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Abstract

This study examines how occupational Al exposure affects employment at the inten-
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channels: higher marginal productivity from Al-human complementarity, improved con-
tracting efficiency from Al-enabled monitoring, and lower worker reservation utility, re-
flected in declining job satisfaction unrelated to salaries or employment risk. The work-
day extension is most pronounced in competitive labor and product markets, where
weak worker bargaining power shifts productivity gains to firms or consumers. These
findings challenge the view that technology reduces labor burdens, showing that it can
erode work-life balance.
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1. Introduction

Artificial intelligence (Al) was initially conceived with the goal of making human work and
life more interesting, fulfilling, and less laborious. Paired with other technological advances
like automation, AI has the potential to boost productivity, enhance job satisfaction, and
promote a healthier work-life balance. Nevertheless, empirical evidence regarding AI’s impact
on both work and leisure remains inconclusive. While much of the discussion has centered
on Al’s capacity to displace labor in some scenarios and generate new roles in others (e.g.,
Felten et al., 2019; Webb, 2019; Acemoglu et al., 2022; Kogan et al., 2023; Hampole et al.,
2025), relatively little attention has been given to how Al reshapes work on the intensive
margin—particularly its effects on work time, contracting efficiency, and the distribution of
productivity gains. This paper aims to fill these gaps by analyzing the micro-level impacts of
AT on time allocation, drawing on detailed individual-level time diaries collected from 2004
to 2023. Through this examination, we investigate how Al exposure influences work supply
at the intensive margin and assess its broader implications for firm valuation and economic
outcomes.

The relationship between occupation exposure to Al and work time is a priori ambiguous.
For any given task, Al-driven automation and efficiency improvements should theoretically
shorten task duration. Additionally, wealth creation boosted by technology should entice
individuals to allocate more time from work to leisure, provided that leisure is a normal
good. However, the classical principle-agent model (notably Holmstrom and Milgrom (1987))
provides a rich set of predictions in a setting where a worker optimally allocates his effort
based on the production process, monitoring effectiveness and personal preferences. Al’s
impact on the potential to enhance productivity in diverse fields,! combined with its capacity
to improve monitoring and productivity measurement, can result in heavier workloads and

longer hours. This effect is expected to be more pronounced in competitive product markets,

'E.g., stock analysis (e.g., Gu et al., 2020; Lopez-Lira and Tang, 2023), legal practices (e.g., Casey and
Niblett, 2016; Surden, 2019), music generation (e.g., Briot et al., 2017; Briot, 2021), and accounting (Com-
merford et al., 2022).



where businesses face escalating expectation from customers and pressures from competitors’
enhanced capabilities; and in labor markets with relatively inelastic supply, where workers lack
substantive bargaining power to adjust their schedules to their own advantage. Furthermore,
AT’s integration of real-time effort tracking and improved information availability frequently
erodes the division between work and personal life, further contributing to extended working
hours for some individuals.

Data from the American Time Use Survey (ATUS) provides a unique opportunity to test
the hypotheses. The ATUS conducts a cross-sectional survey each year, with an average annual
sample size of approximately 26,400 participants. Our sample spans two decades from 2004
to 2023. Respondents document their activities using detailed 24-hour diaries at 15-minute
intervals, from which market-based work time, leisure time, and some special categories (such
as education and child care) can be calculated, with reasonable variations for sensitivity checks
(e.g., whether social activities at the workplace count as work or leisure). To attribute the
changes in workday patterns to Al, we then measure each occupation’s Al exposure based on
the textual correlation between task descriptions and the content of Al-related patents using
large language models. We further distinguish between complementarity and substitution
relationships between AI and jobs.

The advent of ChatGPT toward the end of 2022 provides a natural experiment to test how
workers change time allocation when their jobs are disrupted or complemented by the new
AT technology. Workers in occupations with higher exposure to generative Al experienced a
significant increase in work hours and a decrease in leisure time following the introduction of
ChatGPT. An interquartile increase in Al exposure is associated with a 3.75-hour increase in
weekly work time. This effect is particularly evident in occupations that are more comple-
mentary to generative Al and in regions where Al awareness is higher, as measured by Google
search trends. Given that the general public was largely unprepared for the exact timing of

ChatGPT and even more so for its advanced “human-like” capabilities,? the prolonged work-

2The surprise by the general public was evident from the comments on social media shortly after ChapGPT’s
launching. For instance, The New York Times article titled “A Conversation With Bing’s Chatbot Left Me
Deeply Unsettled,” published on February 16, 2023, captured many of these reactions and reflected the broader



day is likely attributable to the new technology. Our finding that AI technology increases
overall work hours challenges the common expectation that it would reduce work time by
enabling workers to complete tasks more efficiently.

The same relationship holds over the full sample period for occupational exposure to
general Al technology. After controlling for individual characteristics, alternative innovation
exposure measures, and a comprehensive set of fixed effects—including industry x year, state
x year, year-month, and day-of-week—an interquartile shift in occupational Al exposure
is associated with an additional 2.25 hours of work per week in the cross-section. When
further controlling for occupation fixed effects, the within-occupation effect remains sizable at
approximately 50% of that magnitude. An employment analysis suggests that this extension
of the workday is unlikely to be driven by task consolidation following workforce reductions.?

On the leisure side, reductions associated with Al exposure are primarily concentrated in
non-screen-based activities such as relaxing, socializing, and traveling. This shift indicates
that workers in Al-exposed occupations not only work more but also reallocate their leisure
time toward screen-based activities, which are generally more passive and less restorative.

We test predictions from the Principal-Agent model along three dimensions: marginal
productivity, monitoring efficiency, and reservation utility. The first set of tests shows that
both work hours and wage rates increase monotonically with the level of Al exposure, in addi-
tion to net complementarity of AI. This pattern supports the hypothesis that Al-augmented
productivity incentivizes workers to extend their working hours.

The second test examines Al’s role in performance monitoring, using the rapid adoption
of Al-driven surveillance during the 2020 pandemic-induced shift to remote work as a natural
experiment. Among occupations that were ex ante feasible for remote work, defined by the
absence of essential on-site requirements, workers in roles with higher exposure to AI moni-

toring technologies, particularly those aiming at direction and evaluation, experienced greater

public astonishment at the technology’s capabilities.

3 After our sample period, 202425 saw large-scale layoffs in the tech sector. Our default sample explicitly
excludes this industry, and aggregate unemployment has remained relatively stable well into 2025. Thus, the
inference that extended workdays are not primarily driven by fear of employment risk or task consolidation
into a reduced workforce still holds.



increases in work hours following the shock. Crucially, this effect is not observed among the
self-employed, for whom the principal-agent problem is moot. This serves as an effective
placebo test, reinforcing the interpretation that AI monitoring contributes to extended work
hours through Al-enhanced monitoring efficiency.

The final set of tests explores the extent to which the productivity surplus from occu-
pational Al exposure has accrued to workers, and whether the cross-sectional variation in
workers’ “reservation utility” helps explain observed effort patterns. Although we confirm
that firms benefit from the AI exposure of their workforce (evidenced by higher return on as-
sets (ROA) and labor productivity), workers report lower satisfaction, particularly regarding
work-life balance (based on Glassdoor reviews) even though Al exposure is associated with
higher compensation. In other words, there is little evidence that productivity gains translate
into improved worker welfare. In the cross section, we expect workers to capture a smaller
share of the surplus (and work longer hours) when they have weaker bargaining power relative
to their employers, or when their employers face limited pricing power vis-a-vis consumers.

Indeed, the extension of the work hours is more pronounced when workers have limited
bargaining power-due to employer dominance in a regional and occupational hiring market,
which restricts their information, mobility, and choices. Similarly, workers have difficulties
extracting rents from technology-enabled productivity gains when the product market is com-
petitive, leading to most of the rents being passed on to consumers and leaving little for
firms to share with workers. In both scenarios, the reservation utility of workers (reflecting
overall welfare in equilibrium) fails to keep pace with productivity gains during the AI boom,
thereby undermining the income effect that would have otherwise induced more leisure and
discouraged work.

Our study contributes to the rapidly growing literature that analyzes the impact of Al
on the economy. A growing body of research (Autor, 2015; Felten et al., 2019; Webb, 2019;
Acemoglu et al., 2022; Yang, 2022; Babina et al., 2024; Hampole et al., 2025) has uncovered
various facets of AI’s impact on businesses and employment, focusing primarily on the exten-

sive margin, i.e., occupations disrupted and new opportunities created by Al. In contrast, this



study focuses on the intensive margin of workdays within the framework of a principal-agent
model. Needless to say, we also build on and contribute to the literature that utilizes time
allocation surveys, which have predominantly examined general or cyclical trends and their
heterogeneity across population subgroups.* Among studies built on time allocation surveys,
our study is unique in its focus on Al exposure, challenging the conventional expectation that
technology frees humans from prolonged workdays.

The remainder of the paper is organized as follows: Section 2 develops a simple model
within a principal-agent framework to provide theoretical guidance on the various ways Al
technology can influence worker time allocation. Section 3 introduces the primary datasets
used in our analyses, including patent data, occupation data, LinkedIn, Glassdoor, and the
American Time Use Survey. Section 4 presents the empirical analysis on the relationship
between Al exposure and work and leisure hours. Section 5 tests the mechanisms based on

the principal-agent model. Finally, Section 6 concludes.

2. Modeling Framework and Hypotheses

Theories addressing the principal-agent problem have inspired a large body of research, includ-
ing many seminal papers. While this study is primarily empirical, we ensure that our analyses
are well-informed by theoretical insights. In particular, we build on straightforward adap-
tations of the Holmstrom and Milgrom (1987) model of dynamic incentive contracts, which
examines how risk-averse agents respond to compensation schemes that balance incentives,
risk-sharing, and the timing of information disclosure in a continuous-time framework. This
model offers predictions about the relationship between a worker’s “effort” (mapped into the
number of work hours in our empirical context) and several key factors, including marginal

productivity, the accuracy and timeliness of effort monitoring, and the worker’s bargaining

4For instance, Aguiar et al. (2021) show that younger men experienced the greatest decline in market
work hours among all demographic groups over the last 15 years, reallocating their leisure to video gaming
and other recreational computer activities. Aguiar and Hurst (2007) find that the least educated adults
experienced the largest increases in leisure. Aguiar et al. (2013) investigate how individuals reallocate their
lost work hours during recessions. One exception is Ben-Rephael et al. (2025), which uses managers’ time
allocated to Bloomberg usage as a measure of effort provision and examines its’ impact on firm value.



power in capturing or preserving the rents from technology-driven productivity gains.

The simple model, presented in the Online Appendix A, features a risk-neutral principal,
a risk-averse agent, and a production output process following the standard Brownian motion
in which effort and marginal productivity are multiplicative in determining the drift while
noise is exogenously given. Under constant absolute risk aversion (CARA) utilities and a
convex cost of effort for the agent, Holmstrom and Milgrom (1987) demonstrate that the
optimal dynamic contract converges to a linear form in the aggregate: a lump-sum payment
plus a share of the output, i.e., a + X. In this framework, the lump sum ensures the agent’s
reservation utility, U (shaped by the worker’s relative bargaining power, which depends on the
competitiveness of both the labor and product markets). The “sharecropping” coefficient, 3,
is inversely related to the agent’s increasing marginal cost of effort, risk aversion, and output
noise. Finally, the agent’s effort level, in response to the incentive, is positively correlated
with their marginal productivity and aligns in direction with the factors influencing S.

CARA utility abstracts from the wealth effect on leisure, a feature that may be unrealistic
in many settings. The model can be extended to incorporate a general constant elasticity of
substitution (CES) utility function, where the marginal utilities of consumption and leisure are
interdependent. This framework allows for the examination of how the work-leisure allocation
changes in response to external factors that influence the agent’s reservation utility U via their
best alternatives in the marketplace. When consumption and leisure are complements, that is,
people enjoy consumption more when they have more leisure (MaCurdy, 1981; Blundell and
MaCurdy, 1999); or when the reservation utility is sufficiently high (limiting the principal’s
ability to increase 5 due to the agent’s risk aversion), work time is expected to decrease as
the reservation utility rises. Since leisure is a normal good, the agent places greater value on
it as their welfare improves. Rising U allows the agent to allocate more time to leisure and
less to work (while enjoying higher consumption), all else being equal.

The model offers tight guidance on how AI can influence optimal incentives and the equi-

librium level of effort for several reasons. First, if Al enhances the marginal productivity of



the agent, that is, if human and AI are complements in job tasks,” this increase in marginal
productivity results in greater effort or longer working hours. Conversely, if human and Al
are substitutes in the job,® the effect is reversed. It is worth noting that a principal-agent
relationship is not required for this effect, as the same dynamic would apply to self-employed
individuals.

Second, Al enhances work monitoring by providing better predictions or more precise sig-
nals of workers’ efforts. This can occur through improved forecasting of market opportunities,
ensuring that the right products are produced, or through more accurate assessment of work-
ers’ labor input using past and concurrent, own and peer data. Both mechanisms reduce
the noise component (i.e., factors unrelated to workers’ effort or actions), thereby increasing
work hours. This effect operates in the same direction regardless of whether Al substitutes or
complements labor, though it is significantly stronger when the worker acts as an agent (i.e.,
employed by someone else) rather than as a principal (i.e., self-employed).

Third, market forces and competitive conditions determine the extent to which workers
benefit from Al-enabled productivity gains. When AI complements human labor and enhances
labor productivity, the degree to which these gains translate into worker welfare-through a
combination of higher pay and lower work hours—depends on the relative bargaining power
of workers vis-a-vis their employers. Workers in regions or occupations characterized by com-
petitive labor markets have limited bargaining power and may see little material benefit, with
most of the rents accruing to employers or shareholders. Moreover, the share of rents available
for firms to split with their workers also depends on product market competition. In highly
competitive markets, consumers emerge as the primary beneficiaries of Al-driven productivity
gains through better-quality products, lower prices, and rising consumer expectations, leaving

little surplus for firms to share with their workers. If Al substitutes human labor and reduces

5A burgeoning literature corroborates complementarity in a wide range of occupations: lawyers(Armour
et al., 2022), floor traders(Brogaard et al., 2024), stock analysts(Cao et al., 2024), and medical profession-
als(Wang et al., 2024).

6An equally large literature has expressed concerns over displacements of human labor and suppressing
wages during technology advancement especially those targeted at routine-bases tasks: Kogan et al. (2023);
Cheng et al. (2024); Hui et al. (2024);Jiang et al. (2025); Tuzel and Zhang (2021) and Zhang (2019).



labor productivity, workers find themselves in an even weaker bargaining position.

The distribution of the rents impacts work hours via the income effect linked to workers’
reservation utility. When workers are able to capture a significant portion of the gains, their
reservation utility increases, leading to greater consumption of leisure (a normal good), which,
in turn, suppresses work hours. Conversely, when workers receive only a small share of the
gains, the income effect from reservation utility is limited, resulting in minimal impact on
work hours. The distribution of productivity rents serves as a distinct channel through which

AT influences work-life balance.

3. Data, Measurement, and Overview

3.1. American Time Use Survey (ATUS)

The American Time Use Survey (ATUS), conducted by the Bureau of Labor Statistics from
2004 to 2023, is a primary resource for studying how people allocate their time. It provides
comprehensive, nationally representative data on how Americans spend their time, where they
spend it, and with whom. As the only federal dataset that captures both market activities
(e.g., employment) and non-market activities (e.g., childcare, volunteering), ATUS has been
widely used to investigate trends in work, leisure, health, and inequality (e.g., Aguiar et al.,
2013, 2021; Alon et al., 2020; Doepke et al., 2023; Graff Zivin and Neidell, 2014; Krueger and
Mueller, 2010).

The ATUS conducts a cross-sectional survey each year, with an average annual sample
size of approximately 26,400 respondents. Participants are selected from households that
have completed the Current Population Survey (CPS). Within each CPS household, one in-
dividual aged 15 or older is randomly chosen to complete the ATUS questionnaire. Following
Aguiar et al. (2013), our sample consists of respondents aged between 16 and 65, excluding
individuals who are not in a position to be employed, such as full-time students aged below

25 and those serving in the military.” As ATUS does not filter by employment status, unem-

"The military sector is defined using the Census industry code ("teiolicd”) provided by ATUS, including



ployed respondents remain in our sample whenever an occupation code is available, generally
reflecting their most recent jobs.® These criteria result in 131,324 unique individuals in the
ATUS sample from 2004 to 2023. For the purpose of our research, our main analyses further
exclude respondents from the technology sector so that we focus on workers in Al-using sec-
tors rather than Al-inventing sectors.” With this exclusion we are left with 124,385 unique
respondents.

A single interview is administered to each ATUS respondent by the Bureau of Labor
Statistics, during which the prior day’s activities are logged in a 24-hour diary segmented into
15-minute intervals. These activities, classified into over 400 distinct types, are grouped into
four broad categories: basic survival (a fixed seven hours per day for critical survival functions
such as sleeping and eating), market work (to be explained shortly), leisure, and others.
Following previous literature (e.g., Aguiar et al., 2013, 2021; Boerma and Karabarbounis,
2021), our paper uses weekly hours as the unit of analysis, calculated by multiplying daily
hours by seven (capped at 168 hours).

Market work, or simply “work,” comprises main jobs, overtime work, work activities per-
formed at home,'” and supplementary tasks, such as security procedures and waiting related
to work. “Work” time in our analysis encompasses the following ATUS-classified activities:
“work, main job,” “eating and drinking as part of job”, “sports and exercise as part of job,”
“security procedures as part of job,” “waiting associated with work-related activities,” and
“work-related activities, not elsewhere classified.” Commuting and social activities at work

are excluded (though including them yields qualitatively similar results).!! In our empirical

national security and international affairs (9590) and armed forces (9600-9900).

8Long-term unemployed individuals do not have relevant occupation affiliation. Their exclusion does not
impact our analysis of work time across occupations with varying Al exposure because they have no meaningful
affiliation to any occupation.

9Following the literature (Acemoglu et al., 2022; Babina et al., 2024), the tech sector is defined using
the Census industry code (“teiolicd”) provided by ATUS, including information (6470-6780), scientific and
technical Services (7380, 7460), and other professional, scientific, and technical services (7490). Details on this
classification system can be found in Appendix A of the ATUS Data dictionary at https://www.bls.gov/tus/
dictionaries/atusintcodebk23.pdf.

10Secondary jobs, if any, are excluded due to the lack of occupation-related information.

1 Qocial activities at work include “socializing, relaxing, and leisure as part of job,” and “travel related to
work.”


https://www.bls.gov/tus/dictionaries/atusintcodebk23.pdf
https://www.bls.gov/tus/dictionaries/atusintcodebk23.pdf

study, workday length is a proxy for effort provision—a common practice in the literature,
e.g., Bandiera et al. (2020) for CEOs, Ben-Rephael et al. (2025) for executives, and Fehr and
Goette (2007) for workers.

Leisure activities encompass activities such as watching television and movies, recreational
computing and video games, reading, sports, and various hobbies. Since eating, sleeping, and
personal care (ESP) fulfill essential biological needs and can also provide leisure value, any
time beyond seven hours per day in these is thus counted as leisure. The residual category,
“other,” covers all remaining time, including home production (domestic responsibilities such
as cleaning, maintenance, cooking, shopping, and gardening), childcare, education (personal
academic pursuits, such as participating in classes or doing homework), job search activities
(submitting resumes, conducting job interviews, and exploring employment opportunities),
own medical care, civic activities (going to church or social club, volunteering, etc.), and any
unclassified activities.

Panel A of Table 1 provides summary statistics at the ATUS respondent level. Unless
otherwise specified, all potentially unbounded variables are winsorized at the 1% extremes.
The average respondent allocates 35.2 hours to work and 55.3 hours to leisure per week. The
variation is substantial, with standard deviations of 30.4 and 27.2 hours, respectively. Within
the residual category, the average respondent spends 1.2 hours on education, 1.6 hours on
civic activities, 0.4 hours on own medical care, 0.1 hours on job search, 15.9 hours on home
production, and 4.6 hours on child care. These time allocation estimates are consistent with
earlier studies (e.g., Aguiar et al., 2013, 2021).

ATUS also reports wages for each individual, which are converted into 2023 constant
dollars in our analysis. For hourly workers, the hourly wage is directly reported; for non-
hourly workers, we estimate the hourly wage as their weekly earnings divided by what the
respondents self-report as their “usual” work hours per week. About 37.5% of the respondents
report a usual workweek of 40 hours, 30.8% report more than 40 hours, and 31.6% report fewer

than 40 hours. The average hourly earnings in our sample are $28.1 (in 2023 dollars).

10



[Insert Table 1 here.]

