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This paper is dedicated to the memory of Sam Roweis

Prototype methods seek a minimal subset of samples that can serve as
a distillation or condensed view of a data set. As the size of modern data
sets grows, being able to present a domain specialist with a short list of “rep-
resentative” samples chosen from the data set is of increasing interpretative
value. While much recent statistical research has been focused on producing
sparse-in-the-variables methods, this paper aims at achieving sparsity in the
samples.

We discuss a method for selecting prototypes in the classification setting
(in which the samples fall into known discrete categories). Our method of
focus is derived from three basic properties that we believe a good prototype
set should satisfy. This intuition is translated into a set cover optimization
problem, which we solve approximately using standard approaches. While
prototype selection is usually viewed as purely a means toward building an
efficient classifier, in this paper we emphasize the inherent value of having a
set of prototypical elements. That said, by using the nearest-neighbor rule on
the set of prototypes, we can of course discuss our method as a classifier as
well.

We demonstrate the interpretative value of producing prototypes on the
well-known USPS ZIP code digits data set and show that as a classifier it
performs reasonably well. We apply the method to a proteomics data set in
which the samples are strings and therefore not naturally embedded in a vec-
tor space. Our method is compatible with any dissimilarity measure, making
it amenable to situations in which using a non-Euclidean metric is desirable
or even necessary.

1. Introduction. Much of statistics is based on the notion that averaging over
many elements of a data set is a good thing to do. In this paper, we take an oppo-
site tack. In certain settings, selecting a small number of “representative” samples
from a large data set may be of greater interpretative value than generating some
“optimal” linear combination of all the elements of a data set. For domain special-
ists, examining a handful of representative examples of each class can be highly
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informative especially when n is large (since looking through all examples from
the original data set could be overwhelming or even infeasible). Prototype methods
aim to select a relatively small number of samples from a data set which, if well
chosen, can serve as a summary of the original data set. In this paper, we motivate
a particular method for selecting prototypes in the classification setting. The result-
ing method is very similar to Class Cover Catch Digraphs of Priebe et al. (2003).
In fact, we have found many similar proposals across multiple fields, which we
review later in this paper. What distinguishes this work from the rest is our interest
in prototypes as a tool for better understanding a data set—that is, making it more
easily “human-readable.” The bulk of the previous literature has been on proto-
type extraction specifically for building classifiers. We find it useful to discuss our
method as a classifier to the extent that it permits quantifying its abilities. How-
ever, our primary objective is aiding domain specialists in making sense of their
data sets.

Much recent work in the statistics community has been devoted to the prob-
lem of interpretable classification through achieving sparsity in the variables
[Tibshirani et al. (2002), Zhu et al. (2004), Park and Hastie (2007), Friedman,
Hastie and Tibshirani (2010)]. In this paper, our aim is interpretability through
sparsity in the samples. Consider the US Postal Service’s ZIP code data set, which
consists of a training set of 7,291 grayscale (16 × 16 pixel) images of handwritten
digits 0–9 with associated labels indicating the intended digit. A typical “sparsity-
in-the-variables” method would identify a subset of the pixels that is most predic-
tive of digit-type. In contrast, our method identifies a subset of the images that,
in a sense, is most predictive of digit-type. Figure 6 shows the first 88 prototypes
selected by our method. It aims to select prototypes that capture the full variability
of a class while avoiding confusion with other classes. For example, it chooses a
wide enough range of examples of the digit “7” to demonstrate that some people
add a serif while others do not; however, it avoids any “7” examples that look too
much like a “1.” We see that many more “0” examples have been chosen than “1”
examples despite the fact that the original training set has roughly the same num-
ber of samples of these two classes. This reflects the fact that there is much more
variability in how people write “0” than “1.”

More generally, suppose we are given a training set of points X = {x1, . . . ,

xn} ⊂ Rp with corresponding class labels y1, . . . , yn ∈ {1, . . . ,L}. The output of
our method are prototype sets Pl ⊆ X for each class l. The goal is that some-
one given only P1, . . . , PL would have a good sense of the original training data,
X and y. The above situation describes the standard setting of a condensation
problem [Hart (1968), Lozano et al. (2006), Ripley (2005)].

At the heart of our proposed method is the premise that the prototypes of class
l should consist of points that are close to many training points of class l and are
far from training points of other classes. This idea captures the sense in which the
word “prototypical” is commonly used.
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Besides the interpretative value of prototypes, they also provide a means for
classification. Given the prototype sets P1, . . . , PL, we may classify any new x ∈
Rp according to the class whose Pl contains the nearest prototype:

ĉ(x) = arg min
l

min
z∈Pl

d(x, z).(1)

Notice that this classification rule reduces to one nearest neighbors (1-NN) in the
case that Pl consists of all xi ∈ X with yi = l.

The 1-NN rule’s popularity stems from its conceptual simplicity, empirically
good performance, and theoretical properties [Cover and Hart (1967)]. Nearest
prototype methods seek a lighter-weight representation of the training set that does
not sacrifice (and, in fact, may improve) the accuracy of the classifier. As a clas-
sifier, our method performs reasonably well, although its main strengths lie in the
ease of understanding why a given prediction has been made—an alternative to
(possibly high-accuracy) “black box” methods.

