520 0.348 0.197 0.542 0.855 
Peer Gross Margin 0.357 0.319 0.261 0.383 0.537 

 
Panel B: Industry Distribution  

SIC4 Industry % of 
Sample 

Reverse Engineering 
Mean Median 

2834 - Pharmaceutical Preparations   6.21% 0.030 0.046 
2836 - Biological Products, Except Diagnostic Substances   4.50% 0.036 0.052 
7372 - Prepackaged Software   4.27% 0.031 0.024 
3674 - Semiconductors and Related Devices   3.53% 0.075 0.076 
7370 - Computer Programming, Data Processing, and Other Computer 

Related Services   2.81% 0.020 0.019 

1311 - Crude Petroleum and Natural Gas   2.77% 0.058 0.087 
3841 - Surgical and Medical Instruments and Apparatus   2.73% 0.054 0.048 
5812 - Eating Places   2.57% 0.084 0.085 
2830 - Drugs   2.17% 0.023 0.031 
3670 - Electronic Components and Accessories   2.09% 0.076 0.074 
8731 - Commercial Physical and Biological Research   1.55% 0.041 0.039 
3845 - Electromedical and Electrotherapeutic Apparatus   1.45% 0.060 0.056 
7389 - Business Services, Not Elsewhere Classified   1.42% 0.025 0.006 
1382 - Oil and Gas Field Exploration Services   1.40% 0.029 0.083 
3840 - Surgical, Medical, and Dental Instruments and Supplies   1.29% 0.035 0.038 
7371 - Computer Programming Services   1.04% 0.014 0.008 
All other industries (each ≤1%) 58.20% 0.035 0.034 
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Table 3: Validation of the Reverse Engineering Measure 
This table presents validation test results by examining whether abnormal product purchasing activity around firm 
headquarters predicts outcomes consistent with reverse engineering activities. In Panel A, we examine the relation 
between abnormal product purchasing activity around firm headquarters and five innovation and product market 
outcomes in the following year: (i) Product Similarity, (ii) Tech Similarity, (iii) R&D / Assets, and (iv) Log(1+#Patents 
Filed). Product Similarity is defined as the average product similarity score between the firm and the peer firms in the 
same text-based network industry. Tech Similarity is defined as the average technological similarity between the firm 
and peer firms in the same text-based network industry (Jaffe and Trajtenberg, 1996). R&D / Assets is defined as R&D 
expense scaled by total assets. Log(1+#Patents Filed) is defined as the natural logarithm of one plus the number of 
patents filed (Kogan et al., 2017). In Panel B, we examine the relation between abnormal product purchasing activity 
around firm headquarters and gross margin erosion of peer firms in the same text-based network industry as the focal 
firm. In column 1, the dependent variable is Peer Gross Margin, defined as the median gross margin of peer firms. In 
column 2, the dependent variable is Peer % Sales Growth, defined as the median sales growth rate of peer firms. In 
column 3, the dependent variable is Peer % COGS Growth, defined as the median cost of goods sold (COGS) growth 
rate of peer firms. For both panels, the variable of interest is the decile-ranked Reverse Engineering, defined as the 
number of peer firm product purchases at the firm’s headquarters (measured at the 3-digit zip code) during the year, 
subtracted by the average number of peer firm product purchases in all 3-digit zip codes during the same period. 
Continuous variables are winsorized at the 1% and 99% levels. All variables are defined in more detail in Appendix 
A. Standard errors are clustered at the industry-year level and are reported in parentheses. *, **, and *** indicate 
significance levels of 10%, 5%, and 1%, respectively.  
 