3.2. Al patents

Central to our analysis is quantifying individual occupation’s exposure to Al technologies.
Following recent literature on technology disruptions, we use the textual correlation between
Al patents and job task descriptions as our AI exposure measure. The first step is thus
to collect a comprehensive sample of Al patents granted between 2000 and 2023 from the
Artificial Intelligence Patent Dataset (AIPD). AIPD was first publicly released by the United
States Patent and Trademark Office (USPTO) in 2021 and expanded in 2024 to include all
patent documents published through 2023. Pairolero et al. (2025) detail a machine learning
procedure, adopted by AIPD, that assigns each U.S. patent (1976-2023) a probability of being
Al-related. Patents are classified as Al patents if that probability exceeds one of the three
thresholds: 50%, 86%, or 93%. Pairolero et al. (2025) suggest the 86% threshold as the best
trade-off between precision (correctly identifying Al patents) and recall (capturing the full set
of Al patents); we therefore adopt this cutoff.

These procedures yield a total of 905,667 Al patents granted between 2000-2023, which
are classified into one or more of the eight categories defined by Pairolero et al. (2025): (i)
machine learning, (ii) vision, (iii) natural language processing, (iv) speech, (v) evolutionary
computation, (vi) Al hardware, (vii) knowledge processing, and (viii) planning and control.

Prior research indicates that only a small subset of patents have meaningful scientific and
economic value. For example, about one quarter of patents remain uncited, and fewer than one
percent receive more than one hundred citations (Kogan et al., 2017). To focus on technologies
with the greatest transformative potential, we limit our analysis to the top 1% of Al patents
each year, identified by their forward citation counts adjusted for both technology class and
vintage. Following Kogan et al. (2017), an adjusted forward citation count is calculated by
dividing each patent’s raw citation count by the average citation count of Al patents granted

in the same CPC subclass and year-quarter. This selection yields a final sample of 9,270 Al

11



patents. Online Appendix Figure OA.1 shows the annual number of these patents and their
mean adjusted citation counts.

The textual information from the title and abstract of each Al patent allows us to extract
information about the scope and content of the underlying innovations from text corpora.
This information is then matched to occupations to assess the latter’s exposure to Al

Figure 1 presents three word clouds that trace the evolving landscape of Al patents in our
sample over time. From 2000 to 2009, Al innovation centered on smoothing human input and

2 s s

managing data, with dominant keywords including “computer,” “information,” “interface,”

YW

and “image.” Between 2010 and 2019, emphasis shifted toward “security,” “monitoring,”

“voice,” and the early emergence of “generate.” Since 2020, the word cloud has expanded to

bPINA4 bRANA4

include “virtual,” “generate,” “video,” “autonomous vehicle,” and “automate,” reflecting AI’s
transformation from data and interface tools to immersive perception, autonomous operation,

and creative synthesis.

[Insert Figure 1 here.]

Figure 2 presents the timeline of ten high-impact Al patents in our sample, selected to be
roughly evenly distributed across the 2000-2023 period. Each patent on this list was chosen
based on a combination of adjusted citation counts, technological influence, and representation
of key Al application areas. Early developments are exemplified by Qualcomm’s handwriting
annotation (2000) and Microsoft’s auto-completion (2002), which reflect Al’s initial focus
on enhancing user input and productivity tools. The mid-2010s highlight a transition toward
richer interaction and sensor-driven services, as illustrated by Meta’s personalized feed (2010),
Apple’s multi-touch gestures (2013), and Skybell’s doorbell communication systems (2015).
More recent patents reflect the frontier of Al capabilities, such as Nvidia’s real-time lane
detection (2021) and Google’s generative search summaries (2023), signaling Al’s move into

real-time perception and content synthesis.

[Insert Figure 2 here.]
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3.3. Occupation data

The second step in completing the measurement involves retrieving job tasks from U.S. De-
partment of Labor’s Occupational Information Network (O*NET'), which classifies each occu-
pation by an 8-digit Standard Occupational Classification (SOC) code and provides detailed
descriptions of its specific tasks. For example, in 2023 the Data Scientist occupation (SOC
15-2051.00) includes tasks such as “analyze, manipulate, or process large sets of data using

PR

statistical software,” “create graphs, charts, or other visualizations to convey the results of
data analysis using specialized software,” and “propose solutions in engineering, the sciences,
and other fields using mathematical theories and techniques.”

Every year, O*NET covers 900-1,100 occupations, each identified by an 8-digit SOC code
with detailed job task information. We draw on every historical release of the O*NET database

to create an annual panel of occupations from 2000 to 2023. Section B.1 of Online Appendix

provides more details of the procedure.

3.4. Supplemental data on employment: LinkedIn and Glassdoor

Two databases provide supplementary information on employment, workload, compensation,
and job satisfaction at the individual level. LinkedIn dataset from Revelio Labs supplies
structured, resume-style profiles detailing salary and employment history. O*NET covers
approximately 800 6-digit SOC occupations, of which the LinkedIn data includes 335—each
mapped to the Census occupation codes used in ATUS (see section 3.6.3). This structure
supports aggregation at both the occupation and employer levels. Using employment histories
through mid-2023, we aggregate individual data at the occupation x firm x year level and
assemble firm X year panels to investigate the relationship between time allocation and firm
outcomes.!?

Glassdoor data, also accessed via Revelio Labs, provide detailed information about pay,

workload, and employee reviews for a broad set of firms, including all major employers. Prior

12\We exclude observations missing occupation or firm information and drop firms with fewer than 100
US-based employees in the prior year to avoid noise from poor coverage following Fedyk and Hodson (2023).
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work shows that the Glassdoor data provide valuable insights into firm performance and
labor market dynamics, though they tend to overrepresent skilled occupations (e.g., Edmans,
2011; Green et al., 2019; Gornall et al., 2024). Each employee review contains text and ratings
(ranging from 1-5) on multiple dimensions, including two metrics that are most relevant to our
study—overall satisfaction and work-life-balance (WLB) at the firm. Reviewer information
includes job title, tenure, employment status, and location. Limiting the sample to US-based
employees and firms with a minimum of 20 reviews in a given year yields 2,607,571 reviews
across 3,869 firms.

Panel B of Table 1 reports the summary statistics of the employee rating sample at the
occupation X firm x year level. Each cohort has an average of 4.75 reviews. The average
overall job rating is 3.50 (out of 5.0), and 3.40 for work-life balance. The annual salary

averages $87.710, with a standard deviation of $44,240.

3.5. Other data

For firm performance analyses, the sample is limited to U.S. publicly listed companies using
Compustat, CRSP, and other related WRDS databases. '* ROA (return on assets) is defined
as the ratio of operating income before depreciation to total assets, with an average value of
5.4% and an inter-quartile range of 3.0% to 14.8%. Labor productivity is defined as sales over

employment (in $000), and the average value is 1.95.

3.6. Measuring occupational AI exposure over time
3.6.1. Measuring Al exposure at the occupation-patent level

Accurately measuring occupational exposure to Al technology is essential for attributing
changes in time allocation to AI. There have been a variety of exposure measures to a di-
verse set of technologies or innovations, e.g., Al exposure developed by Felten et al. (2018)

and Webb (2019), generative Al exposure from Eisfeldt et al. (2023) and Hartley et al. (2024),

1BUtility & finance sectors are excluded.
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software and robot exposure developed by Webb (2019), fintech exposure from Jiang et al.
(2025), labor-saving and labor-augmenting technology exposure from Kogan et al. (2023).
These measures typically analyze the micro-foundations of tasks and aggregate each task’s
exposure to the occupational level based on task importance. Ideally, the exposure measure
captures both cross-sectional differences across occupations and time-series variations in Al
exposure within each occupation.

The measurement of occupational Al exposure in this study builds directly on two estab-
lished methodologies. The first relies on the textual similarity between Al patents and job task
descriptions; its principal advantage lies in the interpretability and determinacy in the result-
ing exposure measure. The second method leverages large language models (LLMs), such as
ChatGPT, to extract and interpret relevant information from unstructured text. By virtue of
their generative capabilities, LLMs offer greater flexibility in how tasks can be framed, better
contextual understanding, and more nuanced language interpretation.

This study uses OpenAl’'s GPT model for Al exposure classification, as this represents
the most recent and potentially powerful tool for text interpretation. Specifically, for each
occupation (0) in year (t), we submit the complete set of that occupation’s task descriptions
alongside the text of every AI patent (i) granted in the same year to the GPT model, re-
questing a similarity comparison. To ensure robustness, we replicate our main results using
a conventional textual similarity measure based on Term Frequency—Inverse Document Fre-
quency (TF-IDF) at the same occupation-patent granularity. TF-IDF has been validated in
prior studies as an effective and robust natural language processing (NLP) approach that
weights terms by their specificity to individual documents relative to the broader corpus. In
both approaches, matching patents and occupational task descriptions within the same year
ensures that our measures track the time-varying content of each occupation.

Our sample comprises 9,064 high-impact Al patents granted between 2000 and 2023; the
number of occupations averages about 950 each year, identified with the 8-digit SOC code.
As a result, the GPT model encodes 8.6 million pairs at the occupation-year (o,t) x patent

() level, yielding two key intermediate variables. The first, Al exposure score (AIZ}7), is a
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correlation score (ranging from 1 to 10) between the text description of the title and abstract
of patent ¢ granted in year ¢ and the full set of task descriptions for occupation o in the same

year. Across all pairings, the mean correlation score is 3.7 and the standard deviation is 1.8.

COMP
Io,i,t

The second intermediate variable is a complementarity classification (A ) following
procedures of Kogan et al. (2023) and Jiang et al. (2025). It is a categorical variable (1 =
complement, 0 = neutral, and —1 = substitute) that indicates whether a given AI patent
primarily complements, substitutes, or is neutral to the tasks of an occupation. Among all
occupation-patent pairs, 77.4% are classified as complementary, 19.4% as substitutive, and
3.2% as natural.'*

Section B.3.1 of the Online Appendix provides additional details on the GPT prompt setup,
examples, and validation. Importantly, our analysis relies not on the absolute scale of the two

variables, but solely on their relative values to position the Al exposure of occupation-patent

pairs in both the time series and the cross section.

3.6.2. Aggregating Al exposure to the occupation-year level

To measure the aggregate impact of a cluster of Al innovations on a given occupation, we sum
up the impact of individual Al patents published during the previous five-year period leading
to the current year. That is,

AIEXP = 57 A[EXF (1)

0,5t
1€,

where ©; represents the set of all Al patents ¢ published between year ¢t — 4 and year t.

It is natural to compare the resulting measure with other measures of Al exposure in the
existing literature, particularly those from Webb (2019), Felten et al. (2019) and Hampole et al.
(2025). Webb (2019) applies natural language processing algorithms to measure the overlap
between text descriptions of job tasks and patents. Felten et al. (2019) link the workplace

abilities of occupations to the progress of nine Al applications (such as speech recognition and

14This proportion is almost identical to Kogan et al. (2023)’s finding that approximately 19.7% of the job
tasks are susceptible to Al substitution.
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image generation) tracked by the Frontier Foundation (EFF) from 2010 to 2015 using survey
responses. There are two main differences between our measure and these two earlier ones:
First, both previous measures are time-invariant and are based on information at the end of
their respective sample periods. Second, due to their research focus and the sample periods
ending in mid- to late- 2010s, Al technologies have evolved significantly in preexisting classes
and brought about two new (out of the eight) Al technology classes present in our sample.

Hampole et al. (2025) extract Al-related mentions from LinkedIn profiles and job postings
and map those texts onto occupational task descriptions. By contrast, our measures build on
a growing literature that compares the textual content of Al-related patents to occupational
task descriptions. Moreover, the later approach allows us to fully explore the approximately
800 occupations covered by O*NET (at the SOC 6-digit level) for two decades, as opposed to
the 335 SOC 6-digit codes covered by Revelio Labs.

Textual similarity-based measures of technology exposure are inherently non-directional;
they do not distinguish whether Al substitutes or complements labor. Empirical studies have
presented mixed findings regarding the directional effect of Al exposure. Some report labor-
displacing effects of AI: for example, (Hampole et al., 2025) find that occupations highly
exposed to Al tend to experience reduced labor demand, although productivity gains boost
overall employment across the broader labor market. Others find complementary effects, such
as Liu et al. (2023), who document that Al exposure is associated with increased job postings.
Still others highlight heterogeneous effects: Berger et al. (2024) show that Generative Al tends
to complement high-level white-collar jobs while substituting for lower-level ones.

For this reason, our empirical tests build on an ex ante decomposition of the substitutive
and complementary effects of Al exposure. The construction of an Al net complementarity
exposure follows the approach used in Jiang et al. (2025) for the context of fintech. Specifically,
for a given SOC 8-digit occupation o in a year ¢, Al net complementarity (AIF?M") is defined
as the sum of the product of Al exposure and Al complementarity classification (with value
from {—1,0,+1}) of occupation o with respect to AI patents ¢ published during the five-year

period ending in year ¢, as shown in the following equation:

17



AIOC:tOMP _ Z A[EXP . A[COMP. <2)

0,1,t 0,1,t
€0,

For ease of interpretation, we normalize both AIZX” and AISPMP by dividing each by
10,000. This scaling ensures that the typical exposure value falls between 0 and 1. The
resulting measures have mean values of 0.56 and 0.39, and standard deviations of 0.41 and

0.38, respectively.

3.6.3. Matching occupation-level Al exposure to the ATUS respondents

The ATUS data use Census occupation classification codes, which must be bridged to our
8-digit SOC-based Al exposure measures. We therefore adopt the “0cc1990dd,” classification
system developed by Dorn (2009) and its various updates to aggregate Census occupation
codes into a balanced panel of occupations. The AIFXP and AIFPMP measures are then
merged between occ1990dd occupation and SOC 6-digit occupation.!®

Table 1 Panel A reports the summary statistics of the occupational Al exposure measures
of ATUS respondents. The average AIXF and AISPMP scores are 0.66 and 0.48, respec-
tively. The positivity of Al gtOMP and its proximity to AIZX” in magnitude indicates that
AT innovations tend to have a complementary effect rather than a substitutive effect on the
labor market. Panel A of Figure 3 shows the time series of the average Al exposures, Al ftXP
and AISPMP whichhich summarize the occupations held by ATUS respondents from 2004 to

2023. Both exposures experience a four-fold increase during the sample period.

[Insert Table 1 here.]

15The “0cc1990dd” classification system has been widely employed in labor economics studies (e.g., Autor
and Dorn, 2009, 2013; Webb, 2019). Crosswalk and documentation are available at https://www.ddorn.net/da
ta.htm. We match the SOC 6-digit occupation codes to 0cc1990dd in three steps: (i) we first match SOC 2000
codes and SOC 2018 codes to SOC 2010 codes using crosswalks provided by BLS at https://www.bls.gov/so
¢/soc_2000_to_2010_ crosswalk.xls and https://www.bls.gov/soc/2018/soc_2010_to_ 2018 crosswalk.xlsx;
(ii) We then use crosswalk provided by Webb (2019) to map the SOC 2010 codes to the 2010 Census occupation
codes; (iii) lastly, the 2010 Census occupation codes is matched to 0cc1990dd codes using crosswalk provided
by Autor (2015) at https://www.ddorn.net/data.htm. These three steps address modifications in SOC 2018
(the last major update since 2018) by matching new occupation codes with 0cc1990dd if (1) the SOC 2018
codes can be mapped to SOC 2010, and (2) the corresponding SOC 2010 codes can be linked to 2010 Census
occupation codes. Sporadic and minor changes since 2018 are classified manually.
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[Insert Figure 3 here.]

Finally, the raw scores of the Al exposure measures are transformed into percentile ranks
(where 1 and 100 represent the lower and upper bounds) each year, following the literature
(e.g., Autor and Dorn, 2013; Webb, 2019). For the interest of the readers, Table OA.2 of the
Online Appendix lists the top occupations sorted by Al exposure and Al net complementarity
in 2023. At the top of the list of both AIZXF and AISPMP are computer and information
system managers, bioinformatics technicians, operations research analysts, and management
analysts. Occupations with high Al ffp but low Al OC:tOM P include data entry keyers, tellers,
and office machine operators. Those at the bottom are common in both dimensions, including

occupations of dancers, barbers, and meat packers.

3.6.4. Validation of occupation-level AI exposure measures

Generative Al has rapidly emerged as a powerful tool for information classification. Given
its relatively short track record and evolving capacities, it is important to validate our GPT-
generated AT exposure measure (Al ftX P by comparing it with one derived from conventional
machine learning techniques. Specifically, we benchmark our measure against a TF-IDF co-
sine similarity measure because of its intuitive term-weighting, transparency, and ease of
replication. Section B.2.3 of the Online Appendix describes the full TF-IDF procedures. At
the occupation-year level, the two measures exhibit a correlation of 0.51, reflecting moderate

in our main regressions

alignment. Moreover, substituting the TF-IDF measure for Al ftXP

yields qualitatively similar results.
The TF-IDF measure is not directional and therefore cannot help validating our Al net
ICtOMP)

complementarity exposure (A . Instead, we perform an indirect validation by relating

Al gtOMP to the wage growth predictions due to Al complementarity and substitution, esti-

mated in Kogan et al. (2023).1° In 2023, A]gtOMP exhibits a correlation of 0.60 with the overall

16Using an open question-based approach, Kogan et al. (2023) ask ChatGPT about AI’s potential to substi-
tute or complement job tasks and yields time-invariant measures of different AI exposure components. They
do not report the exposure but provide Al-related earnings changes of occupations with the highest comple-
mentarity (substitution) exposure in Online Appendix. Section B.2.4 of the Online Appendix provides more
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wage growth related to AI. When decomposed, the wage growth components attributed to
AT substitution and complementarity correlate with AISPMP at -0.59 and 0.47, respectively.

Taken together, this evidence validates the reliability of our Al net complementarity measure.

3.6.5. Comparison with other occupation-level exposure measures

A growing literature has estimated and analyzed occupation exposure to a wide array of tech-
nologies and innovations, including Al. It is thus obligatory for us to compare and distinguish
Al exposure from the other exposure measures. Figure OA.2 of Online Appendix plots the
time-compressed version of our Al exposure (by averaging over the years from 2000-2023),
against six time-invariant occupational exposure measures developed in earlier studies: Al ex-
posure by Felten et al. (2019), AT exposure and robot exposure by Webb (2019), routine task
intensity (RTI) by Autor and Dorn (2013), offshorability exposure developed by Firpo et al.
(2011) and standardized by Autor and Dorn (2013), and work-from-home (WFH) feasibility
score by Dingel and Neiman (2020).

Figure OA.2 in the online appendix shows that our and the two other Al exposure measures
(Felten et al., 2019; Webb, 2019) are positively correlated. Its relations with robot (Webb,
2019) and RTI exposure (Autor and Dorn, 2013) are not monotonic. Finally, our Al exposure
is positively correlated with offshorability and WFH potentials, but only at the high percentile

levels.

4. AI and Workday: Empirical Relations

4.1. Event study: ChatGPT

The release of generative Al tools, notably ChatGPT in November 2022, marked a watershed
moment for Al adoption in the workplace. Its immediate accessibility and versatility accel-
erated Al integration across industries and transformed business processes almost overnight.

According to McKinsey (2024), 33% of respondents’ organizations adopt generative Al right

details on the validation procedures.
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away in 2023 and that number increases to 65% in 2024.!7 The advent of generative Al was
a transformative event—rather than a gradual progression—whose precise timing was unfore-
seen by its adopters. Such properties make it a desired setting to study the impact of Al on
workday.

The event study entails a difference-in-differences framework around the shock, with time
allocation variables from the ATUS data as the dependent variables. The test sample covers
2022 to 2023, a relatively short range striding ChatGPT to capture the discrete change without
being confounded by longer-term trends. The premise of the test is that the impact of Al
adoption on work hours should be more prominent among occupations with greater sensitivity
to generative Al. In other words, the level of “treatment” is captured by the generative Al
exposure of the occupation to which a worker is affiliated, as defined by Eisfeldt et al. (2023).18
The regression, at the survey respondent level, with subscripts of ¢ (individual), o (occupation),

and t (year) level, is as follows:

Yvi,o,t = 51 . G@TLA[OEXP . POST}/ + 62 . Xi,t + o+ €iot- (3)

The dependent variable is the number of weekly hours allocated to each activity category
(i.e., market work or leisure). GenAIEXT is generative Al exposure for occupation o, measured
by its percentile rank. The POST; dummy equals one for the year 2023. The regression
incorporates a set of individual-level controls, including age, the number of children below
18, and a set of indicators for gender, educational attainment, marital status, and race. The
regression further includes a battery of fixed effects, «, at the following levels: occupation,
state x year, industry x year, year-month, and day-of-week.!'® These fixed effects filter out

macroeconomic factors at both the industry and state levels, as well as seasonality and weekday

Thttps:/ /www.mckinsey.com/capabilities/quantumblack /our-insights /the-state-of-ai

18Eisfeldt et al. (2023) use a large language model to classify whether job tasks of occupations can be
performed more effectively using ChatGPT based on task descriptions. Data is available at https://sites.goog
le.com/view /gregorschubert /data?authuser=0.