In Section 2 we begin with a conceptually simple optimization criterion that
describes a desirable choice for P1, . . . , PL. This intuition gives rise to an integer
program, which can be decoupled into L separate set cover problems. In Section 3
we present two approximation algorithms for solving the optimization problem.
Section 4 discusses considerations for applying our method most effectively to a
given data set. In Section 5 we give an overview of related work. In Section 6 we
return to the ZIP code digits data set and present other empirical results, including
an application to proteomics.

2. Formulation as an optimization problem. In this section we frame proto-
type selection as an optimization problem. The problem’s connection to set cover
will lead us naturally to an algorithm for prototype selection.

2.1. The intuition. Our guiding intuition is that a good set of prototypes for
class l should capture the full structure of the training examples of class l while
taking into consideration the structure of other classes. More explicitly, every train-
ing example should have a prototype of its same class in its neighborhood; no point
should have a prototype of a different class in its neighborhood; and, finally, there
should be as few prototypes as possible. These three principles capture what we
mean by “prototypical.” Our method seeks prototype sets with a slightly relaxed
version of these properties.

As a first step, we make the notion of neighborhood more precise. For a given
choice of Pl ⊆ X , we consider the set of ε-balls centered at each xj ∈ Pl (see
Figure 1). A desirable prototype set for class l is then one that induces a set of
balls which:

(a) covers as many training points of class l as possible,
(b) covers as few training points as possible of classes other than l, and
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FIG. 1. Given a value for ε, the choice of P1, . . . , PL induces L partial covers of the training
points by ε-balls. Here ε is varied from the smallest (top-left panel) to approximately the median
interpoint distance (bottom-right panel).

(c) is sparse (i.e., uses as few prototypes as possible for the given ε).

We have thus translated our initial problem concerning prototypes into the geo-
metric problem of selectively covering points with a specified set of balls. We will
show that our problem reduces to the extensively studied set cover problem. We
briefly review set cover before proceeding with a more precise statement of our
problem.

2.2. The set cover integer program. Given a set of points X and a collection
of sets that forms a cover of X , the set cover problem seeks the smallest subcover
of X . Consider the following special case: Let B(x) = {x′ ∈ Rp :d(x′,x) < ε} de-
note the ball of radius ε > 0 centered at x (note: d need not be a metric). Clearly,
{B(xi ) : xi ∈ X } is a cover of X . The goal is to find the smallest subset of points
P ⊆ X such that {B(xi ) : xi ∈ P} covers X (i.e., every xi ∈ X is within ε of some
point in P ). This problem can be written as an integer program by introducing
indicator variables: αj = 1 if xj ∈ P and αj = 0 otherwise. Using this notation,∑

j : xi∈B(xj ) αj counts the number of times xi is covered by a B(xj ) with xj ∈ P .
Thus, requiring that this sum be positive for each xi ∈ X enforces that P induces a
cover of X . The set cover problem is therefore equivalent to the following integer
program:

minimize
n∑

j=1

αj s.t.
∑

j : xi∈B(xj )

αj ≥ 1 ∀xi ∈ X ,

(2)
αj ∈ {0,1} ∀xj ∈ X .
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A feasible solution to the above integer program is one that has at least one proto-
type within ε of each training point.

Set cover can be seen as a clustering problem in which we wish to find the
smallest number of clusters such that every point is within ε of at least one clus-
ter center. In the language of vector quantization, it seeks the smallest codebook
(restricted to X ) such that no vector is distorted by more than ε [Tipping and
Schölkopf (2001)]. It was the use of set cover in this context that was the starting
point for our work in developing a prototype method in the classification setting.

2.3. From intuition to integer program. We now express the three properties
(a)–(c) in Section 2.1 as an integer program, taking as a starting point the set cover
problem of (2). Property (b) suggests that in certain cases it may be necessary to
leave some points of class l uncovered. For this reason, we adopt a prize-collecting
set cover framework for our problem, meaning we assign a cost to each cover-
ing set, a penalty for being uncovered to each point and then find the minimum-
cost partial cover [Könemann, Parekh and Segev (2006)]. Let α

(l)
j ∈ {0,1} indicate

whether we choose xj to be in Pl (i.e., to be a prototype for class l). As with set

cover, the sum
∑

j : xi∈B(xj ) α
(l)
j counts the number of balls B(xj ) with xj ∈ Pl that

cover the point xi . We then set out to solve the following integer program:

minimize
α

(l)
j ,ξi ,ηi

∑
i

ξi + ∑
i

ηi + λ
∑
j,l

α
(l)
j s.t.

∑
j : xi∈B(xj )

α
(yi)
j ≥ 1 − ξi ∀xi ∈ X ,(3a)

∑
j : xi∈B(xj )

l �=yi

α
(l)
j ≤ 0 + ηi ∀xi ∈ X ,(3b)

α
(l)
j ∈ {0,1} ∀j, l, ξi, ηi ≥ 0 ∀i.

We have introduced two slack variables, ξi and ηi , per training point xi . Constraint
(3a) enforces that each training point be covered by at least one ball of its own
class-type (otherwise ξi = 1). Constraint (3b) expresses the condition that training
point xi not be covered with balls of other classes (otherwise ηi > 0). In particular,
ξi can be interpreted as indicating whether xi does not fall within ε of any proto-
types of class yi , and ηi counts the number of prototypes of class other than yi that
are within ε of xi .