Panel A: Innovation and Product Market Outcomes 

 (1) (2) (3) (4) 

Dep. Var. = Product 
Similarityt+1 

Tech 
Similarityt+1 

R&D / 
Assetst+1 

Log(1+#Patents 
Filed)t+1 

Reverse Engineering (Deciled) 0.0035 0.0267 0.0104 0.0562 
 [2.97]*** [1.82]* [3.03]*** [1.78]* 

Size 0.0029 0.0180 -0.0110 0.0582 
 [6.31]*** [2.56]** [-5.41]*** [5.29]*** 
R&D / Assets 0.0020 0.0308 0.4205 0.6920 
  [0.17] [0.17] [5.30]*** [2.73]*** 
Log(1+#Patents Filed) 0.0006 0.0028 0.0016 0.2148 
  [1.58] [0.54] [0.89] [11.00]*** 
Avg Patent Value 0.0208 0.0255 -0.0829 -0.4818 
 [3.61]*** [0.39] [-2.57]** [-2.43]** 
ROA -0.0044 0.0698 0.0565 0.0716 
 [-1.02] [0.97] [2.26]** [0.81] 
SG&A / Sales 0.0002 0.0115 -0.0015 -0.0091 
 [0.31] [1.96]* [-0.57] [-1.16] 
Firm Age -0.0093 0.0980 0.0089 0.0888 
 [-2.27]** [0.99] [0.78] [1.00] 
HHI 0.0055 -0.4190 -0.0451 1.5833 
 [0.18] [-0.64] [-0.83] [2.88]*** 
Leverage -0.0011 0.0107 -0.0224 -0.0889 
 [-0.77] [0.43] [-2.76]*** [-2.97]*** 
     
Observations 18,613 5,868 18,719 18,719 
Adjusted R-squared 0.9184 0.6651 0.8112 0.8876 
Firm & Year FE Yes Yes Yes Yes 
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Panel B: Peers’ Gross Margin Erosion 
 (1) (2) (3) 

Dep. Var. = Peer Gross 
Margint+1 

Peer % Sales 
Growtht+1 

Peer % COGS 
Growtht+1 

Reverse Engineering (Deciled) -0.0313 -0.0133 -0.0041 
 [-3.48]*** [-1.72]* [-0.48] 

Size -0.0029 -0.0041 -0.0061 
 [-0.64] [-1.38] [-2.50]** 
R&D / Assets 0.2203 -0.0189 -0.0476 
  [2.42]** [-0.56] [-2.28]** 
Log(1+#Patents Filed) 0.0025 0.0031 0.0043 
  [0.65] [1.59] [2.73]*** 
Avg Patent Value -0.0583 0.0006 0.0158 
 [-1.83]* [0.06] [1.59] 
ROA -0.0015 -0.0268 0.0097 
 [-0.05] [-1.42] [0.92] 
SG&A / Sales -0.0000 0.0000 0.0000 
 [-3.23]*** [0.48] [0.75] 
Firm Age -0.0284 -0.0194 -0.0234 
 [-0.89] [-0.67] [-0.49] 
HHI -0.0962 -0.0671 -0.0222 
 [-0.93] [-0.37] [-0.17] 
Leverage -0.0267 -0.0086 -0.0015 
 [-1.95]* [-1.55] [-0.29] 
    
Observations 18,737 18,737 18,737 
Adjusted R-squared 0.7612 0.2891 0.3139 
Firm & Year FE Yes Yes Yes 
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Table 4: Reverse Engineering and Trade Secrecy  
This table examines the relation between trade secrecy and reverse engineering. Panel A (B) examines the relation 
between competitors’ use of trade secrecy (patents) and reverse engineering. The dependent variable is Reverse 
Engineering, defined as the number of peer firm product purchases at the firm’s headquarters (measured at the 3-digit 
zip code) during the quarter, subtracted by the average number of peer firm product purchases in all 3-digit zip codes 
during the same period. We take the inverse hyperbolic sine transformation of Reverse Engineering. In Panel A, the 
variable of interest is Peer Trade Secrecy, defined as the percentage of TNIC competitors that possess trade secrets, 
measured using the Glaeser (2018) method. In Panel B, the variable of interest is one of the following: Peer 
Log(1+#Patents Filed), Peer Avg Patent Value, or Peer Vague Patents. Peer Log(1+#Patents Filed) is defined as the 
natural logarithm of one plus the number of patents filed, averaged over all TNIC competitors. Peer Avg Patent Value 
is defined as the sum of economic value of patents filed scaled by total assets, averaged over all TNIC competitors. 
Peer Vague Patents is defined as the percentage of patents by peer firms that contains vague language (i.e., one of the 
following words or phrases in the Arinas [2012] list). Continuous variables are winsorized at the 1% and 99% levels. 
All variables are defined in more detail in Appendix A. Standard errors are clustered at the industry-year level and are 
reported in parentheses. *, **, and *** indicate significance levels of 10%, 5%, and 1%, respectively. 
 