Yndustry is defined by the Census detailed industry code “trdtind1” used in ATUS ( ATUS identifies 51
unique industries; see Appendix A of the ATUS Data dictionary at https://www.bls.gov/tus/dictionaries/a
tusintcodebk23.pdf).
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effects.

In all regressions throughout this study, we adhere to the following best practices. First,
all linear regressions using ATUS data are weighted by ATUS sample weights in order to
recover the representativeness of the population (e.g., Aguiar et al., 2021). Second, standard
errors are double-clustered at the occupation and state levels. Third, unless otherwise noted,
all potentially unbounded variables are winsorized at the 1% extremes.

Table 2 reports the weighted linear regression results for equation (3) using ATUS data
from 2022 to 2023. Column (1) reports the results for the full sample. Specifically, workers
more exposed to generative Al experienced significantly increased work hours (Panel A) and
reduced leisure hours (Panel B) following the introduction of ChatGPT. Comparing 2023 to
2022, an interquartile increase in generative Al exposure corresponds to an additional 3.75
hours (0.075 x 50 percentiles from the 25th to the 75th) of work and a reduction of 3.85 hours
in leisure. Such a magnitude is economically significant as they represent 10.65% and 6.97%

of the average work and leisure hours, respectively.
[Insert Table 2 here.]

Columns (2) and (3) present the results for subsamples divided into the top quartile
and the remaining observations based on the extent to which generative Al complements
the job tasks (see definition in Section B.3 of the Online Appendix). For work hours, the
coefficient magnitudes for the top-quartile subsample are approximately twice those of the
remaining observations, and about 50% larger for leisure hours, although these differences
are not statistically significant. Columns (4) and (5) present results for subsamples divided
into the top quartile and the remaining observations based on local Al awareness, measured
by state-level Google search trends for ChatGPT from November 30 to December 31, 2022.2°
Workers in regions within the top quartile of Al awareness experience greater association

between generative Al exposure and work and leisure hours than the remaining observations.

20Figure OA.3 of the Online Appendix plots the Google search trend of AI and ChatGPT from 2010 to
2023, confirming a peak in Google search of not just “ChatGPT” but also “AI” in December 2022 following
the release of ChatGPT.
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In addition to the average impact, a potentially interesting question is whether Gen-
AT makes the “already over-worked” individuals work more or less. For the empirical test,
we define an “already overworking” subsample as workers from occupations whose average
reported normal work hours per week is no fewer than 45 hours in 2021 (about 11.7% of
the respondents). We find that the positive (negative) relationship between generative Al
exposure and work (leisure) hours appears only among workers who are not yet overworking.
This suggests that Al primarily affects those with more manageable schedules, pushing them

closer to their limits, rather than exacerbating workloads for those already burdened.

4.2. Occupation AI exposure and workday
4.2.1. Al exposure and workday in the long panel

Next, we extend the event study to the full sample period using measured occupational Al
exposure (see Section 3.6 for details). As the first step, Figure 4 serves as a diagnostic test,
presenting the scatter plots and quadratic-fitted lines for the association between occupational
AT exposure and work hours in the first (2004-2013) and last half (2014-2023) of our sample
period. Individuals in higher occupational Al exposure report longer work hours. Notably,
the quadratic-fitted line for the 2014-2023 consistently lies above the line for the 2004-2013

with steeper slopes, indicating a stronger impact of Al on work-life balance in recent years.
[Insert Figure 4 here.]

For the formal analysis, we estimate the relationship between occupational Al exposure
and work and leisure hours at the individual (i) respondent level, indexed by occupation (o)

and year (t)s:

Yiotr = b1+ A]ffi]f + B2 Xip +a+ €0 (4)

where the dependent variables are weekly hours spent on market work and leisure. The key
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independent variable, ATl ft)f P is the lagged occupational Al exposure, constructed as detailed

in Section 3.6. Otherwise, the model specification, including control variables for individual
characteristics, fixed effects, and standard errors, follows the same as in Equation (3).

Table 3 reports the weighted linear regression results for Equation (4) using the ATUS
data from 2004 to 2023. Columns (1)—(3) present the results for weekly work hours. Higher
occupational exposure to Al is associated with increased work hours. Specifically, in column
(1), where all fixed effects are included except the occupation fixed effects, an interquartile
increase in occupational Al exposure increases workday by 2.25 (= 0.045 x 50) hours per week
on average. The cross-sectional relationship is both economically and statistically significant
(at the 1% level).

To alleviate concerns regarding confounding factors, the regression in column (2) further
controls for other common occupation exposure measures in the literature, including robot
exposure by Webb (2019), routine task index (RTI) by Autor and Dorn (2013), and offshora-
bility exposure constructed by Firpo et al. (2011) and standardized by Autor and Dorn (2013),
all in percentile ranks. The direction and magnitude of the coefficient for occupational Al ex-
posure remains consistent and significant at the 1% level. To further mitigate the concern
that the relation between Al exposure and time allocation could be driven by occupation-level
unobserved heterogeneity, column (3) incorporates occupation fixed effects. The magnitude
of the coefficient is about one-half that of column (1), implying an interquatile effect of 1.15

hours, which remains significant at the 5% level.
[Insert Table 3 here.]

Columns (4)—(6) of Table 3 report the results for weekly leisure hours. Leisure hours decline
as occupational Al exposure increases. Specifically, column (4) shows that an interquartile
increase in Al exposure is associated with a 1.55-hour reduction (= —0.031 x 50) in weekly
leisure time on average. This negative effect remains robust when additional occupational
exposure measures are included (column (5)) and when occupation fixed effects are added

(column (6)). The combined results also suggest a slight decrease in time allocated to the
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residual category (which includes personal care, education, and related activities), helping to
accommodate the remaining gap between work and leisure hours. Given the mostly symmetric
effect between work and leisure, we focus on work hours alone for the remaining analyses.
Table OA.3 of the Online Appendix reports the results of a battery of robustness tests
using alternative model specifications. Column (1) uses an alternative Al-exposure measure,
defined as the percentile rank of similarity scores between TF-IDF representations of job-task
descriptions and Al patents granted over the five-year period ending in the current year.?!
In column (2), the dependent variable of work hours is modified to include time spent on
commute, work-related travel, and social and leisure activities at work. The rest of the table
addresses multiple specificities, including part-time status (column (3)); control for lagged
usual work hours (column (4)); exclude unemployed (columns (5)—(6)) and absent (currently
employed but absent from work on the survey date) individuals (columns (7)) or weekends
(columns (8)), and isolate the subsample of workers who are compensated on an hourly basis
(and thus command greater flexibility in adjusting work hours) (columns (9)). The estimated
effects of occupational Al exposure on work hours remain significantly positive and align

closely with the results in Table 3.

4.2.2. Decomposition of leisure activities

Given that leisure is a large collection of diverse activities, a natural question arises: what
kinds of leisure activities give way to longer work hours? Table 4 explores this question
by decomposing total leisure into screen-based and non-screen-based activities. This dis-
tinction is not merely descriptive; it reflects fundamental differences in the cognitive and
restorative nature of leisure. Screen-based activities, such as recreational computer use, video
gaming, and watching TV, are often more passive and less physically or socially engaging.
In contrast, non—screen-based activities—reading, sports, listening to music, and travel—are
typically more active, effortful, or immersive, and are associated with greater psychological

restoration and well-being (de la Rosa et al., 2024).

21Section B.2.3 of the Online Appendix provides detailed descriptions for the scores based on TF-IDF.
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[Insert Table 4 here.|

Columns (1) and (2) of Table 4 indicate that the previously observed decline in total
leisure time is primarily driven by a reduction in non-screen-based activities, while time spent
on screen-based leisure remains largely unaffected by occupational Al exposure. Columns (3)
through (6) further break down non-screen-based activities into four categories: recreation
(e.g., relaxing, listening to music, traveling), socializing, the leisure components of eating,
sleeping, and personal care (ESP), and other activities (e.g., hobbies, reading, sports). This
shift is concerning because time is being drawn from activities crucial for recovery, especially
given that screen-based leisure—less effective at restoring cognitive and physical energy—

remain unchanged.

4.2.3. Dispersion of workday in relation to Al

The positive relation between Al exposure and length of workday does not provide information
about within-group dispersion. This section explores dispersions along three dimensions.??

The first dimension of dispersion we examine is gender. The heterogeneous impact of Al
with respect to gender is unclear a priori. On the one hand, studies finds that automation
can reduce gender gap in employment and wages (e.g., David and Melanie, 2013; Acemoglu
and Restrepo, 2022; Cortés et al., 2024). On the other hand, Cook et al. (2021) show that
women’s higher opportunity cost of time in the form of unpaid work may sustain the gap in gig
economy settings. The second dimension is age. Technologies, even when labor augmenting,
can widen pay disparities by disproportionately benefiting younger workers who have the skills
or flexibility to adapt (Kogan et al., 2023).

Table 5 presents regression at the occupation-year level where the dependent variable is
the within-occupation workweek gap. Columns (1) and (2), which report “female minus male”
differences, show that both general AI exposure and Al net complementarity are associated

with a disproportionate increase in women’s work hours relative to men’s (significant at 5%

22 An unsorted, simple analysis of a relation between within-occupation standard deviation of workday vs.
AT exposure yields null results, see Table Table OA.4 in the Online Appendix.
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level), thereby narrowing the gender gap, as women typically work fewer hours. Columns (3)
and (4), which report “young minus old” differences, indicate that Al exposure increases work
hours more for younger workers than for older ones (significant at 10% level), also reducing

age-based disparities, given that younger individuals are typically less fully employed.
[Insert Table 5 here.|

The third dimension is within-household dispersion. Time allocation could be a decision
made jointly by household members (Becker, 1965; Del Boca and Flinn, 2012). For instance,
individuals with a busy spouse may need to dedicate more time to home production and child
care. The ATUS does not link members of the same households; however, a subsample of
ATUS respondents (about 59.4% of the full sample) report their spouses’ employment status
including the latter’s typical workweek, providing us a way to explore the joint work-hour
decision by interacting Al exposure with spouse employment status.

Table OA.5 in the Online Appendix reports the results. Column (1) replicates full sample
baseline result (Table 3) on the subsample, confirming that general Al exposure is associated
with longer work hours in this group. Column (2) includes an indicator, I(Spouse Employed),
which equals one if a respondent’s spouse is employed in a given year and zero otherwise. A
significantly negative coefficient in I(Spouse Employed) is consistent with the hypothesis of
joint household allocation, but its inclusion does not alter the coefficient of AI"X”. Columns
(3) and (4) further segment the sample based on the spouse’s usual weekly work hours. For
respondents whose partners fall in the top quartile, the coefficient on Al fff ” is negative, while
it remains positive for all others, suggesting that the effect of Al on an individual’s workday

is tempered when their spouse is very time-constrained. Overall, the results provide some

evidence of within-household reallocation of work hours in response to Al exposure.

4.2.4. Additional evidence: Residual categories and possibility of downsizing

Next, we investigate how occupational Al exposure influences time allocation in the residual

categories, i.e., activities other than work or leisure. Table OA.6 in the Online Appendix sum-
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marizes the findings. Most of the categories exhibit insignificant relations with AI exposure.
The exception is civic activities which have a positive relation with Al exposure (significant
at 5%). Hence, Al has not been a contributor to the secular decline in devotion to social work
and community engagement, a phenomenon known as “bowling alone.”??

Finally, we examine whether the lengthened workday is a by-product of Al’s negative
impact on employment, specifically, whether remaining workers are absorbing tasks from
displaced colleagues. Table OA.7 reports a muted relationship between Al exposure and
employment trends (both level and changes) from 2004-2023, based on the Occupational Em-
ployment and Wage Statistics (OEWS) data from the Bureau of Labor Statistics, consistent
with prior research (e.g., Acemoglu et al., 2022; Hampole et al., 2025). While 2024-25 saw
notable layoffs in the tech sector, our sample explicitly excludes this industry, and aggregate
unemployment has remained relatively stable into 2025. Taken together, these findings indi-

cate that extended workday is unlikely a result from firm downsizing or task consolidation

among fewer employees.

5. Testing model predictions

5.1. Marginal productivity: AI complementarity vs. substitution
5.1.1. Technology complementarity

Technology can influence labor in two primary ways: substitution, where it replaces job
tasks, and complementarity, where advancements in capital-—such as improved tools—enhance
workers’ marginal productivity (e.g., Acemoglu, 1998; Acemoglu and David, 2011; Acemoglu
and Restrepo, 2019). Thus, the overall effect of AI exposure shown in Table 3 invites a
bifurcation into complementarity and substitution. To decompose general Al exposure, we use
the GPT model to classify each Al patent as complementary, substitutive, or neutral to each

task of an occupation based on its textual descriptions. Al net complementarity exposure at

23The term was coined by the book Bowling Alone: The Collapse and Revival of American Community
(2000) by Robert D. Putnam.
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the occupation level, AIS?MF is defined as the difference between exposure to complementary
and substitutive Al patents over the past five years, transformed into percentile ranks by year.
That is, we rank occupations by their net complementarity scores to Al technology (with low
complementarity indicating a strong substitution effect). Section 3.6 provides further details
on variable construction.

Table 6 presents the weighted linear regression results for the impact of Al net comple-
mentarity exposure based on Equation (4), replacing AIZXY with AISPY”. The dependent
variables are weekly work hours in columns (1)—(3). Column (1) shows that, controlling for
individual characteristics and fixed effects at the levels of state x year, industry x year, year-
month and day-of-week, an interquartile increase in Al net complementarity is associated
with an additional 2.8 (= 0.056 x 50) work hours per week, equivalent to 7.95% of the sample
mean (35.2 hours). Such a positive relationship between Al net complementarity exposure
and work hours remains consistent when additional occupational exposure measures, including

robot exposure, RTI, and offshorability, are included (column (2)); or with occupation fixed

effects incorporated (column (3), significant at the 5% level).

[Insert Table 6 here.|

Overall, the magnitude and significance of the coefficients on Algg‘{[ P are greater than

those of Al OEt)flf presented in Table 3. The evidence suggests that the extended workday could
be attributed to AI’s complementarity to human work. In other words, people end up having
longer workdays precisely when Al makes them more productive (and presumably saves them
time on given tasks). The seeming paradox echoes 19th century economist Jevons (1865), who
predicted that improvements in engine technology—and hence energy efficiency—would lead
to increased demand for and consumption of energy (coal at the time). Labor is another factor
of production that could apply the logic: When task productivity improves, the demand for
additional tasks increases with Al, along with heightened expectations for both quality and

expediency.
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5.1.2. Wage effects

One might argue that workers are compelled to work longer hours to remain competitive,
particularly when AI exposure induces a substitution effect. The distinction between sub-
stitution and complementarity can be examined by analyzing the relationship between Al
exposure and wages. If Al complements labor by enhancing worker productivity, we should
observe an increase in hourly wages (holding market competition constant); if it substitutes
for labor, wages should stagnate if not decline. To test the two competing hypotheses, we
re-estimate Equation (4) using wages from the ATUS, defined as 100 times the natural log-
arithm of hourly wages in 2023 constant dollars as the dependent variable. The inclusion of
occupation, state xyear, and industry xyear fixed effects subsumes labor market competition,
allowing us to attribute wage variation primarily to marginal productivity.

Columns (4)—(6) of Table 6 report the regression results. Greater value of the AI com-
plementarity measure is associated with increased wages, validating the positive impact on
marginal productivity. Specifically, in column (4), a one-percentile increase in Al net comple-
mentarity is associated with an increase of hourly wages by 0.34%, significant at the 1% level.
The positive relationship remains robust across all specifications. Overall, the wage analy-
sis suggests that working individuals, on average, experience positive financial gains from Al

exposure due to the overall complementarity of Al technology to their human capital.

5.2. Performance monitoring: AI surveillance

Computerized workplace surveillance emerged in the 1980s (U.S. Congress, Office of Technol-
ogy Assessment, 1987) and saw an unprecedented acceleration in 2020, driven by the shift
to remote and hybrid work necessitated by COVID-19.2¢ Technologies such as datafication,
sensorization, and computer vision—backed by stronger cybersecurity infrastructure—have

evolved from a stopgap solution during COVID-19 lockdowns into a scalable system for con-

24Gee, e.g., https://www.wsj.com/articles/youre-working-from-home-but-your-company-is-still-watchin
g-you-11587202201?mod=Searchresults_ pos20&page=1. Zuboff (2019) discusses how Al-powered platforms
and digital tools create an environment of constant behavioral tracking and nudging, contributing to 24/7
responsiveness and the erosion of personal time.
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tinuous remote supervision. This shift has reshaped organizational norms and management
practices even after offices reopened. These technologies allow employers to capture increas-
ingly precise, real-time signals of actual effort and performance with reduced noise. Within a
principal-agent framework, such enhanced monitoring is expected to incentivize greater worker
effort.

The 2020 COVID-19 shock provides a unique opportunity to assess how monitoring influ-
ences the length of the workday. Prior to the pandemic, remote work was often an endoge-
nous choice; during the lockdowns, it became widespread. Remote and hybrid work persisted
through the end of our sample period (2023), with the extent of remote work largely deter-
mined by job feasibility. To capture an ex ante effect, the sample is limited to occupations
deemed remote-capable, defined by Dingel and Neiman (2020) as those whose pre-pandemic
essential tasks did not require on-site presence. Within this subset of 65 occupations, we
examine how the effectiveness of Al-based monitoring shapes worker effort.

Among individuals in occupations that can, ex ante, accommodate remote work, their re-
ception to the Al surveillance technology shock in 2020 depends on the occupations’ exposure
to the new technology. Such an exposure could be constructed analogous to our main Al ex-
posure measures. More specifically, we prompt the GPT model to assess how Al surveillance
technologies enhance monitoring for each of the 65 occupations based on three applications
of organizational control in the workplace: direction (restricting and recommending), evalua-
tion(recording and rating), and discipline (replacing and rewarding), following Kellogg et al.
(2020).% With the resulting surveillance exposure measure, AISYE and the 2020 COVID-19
shock, we are able to conduct the following difference-in-differences estimation on observations

indexed by individual (i), occupation (o), and year (t):

Y'i,o,t = 61 . AIEUR . POStt + 52 . X@t + o+ €io,t- (5)

25Section B.4 of the Online Appendix describes the detailed procedures for measuring Al surveillance expo-
sure of all occupations. Table OA.8 of the Online Appendix lists top occupations grouped by Al surveillance
exposure.
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The dependent variable is the number of weekly hours allocated to market work. The
regression includes the same set of individual-level controls and fixed effects as in our baseline
regressions. Since performance monitoring is a defining feature of a principal-agent setup and
becomes moot in the absence of delegation, this hypothesis naturally lends itself to a placebo
test: While Al surveillance technology is expected to elicit greater worker effort in equilibrium,
the effect should be null for the self-employed.

Table 7 presents the weighted linear regression results for equation (6) for a sample of
employees in ATUS. For individuals employed by a “principal” (i.e., employer), column (1)
shows that a one-percentile increase in Al surveillance exposure is associated with a 0.044-
hour increase in weekly work hours post-2020 (significant at the 5% level), which translates

to 2.2 additional hours in a workweek for an interquartile variation.

[Insert Table 7 here.]

Columns (2)—(4) separately examine the effects of Al surveillance along three dimensions:
direction, evaluation, and discipline. Both direction- and evaluation-based Al monitoring are
associated with increased work hours, with coefficients significant at the 5% level and of similar
magnitude to the general Al surveillance effect reported in column (1). In contrast, discipline-
oriented Al technology shows no statistically significant relationship with work hours, although
the coefficient remains positive and sizable (column (4)).

