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Abstract

In many domains, data measurements can naturally be associated with the leaves of
a tree, expressing the relationships among these measurements. For example, compa-
nies belong to industries, which in turn belong to ever coarser divisions such as sectors;
microbes are commonly arranged in a taxonomic hierarchy from species to kingdoms;
street blocks belong to neighborhoods, which in turn belong to larger-scale regions.
The problem of tree-based aggregation that we consider in this paper asks which of
these tree-defined subgroups of leaves should really be treated as a single entity and
which of these entities should be distinguished from each other.

We introduce the false split rate, an error measure that describes the degree to
which subgroups have been split when they should not have been. While expressible
as the false discovery rate in a special case, we show that these measures can be quite
different for the general tree structures common in our setting. We then propose a mul-
tiple hypothesis testing algorithm for tree-based aggregation, which we prove controls
this error measure. We focus on two main examples of tree-based aggregation, one
which involves aggregating means and the other which involves aggregating regression
coefficients.
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1 Introduction

A common challenge in data modeling is striking the right balance between models that are
sufficiently flexible to adequately describe the phenomenon being studied and those that are
simple enough to be easily interpretable. We consider this tradeoff within the increasingly
common context in which data measurements can be associated with the leaves of a known
tree. Such data structures arise in myriad domains from business to science, including
the classification of occupations (US OMB 2018), businesses (US OMB|[2017)), products,
geographic areas, and taxonomies in ecology.



Measurements in low-level branches of the tree may share a lot in common, and so—in
the absence of evidence to the contrary—a data modeler would favor a simpler (literally
“high-level”) description in which distinctions within low-level branches would not be made;
on the other hand, when there is evidence of a difference between sibling branches, then
modeling them as distinct from each other may be warranted. We use the term tree-based
aggregation to refer to the process of deciding which branches’ leaves should be treated as
the same (i.e., aggregated) and which should be treated as different from each other (i.e.
split apart).

Tree-based aggregation procedures have been proposed in various contexts, including re-
gression problems, in which features represent counts of rare events (Yan & Bien|2020)) or
counts of microbial species (Bien et al.|2021)), and in graphical modeling (Wilms & Bien
2021)). These approaches focus on prediction and estimation but do not address the hypoth-
esis testing question of whether a particular split should occur.

We formulate the general tree-based aggregation problem as a multiple testing problem
involving a parameter vector 8* whose elements correspond to leaves of a known tree. Our
goal is to partition the leaves based on branches of the tree so that the set of parameters
in each group share the same value. Every non-leaf node has an associated null hypothesis
that states that all of its leaves have the same parameter value. Type I errors correspond
to splitting up groups unnecessarily; type II errors correspond to aggregating groups with
different parameter values.

In Section 2] we define an error measure, called the false split rate (FSR), that corresponds
to the fraction of splits made that were unnecessary. We study the FSR’s relationship to the
false discovery rate (Benjamini & Hochberg|1995), showing an equivalence in a special case
and demonstrating that FDR is not sufficient in the general situations we care about.

In Section [3| we propose a tree-based aggregation procedure that leverages this connec-
tion. Our algorithm proceeds in a top-down fashion, only testing hypotheses of nodes whose
parents were rejected. Such an approach to hierarchical testing originates with |Yekutieli
(2008)), which lays the foundation for the multiple testing problem on trees. Our procedure
is closely related to more recent work by [Lynch & Guo| (2016]), which increases power using
carefully chosen node-specific thresholds that depend on where the hypothesis is located in
the hierarchy. This work was in turn further developed in Ramdas et al.| (2019). Other
work involving various forms of a multiple testing problem with tree-structured hypotheses
(although not having to do with aggregation in the sense of this paper) include ??Bogomolov
et al.| (2017)), Heller et al.| (2018)), [Katsevich & Sabatti (2019). While these works focus on
FDR control, another line of work uses hierarchical testing while controlling the family-wise
error rate (Meinshausen| 2008, 7, |(Guo et al.|2019). Our motivation of finding the proper
“resolution” in a tree-structured multiple hypothesis testing context is shared by 7. They
frame the problem as designing what they call a filter, which simplifies the possibly redun-
dant set of discoveries while preserving FDR control of the final result. Our setting differs
from theirs in our focus on aggregation hypotheses, which leads us in a different direction,
creating an aggregation-geared error measure and multiple testing procedure.

In Section [d], we consider two concrete scenarios where tree-based aggregation is natural.



In the first scenario, the parameter vector 8 represents the mean of a scalar signal measured
on the leaves of the tree. In the second scenario, 8" is a (potentially high-dimensional) vector
of regression coefficients where features are associated with leaves of the tree.

Finally, we demonstrate through simulation studies (Section and real data experi-
ments (Section [6]) the empirical merits of our framework and algorithm. We consider two
applications, corresponding to the two concrete scenarios of tree-based aggregation. The
first application involves aggregation of stocks (with respect to the NAICS’s sector-industry
tree) based on mean log-volatility. The second application aggregates neighborhoods of New
York City (with respect to a geographically based hierarchy) based on a regression vector
for predicting taxi drivers’ monthly total fares based on the frequency of different starting
locations.

Notation: For an integer p, we write [p] = {1,2,...,p}. For a,b € R, we write a A b and
a V b for their minimum and maximum, respectively. We use e; to denote the i-th standard

1/q
basis vector. For € RP, we define [|z||, = ( v \xj\q) for ¢ > 0. For a set S C [p],

s = (2;)ies is the vector obtained by restricting the vector @ to the indices in set S. We
use the term “tree” throughout to denote a rooted directed tree. Given a tree T with leaf
set L, we write 7T, for the subtree rooted at v € T and L, for its leaf set.