Finally, λ ≥ 0 is a parameter specifying the cost of adding a prototype. Its effect
is to control the number of prototypes chosen [corresponding to property (c) of the
last section]. We generally choose λ = 1/n, so that property (c) serves only as a
“tie-breaker” for choosing among multiple solutions that do equally well on prop-
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erties (a) and (b). Hence, in words, we are minimizing the sum of (a) the number of
points left uncovered, (b) the number of times a point is wrongly covered, and (c)
the number of covering balls (multiplied by λ). The resulting method has a single
tuning parameter, ε (the ball radius), which can be estimated by cross-validation.

We show in the Appendix that the above integer program is equivalent to L

separate prize-collecting set cover problems. Let Xl = {xi ∈ X :yi = l}. Then, for
each class l, the set Pl ⊆ X is given by the solution to

minimize
m∑

j=1

Cl(j)α
(l)
j + ∑

xi∈Xl

ξi s.t.

∑
j : xi∈B(xj )

α
(l)
j ≥ 1 − ξi ∀xi ∈ Xl ,(4)

α
(l)
j ∈ {0,1} ∀j, ξi ≥ 0 ∀i : xi ∈ Xl ,

where Cl(j) = λ + |B(xj ) ∩ (X \ Xl)| is the cost of adding xj to Pl and a unit
penalty is charged for each point xi of class l left uncovered.

3. Solving the problem: Two approaches. The prize-collecting set cover
problem of (4) can be transformed to a standard set cover problem by consider-
ing each slack variable ξi as representing a singleton set of unit cost [Könemann,
Parekh and Segev (2006)]. Since set cover is NP-hard, we do not expect to find
a polynomial-time algorithm to solve our problem exactly. Further, certain inap-
proximability results have been proven for the set cover problem [Feige (1998)].3

In what follows, we present two algorithms for approximately solving our prob-
lem, both based on standard approximation algorithms for set cover.

3.1. LP relaxation with randomized rounding. A well-known approach for the
set cover problem is to relax the integer constraints α

(l)
j ∈ {0,1} by replacing it

with 0 ≤ α
(l)
j ≤ 1. The result is a linear program (LP), which is convex and easily

solved with any LP solver. The result is subsequently rounded to recover a feasible
(though not necessarily optimal) solution to the original integer program.

Let {α∗(l)
1 , . . . , α

∗(l)
m } ∪ {ξ∗

i : i s.t. xi ∈ Xl} denote a solution to the LP relaxation

of (4) with optimal value OPT(l)
LP. Since α

∗(l)
j , ξ∗

i ∈ [0,1], we may think of these as
probabilities and round each variable to 1 with probability given by its value in the
LP solution. Following Vazirani (2001), we do this O(log|Xl|) times and take the
union of the partial covers from all iterations.

3We do not assume in general that the dissimilarities satisfy the triangle inequality, so we consider
arbitrary covering sets.
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We apply this randomized rounding technique to approximately solve (4) for
each class separately. For class l, the rounding algorithm is as follows:

• Initialize A
(l)
1 = · · · = A

(l)
m = 0 and Si = 0 ∀i : xi ∈ Xl .

• For t = 1, . . . ,2 log|Xl |:
(1) Draw independently Ã

(l)
j ∼ Bernoulli(α∗(l)

j ) and S̃i ∼ Bernoulli(ξ∗
i ).

(2) Update A
(l)
j := max(A

(l)
j , Ã

(l)
j ) and Si := max(Si, S̃i ).

• If {A(l)
j , Si} is feasible and has objective ≤ 2 log|Xl |OPT(l)

LP, return Pl = {xj ∈
X :A(l)

j = 1}. Otherwise repeat.

In practice, we terminate as soon as a feasible solution is achieved. If after
2 log|Xl| steps the solution is still infeasible or the objective of the rounded solution
is more than 2 log|Xl| times the LP objective, then the algorithm is repeated. By the
analysis given in Vazirani (2001), the probability of this happening is less than 1/2,
so it is unlikely that we will have to repeat the above algorithm very many times.
Recalling that the LP relaxation gives a lower bound on the integer program’s
optimal value, we see that the randomized rounding yields a O(log|Xl|)-factor
approximation to (4). Doing this for each class yields overall a O(K logN)-factor
approximation to (3), where N = maxl|Xl|. We can recover the rounded version
of the slack variable ηi by Ti = ∑

l �=yi

∑
j : xi∈B(xj ) A

(l)
j .

One disadvantage of this approach is that it requires solving an LP, which we
have found can be relatively slow and memory-intensive for large data sets. The
approach we describe next is computationally easier than the LP rounding method,
is deterministic, and provides a natural ordering of the prototypes. It is thus our
preferred method.

3.2. A greedy approach. Another well-known approximation algorithm for set
cover is a greedy approach [Vazirani (2001)]. At each step, the prototype with the
least ratio of cost to number of points newly covered is added. However, here we
present a less standard greedy algorithm which has certain practical advantages
over the standard one and does not in our experience do noticeably worse in mini-
mizing the objective. At each step we find the xj ∈ X and class l for which adding
xj to Pl has the best trade-off of covering previously uncovered training points of
class l while avoiding covering points of other classes. The incremental improve-
ment of going from (P1, . . . , PL) to (P1, . . . , Pl−1, Pl ∪ {xj }, Pl+1, . . . , PL) can
be denoted by �Obj(xj , l) = �ξ(xj , l) − �η(xj , l) − λ, where

�ξ(xj , l) =
∣∣∣∣Xl ∩

(
B(xj )

∖ ⋃
xj ′∈Pl

B(xj ′)
)∣∣∣∣,

�η(xj , l) = |B(xj ) ∩ (X \ Xl)|.
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FIG. 2. Performance comparison of LP-rounding and greedy approaches on the digits data set of
Section 6.2.