Monitoring is a feature of principal-agent relationships and employer-driven surveillance
becomes largely irrelevant for the self-employed. Accordingly, the sub-sample of self-employed
individuals (10.2% of ATUS respondents) serves as a comparison test, as reported in Ta-
ble OA.8 of the Online Appendix. This sub-sample shows no statistically or economically

significant relationship between Al surveillance exposure (or its components) and work hours.
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5.3. Reservation utility: Employee welfare and market competition
5.3.1. Validating productivity surplus: Firm-level analysis

The Al-enabled labor productivity gain and prolonged work days discussed in earlier sections
should manifest itself in stronger firm performance. This section validates the productivity
rent using data from publicly traded firms. With a panel of firm (i) x year (t) level data from

2008 (the starting year of Glassdoor’s coverage) to 2023, we estimate the following regression:
Yie =51+ A[ft)ff + o Xip1 +a+ €y (6)

The dependent variable, Y;; is firm-year level operating outcome. All regressions control
for firm attributes, including sales in 2023 dollars (natural logarithm), Tobin’s Q, market
leverage, capital expenditure over he beginning-of-year assets, R&D expenditure over assets,
asset tangibility (defined as net fixed assets over assets), firm fixed effects and year fixed
effects. Standard errors are clustered at the firm level.

Table 8 presents the results. In columns (1)—(4), the dependent variable is ROA defined as
operating income before depreciation over total assets, in percentage points. In columns (1)
and (2), the key explanatory variables are workforce AT exposure (AI/;X{") and AI complemen-
tarity (Al 3994 Py, aggregated at the firm-year level using employment weights derived from the
LinkedIn data. Firms enjoy higher ROA when their workers’ job tasks become more exposed
to or better complemented by AI, based on pre-existing employee composition and inferred
from within-firm variation. Results are statistically significant at the 1% level. Columns (3)
and (4) adopt predicted weekly work hours by lagged Al exposure ( Workj[gurgf_ ') and Al
complementarity ( Workj{;zrgg MP) as key independent variables. Predicted work hours are
generated based on the individual-level estimates from column (3) of Tables 3 and 6, and then
aggregated to the occupation level using ATUS survey weights. Both columns confirm that
when workers increase their work hours in response to Al exposure, firms benefit: a one-hour

increase in average employee work hours is associated with a 13.5 basis point increase in RO A,
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significant at the 5% level.

[Insert Table 8 here.|

Columns (5)—(8) examine an alternative firm outcome: labor productivity defined as
sales over employment. The patterns are consistent with those for ROA, suggesting that
technology-enabled labor productivity contribute to firms’ profitability. Such gains could, in
principle, be shared with workers through higher wages, improved benefits, or reduced long-
term workloads. However, the extent to which these productivity gains are actually passed

on to workers remains an open question—one we examine in subsequent analyses.

5.3.2. Employee welfare: Evidence from Glassdoor reviews

The relationship between technology-enabled productivity gains and workday length can also
operate through the impact of these gains on workers’ reservation utility, as agents re-optimize
the allocation between work (and consequently, consumption) and leisure to adjust to a new
welfare level determined within a competitive marketplace. At this new equilibrium, the
effect of productivity gains—even when accompanied by higher compensation—on worker
welfare remains a priori ambiguous, as factors such as self-motivation, fulfillment, and work-
life balance all play critical roles in forming overall job satisfaction.

Employee reviews from Glassdoor (via Revelio, as detailed in Section 3) allow us to evaluate
this relationship between worker satisfaction and Al exposure. Two metrics are most relevant:
overall job satisfaction and Work-Life Balance (WLB) ratings. These metrics are measured
at the occupation (o) x firm (i) x year (t) level, with both rating scales ranging from one
(worst) to five (best). The sample covers both public and private firms. The main explanatory
variable is lagged Al exposure at the occupation x year level. All specifications control for
lagged employee review counts, the average seniority (ranging from 1-7), and remote work
index (ranging from 0-1) of the occupation-by-firm cohort from Revelio, and fixed effects at

the following level: occupation, firm x year. Standard errors are clustered by occupation.
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Table 9 shows that greater Al exposure is associated with lower employee satisfaction
(columns (1) and (2)), aligning with occupation-level evidence that Al exposure overall leads to
extended work hours and decreased leisure time, despite the fact that wage increases (columns
(3)) with productivity and work hours. Based on the coefficients in columns (1), inter-quartile
increases in a firm’s general Al exposure is associated with 2.6 basis point reductions in
employees’ overall satisfaction rating, respectively (average rating is 3.5). A qualitatively
similar relationship is observed for the work-life balance (WLB) rating. An inter-quartile
increase in Al exposure corresponds to a 2.45 basis point decrease in the WLB rating (average

WLB rating is 3.4). Both effects are significant at the 1% level.
[Insert Table 9 here.|

Similar to Section 4.1, we also conduct an event study using a difference-in-differences
framework around the release of ChatGPT. The test sample covers employee ratings from
January 2022 to June 2023. Table OA.8 of Online Appendix presents the results, indicating
that workers more exposed to Al report significantly lower satisfaction following the introduc-
tion of ChatGPT. We note that Berger et al. (2024) find negative but insignificant relation
between employee overall/ WLB rating and generative Al exposure at the firm level. The
seeming difference could be reconciled by the different units of observations in their and our
studies: the significantly negative relation in our setting is at the occupation level within
firm-year.

We examine the sources of employees’ dissatisfaction in two settings. The first test analyzes
the textual content of Glassdoor reviews. Complaints, i.e., reviews that mention specific
topics in a negative tone, are identified using the algorithm described in Section B.5 of the
Online Appendix.?® Column (4) of Table 9 shows that greater Al exposure is associated
with more complaints about on-job surveillance, consistent with earlier findings that Al-

driven surveillance technologies contribute to longer work hours. An inter-quartile increase

26Table OA.10 of the Online Appendix provides examples of complaints about surveillance and employment
risk.
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in Al exposure corresponds to a 0.95% increase in the number of complaints toward on-
job surveillance based on the Poisson regressions for count data, equivalent to 8.6% of the
sample mean (0.11 complaints per occupation-firm-year). On the other hand, Al exposure
is not associated with increased complaints about employment risk (column (5)), aligning
with evidence that Al exposure has limited effects on employment and separations during the
sample period. This further supports our earlier finding that the extended work hours are
unlikely driven by fear of job loss.

The second test connects leisure decomposition (demonstrated in Table 4) and personal
marginal utility. Based on self-reported well-being data, Benjamin et al. (2025) estimate
the marginal utility of 126 life aspects grouped into 15 domains. We link these life aspects
with decomposed leisure activities using an LLM-based mapping procedure as described in
Section B.6 of the Online Appendix. The mapping results reveal that leisure tends to enhance
well-being in areas like “family well-being,” “feelings,” and “mental health,” while potentially
reducing utility in “status” driven activities. Applying respective utility parameters to each
leisure activities based on the findings underlying Table 4, an interquartile increase in Al
exposure is associated with approximately 5.5% loss of average leisure utility per week. This
evidence suggests that leisure trade-offs meaningfully contribute to employee dissatisfaction
in Al-exposed occupations.

Although the magnitude of the effects, a few basis-point changes in the ratings, may
seem modest in isolation, the evidence clearly shows that employees have not reported an
improved work experience, particularly in terms of work-life balance, when their jobs are
more exposed to Al If we treat these ratings as a proxy for worker welfare, the findings are
disappointing given that these technologies are intended to make work more fulfilling and lives
more enjoyable. Returning to our model, we interpret this result as evidence that, on average,

worker reservation utility has not improved despite Al-enabled productivity gains.
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5.3.3. Labor market competition: Worker bargaining power relative to firms

The extent to which workers’ reservation utility rises with technology advancement depends
on their relative bargaining power vis-a-vis the principal (employer). In a labor seller’s mar-
ket, workers are positioned to appropriate a greater share of the surplus from Al-enhanced
productivity. An increase in reservation utility leads workers to work less relative to the level
justified by increased productivity alone, analogous to an income effect. This hypothesis posits
that the effect documented in Table 3 and Table 6 is expected to be weaker when workers
have more bargaining power over firms.

Employment (i.e., labor buy side) concentration is a useful proxy for firms’ monopsony
power (e.g. Azar et al., 2020, 2022; Benmelech et al., 2022; Rinz, 2022). Following this lit-
erature, we measure employment concentration using the Herfindahl-Hirschman Index (HHI)
at the state-occupation level. For each occupation o in state s and year ¢, HHI is calculated
as the sum of squared employment shares of public firms in that occupation and state based
on LinkedIn data. Higher HHI implies less intense labor market competition among firms.
Another proxy for inter-firm competition is talent retention pressure (TRP), which reflects
the challenges firms face in retaining skilled workers. Adapting the design developed by Chen
et al. (2023) to our setting, we measure TRP with the job vacancy-to-employment ratio (V/E)
at the state-occupation level, multiplied by each occupation’s cognitive skill scores. The job
vacancy data are from Burning Glass, employment data from OEWS, and cognitive skill scores
from O*NET.?” A higher TRP reflects greater retention pressure on firms, driven by competi-
tion for workers with advanced cognitive skills, who are generally scarce and possess abundant
outside job opportunities. An indicator of high bargaining power of workers relative to firms,
I(Worker Power vs. Firm), is set to one if labor market competition among firms is high (i.e,
employment HHI is in the bottom quartile or TRP is in the top quartile), and zero otherwise.

Columns (1) and (2) of Table 10 present the heterogeneous effects of Al net complemen-

2"The job vacancy data is from 2010 to 2018 and we identify unique job vacancies following Jiang et al.
(2025). The cognitive skill score of each occupation, ranging from one to five, is computed as the average
importance of six cognitive skills using the O*NET 23.0 database (Acemoglu and David, 2011; Chen et al.,
2023).
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tarity on work hours, conditional on workers’ bargaining power relative to firms. Both proxies
of employee’s bargaining power are associated with a significantly smaller increase in work
hours as Al complementarity rises. Specifically, with a an interquartile increase in Al com-
plementarity, a worker in the bottom quartile of employment concentration exhibits a smaller
increase in work hours by 0.75 (column (1), significant at the 10% level). Similarly, a worker in
the top quartile of TRP shows a smaller increase in work hours by 3.3 (column (2), significant
at the 5% level). These results indicate that greater worker bargaining power attenuates the
positive association between AI complementarity and work hours. Replacing AISPYP with

AIZXT yields qualitatively similar findings (see Table OA.9 of the Online Appendix.)

[Insert Table 10 here.]

5.3.4. Product market competition: Firm bargaining power over consumers

Parallel to labor market competition, a firm’s product market power determines how produc-
tive surplus is split between firms and the consumer of their products or services. The more
pricing power of firms relative to consumers, potentially more surplus may eventually accrues
to labor as there is more to split among parties on the production side, which is expected to
mitigate the impact of Al net complementarity on workday via an income effect.

We adopt two measures for firms’ product market power, both provided by Hoberg and
Phillips (2016) based on public firms. One is firm-level product similarity that assesses how
closely a firm’s product descriptions in its 10-K filings match those of industry peers. The other
is the firm-level HHI, defined as the sum of the squared market shares of firms in the same 10-K
text-based industry using Compustat sales data.?® Higher HHI and lower product similarity
suggest greater firm bargaining power over consumers, and potential surplus sharing with
workers. The indicator for high pricing power of firms in an industry relative to consumers,

I(Firm Power vs. Consumer), is set to one if the lagged product similarity is in the bottom

28Note that ATUS lacks firm identifiers and reports only Census industry codes, and Compustat firms are
linked to the NAICS classification. To link the two, we first calculate the sales-weighted product market
competition proxies at the NAICS 3-digit industry level, and then match them to the corresponding Census
industry code "trdtind1” used in ATUS using the crosswalk provided by BLS at https://www2.census.gov/pr
ograms-surveys/demo/guidance /industry-occupation/census-2012-final-code-list.xls.
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quartile or if the product HHI is in the top quartile, and zero otherwise. Each of these two
indicators are interacted with occupational Al net complementarity.

Columns (3) and (4) of Table 10 present weighted linear regression estimates of the het-
erogeneous effect of Al complementarity on workdays, interacted with product market power.
A higher value of I(Firm Power vs. Consumer) weakens the positive relationship between an
interquartile increase in Al net complementarity and weekly work hours by 0.6 in column (3)
(statistically insignificant, t=-1.50) and by 1.55 in column (4) (significant at the 1% level).
These results offer some evidence that when firms hold greater bargaining power over con-
sumers, the impact of Al technologies on work hours is partially mitigated. However, this
trickle-down benefit to workers appears weaker than the effect of workers’ direct bargaining

power over firms.

5.3.5. Impact of employment risk

Though out of our sample period, the widespread concern about the potential mass layoff
driven by Al since 2024 warrants a separate discussion. First, we note that our default sample
explicitly excluded the technology sector, the main destination of mass layoffs since 2024.%°
Moreover, the unemployment rate released by BLS for June 2025 stood at 4.1% and has
remained in a narrow range of 4.0% to 4.2% since May 2024. This suggests that, overall, the
labor market has not experienced the Al-triggered employment shock economy wide.

We nevertheless conduct a formal test on employment risk building on LinkedIn employ-
ment history data. We define Hire as an indicator that equals one if an employee is hired by
a firm in a given year, while Separation is an indicator that equals one if an employee leaves
the firm in a given year. Further, a departure is considered voluntary if the employee joins
a firm with a larger (more than 25%) employment or moves to a role with higher seniority,
following Jiang et al. (2025). Next, we aggregate the number of hires and separations to the

occupation (0) X state (s) x year (t) level.

29 According to layoffs.fyi, a website that tracks job cuts in the tech sector, from January through July 2025
over 70,000 tech workers from over 100 companies, including Amazon, Meta, Microsoft, Intel, etc., have been
laid off.

39



Table 11 presents regression results where the dependent variable is the natural logarithm
of hires and separations. The variables of interest are the lagged Al exposure. All columns
incorporate lagged controls at the occupation-by-state cohort level, including LinkedIn em-
ployment count (natural logarithm), average seniority and remote work index from Revelio,
and fixed effects at the occupation and the state x year level. The regression is weighted
by the underlying LinkedIn employment count at the occupation-by-state cohort level, and

standard errors are double clustered by occupation and state.
[Insert Table 11 here.]

Columns (1) and (5) show that Al exposure and Al net complementarity are positively
but insignificantly related to new hires, while columns (2) and (6) report similar patterns for
separations. These muted effects are consistent with the employment trends in Table OA.7 of
the Online Appendix and findings in the recent literature(e.g., Acemoglu et al., 2022; Hampole
et al., 2025). Breaking down separations, column (3) shows that an interquartile increase in
AT exposure raises voluntary separations by 3.65%, significant at the 5% level. This effect is
more pronounced for Al net complementarity, approximately doubling in magnitude and sig-
nificant at the 1% level (column (7)). That is, Al exposure, particularly when complementary,
increases external opportunities. In contrast, no significant relation is found for involuntary
separations (columns (4) and (8)), consistent with the previously reported evidence that Al
adoption had not triggered disproportionate layoffs as of 2023. Overall, these results suggest
that longer work hours are unlikely driven by fear of employment risk or task consolidation

upon downsizing.

6. Conclusion

The extensive individual-level time diary data (ATUS) collected over the past two decades
offers a unique setting to examine the nuanced relationship between occupational Al exposure

and workers’ time allocation. Our analysis reveals a consistent pattern: workers in occupations
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with higher Al exposure end up working longer hours and enjoying less leisure time. This effect
is particularly pronounced in contexts where Al significantly enhances marginal productivity
and monitoring efficiency. It is further amplified in competitive labor and product markets,
where workers’ limited bargaining power fails to keep up with productivity gains, with rents
often accruing to firms or consumers.

Historically, technological advancements like the Industrial Revolution and automation
initially increased work hours as productivity demands rose and labor shifted to factory-based
systems. Over time, however, productivity gains and social reforms reduced work hours,
especially in developed economies, enabling improved work-life balance. Such a historical trend
has contributed to the expectation for Al technologies. Our findings challenge the prevailing
goal and assumption that technology progress improves lives including alleviating human labor
burdens. Instead, they uncover a paradox where Al-driven productivity gains and enhanced
monitoring efficiency extend workdays, especially in contexts with limited opportunities for
workers to share in the benefits. To achieve a world where humans work less and enjoy greater
well-being, deliberate policy interventions, equitable distribution of productivity gains, and
cultural shifts prioritizing leisure and quality of life are essential. By shedding light on Al’s
impact on work-life dynamics from a principal-agent framework, this study contributes to the

broader discussion on the socio-economic consequences of emerging technologies.
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Figure 1. Most Frequent Keywords in Al Patents

A: Al Patents 2000 - 2009
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This figure presents word clouds of the top keywords appearing in Al patent titles during three
periods: 2000-2009 (Panel A), 2010-2019 (Panel B), and 2020-2023 (Panel C). Font size is pro-
portional to keyword frequency. Each panel displays the 100 most frequent keywords, excluding
generic terms such as “system,” “method,” and “device.”
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Figure 2. Examples of High-Impact Al Patents Over Time
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The timeline shows examples of high-impact AI patents and their business applications from
2000 to 2023. High-impact AI patents are defined as those in the top 1% every year based on
their adjusted forward citations. Following Kogan et al. (2017), a patent’s adjusted forward
citations are calculated as its raw citation count divided by the average citation count of Al
patents granted in the same year-quarter and CPC subclass.
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Figure 3. Al Exposure Over Time
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The figure plots the average occupational Al exposure of ATUS respondents over time. The
average is calculated using ATUS survey weights. Two Al exposure measures are constructed
by the authors using job task descriptions and Al patents published in the five years ending in
a given year from 2000 to 2023: (i) average AI exposure based on the overlap of job tasks of
occupations and Al patents (blue line) and (ii) average AI net complementarity exposure (red
dotted line). Section B.2 describes the variable construction.
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Figure 4. Al Exposure and Workday

40
0
3 38-
T
(o)}
£
'S
5 36-
<
>
Y
S 344
<
32
10 30 50 70 a0
Al Exposure Percentile
0 2004-2013 Binscatter === 2004-2013 Prediction
® 2014-2023 Binscatter —— 2014-2023 Prediction

The figure plots the average weekly work hours over occupational Al exposure. The time alloca-
tion variables are derived from the American Time Use Survey (ATUS) for the periods 20042013
and 2014-2023, weighted using ATUS sampling weights. Blue scatters and the blue dotted line
represent data from 2004-2013, while red scatters and the red line correspond to 2014-2023.
The scatters depict binned averages, and the lines show fitted values from quadratic regressions,
both adjusted for occupation group effects. Occupational Al exposure is constructed by the
authors using job task descriptions and AI patents published in a five-year rolling window. The
raw score for Al exposure is transformed into percentile ranks by year following the literature
(e.g., Autor and Dorn, 2013; Webb, 2019).
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Table 1: Summary Statistics

Panel A describes the individual-level variables in the ATUS sample from 2004 to 2023 and
the means are calculated using ATUS sample weights following Aguiar and Hurst (2007). The
occupations are uniquely identified by “0cc1990dd” codes from Dorn (2009). The time spent on
activities is from the AT'US, expressed in hours per week. An individual’s total time endowment,
after subtracting off 49 hours for biological eating, sleeping, and personal care needs (ESP), is 119
hours per week. Market work includes time spent on main jobs, overtime work, and ancillary
work activities. Leisure includes entertainment like recreational computing and video games,
hobbies and leisure components of ESP. Home production includes household chores, grocery
shopping, caring for other adults, etc. Education refers to one’s own education like attend-
ing courses. Civic includes going to church, volunteering, etc. Job search includes submitting
resumes and conducting job interviews. Hourly wages are in 2023 dollars. The time-varying
exposure measures at the occupation level, including AT exposure (AT EXPY and Al net comple-
mentarity exposure (AI¢OMP) are constructed by the authors and transformed into percentile
ranks by year, as described in Section 3.6. GenAIPXT is generative Al exposure measure at
the occupation level constructed following Eisfeldt et al. (2023). General Al surveillance expo-
sure, AI°UE and its decomposed measures along the dimensions of direction, evaluation, and
discipline (AI°YE — Direction, AI°UE — Evaluation, and AI’YE — Discipline), are described
in Section B.4 of Online Appendix. Panel B summarizes employee ratings, annual salaries, se-
niority, and remote work index at the firm-occupation level from 2008 to June 2023. Employees’
ratings on overall satisfaction and work-life-balance (WLB) are from Glassdoor; annual salaries
in 2023 dollars, seniority level (from 1 to 7), and remote potentials (ranging from 0 to 1) are
derived by Revelio.