2 Problem setup

2.1 A multiple hypothesis testing formulation for aggregation

Let 7 be a known tree with p leaves, each corresponding to a coordinate of the unobserved
parameter vector 8% € RP. We formulate the tree-aggregation task as a multiple hypothesis
testing problem: To each internal (non-leaf) node u of the tree we assign a null hypothesis

Ho o All elements of 6 have the same value, (1)

where 67, is the subvector of 8" restricted to leaves of the subtree rooted at u. We observe
that our choice of null hypothesis follows the usual practice that simpler models correspond
to the null. Rejecting the null hypothesis H? implies that the leaves under u should be further
split into smaller groups. Given the way the hypotheses are defined, a logical constraint to
impose on the output of a testing procedure is the following;:

Constraint 1. The parent of a rejected node must itself be rejected.

By constraint , the set of rejected nodes will then form a subtree 7y of 7 (sharing
the same root as 7'), and furthermore the subtrees rooted at the leaves of T,¢; represent the
aggregated groups. Our goal is to develop testing procedures that result in high quality splits
of the parameters. In order to measure the performance of an aggregation (or equivalently
a set of splits) we propose a new criterion as follows.

False Split Rate (FSR). Suppose C = {61, ...,éM} is a splitting of the leaves [p], and
C* = {Cy,...,C5} is the true splitting. For each true group Cf, i € [K], we count the
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number of splits of C; by members of C, i.e., Zj\il {Crn @- # ()} — 1. Therefore, the total
number of excessive (false) splits of C is

Z(Zﬂ{Ofﬂ@#@}—l) :Z<Zﬂ{@*“5ﬂé@}> K,

while the total number of splits is (M — 1) V 1. We define the false split proportion (FSP)

~

and true positive proportion (interchanging C* and C) as

X (0L enG A 0) - K XM (LG #0)) - M
FSP = B ., TPP:=1- " .
@

The false split rate (FSR) and the expected power are defined as FSR := E(FSP), Power :=
E(TPP) where the expectation is with respect to the randomness in C. , which in our context
will depend on the p-values for the hypotheses of the form . In the next section we pro-
vide another characterization for FSR in the tree-aggregation context, and in Section [3] we
develop a testing procedure that controls FSR at a pre-specified level a < 1.

2.2 FSR on a tree

While the FSR metric can be calculated for a general splitting of p objects using definition ([2)),
in this section we focus on splittings that can be expressed as a combination of branches of
T as explained in the previous section. Note that the structure of the tree 7 may not be
faithful to the true vector 8*. In that case, the ground truth C* may be very large. We will
provide an equivalent characterization of FSP in this context in terms of specific structural
properties of T .

For a testing procedure satisfying Constraint [I the rejected nodes form a subtree Ty of
T. We define deg,(u) as the (out) degree of node u on tree 7 (the number of children of
node u); similarly, degy. (u) is the degree of node u on the subtree 7.;. We use F as the set
of false rejections in 7. Lastly, we define B* as the set of nodes whose leaf sets correspond
to the true aggregation, i.e., B* is such that C* = {£, | u € B*}. This characterization of C*
stems from the assumption that the true aggregation is among the partitions allowed by the
tree. Figure [I] provides an example showing T, Ty, C*, B*, and F.

Our next lemma characterizes the number of false splits and the total number of splits
in terms of the tree 7 and its subtree 7. By virtue of this lemma we have an alternative
characterization of FSP (and FSR), which is more amenable to analysis.

Lemma 2.1. Define V and R as follows:

V= Y (degr(u) - degy, (w) ~ [B*NF|, R:= max{ > (degr(u) - degy, (w) 1, 1} G

ueF UE'TTCj

Then V' and R quantify the number of false splits and the total number of splits, respectively.
Consequently, we have FSP = V/R and FSR = E (V/R), where FSP and FSR are defined
as in Section [21.



Figure 1: An example of T with 2m+n—+2 leaves and 3m+n+ 7 nodes in total. The dashed boxes
show the true aggregation of the leaves, C*, into K = 2m+1 groups, with B* = {dx, ..., dam,b'}. The
thicker edges and the nodes they connect form Tej, with v'’s marking true rejections and x ’s marking
false rejections F. The rejections correspond to an estimated aggregation with M = 2m +n + 1

groups: {di},... . {dom}, {d"},... . {d,}, {d), 1, d], 5}

The notation of V and R is purposely chosen to match what is commonly used in defining
FDR. Indeed, it is natural to ask how the FSR relates to the FDR, and, perhaps most
crucially, why one would not simply use the FDR in this situation. The next section addresses
these questions and emphasizes why FSR is necessary.

2.3 Why FSR is needed

We begin with developing a better understanding of the relationship between the FSR and
the FDR. The following lemma establishes that these quantities are in fact identical in the
special case that 7 is a binary tree.

Lemma 2.2. For a binary tree, the quantities V and R given by can be simplified as
V = |F| and R = |T|. Therefore, FSP = |F| /| Trej| and FSR = FDR := E (|F|/|Trej)-

We defer the proofs for Lemma and Lemma to Appendix [B While the above
result is conceptually helpful in that it ties the FSR to preexisting work on the FDR, it
focuses on a special case that does not represent many common situations we care about
in practice. Whether performing aggregation using taxonomic trees in biology (Bien et al.
2021) or using the standard industrial classification system in business (US OMB| (2017),
considered in Section @, we are often interested in aggregation on non-binary trees. The
FSR and FDR can in fact be quite different for general trees. In such cases, FSR is precisely
tied to the error measure we actually care about in practice, while FDR is not. The key
distinction is apparent in the quantity from , degr(u) — degr. | (u), which counts the
number of additional splits due to rejecting HY. The reason for this difference is that FSR is
focused on the clustering that results from an aggregation procedure whereas FDR is focused
on the decisions made at the internal nodes of the tree.