The greedy algorithm is simply as follows:

(1) Start with Pl = ∅ for each class l.
(2) While �Obj(x∗, l∗) > 0:

• Find (x∗, l∗) = arg max(xj ,l) �Obj(xj , l).
• Let Pl∗ := Pl∗ ∪ {x∗}.

Figure 2 shows a performance comparison of the two approaches on the digits
data (described in Section 6.2) based on time and resulting (integer program) ob-
jective. Of course, any time comparison is greatly dependent on the machine and
implementation, and we found great variability in running time among LP solvers.
While low-level, specialized software could lead to significant time gains, for our
present purposes, we use off-the-shelf, high-level software. The LP was solved us-
ing the R package Rglpk, an interface to the GNU Linear Programming Kit. For
the greedy approach, we wrote a simple function in R.

4. Problem-specific considerations. In this section we describe two ways in
which our method can be tailored by the user for the particular problem at hand.

4.1. Dissimilarities. Our method depends on the features only through the
pairwise dissimilarities d(xi ,xj ), which allows it to share in the benefits of ker-
nel methods by using a kernel-based distance. For problems in the p � n realm,
using distances that effectively lower the dimension can lead to improvements.
Additionally, in problems in which the data are not readily embedded in a vector
space (see Section 6.3), our method may still be applied if pairwise dissimilarities
are available. Finally, given any dissimilarity d , we may instead use d̃ , defined by
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d̃(x, z) = |{xi ∈ X :d(xi , z) ≤ d(x, z)}|. Using d̃ induces ε-balls, B(xj ), consisting
of the (�ε� − 1) nearest training points to xj .

4.2. Prototypes not on training points. For simplicity, up until now we have
described a special case of our method in which we only allow prototypes to lie
on elements of the training set X . However, our method is easily generalized to
the case where prototypes are selected from any finite set of points. In particular,
suppose, in addition to the labeled training data X and y, we are also given a set
Z = {z1, . . . , zm} of unlabeled points. This situation (known as semi-supervised
learning) occurs, for example, when it is expensive to obtain large amounts of
labeled examples, but collecting unlabeled data is cheap. Taking Z as the set
of potential prototypes, the optimization problem (3) is easily modified so that
P1, . . . , PL are selected subsets of Z . Doing so preserves the property that all pro-
totypes are actual examples (rather than arbitrary points in Rp).

While having prototypes confined to lie on actual observed points is desirable
for interpretability, if this is not desired, then Z may be further augmented to in-
clude other points. For example, one could run K-means on each class’s points
individually and add these L · K centroids to Z . This method seems to help es-
pecially in high-dimensional problems where constraining all prototypes to lie on
data points suffers from the curse of dimensionality.

5. Related work. Before we proceed with empirical evaluations of our
method, we discuss related work. There is an abundance of methods that have
been proposed addressing the problem of how to select prototypes from a train-
ing set. These proposals appear in multiple fields under different names and with
differing goals and justifications. The fact that this problem lies at the intersection
of so many different literatures makes it difficult to provide a complete overview
of them all. In some cases, the proposals are quite similar to our own, differing in
minor details or reducing in a special case. What makes the present work different
from the rest is our goal, which is to develop an interpretative aid for data analysts
who need to make sense of a large set of labeled data. The details of our method
have been adapted to this goal; however, other proposals—while perhaps intended
specifically as a preprocessing step for the classification task—may be effectively
adapted toward this end as well. In this section we review some of the related work
to our own.

5.1. Class cover catch digraphs. Priebe et al. (2003) form a directed graph
Dk = (Xk,Ek) for each class k where (xi ,xj ) ∈ Ek if a ball centered at xi of
radius ri covers xj . One choice of ri is to make it as large as possible without
covering more than a specified number of other-class points. A dominating set of
Dk is a set of nodes for which all elements of Xk are reachable by crossing no
more than one edge. They use a greedy algorithm to find an approximation to the
minimum dominating set for each Dk . This set of points is then used to form the
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Class Cover Catch Digraph (CCCD) Classifier, which is a nearest neighbor rule
that scales distances by the radii. Noting that a dominating set of Dk corresponds
to finding a set of balls that covers all points of class k, we see that their method
could also be described in terms of set cover. The main difference between their
formulation and ours is that we choose a fixed radius across all points, whereas in
their formulation a large homogeneous region is filled by a large ball. Our choice
of fixed radius seems favorable from an interpretability standpoint since there can
be regions of space which are class-homogeneous and yet for which there is a lot of
interesting within-class variability which the prototypes should reveal. The CCCD
work is an outgrowth of the Class Cover Problem, which does not allow balls to
cover wrong-class points [Cannon and Cowen (2004)]. This literature has been
developed in more theoretical directions [e.g., DeVinney and Wierman (2002),
Ceyhan, Priebe and Marchette (2007)].