Panel A: Reverse Engineering and Peer Trade Secrecy 

 (1) (2) (3) 
 Dep. Var. = Reverse Engineering 
Peer Trade Secrecy 0.0065 0.0057 0.0060 

 [2.36]** [2.83]*** [2.93]*** 
Size   -0.0003 
   [-0.37] 
R&D / Assets   0.0012 
    [0.08] 
Log(1+#Patents Filed)   -0.0004 
    [-0.60] 
Avg Patent Value   -0.0094 
   [-1.02] 
ROA   0.0066 
   [1.35] 
SG&A / Sales   0.0001 
   [0.08] 
Firm Age   0.0136 
   [1.22] 
HHI   -0.2237 
   [-3.43]*** 
Leverage   0.0090 
   [3.20]*** 
    
Observations 75,963 75,963 75,963 
Adjusted R-squared 0.0006 0.7879 0.7882 
Firm FE No Yes Yes 
YearQtr FE No Yes Yes 
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Panel B: Reverse Engineering and Peer Patenting Activity 
 (1) (2) (3) 
 Dep. Var. = Reverse Engineering 
Peer Log(1+#Patents Filed) -0.0117   

 [-7.55]***   
Peer Avg Patent Value  -0.1824  
  [-5.81]***  
Peer Vague Patents   0.1831 
    [3.54]*** 
    
Controls Yes Yes Yes 
Observations 75,963 75,963 66,790 
Adjusted R-squared 0.7889 0.7887 0.7901 
Firm & YearQtr FE Yes Yes Yes 
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Table 5: Defend Trade Secrets Act (DTSA) as a Shock to Trade Secrecy 
This table exploits the adoption of the Defend Trade Secrets Act (DTSA) as a quasi-exogenous shock to trade secrecy. 
Panel A presents the results of the validation test. The dependent variable is # Trade Secrecy Words, defined as the 
number of trade secrecy words in the firm’s public filings following Glaeser (2018). We estimate a Poisson regression 
(Cohn et al., 2022). The variable of interest is the interaction term Post DTSA × Affected States. Post DTSA is an 
indicator variable that equals one (zero) for observations that fall in 2017 or 2018 (2014 or 2015). Affected States is 
an indicator variable that equals one for firms headquartered in the state of NY or MA, else zero. Panel B examines 
the relation between trade secrecy and reverse engineering. The dependent variable is Reverse Engineering, defined 
as the number of peer firm product purchases at the firm’s headquarters (measured at the 3-digit zip code) during the 
quarter, subtracted by the average number of peer firm product purchases in all 3-digit zip codes during the same 
period. We take the inverse hyperbolic sine transformation of Reverse Engineering. The variable of interest is the 
interaction term Post DTSA × % Affected Peers. For this panel, Post DTSA is an indicator variable that equals one for 
firm-quarters that fall in the eight quarters after (before) the passage of DTSA in 2016Q2. % Affected Peers is the 
percentage of TNIC competitors that are headquartered in the state of NY or MA. Continuous variables are winsorized 
at the 1% and 99% levels. All variables are defined in more detail in Appendix A. Standard errors are clustered at the 
industry-year level and are reported in parentheses. *, **, and *** indicate significance levels of 10%, 5%, and 1%, 
respectively. 
 