To demonstrate how different FSP and FDP can be from each other, we return to the
example given in Figure[l] Since two of the m+4 rejected nodes are false rejections, we have
FDP = 2/(m + 4). By contrast, the rejections correspond to an estimated aggregation with
M = 2m +n + 1 groups, created by R = 2m + n splits, and V' = n of these splits were false



splits, meaning that FSP = n/(2m + n). To understand the practical distinction between a
procedure controlling FDP versus FSP, imagine m = 40 and n = 80. In such a situation,
the FDP ~ 0.045 while the FSP = 0.5. R

This very large FSP accurately reflects the fact that the estimated aggregation C with 161
groups is an extreme over-splitting of the true C*, which has only 81 groups. In particular,
the rejection of the ¢} node with its n = 80 children is a serious error from the standpoint
of aggregation accuracy. The FDP, by contrast, ignores the tree structure and rather con-
siders every false rejection as equally bad. While in other problems this may be a sensible
assumption, in the aggregation problem considered in this paper it is clearly not. This is
because a false split at a high-degree node can create a large number of false clusters, which
is undesirable in the clustering setting. In Appendix [F], we show that a similar distinction
between FSP and FDP can occur on trees coming from real data applications.

One might ask whether one can avoid using the FSP by turning a non-binary tree into a
binary one and then simply using FDR (since by Lemma it is the same as FSR relative
to this new tree). To do so, one would need to take each non-binary node u and its children
and replace this subtree with a binary subtree having u as root and its children as leaves.
However, such an approach is problematic as there are many possible binary trees that
could be formed, and different choices for this arbitrary tree structure would lead to very
different procedures. (This is analogous to attempting to test an ANOVA hypothesis with
an arbitrarily-ordered sequence of pairwise t-tests rather than with the standard F test.)
Returning to the Figure [I| example, the single p-value at ¢] would have to be replaced with
90 p-values, and the interpretation of each of these p-values and the order in which they are
tested would depend on the arbitrary tree structure created. Therefore, we are left with FSR
as the target error measure to control. In the next section we introduce a multiple testing
procedure for controlling the FSR. In light of Lemma [2.2] in the special case of a binary tree,
where FSR = FDR, our procedure also controls the FDR, and we compare our method to
other existing methods that control FDR in Section [3.3]

3 Hierarchical aggregation testing with FSR control

So far we have defined the metric FSR to measure the quality of a splitting of leaves and
proposed an alternate characterization of it in terms of the structure of the rejected (and
false rejected) nodes as in Lemma . In this section, we introduce a new multiple testing
procedure to test the null hypotheses H?, starting from the root and proceeding down the
tree. The procedure assumes that each non-leaf node u has a p-value that is super-uniform
under H?, i.e.

P(p, <t) <t foralltel0,1]. (4)

Later, in Section 4], we discuss how to construct such p-values for two statistical applications.
We call our multiple testing procedure HAT, shorthand for hierarchical aggregation test-
ing, as the parameters in the returned splits can be aggregated together to improve model



interpretability and in some cases improve the predictive power of the model. The HAT pro-
cedure controls the FSR both for independent p-values (Section and under arbitrary
dependence of the p-values (Section .

The hypotheses defined in are indeed intersection hypotheses, i.e.,

H? holds = H? holds for Vo € Ty, (5)

where 7, is the subtree rooted at node u. In other words, the parent of a non-null node must
be non-null, and if a node is null then every child of it is null as well. This property motivates
us to use a top-down sequential testing algorithm on the tree that honors Constraint [I}

Before describing the HAT algorithm, we establish some notation. We sometimes write
’Hg’u to make it explicit that node u is at depth d of the tree, where the depth of a node is
one plus the length of the unique path that connects the root to that node (the root is at
depth 1). We also use T for the set of non-leaf nodes at depth d of T.

The testing procedure runs as follows. Let a be our target FSR level. Starting from the
root node, at each level d we only test hypotheses at the nodes whose parents are rejected.
The test levels for hypotheses are determined by a step-up threshold function so that the test
level at each hypothesis ’Hgﬂ depends on the number of leaves under this node | £, |, the target
level «, the maximum node degree denoted by A, and the number of splits made in previous
levels, denoted by R“(@1) . The details of our HAT procedure are given in Algorithm [1| and
depend on node-specific thresholds «,,(r), both explicitly and through the function

RYr) =Y pu < au(r)}(degy(u) - 1). (6)

ueTa

We next give some intuition for the quantity r; that appears in Step 2 of Algorithm [I} In
the threshold function a,(r), r is a free parameter; however, we would like for the argument
used in the threshold function to correspond to the actual number of rejections that have
occurred previously. The definition of r; ensures this interpretation. To further elaborate,
observe that R%(r) counts the additional splits of the leaves that result due to the rejected
nodes in depth d, assuming that the threshold level «,,(r) is used. In our analysis, we prove
the following self-consistency property: R%(r%) = r%. In words, using 7 to test the nodes
in 7% (node u to be tested at level a,(r%)) gives us 7 additional splits of the leaves, and
therefore the update rule for % in line 3 of the algorithm ensures that this quantity counts
the number of splits formed from testing nodes in depth 1,...,d.

3.1 Testing with independent p-values

While in general one might expect the p-values in a tree-structured setting to be dependent,
in Section we consider a statistical application where the p-values are independent. For
this reason, and for the sake of simplicity, we start by considering the case in which the
p-values are independent.



Algorithm 1 Hierarchical Aggregation Testing (HAT) Algorithm
Require: : FSR level a, Tree T, p-values p, for u € T \ L.
Ensure: : Aggregation of leaves such that the procedure controls FSR.
initialize Ty = {root}, R*! = degr(root) — 1.
1: repeat
2:  From depth d = 2 to maximum depth D of the tree T, perform hypothesis testing on
each node in 7¢. Compute r} as

ry=max{r>0: r<RYr)},

where R%(r) is defined in (), with threshold function a,(r) given by (for case of
independent p-values) or (under general dependence among p-values). Reject the
nodes in the set 74 = {u € T%: p, < au(r))}.