5.2. The set covering machine. Marchand and Shawe-Taylor (2002) introduce
the set covering machine (SCM) as a method for learning compact disjunctions
(or conjunctions) of x in the binary classification setting (i.e., when L = 2). That
is, given a potentially large set of binary functions of the features, H = {hj , j =
1, . . . ,m} where hj : Rp → {0,1}, the SCM selects a relatively small subset of
functions, R ⊆ H, for which the prediction rule f (x) = ∨

j∈R hj (x) (in the case
of a disjunction) has low training error. Although their stated problem is unrelated
to ours, the form of the optimization problem is very similar.

In Hussain, Szedmak and Shawe-Taylor (2004) the authors express the SCM
optimization problem explicitly as an integer program, where the binary vector α

is of length m and indicates which of the hj are in R:

minimize
α,ξ,η

m∑
j=1

αj + D

(
m∑

i=1

ξi +
m∑

i=1

ηi

)
s.t.

(5)
H+α ≥ 1 − ξ, H−α ≤ 0 + η, α ∈ {0,1}m; ξ, η ≥ 0.

In the above integer program (for the disjunction case), H+ is the matrix with ij th
entry hj (xi ), with each row i corresponding to a “positive” example xi and H− the
analogous matrix for “negative” examples. Disregarding the slack vectors ξ and η,
this seeks the binary vector α for which every positive example is covered by at
least one hj ∈ R and for which no negative example is covered by any hj ∈ R.
The presence of the slack variables permits a certain number of errors to be made
on the training set, with the trade-off between accuracy and size of R controlled
by the parameter D.

A particular choice for H is also suggested in Marchand and Shawe-Taylor
(2002), which they call “data-dependent balls,” consisting of indicator functions
for the set of all balls with centers at “positive” xi (and of all radii) and the com-
plement of all balls centered at “negative” xi .
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Clearly, the integer programs (3) and (5) are very similar. If we take H to be
the set of balls of radius ε with centers at the positive points only, solving (5) is
equivalent to finding the set of prototypes for the positive class using our method.
As shown in the Appendix, (3) decouples into L separate problems. Each of these
is equivalent to (5) with the positive and negative classes being Xl and X \ Xl , re-
spectively. Despite this correspondence, Marchand and Shawe-Taylor (2002) were
not considering the problem of prototype selection in their work. Since Marchand’s
and Shawe-Taylor’s (2002) goal was to learn a conjunction (or disjunction) of bi-
nary features, they take as a classification rule f (x); since our aim is a set of
prototypes, it is natural that we use the standard nearest-prototype classification
rule of (1).

For solving the SCM integer program, Hussain, Szedmak and Shawe-Taylor
(2004) propose an LP relaxation; however, a key difference between their approach
and ours is that they do not seek an integer solution (as we do with the random-
ized rounding), but rather modify the prediction rule to make use of the fractional
solution directly.

Marchand and Shawe-Taylor (2002) propose a greedy approach to solving (5).
Our greedy algorithm differs slightly from theirs in the following respect. In their
algorithm, once a point is misclassified by a feature, no further penalty is incurred
for other features also misclassifying it. In contrast, in our algorithm, a prototype
is always charged if it falls within ε of a wrong-class training point. This choice is
truer to the integer programs (3) and (5) since the objective has

∑
j ηj rather than∑

j 1{ηj > 0}.

5.3. Condensation and instance selection methods. Our method (with Z = X )
selects a subset of the original training set as prototypes. In this sense, it is similar
in spirit to condensing and data editing methods, such as the condensed near-
est neighbor rule [Hart (1968)] and multiedit [Devijver and Kittler (1982)]. Hart
(1968) introduces the notion of the minimal consistent subset—the smallest subset
of X for which nearest-prototype classification has 0 training error. Our method’s
objective,

∑n
i=1 ξi + ∑n

i=1 ηi + λ
∑

j,l α
(l)
j , represents a sort of compromise, gov-

erned by λ, between consistency (first two terms) and minimality (third term). In
contrast to our method, which retains examples from the most homogeneous re-
gions, condensation methods tend to specifically keep those elements that fall on
the boundary between classes [Fayed and Atiya (2009)]. This difference highlights
the distinction between the goals of reducing a data set for good classification per-
formance versus creating a tool for interpreting a data set. Wilson and Martinez
(2000) provide a good survey of instance-based learning, focusing—as is typical
in this domain—entirely on its ability to improve the efficiency and accuracy of
classification rather than discussing its attractiveness for understanding a data set.
More recently, Cano, Herrera and Lozano (2007) use evolutionary algorithms to
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perform instance selection with the goal of creating decision trees that are both pre-
cise and interpretable, and Marchiori (2010) suggests an instance selection tech-
nique focused on having a large hypothesis margin. Cano, Herrera and Lozano
(2003) compare the performance of a number of instance selection methods.

5.4. Other methods. We also mention a few other nearest prototype methods.
K-means and K-medoids are common unsupervised methods which produce pro-
totypes. Simply running these methods on each class separately yields prototype
sets P1, . . . , PL. K-medoids is similar to our method in that its prototypes are se-
lected from a finite set. In contrast, K-means’s prototypes are not required to lie
on training points, making the method adaptive. While allowing prototypes to lie
anywhere in Rp can improve classification error, it also reduces the interpretability
of the prototypes (e.g., in data sets where each xi represents an English word, pro-
ducing a linear combination of hundreds of words offers little interpretative value).
Probably the most widely used adaptive prototype method is learning vector quan-
tization [LVQ, Kohonen (2001)]. Several versions of LVQ exist, varying in certain
details, but each begins with an initial set of prototypes and then iteratively adjusts
them in a fashion that tends to encourage each prototype to lie near many training
points of its class and away from training points of other classes.