Panel A: Occupation Exposure, Time Allocation and Wages at the Individual Level

VARIABLES N Mean Std P25 P50 P75
(1) 2 B @ G (©

Weekly Hours

Market work 124,385 35.21 30.42 0 45.03  59.50
Leisure 124,385 55.28 27.23 35.93 50.52 72.33
Education 124,385 1.20  5.95 0 0 0
Civic activities 124,385 1.60  5.88 0 0 0
Own medical care 124,385 0.37  2.10 0 0 0
Job Search 124,385 0.08 0.87 0 0 0
Home production 124,385 15.85 17.43 2.33 10.03 23.33
Child care 124,385 4.55 11.26 0 0 2
Hourly wages (3) 104,779 28.13 17.78 1543 22.64 35.38
I(Female) 124,385  0.48  0.50 0 0 1
I(Married) 124,385  0.56  0.50 0 1 1
No. Children 124,385  0.80 1.12 0 0 1
Age 124,385 40.60 12.82 30.00 41.00 51.00
Indicator for Educational Attachment
I(Less than high school) 124,385 0.09  0.28 0 0 0
I(High school) 124,385 0.29  0.45 0 0 1
I(Some college education) 124,385 0.23  0.42 0 0 0
I(Bachelor’s) 124,385 0.27  0.44 0 0 1
I(Master’s and above) 124,385 0.13  0.34 0 0 0
ATFXP_ score 124,385 0.66 0.39 0.32 0.61 0.96
AICOMP_ geore 124,385 048 038 0.19 036 0.75
GenAIPXP_ score 8,185 0.38 0 0 0 1
AISUR _ score 11,120  0.52  0.19 0 1 1
AISUR _ Direction 11,120 049 0.18 0 0 1
AISUR — Bvaluation 11,120 051 018 0 1 1
AISUR _ Discipline 11,120  0.53  0.18 0 1 1
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Panel B: Summary Statistics at the Occupation x Firm Level

VARIABLES N Mean Std P25 P50 P75
(1) 2 G @ () (6
Rating - overall 436,858 3.50  1.09 3 4 4
Rating - WLB 408,239  3.40 1.15 3 4 4
No.Complaints - Surveillance 433,998 0.11  0.55 0 0 0
No.Complaints - Employment Risk 433,998 0.03  0.23 0 0 0
Annual salary ($000) 436,858 87.71 4424 55 83 110
No.Reviews 436,858 4.75  9.69 1 2 4
Seniority 436,858 2.56  1.01 2 3 3
Remote Work Index 436,858 0.46  0.19 0 0 1
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Table 2: Event Study: Introduction of ChatGPT

The table reports the weighted linear regressions that examine the effect of occupational expo-
sure to generative Al on work and leisure based on individual responses to the ATUS survey
from 2022 to 2023 using the ATUS sample weights (Aguiar et al., 2021). The occupation clas-
sification is the same as in Table 1. The dependent variable is weekly hours spent on market
work in Panel A and leisure in Panel B. In each panel, column (1) presents the results for
the full sample. Columns (2)—(3) present the results for subsamples defined using generative
AT complementarity exposure at the occupation level, developed following Kogan et al. (2023).
Columns (4)—(5) present the results for subsamples defined using the state-level Google search
trend of ChatGPT from November 30 to December 31, 2022. Columns (6)—(7) present results
for subsamples divided by their overwork status, where the “already overworking” workers are
from occupations whose usual work hours per week were no fewer than 45 hours in 2021. The
main explanatory variable, GenAI®X?  is generative Al exposure measure at the occupation
level from Eisfeldt et al. (2023) and transformed to percentile ranks following the literature (e.g.,
Autor and Dorn, 2013; Webb, 2019). POST dummy equals one for the year 2023. All speci-
fications include individual-level controls including age, the number of children, and a series of
indicator variables for gender, educational attainment, marital status, and race, and fixed effects
at the following levels: occupation, state x year, industry X year, year-month, and day-of-week.
Standard errors are double clustered by occupation and state. Asterisks denote significance lev-

els (***=1%, **=5%, *=10%).

Panel A: Work

Dep Var Weekly Work Hours;
State-level Google Already
GenAl OC omp Search of ChatGPT, Overworking,
Sample Full Sample Top 25% Bottom 75% Top 25% Bottom 75% Yes No
(1) (2) (3) (4) (5) (6) (7)
GenAIFXY x POST, 0.075%* 0.177** 0.090** 0.118* 0.078%** -0.036  0.078***
(2.57) (2.08) (2.27) (1.92) (2.72) (-0.21)  (3.01)
Individual Characteristics Yes Yes Yes Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes Yes Yes Yes Yes Yes
Industry x Year FE Yes Yes Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes Yes Yes
Observations 8,148 3,512 4,628 1,946 6,126 925 7,141
R? 0.343 0471 0.318 0.408 0.368 0.491 0.343
Adjusted R? 0.301 0.421 0.253 0.298 0.318 0.323 0.301
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Panel B: Leisure

Dep Var Weekly Leisure Hours; , ¢
State-level Google Already
GenAl OCOMP Search of ChatGPT, Overworking,
Sample Full Sample Top 25% Bottom 75% Top 25% Bottom 75% Yes No
(1) (2) (3) (4) (5) (6) (7)
GenAIFXY x POST, -0.077H** -0.152%* -0.100** -0.099%* -0.091%** 0.008 -0.092***
(-2.73) (-2.15) (-2.53) (-1.93) (-2.87) (0.06) (-3.21)
Individual Characteristics Yes Yes Yes Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes Yes Yes Yes Yes Yes
Industry x Year FE Yes Yes Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes Yes Yes
Observations 8,148 3,512 4,628 1,946 6,126 925 7,141
R? 0.291 0.365 0.294 0.364 0.313 0.483 0.293
Adjusted R? 0.247 0.305 0.226 0.245 0.258 0.313 0.247
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Table 3: Al Exposure and Workday

The table reports weighted linear regression results that examine the impact of Al exposure
on work and leisure based on individual responses to the ATUS survey from 2004-2023 using
ATUS sample weights (Aguiar et al., 2021). The occupation classification is the same as in
Table 1. The dependent variable is weekly hours spent on market work in columns (1)—(3) and
leisure in columns (4)—(6). The main explanatory variable, ATEXP is Al exposure measure in
percentile rank at the occupation -year level, calculated from Al-related patents granted over five
years ending in the current year (detailed description in Section 3.6). All specifications control
for individual characteristics, including age, the number of children, and a series of indicator
variables for gender, educational attainment, marital status, and race, and fixed effects at the
following levels: state X year, industry x year, year-month and day-of-week. Columns (2) and (5)
additionally control for other occupational exposure measures, including robot exposure (Webb,
2019), routine task index (RTT) (Autor and Dorn, 2013), and offshorability exposure (Firpo et al.,
2011; Autor and Dorn, 2013), all in percentile ranks. Columuns (3) and (6) include occupation
fixed effects, which subsume occupation-level controls. Standard errors are double clustered by
occupation and state. Asterisks denote significance levels (***=1%, **=5%, *=10%).

Dep Var Weekly Hours; ,;
Work Leisure
(1) (2) (3) (4) (5) (6)

Alft)flf 0.045%F*%  0.036*** 0.023** -0.031*F*F*F  _0.025%*F*%  -0.019***

(3.55) (3.20) (2.58) (-3.15) (-2.92) (-3.17)
Individual characteristics Yes Yes Yes Yes Yes Yes
Other Occupation Exposure No Yes No No Yes No
Occupation FE No No Yes No No Yes
State x Year FE Yes Yes Yes Yes Yes Yes
Industry x Year FE Yes Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes Yes
Observations 124,059 124,059 124,059 124,059 124,059 124,059
R? 0.274 0.276 0.285 0.235 0.236 0.243
Adjusted R? 0.261 0.264 0.270 0.221 0.223 0.228

56



Table 4: Decomposed Leisure Activities

The table reports the weighted linear regressions that estimate the effect of occupational Al
exposure on leisure activities at the individual level. The ATUS survey sample and occupation
classification are the same as in Table 3. The dependent variable, weekly hours spent on leisure
activities, is categorized into screen-based leisure activities (recreational computer use, gaming,
and watching TV) in column (1), and non-screen leisure activities in column (2). Column (3)—(6)
further decompose the non-screen leisure activities subdivided into four categories: recreation
(relaxing, listening to music, traveling, etc.), socializing, leisure aspects of eating, sleeping, and
personal care (ESP), and others (hobbies, reading, and sports). The main explanatory variable
is Al exposure in percentile rank at the occupation-year level, calculated from Al-related patents
granted over the five years ending in the current year (detailed description in Section 3.6). We
additionally control for individual characteristics, including age, the number of children, and a
series of indicator variables for gender, educational attainment, marital status, and race, and
fixed effects at the following levels: occupation, state x year, industry X year, year-month, and
day-of-week. Standard errors are double clustered by occupation and state. Asterisks denote
the significance levels (***=1%, **=5%, *=10%).

Dep Var Weekly Leisure Hours; ,

Screen-Based Non-Screen Non-Screen

Recreation Socializing — ESP Other

(1) (2) (3) (4) (5) (6)

Alft)flf -0.001 -0.018%** -0.005** -0.004 -0.010*  0.001

(-0.24) (-3.38) (-2.08) (-0.93) (-1.85) (0.25)
Individual characteristics Yes Yes Yes Yes Yes Yes
Occupational FE Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes Yes Yes Yes Yes
Industry x Year FE Yes Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes Yes
Observations 124,059 124,059 124,059 124,059 124,059 124,059
R? 0.132 0.153 0.051 0.076 0.135 0.078
Adjusted R? 0.114 0.136 0.031 0.058 0.118 0.059
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Table 5: Al Exposure and Workday: Within-Occupation Dispersion

The table reports the weighted linear regression results that examine the effect of AI on the
within-occupation variation of workdays at the occupation x year level derived from the ATUS
data from 2004-2023. The regression is weighted by ATUS sample weights at the occupation-
year level. The occupation classification is the same as in Table 3. The dependent variable
is the differences in weekly work hours between females and males in column (1)-(2) and be-
tween young and old workers in columns (3)—(4). Young workers are defined as those whose age
is in the bottom quartile within the occupation in a given year. The main explanatory vari-
able is Al exposure in percentile rank at the occupation-year level, calculated from Al-related
patents granted over the five years ending in the current year (detailed description in Section
3.6). Specifically, it refers to general Al exposure (AI”XF) in columns (1) and (3) and Al net
complementarity exposure (AI°YMP) in columns (2) and (4). All specifications incorporate the
lagged occupational controls, including the average age, number of children, and educational
attainment, and the share of female and married respondents, occupation fixed effects and year
fixed effects. Standard errors are double clustered by occupation and year. Asterisks denote
significance levels (***=1%, **=5%, *=10%).

Dep Var AWeekly Work Hours,,
Female - Male Young - Old
(1) (2) (3) (4)
A]ffﬁf 0.039%* 0.041*
(2.52) (1.88)
AISPA? 0.064** 0.064*
(2.19) (2.00)
Occupation Controls Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 3,376 3,376 4,573 4,573
R? 0.138 0.138 0.108  0.108
Adjusted R? 0.057  0.057 0.041  0.041
Sample Mean of Dep Var -4.55 -3.65
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Table 6: Al Technology Complementarity vs. Workday and Wage

The table reports weighted linear regression results that estimate the effect of occupational Al
net complementarity on work hours and wages at the individual level. The ATUS survey sample
and occupation classification are the same as in Table 3. The dependent variables are weekly
work hours in columns (1)—(3) and the natural logarithm of hourly wages in 2023 dollars in
columns (4)—(6). The main explanatory variable, AT“OMF is AT net complementarity measure
in percentile rank at the occupation-year level, calculated from Al-related patents granted over
five years ending in the current year (detailed description in Section 3.6). All specifications
control for individual characteristics, including age, the number of children, and a series of indi-
cator variables for gender, educational attainment, marital status, and race, and fixed effects at
the following levels: state x year, industry X year, year-month and day-of-week. Columns (2)
and (5) additionally control for other occupational exposure measures, including robot exposure
(Webb, 2019), routine task index (RTI) (Autor and Dorn, 2013), and offshorability exposure
(Firpo et al., 2011; Autor and Dorn, 2013), all in percentile ranks. Columns (3) and (6) in-
clude occupation fixed effects, which subsume occupation-level controls. Standard errors are
double clustered by occupation and state. Asterisks denote significance levels (***=1%, **=5%,
*=10%).

Dep Var Weekly Work Hours; ,, 100 x Log(Hourly Wage $);
(1) (2) (3) (4) (5) (6)
AISPAE 0.056%**  (0.043%F* (.026%%  0.339%F* (.244%F*  (.046**
(410)  (3.77)  (2.22) (7.49)  (474)  (2.13)
Individual characteristics Yes Yes Yes Yes Yes Yes
Other Occupation Exposure No Yes No No Yes No
Occupation FE No No Yes No No Yes
State x Year FE Yes Yes Yes Yes Yes Yes
Industry x Year FE Yes Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes Yes
Observations 124,059 124,059 124,059 104,356 104,356 104,356
R? 0.275 0.276 0.285 0.482 0.492 0.552
Adjusted R? 0.262 0.264 0.270 0.471 0.481 0.542

59



Table 7: Exposure to Al Surveillance Technology and Workday

The table reports the weighted linear regression results based on individual responses of salaried
employees working remotely in the ATUS survey from 2015 to 2023. The occupation classifi-
cation is the same as in Table 3. Remote workers are defined as those in occupations with a
work-from-home (WFH) feasibility index from Dingel and Neiman (2020) equals one. The de-
pendent variable is weekly work hours. The main explanatory variable, ATSUE is Al surveillance
exposure at the occupation level (detailed description in Section B.4 of Online Appendix) and
transformed to percentile ranks (e.g., Autor and Dorn, 2013; Webb, 2019). Specifically, it refers
to general Al surveillance exposure in column (1) and decomposed Al surveillance exposure in
column (2)-(4) as specified in the third row. POST dummy equals one for the years since 2020.
All specifications control for individual characteristics, including age, the number of children,
and a series of indicator variables for gender, educational attainment, marital status, and race,
and fixed effects at the following levels: occupation, state X year, industry x year, year-month,
and day-of-week. Standard errors are double clustered by occupation and state. Asterisks denote
significance levels (***=1%, **=5%, *=10%).

Sample Weekly Work Hours; , ¢
Indep Var Overall Direction Evaluation Discipline
(1) (2) (3) (4)
AISUE x POST, 0.044*%%  0.043%* 0.045%* 0.032
(2.15) (2.03) (2.25) (1.48)
Individual characteristics Yes Yes Yes Yes
Occupational FE Yes Yes Yes Yes
State x Year FE Yes Yes Yes Yes
Industry x Year FE Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes
Observations 10,238 10,238 10,238 10,238
R? 0.509 0.509 0.509 0.509
Adjusted R? 0.458 0.458 0.458 0.458
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Table 8: Al Exposure and Firm Operating Performance

The table reports the linear regression results that examine the effects of occupational Al expo-
sure on the operating performance of Compustat public firms from 2008 to 2023. The dependent
variables are 100 times the return over assets (RO A) defined as operating income before depreci-
ation over total assets in column (1)—(4) and labor productivity defined as sales over employment
(in $000) in column (5)—(8). The main explanatory variable is the annual workforce AI exposure
at the firm level, calculated as employment-weighted averages of the corresponding occupation-
level measures. Specifically, it refers to general AT exposure (AT ZEt)f 7Y in columns (1) and (5), Al
net complementarity exposure (AI%QJIVI P in columns (2) and (6), weekly work hours predicted
by AIFXT in columns (3) and (7) and weekly work hours predicted by AIZ2Y” in columns
(4) and (8). Section 3.6 provides detailed descriptions of occupational AI exposure measures.
Predicted work hours are based on estimates of individuals from column (3) of Table 3 and 6
and then aggregated to the occupation level using ATUS survey weights. Employment at the
occupation-firm-year level is derived from LinkedIn data. All regressions control for firm at-
tributes including sales in 2023 dollars (natural logarithm), Tobin’s Q, market leverage, capital
expenditure over the beginning-of-year assets, R&D expenditure over assets, net fixed assets over
assets, firm fixed effects and year fixed effects. Standard errors are clustered at the firm level.

Asterisks denote significance levels (¥***=1%, **=5%, *=10%).

Dep Var ROA; +x100 Sales/Employment; ;

(1) (2) (3) (4) (5) (6) (7) (8)
Alﬁ’ff 0.048*** 0.009***

(3.59) (5.67)
AICOMP 0.053%** 0.008***
(3.05) (4.54)
Work_HourEXY 0.258%** 0.017***
(4.62) (2.95)
Work_HourlP4? 0.256%** 0.017%**
(4.61) (2.94)

Firm Attributes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 21,903 21,903 21,903 21,903 21,639 21,639 21,639 21,639
R? 0.738 0.737 0.738 0.738 0.872 0.871 0.871 0.871
Adjusted R? 0.701 0.701 0.702 0.702 0.854 0.854 0.854 0.854
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Table 9: Al Exposure and Employee Satisfaction: Within Firm-Year

The table presents estimates from linear regressions examining the effects of occupational Al
exposure on employee ratings at the occupation (o) x firm (i) x year (t) level. The occupa-
tion classification is the same as in Table 3. The sample covers data from private and public
firms in the Glassdoor database ranging from 2008 to June 2023. The dependent variables are:
100 times the overall satisfaction rating in columns (1), the Work-Life Balance (WLB) ratings
in columns (2), the average annual salary in 2023 dollars (in $000) obtained from Revelio in
columns (3), and the number of complaints (negatively-toned reviews) mentioning surveillance
in column (4) and mentioning employment risk in column (5). The main explanatory variable
represents Al exposure measures at the occupation-year level, expressed in percentile ranks, and
is based on Al-related patents granted in a five-year window ending in the current year (detailed
description in Section 3.6). All specifications include lagged employee review counts, the average
seniority and remote work index of the occupation-by-firm cohort from Revelio, and fixed effects
at the following levels: occupation, firmxyear. Standard errors are clustered by occupation.
R? presents Pseudo R? for Poisson regressions. Asterisks denote significance levels (***=1%,

wxZ5% *=10%).

Dep Var Rating, ; ; No.Complaints,; ¢
Overall WLB Salary, ;s Surveillance Employment
Risk
(1) (2) (3) (4) (5)
Alft)f}f -0.052%*F*  _0.049%** 0.016** 0.001** 0.001
(-2.94) (-3.08) (2.08) (2.10) (1.12)
Marginal Effect 0.020% 0.011%
Model OLS OLS OLS Poisson Poisson
Cohort Controls Yes Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes Yes
Firm x Year FE Yes Yes Yes Yes Yes
Observations 226,905 217,200 226,905 157,765 88,702
R? 0.274 0.264 0.743 0.365 0.267
Adjusted R? 0.216 0.203 0.723
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Table 10: AI Exposure and Workday: In Relation to Competition

The table reports the weighted linear regression results that estimate the heterogeneity effect of
AT on work hours sorted by labor market and product market competition. The ATUS sample
and occupation classifications follow Table 3. The dependent variable is weekly hours spent on
market work. The main explanatory variable, AT°OMP 'is AT net complementarity exposure in
percentile rank at the occupation-year level, calculated from Al-related patents granted over five
years ending in the current year (detailed description in Section 3.6). Two proxies for firms’ labor
market competition at the state-occupation level are specified: the employment concentration
across firms measured by the Herfindahl-Hirschman Index (HHI) in columns (1) and firms’
talent retention pressure (TRP) in columns (2). The state-occupation-level employment HHI is
calculated using the employment and state information of public firms from LinkedIn. TRP is
calculated as the job vacancy-to-employment ratio (V/E) at the state-occupation level, scaled by
each occupation’s cognitive skill scores, using job vacancy data from Burning Glass, employment
data from the OEWS, and cognitive skill scores from O*NET. I(Worker Power vs. Firm) is the
indicator of workers’ bargaining power over firms that equals one if the measure for firms’ labor
market competition is in the top quartile (i.e., the employment HHI in the bottom quartile or
TRP in the top quartile), and zero otherwise. Two proxies represent firms’ product market
power at the industry-level: product similarity in column (3) and product market concentration
HHI in column (4), derived from firm-level scores from Hoberg and Phillips (2016) weighted
by Compustat sales. I(Firm Power vs. Consumer) is an indicator of firms’ product market
power relative to consumers, which equals one if the product similarity is in the bottom quartile
or the product HHI is in the top quartile, and zero otherwise. All specifications incorporate
individual-level controls, including age, the number of children, and a series of indicator variables
for gender, educational attainment, marital status, and race, and fixed effects at the following
levels: occupation, state X year, industry X year, year-month and day-of-week. Standard errors
are double clustered by occupation and state. Asterisks denote significance levels (***=1%,

k5%, *=10%).