3:  Update 7;1;1 T d YU Td, and R = R:(d- Dk,

rej rej’

4: until No node in the current depth has a rejected parent or d = D.

Assuming that the node p-values p, are independent, the threshold function v, (r) used
for testing Hj , is defined as:

L ale(B) )
L) =1 t -y :
2lr) = Mporent) €T} X ST Bha, -+ Al D 4 7)

(7)
where hg, is the partial harmonic sum given by

p—1—(Xcra degr (u)—| T4 1)

1
g, =1+ > —. (8)

m=R:(d=1) 4pr4]

To understand the lower and upper bounds in the summation that defines h,,, consider
the case when r = 7. The lower bound corresponds to (one more than) the number of splits
that have occurred so far in the algorithm; likewise, the upper bound corresponds to the
maximal possible increase in the number of splits at this level. For more on hg,, we refer
the reader to the proof of Proposition in Section [C] of the appendix.

Theorem 3.1. Consider a tree with mazimum node degree A and suppose that for each node
w in the tree, under the null hypothesis HY, the p-value p, is super-uniform (see ) Further,
assume that the p-values for the null nodes are independent from each other and from the
non-null p-values. Then using Algorithm |1 with threshold function (7)) to test intersection
hypotheses HY controls FSR. under the target level o.

The proof of Theorem is given in Section of the appendix and uses a combina-
tion of different ideas. At the core of the proof is a ‘leave-one-out’ technique to decouple
the quantities V and R. Using this technique together with the self-consistency property



discussed after @ and intricate probabilistic bounds in terms of structural properties of T,
we prove that FSR is controlled at the pre-assigned level a.

A few remarks are in order regarding the testing threshold a,(r). From its definition,
we have «,(r) = 0 if the parent hypothesis of u is not rejected. Also note that since the
testing is done in a downward manner, the event {parent(u) € 7?6[;1} is observed by the
time the node u is tested. Also note that as we reject more hypotheses early on, the burden
of proof reduces for the subsequent hypotheses, because oy, (r) is increasing in R*(@~1). This
trend is similar to FDR control methods (e.g., Benjamini & Hochbergl (1995), |[Javanmard
& Montanari| (20185)). We also observe that «,(r) is increasing in |£,|. For the nodes at
upper levels of the tree, this is crucially useful as R¥(@=Y is small for these nodes, while |L,|
is large and compensates for it in the threshold function.

Our next theorem is a generalization of Theorem to the case that the null p-values
distribution deviates from a super-uniform distribution. We will use Theorem to control
FSR in Section where we aim to aggregate the features in a linear regression setting. As
we will discuss, for this application we suggest to construct the p-values using a debiasing
approach, which results in p-values that are asymptotically super-uniform (as the sample
size n diverges).

Theorem 3.2. Consider a tree with mazimum node degree A and suppose that for each
non-leaf node u in the tree, under the null hypothesis H°, the p-value p, satisfies P(p, <
t) <t+eq forallt € 0,1], for a constant eg > 0. Further, assume that the p-values for
the null nodes are independent from each other and from the non-null p-values. Consider
running Algorithm (1] to test intersection hypotheses HO with the threshold function

_ 1 alL,|(R¥41 4 7)
_ -1 _
@u(r) = Hparent(u) € T, {A p(1 = z5)har + | L,](REED + 1) fop - 09)

Then, FSR is controlled under the target level c.

3.2 Testing with arbitrarily dependent p-values

Theorems [3.1] and assume that the null p-values are independent from each other and
from the non-null p-values. To handle arbitrarily dependent p-values, we propose a modified
threshold function:

a1y 0Ll - Ba(RHD +7)

() = I{parent(u) € T3 p(A—LY(D-1)

(10)

A
where f34(+) is a reshaping function of the form
Rl:(dfl) + r
1:(d-1) _
Bl BT 4T = I e (11)

)
1
k=d(6—1) k

and ¢ is the minimum node degree in T \ L. It is straightforward to see that the reshaping
function is lowering the test thresholds compared to the independent p-values case, making

9



the testing procedure more conservative to handle general dependence among p-values. In
the next theorem, we show that with the reshaped testing threshold FSR is controlled for
arbitrarily dependent p-values. In addition, we prove the next result in the more general
case in which the p-values may be approximately super-uniform (as in Theorem .

Theorem 3.3. Consider a tree with mazimum node degree A and minimum node degree
8, and suppose that for each non-leaf node u in the tree, under the null hypothesis HY, the
p-value p, satisfies P(p, < t) < t+¢eo, forallt € [0,1], for a constant g > 0. The
p-values for the nodes can be arbitrarily dependent. Consider running Algorithm [1] to test
the hypotheses HY with threshold function given by

a - By 1:(d-1) r
ay,(r) = 1{parent(u) € 7;53-_1 { |§Z|A ? (i]?(D — S ) _ 60} , (12)
A

with the reshaping function B4(-) of . Then, FSR is controlled under the target level a.

For the special case of exact super-uniform p-values (i.e., &g = 0), this theorem can be
perceived as a generalization of Theorem to the case of arbitrarily dependent p-values.

The proof of Theorem builds upon a lemma from |Blanchard & Roquain (2008]) on
dependency control of a pair of non-negative random variables. We refer to Section of
the appendix for further details and the complete proof.