Takigawa, Kudo and Nakamura (2009) propose an idea similar to ours in which
they select convex sets to represent each class, and then make predictions for new
points by finding the set with nearest boundary. They refer to the selected convex
sets themselves as prototypes.

Finally, in the main example of this paper (Section 6.2), we observe that the
relative proportion of prototypes selected for each class reveals that certain classes
are far more complex than others. We note here that quantifying the complexity of
a data set is itself a subject that has been studied extensively [Basu and Ho (2006)].

6. Examples on simulated and real data. We demonstrate the use of our
method on several data sets and compare its performance as a classifier to some of
the prototype methods best known to statisticians. Classification error is a conve-
nient metric for demonstrating that our proposal is reasonable even though build-
ing a classifier is not our focus. All the methods we include are similar in that they
first choose a set of prototypes and then use the nearest-prototype rule to classify.
LVQ and K-means differ from the rest in that they do not constrain the prototypes
to lie on actual elements of the training set (or any prespecified finite set Z ). We
view this flexibility as a hinderance for interpretability but a potential advantage
for classification error.

For K-medoids, we run the function pam of the R package cluster on
each class’s data separately, producing K prototypes per class. For LVQ, we use
the functions lvqinit and olvq1 [optimized learning vector quantization 1,
Kohonen (2001)] from the R package class. We vary the initial codebook size to
produce a range of solutions.
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FIG. 3. Mixture of Gaussians. Classification boundaries of Bayes, our method (PS), K-medoids
and LVQ (Bayes boundary in gray for comparison).

6.1. Mixture of Gaussians simulation. For demonstration purposes, we con-
sider a three-class example with p = 2. Each class was generated as a mixture of
10 Gaussians. Figure 1 shows our method’s solution for a range of values of the
tuning parameter ε. In Figure 3 we display the classification boundaries of a num-
ber of methods. Our method (which we label as “PS,” for prototype selection) and
LVQ succeed in capturing the shape of the boundary, whereas K-medoids has an
erratic boundary; it does not perform well when classes overlap since it does not
take into account other classes when choosing prototypes.

6.2. ZIP code digits data. We return now to the USPS handwritten digits data
set, which consists of a training set of n = 7,291 grayscale (16 × 16 pixel) images
of handwritten digits 0–9 (and 2,007 test images). We ran our method for a range
of values of ε from the minimum interpoint distance (in which our method retains
the entire training set and so reduces to 1-NN classification) to approximately the
14th percentile of interpoint distances.

The left-hand panel of Figure 4 shows the test error as a function of the num-
ber of prototypes for several methods using the Euclidean metric. Since both LVQ
and K-means can place prototypes anywhere in the feature space, which is advan-
tageous in high-dimensional problems, we also allow our method to select pro-
totypes that do not lie on the training points by augmenting Z . In this case, we
run 10-means clustering on each class separately and then add these resulting 100
points to Z (in addition to X ).

The notion of the tangent distance between two such images was introduced
by Simard, Le Cun and Denker (1993) to account for certain invariances in this
problem (e.g., the thickness and orientation of a digit are not relevant factors when
we consider how similar two digits are). Use of tangent distance with 1-NN at-
tained the lowest test errors of any method [Hastie and Simard (1998)]. Since our
method operates on an arbitrary dissimilarities matrix, we can easily use the tan-
gent distance in place of the standard Euclidean metric. The righthand panel of
Figure 4 shows the test errors when tangent distance is used. K-medoids simi-
larly readily accommodates any dissimilarity. While LVQ has been generalized to
arbitrary differentiable metrics, there does not appear to be generic, off-the-shelf
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FIG. 4. Digits data set. Left: all methods use Euclidean distance and allow prototypes to lie off of
training points (except for K-medoids). Right: both use tangent distance and constrain prototypes to
lie on training points. The rightmost point on our method’s curve (black) corresponds to 1-NN.

software available. The lowest test error attained by our method is 2.49% with a
3,372-prototype solution (compared to 1-NNs 3.09%).4 Of course, the minimum
of the curve is a biased estimate of test error; however, it is reassuring to note that
for a wide range of ε values we get a solution with test error comparable to that of
1-NN, but requiring far fewer prototypes.

As stated earlier, our primary interest is in the interpretative advantage offered
by our method. A unique feature of our method is that it automatically chooses the
relative number of prototypes per class to use. In this example, it is interesting to
examine the class-frequencies of prototypes (Table 1).

The most dramatic feature of this solution is that it only retains seven of the
1,005 examples of the digit 1. This reflects the fact that, relative to other digits,
the digit 1 has the least variation when handwritten. Indeed, the average (tangent)

TABLE 1
Comparison of number of prototypes chosen per class to training set size

Digit

0 1 2 3 4 5 6 7 8 9 Total

Training set 1,194 1,005 731 658 652 556 664 645 542 644 7,291
PS-best 493 7 661 551 324 486 217 101 378 154 3,372

4Hastie and Simard (1998) report a 2.6% test error for 1-NN on this data set. The difference may
be due to implementation details of the tangent distance.
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FIG. 5. (Top) centroids from 10-means clustering within each class. (Bottom) prototypes from our
method (where ε was chosen to give approximately 100 prototypes). The images in the bottom panel
are sharper and show greater variety since each is a single handwritten image.

distance between digit 1’s in the training set is less than half that of any other digit
(the second least variable digit is 7). Our choice to force all balls to have the same
radius leads to the property that classes with greater variability acquire a larger
proportion of the prototypes. By contrast, K-medoids requires the user to decide
on the relative proportions of prototypes across the classes.