Panel A: Validation (Effect of DTSA on Trade Secrecy) 

 (1) (2) 
 Dep. Var. = # Trade Secrecy Words 
Post DTSA × Affected States  0.0738 0.0815 

 [1.83]* [2.11]** 
   
Controls No Yes 
Observations 4,996 4,996 
Pseudo R-squared 0.5445 0.5451 
Firm & Year FE Yes Yes 

 
Panel B: Effect of DTSA on Reverse Engineering 

 (1) (2) 
 Dep. Var. = Reverse Engineering 
Post DTSA × % Affected Peers 0.0238 0.0234 

 [3.60]*** [3.57]*** 
   
Controls No Yes 
Observations 16,138 16,138 
Adjusted R-squared 0.8996 0.8996 
Firm & YearQtr FE Yes Yes 
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Table 6: Reverse Engineering and Trade Secrecy – Product Market Competition 
This table examines whether the relation between trade secrecy and reverse engineering is more pronounced under 
heightened product market competition proxied by a significant tariff reduction in the industry The dependent variable 
is Reverse Engineering, defined as the inverse hyperbolic sine of the number of peer firm product purchases at the 
firm’s headquarters (measured at the 3-digit zip code) during the quarter, subtracted by the average number of peer 
firm product purchases in all 3-digit zip codes during the same period. Peer Trade Secrecy is defined as the percentage 
of TNIC competitors that possess trade secrets, measured using the Glaeser (2018) method. The variable of interest is 
the interaction term Peer Trade Secrecy × I (Signif. Tariff Reduction). I (Signif. Tariff Reduction) is defined as an 
indicator variable that equals one if the firm’s industry experiences a significant tariff reduction in the prior year, else 
zero. A tariff reduction is considered as significant if the three-digit SIC level tariff decreases relative to the prior year 
by more than three times the median tariff rate decrease and is not preceded or followed by a tariff increase of 
equivalent magnitude (Frésard 2010). Continuous variables are winsorized at the 1% and 99% levels. All variables 
are defined in more detail in Appendix A. Standard errors are clustered at the industry-year level and are reported in 
parentheses. *, **, and *** indicate significance levels of 10%, 5%, and 1%, respectively. 
 

 (1) 
 Dep. Var. = Reverse Engineering 
Peer Trade Secrecy 0.0055 
 [2.67]*** 
I (Signif. Tariff Reduction) -0.0057 
 [-1.80]* 
Peer Trade Secrecy × I (Signif. Tariff Reduction) 0.0084 
 [1.81]* 
Size -0.0003 
 [-0.37] 
R&D / Assets 0.0013 
  [0.09] 
Log(1+#Patents Filed) -0.0004 
  [-0.60] 
Avg Patent Value -0.0091 
 [-0.99] 
ROA 0.0066 
 [1.36] 
SG&A / Sales 0.0001 
 [0.09] 
Firm Age 0.0137 
 [1.22] 
HHI -0.2259 
 [-3.46]*** 
Leverage 0.0090 
 [3.19]*** 
  
Observations 75,963 
Adjusted R-squared 0.7882 
Firm & YearQtr FE Yes 
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Table 7: Reverse Engineering and Trade Secrecy – Talent-Based Knowledge Acquisition 
This table examines whether the relation between trade secrecy and reverse engineering is more pronounced when 
talent-based knowledge acquisition is more costly. We use the percentage of TNIC competitors that are headquartered 
in states adopting the Inevitable Disclosure Doctrine (IDD) to proxy for firms facing limitations on the ability to hire 
rivals’ employees. The dependent variable is Reverse Engineering, defined as the inverse hyperbolic sine of the 
number of peer firm product purchases at the firm’s headquarters (measured at the 3-digit zip code) during the quarter, 
subtracted by the average number of peer firm product purchases in all 3-digit zip codes during the same period. Peer 
Trade Secrecy is defined as the percentage of TNIC competitors that possess trade secrets, measured using the Glaeser 
(2018) method. The variable of interest is the interaction term Peer Trade Secrecy × High % of IDD Peers. High % 
of IDD Peers is defined as an indicator variable that equals one if the percentage of TNIC competitors that are 
headquartered in states that adopted the IDD is above the sample median, else zero. Continuous variables are 
winsorized at the 1% and 99% levels. All variables are defined in more detail in Appendix A. Standard errors are 
clustered at the industry-year level and are reported in parentheses. *, **, and *** indicate significance levels of 10%, 
5%, and 1%, respectively. 
 