3.3 A few remarks on HAT

In Section [2.3| we discussed the relevance of the proposed FSR metric to assess the quality
of an aggregation, compatible with the given tree structure. We also discussed that for non-
binary trees, FSR and FDR could be very different measures. Nonetheless, for the special
case of a binary tree, we showed in Lemma that FSR and FDR are equivalent. In this
section, we would like to understand how well HAT performs as an FDR control method on
binary trees. To this end, we compare HAT with a testing procedure proposed by |Lynch
& Guol (2016]) to control FDR in the hierarchical testing context. Their method, which we
refer to as LG, corresponds to Algorithm [If with some modifications. First, their thresholds
are

1:(d—1
au(r) = a LDl mu(T) + R 4 -1 13)
|Lroot(T)] mu(T)
where T is the tree in which we take 7 and remove the leaves, mu(%) is the number of
descendants of node u in T, |£,(7)| is the number of leaves in T that descend from u. Also,
they initialize R™! = 1 and, instead of (), they take R*(r) = > 74 1 {pu < au(r)}.

In our numerical experiment, cf. Figure [5| (right three panels), we observe that on
deep binary trees HAT achieves higher power than LG, while being more conservative and
achieving lower FDR. This observation can be explained by going over the details of the
proof technique used for showing the FDR control for the LG method (Lynch & Guo
2016, Theorem 1). In the proof of this result, it is shown that for each hypothesis wu,
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E(V(T2)/R) < a|Lu(T)|/|Lroot(T)| where V(T,) is the number of false rejections in 7Ty,
the subtree rooted at node u. In deriving this bound, a chain of inequalities is used which
becomes tight only if V(7,) = R(7T.) = |Tu|, i-e., all the hypotheses in the subtree 7, are
falsely rejected. Obviously this becomes a very loose bound for nodes far from the leaves,
which explains why the LG method can be at a disadvantage for deep trees. In contrast, in
the analysis of HAT we use a leave-one-out technique and for every fixed subtree of 7T, we
bound the probability of rejecting that tree, which is tighter than assuming all nodes of 7T,
are rejected.

The other remark we would like to make is on the harmonic term Ag, in the expression
of thresholds, given by (7). Its justification is different from that of the common adjustment
factor in FDR control methods, such as Benjamini & Yekutieli (7), which accounts for
general dependency among p-values. For HAT, the harmonic term is needed even in the
case of independent p-values. The reason is due to the proof technique, which we briefly
explain here, and we refer to Section for more details. In our proof, we write FSR as
a summation over nodes a € B*. We then treat each of the summands separately via a
leave-one-out technique, where we set the p-values on the rejected subtree 7, .. of 7, to
zero and to one on 7T,\Tare. We then bound the corresponding summand conditional on
PL = {pu: u & To}. When we calculate the expectation with respect to P at the last
step, we will have dependency between 7, . and ]:27;1 . (the total number of splits after the
leave-one-out step), since they both depend on the rejections in the previous levels of the
tree. The harmonic term is needed to deal with this dependency, which exists even in the
case of independent p-values.

4 Two statistical applications

Here we consider two statistical applications of tree-based aggregation. In Section [.1] we
study the problem of pruning a fixed tree based on measurements associated with its leaves.
In this context, nodewise p-values are formed by one-way ANOVA tests. In Section [4.2] we
study how to aggregate features with the same coefficients in a linear regression setting.

4.1 Testing equality of means

In this section, we consider the situation where we are given a tree 7 and a vector of
measurements y; on its leaves. The goal is to prune 7, using the variability in the y; to guide
this process. The goal of the pruning process is to make the tree as small as possible by
aggregating branches whose y; are not significantly different from each other. In our setting,
the tree T is thought of as fixed and therefore is not dependent on ;. This is in contrast to
approaches where the data used to form the tree is also used to perform pruning, which has
been considered both in unsupervised (??7) and supervised settings (77?).

In this application, we imagine that 8™ is a vector of unknown means and that at each
leaf node 7 of a tree T there is a noisy observation of the corresponding mean: y; = 6} + ¢,
where the ; ~ N(0, 0?) are independent. Given the y;, we want to aggregate the leaves by
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testing the equality of their means. For each node u € T, we construct a p-value based on
a one-way ANOVA test with known o > 0,

pu=1- inu_l o Z |Lo| (90 — gU)2 ) (14)

vechild(u)

where 7, = |£,|7" Y ,c.. ¥, and child(u) is the set of children of u. Also A, := degy(u) =
|child(u)| and F,z s the cdf of a x4, _; random variable. We show in the following lemma
that the above construction gives bona fide p-values for our testing procedure.

Lemma 4.1. The p-value defined in is uniform under H2 in (1)). Furthermore, for any
two distinct nodes a,b € T \ L, p, and py, are independent.

Recall that the nodewise hypotheses {’Hg}ug—\ﬁ are intersection hypotheses as in ({5,
and therefore one can apply Simes’ procedure to form bona fide intersection p-values.

The Simes’ p-value at node a is given by pg simes = MiN<p<|7:\L4] (p(k) | Ta\ £a|) /k,
where p() is the kth smallest p-value in 7, \ £,. As shown by Simes| (1986), as the original
p-values are independent (as per Lemma [£.1)), the Simes’ p-values constructed as above are
super-uniform, and hence can be used to test the nodewise hypotheses. However, note that
the Simes’ p-values are not independent anymore, so when applying the HAT procedure, we
need to use the reshaped threshold function (10)).