Figure 5 provides a qualitative comparison between centroids from K-means
and prototypes selected by our method. The upper panel shows the result of
10-means clustering within each class; the lower panel shows the solution of
our method tuned to generate approximately 100 prototypes. Our prototypes are
sharper and show greater variability than those from K-means. Both of these ob-
servations reflect the fact that the K-means images are averages of many training
samples, whereas our prototypes are single original images from the training set.
As observed in the 3,372-prototype solution, we find that the relative numbers of
prototoypes in each class for our method adapts to the within-class variability.

Figure 6 shows images of the first 88 prototypes (of 3,372) selected by the
greedy algorithm. Above each image is the number of training images previously
uncovered that were correctly covered by the addition of this prototype and, in
parentheses, the number of training points that are miscovered by this prototype.
For example, we can see that the first prototype selected by the greedy algorithm,
which was a “1,” covered 986 training images of 1’s and four training images that
were not of 1’s. Figure 7 displays these in a more visually descriptive way: we
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FIG. 6. First 88 prototypes from greedy algorithm. Above each is the number of training images
first correctly covered by the addition of this prototype (in parentheses is the number of miscovered
training points by this prototype).

have used multidimensional scaling to arrange the prototypes to reflect the tangent
distances between them. Furthermore, the size of each prototype is proportional to
the log of the number of training images correctly covered by it. Figure 8 shows
a complete-linkage hierarchical clustering of the training set with images of the
88 prototypes. Figures 6–8 demonstrate ways in which prototypes can be used to
graphically summarize a data set. These displays could be easily adapted to other
domains, for example, by using gene names in place of the images.

The left-hand panel of Figure 9 shows the improvement in the objective,
�ξ − �η, after each step of the greedy algorithm, revealing an interesting feature
of the solution: we find that after the first 458 prototypes are added, each remain-
ing prototype covers only one training point. Since in this example we took Z = X
(and since a point always covers itself), this means that the final 2,914 prototypes

FIG. 7. The first 88 prototypes (out of 3,372) of the greedy solution. We perform MDS (R function
sammon) on the tangent distances to visualize the prototypes in two dimensions. The size of each
prototype is proportional to the log of the number of correct-class training images covered by this
prototype.
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FIG. 8. Complete-linkage hierarchical clustering of the training images (using R package glus
to order the leaves). We display the prototype digits where they appear in the tree. Differing vertical
placement of the images is simply to prevent overlap and has no meaning.

were chosen to cover only themselves. In this sense, we see that our method pro-
vides a sort of compromise between a sparse nearest prototype classifier and 1-NN.
This compromise is determined by the prototype-cost parameter λ. If λ > 1, the
algorithm does not enter the 1-NN regime. The right-hand panel shows that the
test error continues to improve as λ decreases.

6.3. Protein classification with string kernels. We next present a case in which
the training samples are not naturally represented as vectors in Rp . Leslie et al.
(2004) study the problem of classification of proteins based on their amino acid se-
quences. They introduce a measure of similarity between protein sequences called
the mismatch kernel. The general idea is that two sequences should be consid-
ered similar if they have a large number of short sequences in common (where
two short sequences are considered the same if they have no more than a speci-
fied number of mismatches). We take as input a 1,708 × 1,708 matrix with Kij

FIG. 9. Progress of greedy on each iteration.
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FIG. 10. Proteins data set. Left: CV error (recall that the rightmost point on our method’s curve
corresponds to 1-NN). Right: a complete-linkage hierarchical clustering of the negative samples.
Each selected prototype is marked. The dashed line is a cut at height ε. Thus, samples that are
merged below this line are within ε of each other. The number of “positive” samples within ε of each
negative sample, if nonzero, is shown in parentheses.

containing the value of the normalized mismatch kernel evaluated between pro-
teins i and j [the data and software are from Leslie et al. (2004)]. The proteins
fall into two classes, “Positive” and “Negative,” according to whether they be-
long to a certain protein family. We compute pairwise distances from this kernel
via Dij =

√
Kii + Kjj − 2Kij and then run our method and K-medoids. The left

panel of Figure 10 shows the 10-fold cross-validated errors for our method and
K-medoids. For our method, we take a range of equally-spaced quantiles of the
pairwise distances from the minimum to the median for the parameter ε. For K-
medoids, we take as parameter the fraction of proteins in each class that should be
prototypes. This choice of parameter allows the classes to have different numbers
of prototypes, which is important in this example because the classes are greatly
imbalanced (only 45 of the 1,708 proteins are in class “Positive”). The right panel
of Figure 10 shows a complete linkage hierarchical clustering of the 45 samples in
the “Negative” class with the selected prototypes indicated. Samples joined below
the dotted line are within ε of each other. Thus, performing regular set cover would
result in every branch that is cut at this height having at least one prototype sam-
ple selected. By contrast, our method leaves some branches without prototypes.
In parentheses, we display the number of samples from the “Positive” class that
are within ε of each “Negative” sample. We see that the branches that do not have
protoypes are those for which every “Negative” sample has too many “Positive”
samples within ε to make it a worthwhile addition to the prototype set.