Dep Var Weekly Work Hours; ,
Labor Market Competition Product Market Competition
Factor HHI TRP Similarity HHI
(1) (2) (3) (4)
A[gﬂ” 0.031%* 0.080%** 0.025%* 0.028**
(2.38) (2.85) (2.04) (2.36)
x I(Worker Power vs. Firm),s;—1  -0.015% -0.066**
(-1.86) (-2.23)
x I(Firm Power vs. Consumer);:_1 -0.012 -0.031%**
(-1.50) (-3.00)
Individual Characteristics Yes Yes Yes Yes
Occupational FE Yes Yes Yes Yes
State x Year FE Yes Yes Yes Yes
Industry x Year FE Yes Yes Yes Yes
Year x Month FE Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes
Observations 102,434 48,349 114,661 114,661
R? 0.289 0.290 0.283 0.283
Adjusted R? 0.272 0.272 0.268 0.268
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Table 11: Al Exposure, New Hires and Separations

The table reports the weighted linear regression results that examine the effect of Al on hiring
and separation at the occupation-state-year level from 2008-2023. The hiring and separation data
is sourced from LinkedIn profiles of workers at public firms provided by Revelio. The occupation
classification is the same as in Table 3. The dependent variable is 100 times the natural logarithm
of new hires, all separations, voluntary separations, and involuntary separations in columns
(1)—(4) and in columns (5)—(8). The main explanatory variable is AI exposure in percentile rank
at the occupation-year level, calculated from Al-related patents granted over the five years ending
in the current year (detailed description in Section 3.6). All models incorporate lagged controls
at the occupation-by-state cohort level, including LinkedIn employment (natural logarithm),
average seniority and remote work index from Revelio, and fixed effects and the following level:
occupation and state x year. The regression is weighted by the underlying LinkedIn employment
at the occupation-state-year level. Standard errors are double clustered by occupation and state.
Asterisks denote significance levels (¥*¥*¥*=1%, **=5%, *=10%).

Dep Var 100xLn(Outcome, s 1)
New Hires Separations New Hires Separations
All Voluntary Involuntary All Voluntary Involuntary
(1) (2) (3) (4) (5) (6) (7) (8)

Alfff’f 0.027 0.027 0.073%* 0.009

(1.01) (0.97) (2.19) (0.29)
AICOMP 0.061 0.061 0.144%** 0.034

(1.41) (1.57) (3.13) (0.71)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 145,608 143,226 122518 141,600 145,608 143,226 122,518 141,600
R? 0.978 0.984 0.970 0.981 0.978 0.984 0.970 0.981
Adjusted R? 0.978 0.984 0.970 0.981 0.978 0.984 0.970 0.981
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Online Appendix

A. Optimal worker effort in a Principal-Agent Model

This model is a simple adaptation of Holmstrom and Milgrom (1987), aiming at illustrate
the relation between agent “effort” (which maps to length of work day) and a set of factors
including marginal productivity, effort observability, and bargaining power.

The output X, follows a continuous-time stochastic process, affected by the agent’s effort
a and a noise term that is outside the control of the agent:

dXt = Vatdt + Uth, (7)

where:

a; is the agent’s effort level (“working time” in our empirical setting) at time ¢, which is
not directly observed by the principal. 7 is the productivity parameter. o represents the level
of uncertainty in the noise term, and W, is the standard Wiener process.

The principal is risk neutral with the following utility function V', which is the difference
between the expected output ya; and the compensation to the agent, C; = f(X}):

V= / (yar — (X))t (8)

Effort, a;, is not contractible and hence the compensation function relies on output which
is a noisy representation of agent effort.

The agent is risk-averse with CARA utility with a risk-aversion coefficient of r, with a
utility function depending on income C' and leisure, and with a researvation utility of Uj.
Assume the agent has one unit of time to allocate between work and leisure, his expected
utility is E[U(C,1 — a)]. If we rule out the income effect of leisure for now, we assume that
the U take the simple form of

! 1 1
U= / (C, — =rVar(Cy) — =ka®)dt 9)
0 2 2
The principal solves the following optimization problem:

1
Maxyx,) V :/ (va, — f(Xy))dt
0

st.E(U[f(Xy),a;]) > U (Participation constraint)
a* = Argmax, E(U[f(X:),a]) (Incentive compatibility)

(10)

Holmstrom and Milgrom (1987) shows that the optimal dynamic contract converges in the
aggregate to a linear contract in the form of

C, = a+ BX,, (11)

where 8 could be characterized as
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1

=—— 12
p 1+ kro? (12)
Finally, the agent’s effort level in response to the incentive is
g
=—— 13
at k(1 + kro?) (13)

In summary, equilibrium effort input is positively related to v, the marginal productivity of
effort; and negatively associated with k, the marginal cost of effort; r, the agent’s risk aversion;
and o, the volatility of the noise in performance attribution to agent effort. Such comparative
statics are robust with more general functional forms, though there is no closed-form solution.

In this simple model when agent’s utility function is separable in consumption and leisure
(see equation 9), a change in the agent’s reservation utility (which is determined by her next
best alternatives) does not affect the incentives and effort input. This will change with the
relaxation of agent’s utility function to a more general form, such as the constant elasticity of
substitution (CES) utility function:

UC1—a) = [nC? + (1 — n)(1 — a)]F — %rVar(C’t), (14)

where 1 € (0,1) is the relative preference for consumption and leisure, and p < 1 is the
substitution parameter, or 1%[), the elasticity of substitution between C' and 1 — a, is strictly
positive.

Under this setup, the relation between a* and U is not monotone. However, under rea-
sonable parameters (e.g., agents are reasonably risk averse, and measuring performance is
reasonably noisy), increasing U (because the agent has better outside opportunities due to
bargaining power over their employer and the job market) tends to decrease work time. In
addition, the following two conditions would each on its own serve as a sufficient condition
for effort (work time) to shrink when U rises:

1. p <0, i.e., consumption and leisure are strict complements.

2. U is sufficiently large, such that there is a limit on increasing g to agent the required
utility due to agent’s risk aversion.

Overall, because leisure is a normal good, the agent values leisure more when the agent’s
welfare improves. This force induces the agent to allocate more time into leisure from work,
other things equal. The effect is stronger when agent risk aversion is high; performance
measurement is noisy, complimentarity between consumption and leisure is high, and the
agent has good alternatives (hence demands high reservation utility).
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B. Documentation

B.1. Historical panel of O*NET data

The O*NET Data Collection Program currently makes updates to the O*NET Database
quarterly, with a primary update occurring in the 3rd quarter (August) of each year. Prior
to year 2015, the data was primarily updated once per year. To create a consistent annual
panel of job tasks, we use the O*NET databases released each August from 2015 onward. For
years prior to 2015, we select the data release closest to August, prioritizing those published
between June and August when multiple versions are available in the same year. Table OA.1
of Online Appendix lists the O*NET data release we use to construct the annual panel of
occupations’ job tasks from 2000-2023.
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B.2. Measure Al exposure at the occupation level using GPT

This section provides details on how we use OpenAI’'s GPT model to quantify Al exposure
measures for occupations. Our practice was conducted on November 22, 2024 using the “gpt-
40-mini-2024-07-18” model with the “temperature” parameter set to 0.3

B.2.1. Prompt setup

GPT (Generative Pre-trained Transformer) architecture, developed by OpenAl, uses a trans-
former design with self-attention mechanisms for advanced contextual understanding. Pre-
trained on vast datasets, it is highly proficient in processing and analyzing text.

We use GPT to classify the impact of Al patents on occupations due to its ability to
identify complex relationships and nuances in language. Specifically, we define a prompt,
which serves as a clear instruction or context-setting input that shapes the model’s output,
as following and apply it to a given patent-occupation combination in our sample:

You are a labor economist. Evaluate the extent to which a new Al patent substitutes or
complements job tasks of a given occupation, and its impact on task completion time. Respond
strictly in JSON format:

“overlap”: [similarity_score], # Similarity between patent and tasks (1-10)

“label”: [effect label], # indicator of the impact of patent on tasks (-1 = substitute, 1 =
complement, 0 = unrelated)

Include no text other than the JSON object.

In this prompt, we ask GPT to assume the role of a labor economist to classify the
impact of a patent filing on a given occupation. The terms Patent Title and Patent Abstract
are substituted by the title and abstract of a particular patent during the query. Similarly,
Occupation Title and Tasks are substituted by the title and the combined text of all task
statements of a particular occupation.

B.2.2. Example

We provide two examples of how GPT scores the overlap between an occupation and Al patent
and identifies their substitute/complementarity relation.

Example 1)

Occupation: Retail Salespersons (SOC Code: 41-2031.00)

Task Statements: ”Greet customers and ascertain what each customer wants or needs. |
Open and close cash registers, performing tasks such as counting money, separating charge
slips, coupons, and vouchers, balancing cash drawers, and making deposits.| Maintain knowl-
edge of current sales and promotions, policies regarding payment and exchanges, and security
practices.| Compute sales prices, total purchases and receive and process cash or credit pay-
ment.| Maintain records related to sales.| Watch for and recognize security risks and thefts,
and know how to prevent or handle these situations.| Recommend, select, and help locate or
obtain merchandise based on customer needs and desires.| Answer questions regarding the

30Temperature is a parameter in GPT model that controls the randomness and creativity of its responses.
Setting the temperature to 0 makes the model consistently choose the most probable word.
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store and its merchandise.| Describe merchandise and explain use, operation, and care of mer-
chandise to customers.| Ticket, arrange and display merchandise to promote sales.| Prepare
sales slips or sales contracts.| Place special orders or call other stores to find desired items.|
Demonstrate use or operation of merchandise.| Clean shelves, counters, and tables.| Exchange
merchandise for customers and accept returns.| Bag or package purchases, and wrap gifts.|
Help customers try on or fit merchandise.| Inventory stock and requisition new stock.| Pre-
pare merchandise for purchase or rental.| Sell or arrange for delivery, insurance, financing, or
service contracts for merchandise.| Estimate and quote trade-in allowances.| Estimate cost of
repair or alteration of merchandise.| Estimate quantity and cost of merchandise required, such
as paint or floor covering.| Rent merchandise to customers.”

Patent #1 Title: Use of product viewing histories of users to identify related
products (Patent ID: 6912505, Year: 2005)

Patent Abstract: ”Various methods are disclosed for monitoring user browsing activities
that indicate user interests in particular products or other items, and for using such infor-
mation to identify items that are related to one another. In one embodiment, relationships
between products within an online catalog are determined by identifying products that are
frequently viewed by users within the same browsing session (e.g., products A and B are
related because a significant portion of those who viewed A also viewed B). The resulting
item relatedness data is preferably stored in a table that maps items to sets of related items.
The table may be used to provide personalized product recommendations to users, and/or to
supplement product detail pages with lists of related products. In one embodiment, the table
is used to provide session-specific product recommendations to users that are based on the
products viewed by the user during the current browsing session.”

GPT Overlap Score: 7. GPT Label: Complement.

Patent #2 Title: Payment transaction authentication system and method (Patent
ID: 10755281, Year: 2020)

Patent Abstract: "This disclosure describes, in part, techniques for validating a payment
transaction between a customer and a merchant via challenge questions. For instance, the
method includes determining, by a payment processing system, a level of risk associated with
a current payment transaction between the merchant and the customer; in response the level
of risk being higher than a threshold, obtaining a query for the customer, wherein the query is
based at least on the current payment transaction or one or more past transactions involving
the customer; receiving, from a customer device associated with the customer, a response
to the query; and validating the current payment transaction based on the response.” GPT
Overlap Score: 6. GPT Label: Substitute.

Example 2)
Occupation: ”Office Clerks, General” (SOC Code: 43-9061.00)

Task Statements: "Operate office machines, such as photocopiers and scanners, facsimile
machines, voice mail systems, and personal computers.| Answer telephones, direct calls, and
take messages.| Communicate with customers, employees, and other individuals to answer
questions, disseminate or explain information, take orders, and address complaints.| Main-
tain and update filing, inventory, mailing, and database systems, either manually or using
a computer.| Compile, copy, sort, and file records of office activities, business transactions,

OA.5



and other activities.| Review files, records, and other documents to obtain information to re-
spond to requests.| Open, sort, and route incoming mail, answer correspondence, and prepare
outgoing mail.| Compute, record, and proofread data and other information, such as records
or reports.| Complete work schedules, manage calendars, and arrange appointments.| Type,
format, proofread, and edit correspondence and other documents, from notes or dictating ma-
chines, using computers or typewriters.| Inventory and order materials, supplies, and services.|
Deliver messages and run errands.| Collect, count, and disburse money, do basic bookkeeping,
and complete banking transactions.| Complete and mail bills, contracts, policies, invoices, or
checks.| Process and prepare documents, such as business or government forms and expense
reports.| Monitor and direct the work of lower-level clerks.| Prepare meeting agendas, attend
meetings, and record and transcribe minutes.| Train other staff members to perform work
activities, such as using computer applications.| Count, weigh, measure, or organize materi-
als.| Make travel arrangements for office personnel.| Troubleshoot problems involving office
equipment, such as computer hardware and software.”

Patent #1 Title: Generative summaries for search results (Patent ID: 11769017,
Year: 2023)

Patent Abstract: "At least selectively utilizing a large language model (LLM) in generat-
ing a natural language (NL) based summary to be rendered in response to a query. In some
implementations, in generating the NL based summary additional content is processed using
the LLM. The additional content is in addition to query content of the query itself and, in
generating the NL based summary, can be processed using the LLM and along with the query
content or even independent of the query content. Processing the additional content can, for
example, mitigate occurrences of the NL based summary including inaccuracies and/or can
mitigate occurrences of the NL based summary being over-specified and/or under-specified.”
GPT Overlap Score: 7. GPT Label: Complement.

Patent #2 Title: Method and system for synchronizing databases automatically
and periodically (Patent ID: 10936623, Year: 2021)

Patent Abstract: "Through a first processing thread, a first database is accessed via a
first API to retrieve a list of event objects of the first database. Through a second processing
thread, for each of the event objects, participant identifiers (IDs) are determined from the
event object. For each of the participant IDs, a domain ID is extracted from the participant
ID. A list of one or more entity objects are identified based on the domain ID, where the
entity objects are stored in a second database such as a task database storing and managing
many tasks. At least one attribute of at least one of the entity objects is modified based of
the participant ID and the domain ID, which generates a modified entity object. Through
a third processing thread, any event objects that have been modified are transmitted to the
second database via a second API over the network.”

GPT Overlap Score: 8. GPT Label: Substitute.

B.2.3. Validating GPT-generated AI general exposure

Generative Large Language Models, such as GPT, provide improved textual analysis ap-
proaches over non-generative methods, mainly because that they enable expressing a task
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through natural language and exhibit more sophisticated reasoning abilities (de Kok, 2025).
However, the black-box nature of these models poses challenges to the validation of the mea-
sures created by them. Here, we apply a non-generative natural language processing method
to calculate a comparative variable to our overlap variable generated by GPT. Specifically, fol-
lowing Kogan et al. (2023), we employ a combination of word embedding and term-frequency-
inverse-document-frequency (TF-IDF) approach to calculate the similarity between the text
description of an occupation and the abstract of a patent. Then, we aggregate the similarity
score at the occupation-year level to represent the time-varying relevance of Al to each occu-
pation’s tasks. Finally, we compare the TF-IDF ee similarity score to the GPT-generated Al
exposure score.

The specific procedure is as follows. First, we pre-process each text portion of the task
description of each SOC 8-digit occupation and patent abstracts by removing non-alphabetic
characters, lowercasing all text, removing all stopwords listed in the sources in Kogan et al.
(2023), and retaining lemmatized versions of nouns and verbs only. Next, we represent each
word of a text as a 100-dimensional vector using the word vectors provided by Pennington et al.
(2014). The word vectors are numerical representations of word meanings that can effectively
capture pairwise distances between words based on co-occurrence probabilities (Kogan et al.,
2023). Then, to measure the document similarity between an occupation task description
and a patent abstract, we construct a document-level vector, which is a weighted average of
the set of word vectors in each task description or patent abstract text. We use TF-IDF to
weigh each word vector, which gives higher weights for terms that occur more frequently in a
document and lower weights for terms that occur commonly across many documents (Kogan
et al., 2023). Finally, we calculate the cosine similarity between the task description of each
occupation and a patent abstract, each represented as a document vector, to measure the
relevance of the Al patent to the tasks performed by the occupation.

We aggregate the TF-IDF similarity scores from the SOC 8-digit occupation by patent
level to the occ1990dd occupation by year level following the procedures outlined in Section
3.6.2. The TF-IDF score and the GPT-based Al exposure score (Al ff(P ) constructed using
the same patents show a high correlation of 0.83, demonstrating a strong alignment between
the two measures and confirming the robustness of the GPT-derived approach.

B.2.4. Validating GPT-generated AI net complementarity exposure

To study the wage effects of Al, Kogan et al. (2023) use ChatGPT4 released in March 2023 to
identify whether Al is a substitute or complement to occupation tasks using a question-based
approach. Specifically, they ask ChatGPT whether AI’s is able to perform specific job tasks
with or without human intervention. This approach yields time-invariant measures of the
occupation’s exposure to Al substitution and AI complementarity.

Kogan et al. (2023) do not report the Al exposures at the occupation level. However, Table
A8-9 in their Online Appendix provide different components of Al exposure-related earnings
changes for occupations with the highest Al substitution (or complementarity) exposure at the
SOC 6-digit occupation level. We validate our AT Net complementarity exposure (AIFPMP)
by comparing it to those wage growth components. To summarize, AIS?YF in 2023 exhibits a
strong negative correlation of -0.59 with the wage growth attributed to the substitution effect
of AT (column (3) in Table A8-9) documented in Kogan et al. (2023)). In contrast, AISOMP
shows a positive correlation of 0.47 with wage growth related to labor-complementing effects
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(column (4) of in Table A8-9) and a correlation of 0.60 with the overall wage growth of Al
(column (6)). This underscores a strong consistency between the methods, validating the
reliability of our AI net complementarity measure.
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B.3. Measure generative Al exposure at the occupation level using
GPT

This section provides details on how we use a GPT model to replicate the exposure to Genera-
tive Al of each task following Eisfeldt et al. (2023) and to distinguish the impact of substitution
and complementarity of Generative Al on each task following Kogan et al. (2023). The cat-
egorization was conducted on November 12, 2024 using the “gpt-40” model with the GPT
“temperature” parameter set to 0. The job task descriptions of occupations are obtained from
the O*NET 27.0 database released on August 1, 2022. Using the task statement, we gener-
ated two output variables for each of the 19,267 tasks including (i) to which extent the task is
exposed to Generative Al technologies or not (ii) whether it is substituted or complemented
by Generative Al technologies.

The replicated generative Al exposure was used for the initial analyses; however, following
the release of the original measure by Eisfeldt et al. (2023), we replaced it with the original
to ensure consistency and comparability.

B.3.1. Prompt setup

We define a prompt as following and apply it to each job task in our sample:

“Generate two outcomes in the exact format of ’[vall, val2, wval3], [label]’ based on the
following instructions.”

“First Task: Pretend you are a labor economist evaluating the extent to which Generative
Al (specifically ChatGPT) might substitute or complement a job task of an occupation. ”

“The output must be exactly a list of numbers in this format: [vall, val2, val3], where: -
vall is ChatGPT’s substitute score (1-10),” 7~ val2 is its complement score (1-10),” - val3
is a label (-1 = substitute, 1 = complement, 0 = unrelated) indicating if ChatGPT primarily
complements or substitutes the job task.”

“Second Task: For the second task, use the following Context for Evaluation and Exposure
Rubric to label a given occupation task with one of the labels (E0, E1, E2, or E3) based on its
exposure to LLM capabilities.”

“The output must be exactly in this format: [label] that best describes the task’s exposure
to the LLM.”

“Context for Evaluation: Assume access to the most powerful OpenAl large language model
(LLM). This model can complete tasks involving text input and output, as long as the context
can be captured in 2000 words. However, it cannot retrieve up-to-date facts from the past year
unless provided in the input. Assume you are a worker with average expertise, using the LLM
along with other software or hardware tools specified in the task. You also have commonly
available technical tools (e.g., microphone, speakers) but no other physical materials. Your
goal is to label tasks according to the rubric below, ensuring equivalent quality (i.e., a reviewer
cannot distinguish whether a human completed it independently or with LLM assistance). If
you are unsure how to judge time savings, consider if the described tools cover the majority of
the subtasks.”

“Fxposure Rubric:”

“ E1 - Direct Exposure: Label tasks as E1 if direct access to the LLM (e.g., via ChatGPT
or OpenAlI playground) alone can reduce task time by at least half while maintaining quality.
Ezamples include:” 7 - Writing and transforming text/code,” ” - Editing text/code as specified,”
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7 - Writing code for tasks previously done manually,” 7 - Translating text,” 7 - Summarizing

medium-length documents,” 7 - Providing document feedback,” 7 - Answering questions about
a document,” 7 - Generating or answering questions,” ” - Writing or responding to emails
(including negotiation if via text),” ” - Maintaining written records,” ” - Preparing general
training materials, and” 7 - Informing others through written or spoken formats.”