4.2 Testing equality of regression coefficients

In the regression setting, many authors have considered approaches for quantifying and
controlling the error associated with variable selection (see, e.g., ??). However, we consider
here the related challenge of aggregating rather than selecting features. Consider a linear
model where the response variables are generated as y ~ N(X 6", 021,,). In many applications
the features are counts data, i.e., X;; records the frequency of an event j occurring in
observation 7. [Yan & Bien| (2020) note that when events rarely occur, a common practice is
to remove the rare features in a pre-processing step; however, they show that when a tree is
available, rare features can instead be aggregated to create informative predictors that count
the frequency of tree-based unions of events. While [Yan & Bien| (2020)) focused on predictive
performance, here we focus on aggregation recovery itself by controlling FSR. To do so, we
use the point estimator of |[Yan & Bien| (2020)), along with a debiasing approach to construct
the nodewise p-values for our proposed testing procedure.
The [Yan & Bien| (2020) point estimator is the solution to the optimization problem,

- 1 >, -
OEarggrelgp}%Hy—XeHervrélﬁ% A v Z \fyu|+(1—1/)Z|9j] s.t. 0= A,
u€T \root j=1
(15)
where A € RP*I7l encodes the tree structure with A;; indicating whether leaf 7 is a descendant

of node j. The resulting 6 tends to be constant on branches of the tree, leading to aggregated
features.

12



4.2.1 Constructing p-values for the null hypotheses

A challenge in constructing p-values for the null hypotheses HY given in is that the
distribution of the estimator 8 is not tractable. Moreover, due to the regularization term,
this estimator is biased. We therefore use a debiasing approach.

The debiasing approach was pioneered in |Javanmard & Montanari| (2014), Zhang &
Zhang (2014)), van de Geer et al| (2014), |[Javanmard & Montanari (2018a)) for statistical
inference in high-dimensions where the sample size is much smaller than the dimension of
the features (i.e., n < p). Regularized estimators such as the lasso (Tibshirani 1996]) are
popular point estimators in these regimes however they are biased. The focus of the debiasing
work has been on statistical inference on individual model parameters, namely constructing
p-values for null hypotheses of the form Hy, : 67 = 0. The debiasing approach has been
extended for inference on linear functions of model parameters (Cai et al. 2017, 2019) and
also general functionals of them (Javanmard & Lee 2020). The original debiasing method
can also be used to perform inference on a group of model parameters, e.g. constructing
valid p-values for null hypothesis Hy : @4 = 0 where the group size |A| is fixed as n,p — oo
(see e.g, (Javanmard & Montanari 2014, Section 3.4)). More recently, Guo et al. (2019)
have studied the group inference problem for linear regression model by considering sum-
type statistics. Namely, by considering quadratic form hypotheses, H, : BZGG A =0, for
a positive definite matrix G. They propose a debiasing approach to directly estimate the
quadratic form OXGO 4 and to provide asymptotically valid p-values for the corresponding
hypotheses. The constructed p-values are valid for any group size in terms of type-I error
control. This work also discusses how by a direct application of the methodology developed
in |Meinshausen| (2008]), one can test significance of multiple groups, where the groups are
defined by a tree structure. The method of Meinshausen| (2008) is based on a hierarchical
approach to test variables’ importance. At the core, it constructs hierarchical adjusted p-
values to account for the multiplicity of testing problems and controls the family wise error
rate at the prespecified level. At every level of the tree, the p-value adjustment is a weighted
Bonferroni correction and across different levels it is a sequential procedure with no correction
but with the constraint that if a parent hypothesis is not rejected then the procedure does
not go further down the tree. By comparison, our HAT algorithm controls the FSR, a very
different criterion than the family wise error rate. Also HAT does not do any adjustment to
p-values, and instead chooses the threshold levels in a sequential manner depending on the
previous rejections and the structural properties of the tree.

Here we follow the methodology of |Guo et al| (2019) to construct valid p-values for
the HAT procedure, using the point estimator (15). We write HY equivalently as HO -
Q. = 0} G 0 = 0, where G, is the centering matrix and we use the shorthand 8, :=
0., To make mference on the quadratic form @,, we first consider the point estimator

estimator Qu = 9 G Bu, where 0 is the estlmator given by . To deblas Qu we first
decompose the error term into Qu Q. = 0 G.0, — O*TG’ 0, = 20 G, (0 -0 ) —

<5u - 02) G, (éu - 0;’;) . The dominating term in this decomposition is 2§u Gu(au -0y).
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The approach in |Guo et al.| (2019) is to develop an unbiased estimate of this term and then
subtract this estimate from @u Given a projection direction 3, the unbiased estimate is of
the form

b XT(y -~ X0)=b' (0"~ 0)+ b XTe

n
~ —~ AT o~ o~
where X := %XTX. The idea is to find a projection direction b such that b (6 — 0%) is a

~T —~ —~
good estimate for 8, G, (0, — 0;). The projection direction b is constructed by solving the
following optimization problem:

~ ] TS ~ ~T T ~
b:argmbm b 3b s.t. max (w,3b—10,G, 0]")| <|G.0.|2M, (16)

wely
where C, = {el, ey €, m@au O]T} and A, is chosen to be of order y/log(p)/n.

—~ ~T ~ ~T ~
Finally the debiased estimator for @, is constructed as Q9 := 6, G, 0, + %b X'(y—X0).
Suppose that the true model 8" is sq sparse (i.e., it has sy nonzero entries). As shown in (Guo
et al.[2019, Theorem 2), under the condition sy(logp)/y/n — 0, and assuming that the initial

estimator 6 satisfies ||§ — 0|2 < Cy/so(logp)/n and ||§ — 0%||; < Cspy/(logp)/n for some

constant C' > 0, then the residual @2 — @, asymptotically admits a Gaussian distribution.
More specifically, Q¢ — Q,, = Z, + A, where

40‘2 AT A~

Z, ~ N(0, Var(Q?)), Var(Q%) = ——b 5b. (17)

In addition, for any constant ¢; > 0, there exists a constant co > 0 depending on ¢; such
that

sologp

(18002 e(IGBull + Gl 222 ) < 2, (19
The above bound state that with high probability the bias term A, is of order sy(logp)/n,
while Var(Q9) is of order 1/n. Therefore under the condition sy(logp)/+/n — 0 the noise
term Z, dominates the bias term A

Note that Var(Q9) involves the noise variance o2 (which is the same for all nodes u). Let

o be a consistent estimate of 0. Then the variance of the debiased estimator @2 is estimated
by
-

— 452 AT ~n~
Var, (QY) = %bTEb + (19)

n
for some positive fixed constant 7. The term 7/n is just to ensure that the estimated variance

AT o~
is at least of order 1/n (in the case of b 3b = 0), and so it dominates the bias component
of Q4. The exact choice of 7 does not matter in the large sample limit (n — o0).