The minimum CV-error (1.76%) is attained by our method using about 870 pro-
totypes (averaged over the 10 models fit for that value of ε). This error is identical
to the minimum CV-error of a support vector machine (tuning the cost parameter)
trained using this kernel. Fitting a model to the whole data set with the selected
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TABLE 2
10-fold CV (with the 1 SE rule) on the training set to tune the parameters

(our method labeled “PS”)

Data 1-NN/�2 1-NN/�1 PS/�2 PS/�1 K-med./�2 K-med./�1 LVQ

Diabetes Test Err 28.9 31.6 24.2 26.6 32.0 34.4 25.0
(p = 8,L = 2) # Protos 512 512 12 5 194 60 29

Glass Test Err 38.0 32.4 36.6 47.9 39.4 38.0 35.2
(p = 9,L = 6) # Protos 143 143 34 17 12 24 17

Heart Test Err 21.1 23.3 21.1 13.3 22.2 24.4 15.6
(p = 13,L = 2) # Protos 180 180 6 4 20 20 12

Liver Test Err 41.7 41.7 41.7 32.2 46.1 48.7 33.9
(p = 6,L = 2) # Protos 230 230 16 13 120 52 110

Vowel Test Err 2.8 1.7 2.8 1.7 2.8 4.0 24.4
(p = 10,L = 11) # Protos 352 352 352 352 198 165 138

Wine Test Err 3.4 3.4 11.9 6.8 6.8 1.7 3.4
(p = 13,L = 3) # Protos 119 119 4 3 12 39 3

value of ε, our method chooses 26 prototypes (of 45) for class “Positive” and 907
(of 1,663) for class “Negative.”

6.4. UCI data sets. Finally, we run our method on six data sets from the UCI
Machine Learning Repository [Asuncion and Newman (2007)] and compare its
performance to that of 1-NN (i.e., retaining all training points as prototypes),
K-medoids and LVQ. We randomly select 2/3 of each data set for training and
use the remainder as a test set. Ten-fold cross-validation [and the “1 standard error
rule,” Hastie, Tibshirani and Friedman (2009)] is performed on the training data
to select a value for each method’s tuning parameter (except for 1-NN). Table 2
reports the error on the test set and the number of prototypes selected for each
method. For methods taking a dissimilarity matrix as input, we use both �2 and �1
distance measures. We see that in most cases our method is able to do as well as or
better than 1-NN but with a significant reduction in prototypes. No single method
does best on all of the data sets. The difference in results observed for using �1 ver-
sus �2 distances reminds us that the choice of dissimilarity is an important aspect
of any problem.

7. Discussion. We have presented a straightforward procedure for selecting
prototypical samples from a data set, thus providing a simple way to “summarize”
a data set. We began by explicitly laying out our notion of a desirable prototype
set, then cast this intuition as a set cover problem which led us to two standard ap-
proximation algorithms. The digits data example highlights several strengths. Our
method automatically chooses a suitable number of prototypes for each class. It
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is flexible in that it can be used in conjunction with a problem-specific dissimilar-
ity, which in this case helps our method attain a competitive test error for a wide
range of values of the tuning parameter. However, the main motivation for using
this method is interpretability: each prototype is an element of X (i.e., is an ac-
tual hand drawn image). In medical applications, this would mean that prototypes
correspond to actual patients, genes, etc. This feature should be useful to domain
experts for making sense of large data sets. Software for our method will be made
available as an R package in the R library.

APPENDIX: INTEGER PROGRAM (3)’S RELATION TO
PRIZE-COLLECTING SET COVER

CLAIM. Solving the integer program of (3) is equivalent to solving L prize-
collecting set cover problems.

PROOF. Observing that the constraints (3b) are always tight, we can eliminate
η1, . . . , ηn in (3), yielding

minimize
α

(l)
j ,ξi ,ηi

∑
i

ξi + ∑
i

∑
j : xi∈B(zj )

l �=yi

α
(l)
j + λ

∑
j,l

α
(l)
j s.t.

∑
j : xi∈B(zj )

α
(yi)
j ≥ 1 − ξi ∀xi ∈ X ,

α
(l)
j ∈ {0,1} ∀j, l, ξi ≥ 0 ∀i.

Rewriting the second term of the objective as
n∑

i=1

∑
j : xi∈B(zj )

l �=yi

α
(l)
j = ∑

j,l

α
(l)
j

n∑
i=1

1{xi ∈ B(zj ),xi /∈ Xl}

= ∑
j,l

α
(l)
j |B(zj ) ∩ (X \ Xl)|

and letting Cl(j) = λ + |B(zj ) ∩ (X \ Xl)| gives

minimize
α

(l)
j ,ξi

L∑
l=1

[ ∑
xi∈Xl

ξi +
m∑

j=1

Cl(j)α
(l)
j

]

s.t. for each class l: ∑
j : xi∈B(zj )

α
(l)
j ≥ 1 − ξi ∀xi ∈ Xl ,

α
(l)
j ∈ {0,1} ∀j, ξi ≥ 0 ∀i : xi ∈ Xl .
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This is separable with respect to class and thus equivalent to L separate integer
programs. The lth integer program has variables α

(l)
1 , . . . , α

(l)
m and {ξi : xi ∈ Xl}

and is precisely the prize-collecting set cover problem of (4). �
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