 (1) 
 Dep. Var. = Reverse Engineering 
Peer Trade Secrecy 0.0039 
 [1.78]* 
High % of IDD Peers -0.0022 
 [-1.20] 
Peer Trade Secrecy × High % of IDD Peers 0.0050 
 [2.12]** 
Size -0.0004 
 [-0.41] 
R&D / Assets 0.0007 
  [0.04] 
Log(1+#Patents Filed) -0.0003 
  [-0.58] 
Avg Patent Value -0.0095 
 [-1.03] 
ROA 0.0063 
 [1.29] 
SG&A / Sales 0.0001 
 [0.05] 
Firm Age 0.0115 
 [1.02] 
HHI -0.2239 
 [-3.44]*** 
Leverage 0.0089 
 [3.15]*** 
  
Observations 75,963 
Adjusted R-squared 0.7883 
Firm & YearQtr FE Yes 
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Table 8: Reverse Engineering and Trade Secrecy – Product Life Cycle 
This table examines whether the relation between trade secrecy and reverse engineering varies over the product life 
cycle. The dependent variable is Reverse Engineering, defined as the inverse hyperbolic sine of the number of peer 
firm product purchases at the firm’s headquarters (measured at the 3-digit zip code) during the quarter, subtracted by 
the average number of peer firm product purchases in all 3-digit zip codes during the same period. The variable of 
interest is the four interaction terms between Peer Trade Secrecy and Product Innovation Stage, Process Innovation 
Stage, Product Maturity Stage, and Product Decline Stage, respectively. Peer Trade Secrecy is defined as the 
percentage of TNIC competitors that possess trade secrets, measured using the Glaeser (2018) method. We assign 
each firm-year observation to a single product life cycle stage based on the methodology from Hoberg and Maksimovic 
(2022). Specifically, each firm is assigned a loading on four latent product life cycle dimensions (Life1 to Life4). For 
focal firms, we identify the stage corresponding to the highest loading in a given year and create indicators for: Product 
Innovation (Life1), Process Innovation (Life2), Product Maturity (Life3), and Product Decline (Life4). For TNIC peer 
firms (i.e., firms being reverse engineered), we average the Life1–Life4 loadings across peers and assign the competitor 
group to the stage with the highest average loading (pLife1–pLife4), similarly defining stage indicators. In column 1 
(2), product life cycle stages are based on peer firm (focal firm) classifications. The coefficient for Product Decline 
Stage is omitted due to multicollinearity. Continuous variables are winsorized at the 1% and 99% levels. All variables 
are defined in more detail in Appendix A. Standard errors are clustered at the industry-year level and are reported in 
parentheses. *, **, and *** indicate significance levels of 10%, 5%, and 1%, respectively. 
 

Product life cycle of:  Peer Firms Focal Firm 
 (1) (2) 
 Dep. Var. = Reverse Engineering 
Peer Trade Secrecy × Product Innovation Stage 0.0266 0.0152 
 [3.40]*** [2.11]** 
Peer Trade Secrecy × Process Innovation Stage 0.0110 0.0122 
 [2.45]** [3.06]*** 
Peer Trade Secrecy × Product Maturity Stage -0.0075 0.0051 
 [-1.43] [1.00] 
Peer Trade Secrecy × Product Decline Stage  0.0174 0.0291 
 [0.72] [2.37]** 
Product Innovation Stage -0.0145 0.0020 
 [-0.78] [0.19] 
Process Innovation Stage -0.0041 0.0098 
 [-0.24] [1.15] 
Product Maturity Stage 0.0065 0.0154 
 [0.37] [1.63] 
   