In |Guo et al. (2019)), the probability bound pe~¢*" was further simplified to p~< since n 2> logp and
assuming n,p — oo.
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Using this result, we construct the two-sided p-value for the null hypothesis ﬁg as follows:

Py =2 [1 " (\/\7@—57('@1))] , where ® is the cdf of the standard normal distribution.

Proposition 4.2. Consider the asymptotic distributional characterization of@g given by
and (18). Leto = o (y, X)) be an estimator of o satisfying, for any firede > 0, lim,, IP’(‘Q—

1‘ > 5> = 0. Under the condition so(logp)/y/n — 0, for any fized arbitrarily small constant

g0 (say 0.001), there exists ng > 0 such that for all n > ngy, P(p, < t) < t+ &g, for all
t €10,1].

We refer to Appendix for the proof of Proposition [4.2] By virtue of Proposition [4.2]
the constructed p-values satisfy the assumption of Theorem and therefore by running the
HAT procedure we are able to control FSR under the target level.

5 Simulations

In this section, we conduct simulation studies (using the simulator R package, Bien! (2016))
to understand the performance of HAT in different settings.

5.1 Testing on a non-binary tree with idealized p-values

The LG algorithm is guaranteed to control FSR due to the equivalence between FSR and
FDR in the special case of a binary tree (see Lemma [2.2). However, for a non-binary tree,
the LG algorithm does not have a theoretical guarantee on FSR control. We generate a tree
where the root has degree 5, and each child of the root is either a non-leaf node with degree
10 or is a leaf node; we vary the number of non-root non-leaf nodes from 1 to 4, which results
in p ranging from 14 to 41. The number of true groups is fixed at 5, therefore the root is
the only non-null node. We simulate p-values for the interior nodes in the same fashion as
in Section the p-values for null nodes are simulated independently from Unif([0, 1]) and
the p-values for non-null nodes are simulated independently from Beta(1,60). An estimate
of FSR is obtained by averaging FSP over 100 runs. The achieved FSR is shown in the
leftmost panel of Figure 2] As expected, we observe that the HAT procedure controls FSR
under each target « for all values of p, whereas the LG algorithm does not. Therefore, for
aggregating leaves in general settings where the tree can be beyond binary, only our algorithm
provably controls FSR under the pre-specified level. This highlights the importance of using
our approach, which has guaranteed FSR control for tree-based aggregation problems with
non-binary trees.
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Figure 2: (Left) Plot of achieved FSR by HAT and LG on a non-binary tree with K = 5 and
independent p-values. LG does not control FSR under the target levels. (Center and Right) Plots
of achieved FSR and mean power with ANOVA p-values on a 3-regular tree (p = 243,0 = 0.3).

5.2 Two statistical applications
5.2.1 Testing equality of means

In this section we apply the HAT procedure to the problem of testing equality of means. To
simulate this setting, we form a balanced 3-regular tree with p = 243 leaves. For each K, we
cut the tree into K disjoint subtrees, which leads to K non-overlapping subgroups of leaves.
We assign a value to each leaf as y; = 0, +¢e;, k(i) € {1,...., K}, i € {1, ..., p}, where k(i)
represents the group of leaf node ¢ and the elements of @ are independently generated from
a Unif(1,1.5) distribution multiplied by random signs, and ¢;’s from a N(0, o%) distribution.
We simulate 100 runs by generating 100 independent €’s with the noise level set to o = 0.3.
The p-values are calculated as in ([14]).

By Lemma the ANOVA p-values are independent. Thus, by Theorem [3.1] we can
perform HAT using the using threshold function . Alternatively, we can form the bona
fide p-value using Simes’ procedure, and test with the reshaped threshold function that is
designed for arbitrarily dependent p-values.

We calculate FSR and average power by taking the average of the FSP and power over
100 runs. The center and right plots of Figure [2| demonstrate how FSR and average power
change with K. Using Simes’ p-values together with the reshaped thresholds achieves both
lower FSR and higher power, which makes sense in this context because large effect sizes
low in the tree may not translate to large effect sizes high in the tree.

5.2.2 Testing equality of regression coefficients

We apply HAT to the application of testing equality of regression coefficients. We assume a
high-dimensional linear model as described in Section [f.2and generate p coefficients that take
K unique values. This partition comes from leaves of disjoint subtrees of 7. We compute
the p-values using the debiased method on each node as in Section [£.2.1] The details of the
data generating process are described in Section [E] of the appendix. R

For each K, we simulate 100 independent €’s. The initial estimator @ that solves the
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Figure 3: Plots of empirical CDFs of three nodes under the setting n = 100, p = 243, 5 = 0.6,
K =57, p=0.2, 0 =0.6.

optimization problem ([15)) is achieved by using the R package rare [Yan & Bienl (n.d.). The
tuning parameters A and v are chosen by cross-validation over a 2 x 10 grid. We then follow
the steps described in Section to compute the p-values at each node. The positive
constant 7 in is set to one and the noise level estimate & is obtained using the scaled
lasso Sun & Zhang| (2012)) (R package scalreg). Figure |3| shows the empirical cdf of the
p-values, obtained from the 100 realizations of the noise, at three representative nodes when
K = 57. Among the three nodes, node #110 is a non-null node, which means 6, contains
at least two distinct values. Nodes #13 and #86 are both null nodes but at different depths
on the tree. Node #86 is one of the B* nodes and node #13 is a descendant of node #86. The
curve of p-values at node #110 is above the diagonal line, which means the distribution has
a higher density at small values than uniform distribution. On the contrary, the distribution
of p-values at nodes #13 and #86 are super-uniform. The curve for a deeper level node
seems to be further away from the diagonal line than its ancestor node.