“- E2 - Ezposure by LLM-powered Applications: Label tasks as E2 if the LLM alone
may not halve the time required, but additional software built on the LLM could. Examples
include:” 7 - Summarizing documents longer than 2000 words and answering questions on
them,” ” - Retrieving recent/specialized information from the internet or organization data,” ”
- Making recommendations based on data,” ” - Analyzing written information for decisions,”
7 - Preparing specialized training materials, and” 7 - Maintaining complex databases.”

“- E3 - Ezxposure with Image Capabilities: Label tasks as ES3 if the combination of the LLM
and an image-processing system (capable of viewing, captioning, and creating images, but not
video) significantly reduces task time. Examples include:” 7 - Reading text from PDFs,” 7 -
Scanning images,” ” - Creating or editing digital images based on instructions (realistic but
not highly detailed).”

“- EO - No Ezposure: Label tasks as EO0 if none of the above criteria apply, and no
clear reduction in task time by half is achieved. Fxamples include:” 7 - Tasks requiring
significant human interaction (e.g., in-person demonstrations),” ” - Tasks requiring precise
physical measurements or detailed visual review,” ” - Decisions impacting human livelihood
(e.g., hiring, grading),” ” - Tasks legally requiring a human,” 7 - Tasks already completed
efficiently with existing (non-LLM) technology, and” 7 - When in doubt, default to E0.”

B.3.2. Variable construction

Task scoring By applying the prompt, we categorize the Generative Al exposure, GenAl;
of a given task j into one of the following three categories based on the GPT output in the
second task of the prompt:

 Direct Exposure (GenAl; = 1): if ChatGPT enables a task to be completed in less than
half the usual time, maintaining the same quality.

+ Plus-Overlay Exposure (GenAl; = 0.5): if ChatGPT alone cannot cut task time by half,
but the addition of complementary software leveraging its functionality could achieve
this efficiency without sacrificing quality.

« No Exposure (GenAl; = 0): if ChatGPT neither reduces task time by half with com-
parable quality nor produces results of adequate quality.

Meanwhile, we classify a given task j as being substituted or complemented by Generative
AT into one of the following three classifications based on the GPT output “label” in the first
task of the prompt:

« Substitute (GenAI{9M" = -1): if ChatGPT primarily substitutes a job task.
« Complement (GenAIfOM” = 1) if ChatGPT primarily complements a job task.

o Unrelated (GenAI{OM” = 0) if ChatGPT is irrelevant to a job task.
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Aggregation to the Occupation-Level We next aggregate tasks’ exposures to Genera-
tive Al to the SOC 8-digit occupation level. Following Eisfeldt et al. (2023), we calculate the
Generative Al exposure (GenAl,) of a given occupation as the share of the total number of
tasks for each occupation that have either a direct or “plus-overlay” exposure to Generative
AL We calculate Generative Al - Net complementarity (GenAISOMF) for each SOC 8-digit
occupation by taking the equal-weighted average of GenAl JC OMP across all tasks associated
with that occupation. Next, we aggregate SOC 8-digit occupation codes to 0cc1990dd codes
following the procedures outlined in Section 3.6.2.

B.3.3. Validation

We validate GenAISOMF by comparing it to Table A8-9 of Kogan et al. (2023). Table
A8-9 of Kogan et al. (2023) reports the predicted wage growth attributed to different compo-
nents of Al exposure of occupations with the highest exposure to labor-complementing and
labor-substituting potential of AI at the SOC 6-digit level. We find that GenAIS9MP has
a correlation of -0.42 with the wage growth attributed to the labor-substituting potential of
AT (column (3) of Table A8-9 in Kogan et al. (2023)), and a correlation of 0.31 with that of
labor-complementing (column (4)) and a correlation of 0.44 with the total wage growth of Al
(column (6)), documented by Kogan et al. (2023)).
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B.4. Measure Al surveillance exposure at the occupation level using
GPT

This section provides details on how we use a GPT model to quantify the exposure to Al
surveillance of each task. We conducted this categorization on March 28, 2025 using the
“gpt-40-2024-11-20” model with the GPT "temperature” parameter set to 0. The job task
descriptions of occupations are obtained from the O*NET 28.0 database released on August
1, 2023. Using the task statement, we generated four output variables for each of the 19,280
tasks including to which extent the task is exposed to overall and decomposed Al surveillance
technologies.

B.4.1. Prompt setup

We define a prompt as following and apply it to each job task in our sample:

“As a labor economist, assess Al's ability to improve **control efficiency®* by better track-
ing and evaluating workers’ performance, effort, and compliance based on three perspectives
of Algorithmic Control: Direction, Fvaluation, and Discipline.”

“ **Context for Assessment:**”
“1. **Algorithmic Direction** — Al quides or restricts workers’ actions to align with goals.”
- **Recommending:** Prompts workers to align decisions with predefined goals.”
- *Ezample:* Al recommends optimal scheduling based on data analysis.”
- **Restricting: ** Limits access to information or constrains behavior.”
- *Example:* Al restricts information or modifies behavior in online communities.”
“72. **Algorithmic Evaluation™ — AI monitors and assesses performance through data
analysis.”
“ - **Recording: ** Tracks behaviors and provides real-time feedback.”
- *Example:* Al logs work speed and accuracy for reviews.”
- **Rating:** Aggregates data (e.qg., ratings, rankings) to evaluate productivity and predict
performance.”
“ - *Example:* Al ranks employees based on task completion rates.”
“78. **Algorithmic Discipline** — AI enforces compliance and incentivizes workers via
automation and rewards.”
“_ F*Replacing:** Automatically removes or reassigns underperforming workers.”
- *Example:* Al flags low-rated workers for reassignment.”
- **Rewarding: ** Provides dynamic rewards or gamifies tasks to increase engagement.”
- *Ezample:* Al gives real-time rewards for task completion.”
“ F*Output Format:**”
“One exact response per job task in the format: ‘[vi,v2,v3],[label]"”
“*Eul, 02, v3]**: Scores from 1-10 for direction (v1), evaluation (v2), and discipline (v3),
where 10 indicates mazimum potential for Al to improve control.
“ HFHabel**: Composite AI control score (1-10) reflecting all three aspects.”

114

114

114
114

144

B.4.2. Variable construction

Task scoring By applying the prompt, the GPT model returns responses three scores— v1,
v2, and v3— range from 1 (low potential) to 10 (high potential) for each dimension of Al
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surveillance including direction, evaluation, and discipline, along with a composite score (label)
representing a general Al surveillance score. We drop tasks that GPT could not classify,
leading to 19,273 tasks.

Given upward biases in raw scores (e.g., means: vl = 6.9, v2 = 8.0), we convert these
continuous scores into binary exposure indicators using their respective sample means as
thresholds. Specifically, we define:

General AT surveillance exposure: AIPVR =1 if label > T7;

Direction component: A[]SUR — Direction = 1 if vl > 7;

Evaluation component: Al J»SUR — Fvaluation = 1 if v2 > §;
« Discipline component: AIFY# — Discipline = 1 if v3 > 6.

Aggregation to the occupation-level We then aggregate these binary task-level Al
surveillance indicators to the SOC 8-digit occupation level. Following FEisfeldt et al. (2023),
occupation-level exposures (AISUF and its decomposed measures) are computed as equal-
weighted averages of corresponding task-level indicators across all tasks associated with each
SOC 8-digit occupation. Finally, SOC 8-digit occupation codes are aggregated to occ1990dd
using the procedure outlined in Section 3.6.2.

B.4.3. Example

Table OA.8 of the Online Appendix lists top occupations grouped by general Al surveillance
exposure. On the top of the list are travel agent, dispatchers, bookkeeping clerks, medical
records specialists, etc., while occupations with the lowest Al surveillance exposure include
clergy, dentists, and artists.
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B.5. Measure employee sentiment toward surveillance and employ-
ment risk

This section outlines how we quantify firm-occupation-year-level complaint measures about
surveillance and employment risk using Glassdoor employee reviews.

B.5.1. Measurement

Each Glassdoor review includes two text fields: “Pros” and “Cons.” We concatenate these
fields for each English-language review to compute the net sentiment score of all texts of
a review. Then, we merge frequently occurring bigrams and trigrams, such as “work-life
balance.”

To identify text related to each of the two topics (i.e., surveillance and employment risk),
we construct keyword lists for both topics. Using Gensim’s Word2Vec, we train a word embed-
ding model on the entire corpus of employee reviews. For surveillance, we use “performance,”
“monitor,” “surveillance,” and “quota.” For employment risk, we seed the model with initial
keywords: “layoff,” “unemployment,” “downsizing,” and “termination.” We expand each list
by retrieving words with cosine similarity greater than 0.5 to the seed terms. After manual
inspection, the final surveillance keyword list includes 71 keywords (e.g., “metric,” “evalu-
ations”) and the employment risk keyword list contains 66 keywords (e.g., “displacement,”
“recession”).

To calculate sentiment toward each topic for each employee review, we first extract two
sets of sentences: those containing any surveillance keyword and those containing any em-
ployment risk keyword. We then apply a transformer-based sentiment analysis model to
each set of sentences separately to assess topic-specific sentiment. Specifically, we use the
“cardiffnlp /twitter-roberta-base-sentiment” model, which outputs “positive,” “neutral,” and
“negative” scores that sum to 1 for a given text. A review’s sentiment score for each topic
is computed as the positive score minus the neutral score minus the negative score. For each
topic, we classify reviews with sentiment scores below the 20th percentile as “Negative.” Fi-
nally, for each firm-occupation-year, we compute the two complaint measures: the number of
reviews classified as “Negative” toward surveillance and the number of reviews classified as
“Negative” toward employment risk.

B.5.2. Example

Table OA.10 the Online Appendix lists examples of complaints about surveillance and em-
ployment risk.
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B.6. Map leisure activities to personal utility parameters

This section details how we mapped ATUS leisure activities to the 126 personal utility pa-
rameters of life aspects identified by Benjamin et al. (2025). This mapping was performed on
July 23, 2025, using the “claude-opus-4-20250514” model developed by Anthropic, with the
temperature parameter set to 0. For each life aspect, we generated eight output variables: (i)
an overall score of leisure’s impact, (ii) a one-sentence rationale for the score in (i), and (iii)
subcategory-specific impact scores for leisure domains such as recreation and eating, sleeping,
and personal care (ESP).

B.6.1. Prompt setup

We use the following prompt template to instruct the Claude model to evaluate the impact
of increased leisure hours on each life aspect:

“You are a reseracher in labor economics who strictly follows instructions and provides
only valid JSON answers.”

“Bualuate the direct impact of an increase in a worker’s **leisure hours (screen time,
social time, recreation, eating/sleeping/personal care, and hobbies)** at the expense of **work
hours** on the well-being aspect of **<Aspect>**, holding hours for other activities (i.e.,
education, civic activities, medical care, job search, home production, child care) constant. Do
not assume relationships without justification. Also consider the consequences of both increased
leisure and decreased work hours. Focus strictly on the direct impact of leisure hours on the
aspect, not indirect impacts. Use 0 labels/scores when appropriate.”

“Provide your answer strictly in the following JSON format. Respond **only** with valid
JSON and **no additional text**. Make sure every key-value pair ends with a comma, except
the last one. Respond only with syntactically valid JSON that can be parsed by ‘json.loads()’”

“HHeisure__score®™: [float], // A number from -1 to 1 representing the direct effect of
increased leisure hours at the expense of work hours on **<Aspect>**. Use 0 if there is no
known or meaningful relationship.

“Heisure__reason™*: [str], // A one sentence reason for leisure__score.

“HHeisure__screen__score™*:  [float], // A number from -1 to 1 representing the direct
effect of increased screen-based leisure (e.g., gaming, TV) at the expense of work hours on
**<Aspect>**. Use 0 if there is no known or meaningful relationship.

“HHleisure_nonscreen__score**: [float], // A number from -1 to 1 representing the direct
effect of increased non-screen leisure hours (e.g., recreation, socializing, dining well, sleep)
at the expense of work hours on “<Aspect>" Use 0 if there is no known or meaningful
relationship.

“Hleisure__recreation__score**: [float], // A number from -1 to 1 representing the direct
effect of increased recreational leisure hours (e.g., relaring, music, traveling) at the expense of
work hours on "<Aspect>". Use 0 if there is no known or meaningful relationship.

“Heisure__social_score**: [float], // A number from -1 to 1 representing the direct effect
of increased socializing time at the expense of work hours on “<Aspect>". Use 0 if there is no
known or meaningful relationship.

“HHeisure_ESP_score®*: [float], // A number from -1 to 1 representing the direct effect
of increased hours for eating, sleeping, and personal care at the expense of work hours on
“<Aspect>". Use 0 if there is no known or meaningful relationship.
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“Hleisure _other _score”: [float], // A number from -1 to 1 representing the direct effect
of increased other leisure hours (hobbies, reading, sports) at the expense of work hours on
“<Aspect>". Use 0 if there is no known or meaningful relationship.

B.6.2. Variable construction

Applying the prompt yields scores ranging from -1 (negative impact) to 1 (positive impact),
representing the estimated extent to which each of the 126 life aspects is impacted by leisure.
We then compute the utility parameter for each leisure category as a weighted sum of the
relative marginal utilities of the life aspects (as reported by Benjamin et al. (2025)), where
the weights are the LLM-generated impact scores reflecting each leisure category’s impact on
those aspects.

Due to the size of the resulting table, we provide a link to the table that contains 126 life
aspects, LLM-generated prompt outputs of eight variables, and the computed utility param-
eters for each leisure category: https://www.dropbox.com/scl/fi/muoey2ltc2vmo8ion7jkd/c
laude aspects_overleaf xlsx?rlkey=4arh4nisie8z4ntfcn9b6fxlp&st=cnrn65q2&dl=0.
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C. Figures
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Figure OA.1. Al Patents Over Time
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The figure summarizes the top 1% high-impact AI patents every year from 2000 - 2023 based
on the adjusted forward citations that are used to construct Al exposure measures. Following
Kogan et al. (2017), a patent’s adjusted forward citations are calculated as its raw citation count
divided by the average citation count of Al patents granted in the same year-quarter and CPC
subclass. The blue line represents the total number of Al patents granted each year, while the
red line depicts the average adjusted forward citations for that year’s cohort.
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Figure OA.2. Al Exposure vs. General Technology Exposure
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The figure presents the correlation between time-compressed version of general Al exposure
(by averaging over the years from 2000-2023) and five time-invariant occupational exposure
measures including the Al exposure constructed by Felten et al. (2018), AI exposure and robot
exposure constructed by Webb (2019), routine task intensity (RTI) from Autor and Dorn (2013),
offshorability potentials from Firpo et al. (2011), and work-from-home (WFH) potentials from
Dingel and Neiman (2020). All data series are at the 0cc1990dd occupation level. The Al
exposure measure is constructed by the authors. Following the literature (e.g., Autor and Dorn,
2013; Webb, 2019), the authors transform all occupation-level exposure scores to percentile ranks
and plot the average Al exposure percentile over the other six exposure measures.
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Figure OA.3. Google Search Trend of ChatGPT and Al
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The figure presents the Google search trends of ChatGPT (launched on November 30, 2022)
and artificial intelligence (AI) from 2010-2023. The Google Search Trend provides a monthly
index scaled from 0 to 100 to indicate the popularity and frequency of particular search terms
or topics, where “0” indicates low search volume terms.
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D. Tables

Table OA.1: O*NET Database Annula Panel

This table lists the O*NET data release the authors use to construct the annual panel of occu-
pations’ job tasks from 2000-2023.

Database Date Published
O*NET 3.0 8/1/2000
O*NET 3.1 6,/1,/2001
O*NET 4.0 6,/1,/2002
O*NET 5.0 4/1/2003
O*NET 6.0 7/1/2004
O*NET 8.0 6/1/2005
O*NET 10.0 6/1/2006
O*NET 12.0 6/1/2007
O*NET 13.0 6/1/2008
O*NET 14.0 6/1/2009
O*NET 15.0 7/1/2010
O*NET 16.0 7/1/2011
O*NET 17.0 7/1/2012
O*NET 18.0 7/1/2013
O*NET 19.0 7/1/2014
O*NET 20.0 8/1/2015
O*NET 21.0 8/1/2016
O*NET 22.0 8/1/2017
O*NET 23.0 8/1/2018
O*NET 24.0 8/1/2019
O*NET 25.0 8/1/2020
O*NET 26.0 8/1/2021
O*NET 27.0 8,/1/2022
O*NET 28.0 8/1/2023
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Table OA.2: Top Occupations by Al Exposure Scores and and AI Net Complementarity

This table presents occupations with the highest AI exposure (AI®XF) and Al net complemen-

tarity (AICOMP)

, grouped at the 6-digit SOC level for 2023. Occupations are categorized into

three groups: high AIFXP & high AI®OMP high ATFXP & low AICOMP  and low AIPXP &
low AICOMP —ATEXP and AI®OMP is measured by the annual Al-related patent filings from
2018 to 2023, representing the level of Al integration in each occupation.

O*NET 0ccl990dd  ATFXP  ATPXP  AJCOMP - AJCOMP
Occupation Title Code 0cc1990dd Title Code Score Pct. Score Pct.

High AIPXP & High AICOMP
Computer and Information Systems Managers 11-3021 Managers and administrators, n.e.c. 22 2.32 100 2.32 100
Electrical Engineers 17-2071  Electrical engineers 55 2.23 100 2.20 100
Computer Hardware Engineers 17-2061  Electrical engineers 55 2.21 100 2.19 100
Inspectors, Testers, Sorters, ... 51-9061 Production checkers, ... 799 2.21 100 1.97 99
Remote Sensing Scientists and Technologists 19-2099 Physical scientists, n.e.c. 76 2.18 100 2.16 100
Operations Research Analysts 15-2031 Operations and systems researchers ... 65 2.14 100 2.12 100
Management Analysts 13-1111 Management analysts 26 2.10 100 2.07 100
Radio Frequency Identification ... 17-2072  Electrical engineers 55 2.10 99 2.06 100
Cartographers and Photogrammetrists 17-1021  Surveryors, cartographers,... 218 2.02 99 1.90 99
Bioinformatics Technicians 43-9111 Statistical clerks 386 2.02 99 1.94 99

High AIPXP & Low AICOMP
Data Entry Keyers 43-9021 Data entry keyers 385 1.82 96 0.33 23
Log Graders and Scalers 45-4023  Timber, logging, ... 496 1.32 65 -0.34 2
Extruding, Forming, Pressing... 51-9041 Extruding and forming machine ... 755 1.48 80 0.31 21
Office Machine Operators,... 43-9071  Office machine operators, n.e.c. 347 1.48 79 0.33 23
Tellers 43-3071 Bank tellers 383 1.52 83 0.44 29
Transportation Security Screeners 33-9093  Production checkers, ... 36 1.44 7 0.33 23
Parts Salespersons 41-2022 Parts salesperson 275 1.48 80 0.49 31
Rolling Machine Setters, ... 51-4023 Rollers, roll hands, ... 707 1.34 66 0.28 19
Bill and Account Collectors 43-3011 Bill and account collectors 378 1.58 86 0.68 43
Meter Readers, Utilities 43-5041 Meter readers 366 1.40 73 0.50 32

Low AIPXP & Low AICOMP
Naturopathic Physicians 29-1199  Other health and therapy... 89 0.53 1 0.10 10
Retail Loss Prevention Specialists 33-9099  Protective service, n.e.c. 427 0.53 1 0.06 8
Barbers 39-5011 Barbers 457 0.57 2 -0.03 5
Excavating and Loading Machine ... 53-7032 Excavating and loading machine ... 853 0.59 2 -0.02 6
Welders, Cutters, and ... 51-4121  Welders, solderers, and ... 783 0.59 3 -0.09 3
Shampooers 39-5093 Hairdressers and cosmetologists 458 0.67 5 -0.40 1
Janitors and Cleaners,... 37-2011  Janitors 453 0.70 6 -0.11 3
Sewers, Hand 51-6051 Tailors, dressmakers, and sewers 666 0.71 7 -0.03 5
Dancers 27-2031 Dancers 193 0.71 7 -0.06 5
Slaughterers and Meat Packers 51-3023 Butchers and meat cutters 686 0.74 9 -0.64 1
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Table OA.3: Al Exposure and Alternative Specifications

The table reports regression results from alternative specifications estimating the impact of
occupational AI exposure on work hours. Detailed information is provided on the following

page.
Dep Var Weekly Work Hours; ,
Sample Full Sample Exclude Hourly
Modified Work Unemployed Weekend Absence Workers
(1) 2) ®3) (4) (5) (6) (7 ) 9)
Alfji’f - TF-IDF 0.049%**
(2.81)
Alft{f 0.024** 0.026™ % 0.024** 0.020%%  0.024***  0.022**  0.028**  (.033**
(2.46) (2.94) (2.46) (2.59) (3.17) (2.39)  (262)  (2.29)
x I(WorkHours — Q4),,-1 -0.017
(-1.42)
I(Part — time) -14.535%** -17.680%**
(-20.31) (-34.21)
Individual characteristics Yes Yes Yes Yes Yes Yes Yes Yes Yes
Occupational FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Statex Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry x Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 124,059 124,059 124,059 115,407 118,732 118,732 118,918 62,043 58,854
R? 0.285 0.288 0.313 0.285 0.308 0.351 0.300 0.137 0.284
Adjusted R? 0.270 0.274 0.299 0.270 0.294 0.337 0.285 0.102 0.253
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This table replicates the analyses in Table 3 under alternative model specifications. The depen-
dent variables are the weekly hours spent on market work. The main explanatory variable is
occupational AT exposure in percentile rank (AT OEtX Py, constructed from job task descriptions
and Al patents over a five-year rolling window, as detailed in Section 3.6. We control individual
characteristics, including age, the number of children, and a series of indicator variables for gen-
der, educational attainment, marital status, and race. A battery of fixed effects at the following
levels are included: occupation, state X year, industry X year, year-month and day-of-week.
Standard errors are double clustered by occupation and state. Asterisks denote the significance
levels (¥**=1%, **=5%, *=10%). The model specification for each column is as follows.