Controls Yes Yes 
Observations 71,749 72,022 
Adjusted R-squared 0.8075 0.8068 
Firm & YearQtr FE Yes Yes 
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Table 9: Robustness Tests 
This table presents robustness tests. Panel A examines the relation between alternative measures of trade secrecy and 
reverse engineering. The dependent variable is Reverse Engineering, defined as the number of peer firm product 
purchases at the firm’s headquarters (measured at the 3-digit zip code) during the quarter, subtracted by the average 
number of peer firm product purchases in all 3-digit zip codes during the same period. We take the inverse hyperbolic 
sine transformation of Reverse Engineering. In column 1, the variable of interest is Peer Trade Secrecy (Only 
Innovators), defined analogously as Peer Trade Secrecy but constrained to peers with R&D expense or patenting 
activity. In column 2, the variable of interest is Peer Trade Secrecy (Survey), defined as the proportion of survey 
respondents who consider trade secrets to be "very important" within the industry. Panel B examines the relation 
between trade secrecy and alternative proxies of reverse engineering. In column 1, we use a litigation-based proxy for 
reverse engineering. # Reverse Engineering Litigations is the number of litigations where the firm (i.e., defendant) is 
alleged to have reverse engineered a competitor’s product. We estimate a Poisson regression (Cohn et al., 2022). In 
column 2, we use R&D labs (i.e., 3-digit zip codes that have at least two inventors filing the firm’s patents) as an 
alternative location of product purchases. Reverse Engineering (R&D Labs) is defined as the inverse hyperbolic sine 
of the number of peer firm product purchases at the firm’s R&D labs (measured at the 3-digit zip code) subtracted by 
the average number of peer firm product purchases in all 3-digit zip codes during the same period. If a firm has 
multiple R&D labs, we take the weighted average of the abnormal number of peer firm product purchases, where the 
weights are the number of inventors in each R&D lab. Continuous variables are winsorized at the 1% and 99% levels. 
All variables are defined in more detail in Appendix A. Standard errors are clustered at the industry-year level and are 
reported in parentheses. *, **, and *** indicate significance levels of 10%, 5%, and 1%, respectively. 
 
Panel A: Alternative Measures of Trade Secrecy 

 (1) (2) 
 Dep. Var. = Reverse Engineering 
Peer Trade Secrecy (Only Innovators) 0.0058  
 [3.05]***  
Peer Trade Secrecy (Survey)  0.0151 
  [4.48]*** 
   
Controls Yes Yes 
Observations 75,963 40,849 
Adjusted R-squared 0.7882 0.8380 
Firm & YearQtr FE Yes Yes 

 
Panel B: Alternative Measures of Reverse Engineering 

 (1) (2) 

Dep. Var. = # Reverse Engineering 
Litigations  

Reverse Engineering  
(R&D Lab) 

Peer Trade Secrecy 1.8808 0.0096 
 [2.04]** [2.92]*** 
   
Controls Yes Yes 
Observations 19,541 28,059 
Pseudo R-squared 0.6117 - 
Adjusted R-squared - 0.7744 
Firm & Year FE Yes - 
Firm & YearQtr FE - Yes 
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Table 10: Falsification Test 
This table presents a falsification test. The dependent variable is Abn(Purchase of Non-Related Products), defined as 
the number of non-related product purchases at the firm’s headquarters (measured at the 3-digit zip code) during the 
quarter, subtracted by the average number of non-related product purchases in all 3-digit zip codes during the same 
period. We take the inverse hyperbolic sine transformation of Abn(Purchase of Non-Related Products). Non-related 
products are defined as all product modules not matched to the focal firm’s TNIC competitors during the firm-to-
product mapping procedure described in Section 3. The variable of interest is Peer Trade Secrecy, defined as the 
percentage of TNIC competitors that possess trade secrets, measured using the Glaeser (2018) method. Continuous 
variables are winsorized at the 1% and 99% levels. All variables are defined in more detail in Appendix A. Standard 
errors are clustered at the industry-year level and are reported in parentheses. *, **, and *** indicate significance 
levels of 10%, 5%, and 1%, respectively. 
 

 (1) 

Dep. Var. = Abn(Purchase of  
Non-Related Products) 

Peer Trade Secrecy 0.0004 
 [0.93] 
  
Controls Yes 
Observations 75,963 
Adjusted R-squared 0.8773 
Firm & YearQtr FE Yes 

 