(a.) Columns (1): The alternative AIZ*" measure is the percentile rank of the TF-IDF-
based similarity scores constructed using job task descriptions and Al patents granted in
a five-year window ending in the current year. Section B.2.3 of Online Appendix provides
detailed descriptions.

(b.) Column (2): The dependent variable is modified market work hours, including hours for
commute, work-related travels and social&leisure activities at work.

(c.) Columns (3): The regression additionally controls for an indicator variable for part-time
workers.

(d.) Columns (4): Interact AI exposure with a dummy equal to one for occupations whose
lagged usual work hours per week are in the top quartile and zero otherwise.

(e.) Columns (5): Currently unemployed individuals are excluded from the sample.

(f.) Columns (6): Currently unemployed individuals are excluded from the sample and the
model additionally controls for an indicator variable for part-time workers.

(g.) Columns (7): Individuals who are currently employed but are absent from work on the
ATUS interview date are excluded from the sample.

(h.) Columns (8): Individuals surveyed on weekends are excluded from the sample.

(i.) Columns (9): Only individuals compensated on the hourly basis are included in the sample.
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Table OA.4: Al Exposure and Workday: Dispersion

The table reports the weighted linear regression results that examine the effect of AI on the
within-occupation dispersion of workdays at the occupation x year level derived from the ATUS
data from 2004-2023. The regression is weighted by ATUS sample weights at the occupation x
year level. The occupation classification is the same as in Table 3. The dependent variable is the
standard deviation of weekly hours spent on market work in column (1)-(4) and leisure in col-
umn (5)-(8). The main explanatory variables are Al exposure measures in percentile rank at the
occupation-year level, calculated from Al-related patents granted over five years ending in the
current year (detailed description in Section 3.6). Specifically, they refer to general Al exposure
(AIFXP) in columns (1), (2), (5), and (6) and Al net complementarity exposure (AI¢OMP) in
columns (3), (4), (7), and (8). All specifications control for occupation characteristics, includ-
ing the average age, number of children, and educational attainment, the share of female and
married respondents, and year fixed effects. The even columns additionally include occupation

fixed effects. Standard errors are clustered by occupation. Asterisks denote significance levels
(***=1%, **=5%, *=10%).

DV Standard Deviation of Weekly Hours,;
Work Leisure
(1) (2) (3) (4) (5) (6) (7) (8)
Alft)ﬁ}f -0.001  -0.005* -0.004 0.000
(-0.13)  (-1.76) (-1.24)  (0.00)
Algtoﬂ“g 0.003 -0.003 -0.006 0.001
(0.37) (-0.89) (-1.20) (0.16)
Occupation Controls  Yes Yes Yes Yes Yes Yes Yes Yes
Occupation FE No Yes No Yes No Yes No Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 4,664 4,651 4,664 4,651 4,664 4,651 4,664 4,651
R? 0.050 0.292 0.050 0.292 0.037 0.178 0.037 0.178
Adjusted R? 0.045 0.239 0.045 0.238 0.032 0.115 0.032 0.115
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Table OA.5: Al Exposure and Workday: Household Allocation

The table reports the weighted linear regression results that examine the heterogeneity effect of
AT on work hours sorted based on a subsample of ATUS respondents who report the employment
status of their spouse. The ATUS survey sample and occupation classification are the same as in
Table 3. The dependent variable is weekly work hours. The first two columns present the results
for the full sample of respondents who report their spouses’ employment status, and the last two
columns present the results for subsamples of those who additionally report their spouses’ work
hours. The main explanatory variable is Al exposure in percentile rank at the occupation-year
level, calculated from Al-related patents granted over the five years ending in the current year
(detailed description in Section 3.6). I(Spouse Employed) is an indicator that equals one if a
respondent’s spouse is employed in a given year and zero otherwise. All specifications control
for individual characteristics, including age, the number of children, and a series of indicator
variables for gender, educational attainment, marital status, and race, and fixed effects at the
following levels: state x year, industry X year, year-month and day-of-week. Columns (3)
and (4) additionally include occupation fixed effects. Standard errors are double clustered by
occupation and state. Asterisks denote significance levels (***=1%, **=5%, *=10%).

Dep Var Weekly Work Hours; ,
Spouse Work Hours
Top 25% Bottom 75%

(1) (2) (3) (4)
AIEXP 0.025%F*F  0.025%F*  -0.044* 0.039%**
' (410)  (416)  (-1.91) (3.06)
I(Spouse Employed); -0.704%*
(-2.29)
Individual characteristics Yes Yes Yes Yes
Occupation FE No No Yes Yes
State x Year FE Yes Yes Yes Yes
Industry x Year FE Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes
Observations 73,714 73,714 11,651 43,212
R? 0.336 0.336 0.496 0.367
Adjusted R? 0.313 0.313 0.386 0.329
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Table OA.6: Al Exposure and Alternative Activities

The table reports the weighted linear regressions that examine the effect of occupational AI
exposure on time allocated to activities other than market work and leisure at the individual
level. The ATUS survey sample and occupation classification are the same as in Table 3. The
dependent variable is the weekly hours spent on home production in column (1), child care
in column (2), personal education in column (3), job search in column (4), own medical care
in column (5), and civic activities in column (6). The main explanatory variable, AIFXF
represents Al exposure in percentile rank at the occupation-year level, calculated from Al-related
patents granted over five years ending in the current year (detailed description in Section 3.6).
All model specifications control for individual characteristics—age, number of children, gender,
educational attainment, marital status, and race—and include fixed effects for occupation, state
X year, industry X year, year-month, and day of week. Asterisks denote the significance levels

(FH*=1%, **=5%, *=10%).

Dep Var Weekly Hours; ,

Home Child  Education Job Own Medical Civic

Production  Care Search Care Activities
(1) (2) (3) (4) (5) (6)

Affff}f -0.005 0.004 -0.001 -0.000 -0.001 0.004***

(-0.88) (0.98) (-0.49) (-1.07) (-1.66) (2.93)
Individual Characteristics Yes Yes Yes Yes Yes Yes
Occupational FE Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes Yes Yes Yes Yes
Industry x Year FE Yes Yes Yes Yes Yes Yes
Year x Month FE Yes Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes Yes
Observations 124,059 124,059 124,059 124,059 124,059 124,059
R? 0.141 0.179 0.121 0.048 0.042 0.080
Adjusted R? 0.124 0.162 0.103 0.028 0.023 0.061
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Table OA.7: Al Exposure and Employment

The table reports the linear regression results that examine the effect of AI on employment at
the occupation-year level from 2004-2023. The employment data is provided by Occupational
Employment and Wage Statistics (OEWS) from the Bureau of Labor Statistics (BLS). The
occupation classification is the same as in Table 3. The dependent variable is the year-over-year
change in the natural logarithm of employment. The main explanatory variable is Al exposure in
percentile rank at the occupation-year level, calculated from Al-related patents granted over the
five years ending in the current year (detailed description in Section 3.6). Specifically, the main
explanatory variables are general Al exposure (AIZXF) in column (1), AI net complementarity
exposure (AIOMP) in column (2), and changes in the two AI exposure measures in columns
(3) and (4), respectively. All models incorporate occupation and year fixed effects. Standard
errors are clustered by occupation. Regressions are weighted by lagged employment. Asterisks
denote significance levels (¥***=1%, **=5%, *=10%).

Dep Var ALog(Emp),x100
1) (2 (3) (4)
AIEFER 0.014
(0.36)
AIO%OJ{IP 0.057
(0.87)
AAIffP -0.072
(-1.50)
AAIgtOMP -0.037
(-0.58)
Occupation FE  Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 6,066 6,066 6,066 6,066
R? 0.144 0.145 0.145 0.094

Adjusted R? 0.093 0.093 0.093 0.091
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Table OA.8: Top Occupations by Al Surveillance

This table presents the top occupations grouped by general Al Surveillance exposure (AI°UF) at

the SOC 6-digit level. The procedures measuring AI°Y# and its components including AISVF —
Direction, AISVE — Evaluation, AISUR — Discipline, are described in Section B.4 of Online

Appendix.
Occupation Title O*NET Code 0cc1990dd Title Code AISUE  ASUR ATSUE Pt
Score Pct.  Direc Evalua Discip
-tion  -tion -line
Highest
Travel agents 41-3041 Transportation ticket ... 318 1.00 100 100 100 100
Air traffic controllers 53-2021 Air traffic controllers 227 0.91 100 100 73 100
Credit analysts 13-2041 Other financial specialists 25 0.91 100 100 100 100
First-line supervisors of retail sales workers 41-1011 Sales supervisors ... 243 0.90 100 100 93 100
Medical records specialists 29-2072 Health record technologists ... 205 0.88 100 94 100 96
Power distributors and dispatchers 51-8012 Power plant operators 695 0.87 99 99 69 100
Bookkeeping, accounting, and auditing clerks 43-3031 Bookkeepers and accounting... 337 0.87 99 95 100 95
Insurance underwriters 13-2053 Insurance underwriters 24 0.86 99 99 100 98
Statistical assistants 43-9111 Statistical clerks 386 0.86 99 83 100 94
Dispatchers, except police, ... 43-5032 Dispatchers 359 0.85 98 99 58 98
Lowest
Dancers 27-2031 Dancers 193 0.00 1 1 1 1
Oral and maxillofacial surgeons 29-1022 Dentists 85 0.00 1 1 1 1
Funeral attendants 39-4021 Personal service occupations, n.e.c 469 0.00 1 1 1 1
Automotive glass installers and repairers 49-3022 Auto body repairers 514 0.00 1 3 1 1
Musicians and singers 27-2042 Musicians and composers 186 0.03 3 2 2 1
Dental laboratory technicians 51-9081 Health technologists ... 678 0.06 3 1 3 21
Geographers 19-3092 Social scientists ... 169 0.08 5 6 5 7
Fine artists, including painters, sculptors... 27-1013 Painters, sculptors, ... 188 0.09 6 7 6 6
Clergy 21-2011 Religious workers, n.e.c. 176 0.10 6 7 6 5
Optometrists 29-1041 Optometrists 87 0.10 6 1 7 37
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Table OA.8: Exposure to Al Surveillance Technology and Workday: Self-Employed

The table reports the weighted linear regression results based on individual responses of self-
employed working remotely in the ATUS survey from 2015 to 2023. The occupation classification
is the same as in Table 3. Remote workers are defined as those in occupations with a work-from-
home (WFH) feasibility index from Dingel and Neiman (2020) equals one. The dependent
variable is weekly work hours. The main explanatory variable, AI?UE is AT surveillance ex-
posure at the occupation level (detailed description in Section B.4 of Online Appendix) and
transformed to percentile ranks (e.g., Autor and Dorn, 2013; Webb, 2019). Specifically, it refers
to general Al surveillance exposure in column (1) and decomposed Al surveillance exposure in
column (2)-(4) as specified in the third row. POST dummy equals one for the years since 2020.
All specifications control for individual characteristics, including age, the number of children,
and a series of indicator variables for gender, educational attainment, marital status, and race,
and fixed effects at the following levels: occupation, state X year, industry x year, year-month,
and day-of-week. Standard errors are double clustered by occupation and state. Asterisks denote
significance levels (***=1%, **=5%, *=10%).

Sample Weekly Work Hours; , ¢
Indep Var Overall Direction FEvaluation Discipline
(1) (2) (3) (4)
AISUE x POST, 0.010 0.061 0.006 0.032
(0.05) (0.29) (0.03) (0.16)
Individual characteristics Yes Yes Yes Yes
Occupational FE Yes Yes Yes Yes
State x Year FE Yes Yes Yes Yes
Industry x Year FE Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes
Observations 644 644 644 644
R? 0.839 0.839 0.839 0.839
Adjusted R? 0.497 0.497 0.497 0.497
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Table OA.8: Al Exposure and Employee Satisfaction: Introduction of ChatGPT

The table presents estimates from linear regressions examining the effects of occupational Al
exposure on employee ratings at the occupation (o) x firm (i) x year (¢) level around the
introduction of ChatGPT. The occupation classification is the same as in Table 3. The sample
covers data from private and public firms in the Glassdoor database from 2022 to June 2023.
The dependent variables are: 100 times the overall satisfaction rating in columns (1)-(2) and the
Work-Life Balance (WLB) ratings in columns (3)—(4). The main explanatory variable represents
Al exposure measures at the occupation in 2021, expressed in percentile ranks, and is based on
Al-related patents granted in a five-year window ending in the current year (detailed description
in Section 3.6). POST dummy equals one for year 2023. All specifications include lagged
employee review counts, the average seniority and remote work index of the occupation-by-firm
cohort from Revelio, and occupation fixed effects. The odd columns additionally include firm and
year fixed effects, whereas the even columns include firm-by-year fixed effects. Standard errors
are clustered by occupation. Asterisks denote significance levels (¥*¥*¥*=1%, **=5%, *=10%).

Dep Var Rating, ;s
Overall WLB
(1) (2) (3) (4)
Alfggi x POST, -0.062** -0.054** -0.070**  -0.061**

(-2.50) (-2.11) (-2.55) (-2.26)
Cohort Controls Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes
Firm FE Yes No Yes No
Year FE Yes No Yes No
Firmx Year FE No Yes No Yes
Observations 64,813 64,813 59,484 59,482
R? 0.200 0.228 0.215 0.243
Adjusted R? 0.164 0.171 0.176 0.182
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Table OA.9: Al Exposure and Workday: In Relation to Competition

The table reports the weighted linear regression results that estimate the heterogeneity effect
of AT on work hours sorted by labor market and product market competition. The ATUS
sample and occupation classification are the same as in Table 3. The dependent variable is
the weekly hours spent on market work in columns (1)-(2) and leisure in columns (3)-(4). The
main explanatory variable, ATPXP is AI exposure in percentile rank at the occupation-year
level, calculated from Al-related patents granted over five years ending in the current year
(detailed description in Section 3.6). Two proxies for firms’ labor market competition at the
state-occupation level are specified: the employment concentration across firms measured by the
Herfindahl-Hirschman Index (HHI) in columns (1) and firms’ talent retention pressure (TRP) in
columns (2). The state-occupation-level employment HHI is calculated using the employment
and state information of public firms from LinkedIn. TRP is calculated as the job vacancy-
to-employment ratio (V/E) at the state-occupation level, scaled by each occupation’s cognitive
skill scores, using job vacancy data from Burning Glass, employment data from the OEWS,
and cognitive skill scores from O*NET. I(Worker Power vs. Firm) is the indicator of workers’
bargaining power over firms that equals one if the measure for firms’ labor market competition is
in the top quartile (i.e., the employment HHI in the bottom quartile or TRP in the top quartile),
and zero otherwise. Two proxies represent firms’ product market power at the industry-level:
product similarity in column (3) and product market concentration HHI in column (4), derived
from firm-level scores from Hoberg and Phillips (2016) weighted by Compustat sales. I(Firm
Power vs. Consumer) is an indicator of firms’ product market power relative to consumers,
which equals one if the product similarity is in the bottom quartile or the product HHI is in
the top quartile, and zero otherwise. All specifications incorporate individual-level controls,
including age, the number of children, and a series of indicator variables for gender, educational
attainment, marital status, and race, and fixed effects at the following levels: occupation, state
X year, industry x year, year-month and day-of-week. Standard errors are double clustered by
occupation and state. Asterisks denote significance levels (***=1%, **=5%, *=10%).

Dep Var Weekly Work Hours; ,
Labor Market Competition Product Market Competition
Factor HHI Talent Similarity HHI
(1) (2) 3) (4)
Alffﬁf 0.025%* 0.065%** 0.022%* 0.027%**
(2.50) (4.06) (2.35) (2.92)
x I(Worker Power vs. Firm); ;1 -0.011 -0.041%*
(-1.28) (-1.83)
x I(Firm Power vs. Consumer);;_1 -0.004 -0.027%*
(-0.39) (-2.56)
Individual Characteristics Yes Yes Yes Yes
Occupational FE Yes Yes Yes Yes
Statex Year FE Yes Yes Yes Yes
Industryx Year FE Yes Yes Yes Yes
Yearx Month FE Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes
Observations 102,434 48,349 114,661 114,661
R? 0.289 0.290 0.283 0.283
Adjusted R? 0.272 0.272 0.268 0.268
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Table OA.10: Example Employee Reviews with Complaints

This table presents example employee reviews with negative sentiment toward surveillance and
employment risk. Each review includes a "Pros” section, highlighting positive remarks about
the firm, and a ”Cons” section with negative remarks.

Occupation Firm Review Date Review Text
Complaints - Surveillance
Pros: Hours are given when holidays come around
51-3011 and activities for employees like bbq, food, and other
Bakers Target Corp. 2016-12-01 activities. Pay is a little bit abovd minimum wage.
Cons: Lack of help and always being watched by
hidden cameras. Management is very poor and to
be working under staff it really is difficult to keep
up. Redcards are the new hard working employee
(creditcards).
53-6021 Amazon.com, Pros: pretty lay back job, lots of retired worker
. 2020-10-27 . .
Parking Inc. Cons: spying on you using camera and Al
Attendants
Pros: Flight benefits were my reason to sign on with
the company. The entry-level pay is comparable to
that of other airlines with a slight differential if you
434181 United Airlines, speak a foreign language. WQrk—llf?—balapce can be
. 2023-03-13 good as long as there are no flight disruptions, other-
Reservation Inc. . . .
wise expected to work in mandatory overtime. Flex-
and Trans- s C 1. ,
. ibility can be high if you're able to trade away your
portation .
; shifts.
Ticket . . . .
Cons: Micro-management by immediate supervisors
Agents and . .
Travel and managers is at a very high level. Employee mon-
Clerks itoring can be very stressful and lead to extreme

anxiety. Company focus on performance metrics is
almost inhumane. Employees are numbers and high
replaceable. Toxic culture of high expectation and
intimidation.
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Complaints - Employment Risk

Pros: If you have a great manager, the work-life-

11-2022 Amazon.com, 2022-09-21 balance is good. Makes the job fun.

Sales Inc. .

Cons: If you have a bad manager, which there are

Managers . . .
many, the team will have issues, managers are firing
more than they are teaching and the company is a
nightmare to work for. All of the good employees
leave and the crap ones stay behind.

Pros: Google used to be a great place to get away

15-1252 Google LLC 9023-01-24 from office politicking and just focus on doing the

Software work you love.

Developers Cons: Recent layoffs were incredibly demoralizing.
With layoff decisions being made at a level so far
removed from the people doing the work that keeps
things running, basically nobody’s job is safe.
Pros: Overall, love the people I work with, love

27-2012 Meta 9023-02-27 Meta’s dedication to DEI in all we do, and we have

Producers Platforms, Inc. an interesting value proposition for the future.

and Cons: Huge lack of planning org-wide. This leads to

Directors continous layoffs /uncertainty and lots of duplica-

tion of work/inefficient processes. Also still fighting
a culture that has been bottom up for so long, which
in terms of being impactful and getting things done
that benefit the business, not just individuals, makes
things difficult as a manager.
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