The p-values generated are not necessarily independent, so we use the reshaped threshold
function , which we have shown in theory controls FSR with arbitrarily dependent p-
values. We also test with the threshold function , which we have not proven FSR control
when the p-values are dependent. In Figure [d] we demonstrate the result for both threshold
functions, varying K and a. We observe from the plots that testing with both threshold
functions control FSR below each target level a. The reshaping function makes the threshold
more conservative, hence the power of the HAT test with the reshaping function is generally
lower.

5.3 Testing on a binary tree with idealized p-values

As we proved in Lemma [2.2] on binary trees FSR and FDR metrics become equivalent.
In this subsection, we focus on binary trees and compare HAT with the testing procedure
proposed by [Lynch & Guo (2016), which controls FDR in the hierarchical testing context.
We generate random trees as follows: We randomly generate p points from Unif[0, 1] and
form a binary tree structure among them using hierarchical clustering. We let K = |B*| be
the number of true groups by cutting the tree into K disjoint subtrees with the R function
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Figure 4: Plots of the achieved FSR and average power on a 3-regular tree (n = 100, p = 243,
B =0.6, p=0.2, 0 =0.6) and p-values generated by the debiasing procedure.

cutree. The nodes that are the roots of the subtrees form B*. All non-leaf nodes in B* and
their non-leaf descendants are null nodes, and we generate their p-values independently from
Unif ([0, 1]). All ancestors of B* are non-null nodes, with p-values we generate independently
from Beta(1,60). For each pair of p and K, the set of p-values are simulated independently
for 100 repetitions as described above. We calculate FSP and TPP based on the aggregation
of leaves that results and average over the 100 values to estimate FSR and the mean power.

The left two panels of Figure [5/show how FSR and average power change with K when p
is fixed at 1000. We can see that both methods control FSR under the target a’s. In terms
of power, when a = 0.1, the LG method enjoys slightly higher power. For larger o, however,
the average power achieved by our HAT method is higher; the gap in power enlarges as K
increases. When K is large with the tree fixed, meaning that the B* nodes are at deeper
levels, LG’s power drops at a faster rate than ours. Indeed, for these o values, our method
shows a substantial advantage when we have a deep tree and the non-null nodes appear at
deeper levels of the tree.

The right three panels of Figure 5| show how achieved FSR and average power change
with « in the setting where p = 1000, K = 500. We observe again that HAT achieves higher
power than LG when « is above 0.1. From the left panel, we see that both methods are
conservative in that the achieved FSR is lower than the target level a;, but as evident from
the right-most panel, HAT showcases a better tradeoff between FSR and the mean power.

6 Data examples

6.1 Application to stocks data

The North American Industry Classification System (NAICS; (Compustat Industrial - An-
nual Data| 2015-2019))) arranges companies in a hierarchy of sectors, subsectors, industry
groups, industries, and national industries. This tree structure provides a principled and
interpretable way of organizing a large number of companies, and it is natural to ask in
what way an attribute that one can measure across individual companies may be related to
this multi-level classification system. One might expect companies that are similar to each
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Figure b5: Plots of achieved FSR and average power by our algorithm (HAT) and Lynch and Guo’s
algorithm (LG), on a binary tree with p = 1000 leaves and independent p-values. For the right three
panels, K = 500.

other according to NAICS to have similar values of the attribute while those that are in very
different parts of the tree to have different values of the attribute. Tree-based aggregation
provides a convenient approach to investigating such a question: it identifies branches of
the tree whose companies could be thought of as having the same value of the attribute (in
population). Doing so may provide an analyst with a simple summary of the association
between the attribute and the tree structure.

To demonstrate, we consider the average daily volatility of n = 2538 companies’ stock
price computed over a five-year period, using data from the US Stock Database (©)2021
Center for Research in Security Prices (CRSP), The University of Chicago Booth School of
Business (CRSP Stocks||2015-2019)). (Appendixprovides details on preparation of this data
set.) It is plausible to imagine that companies in a shared branch of the NAICS tree may
have similar volatility; however, there is no reason to think that there is a single aggregation
level (such as industry group) that would apply across all companies. Aggregation provided
by HAT is well suited for this goal. The tree is non-binary, with more than 20% of nodes
having at least 5 children and 10 nodes having more than 30 children, thus, as described in
Section [2.3] using an FDR controlling method would not be appropriate.

To apply HAT, we first compute a p-value at every interior node of the tree by performing
an F-test (Equation 8.4 of Seber & Lee (2012))), for testing equality of the log-volatilities
of all stocks within the subtree defined by this node. We further apply Simes’ procedure to
the p-values. We use HAT with the reshaped thresholds and o = 0.05. The aggregated tree
that results is shown in Figure |§| (Table [1] in Appendix [F| provides an alternate view). The
aggregation represents a substantial simplification of the information contained in this data
set. To see this, consider that the full tree contains 702 interior nodes and 2538 leaves (which
is too large to be clearly displayed in a plot). By contrast, the HAT aggregation delivers
to us a great simplification: a tree with only 40 leaves. Each leaf represents an aggregated
cluster of companies whose volatility is being deemed homogenous. Looking at the leaves of
this aggregation tree provides a multi-level summary of the main trends of volatility across
relevant sectors: 21 of the leaves are at the sector level, 8 at the subsector level, 10 at the
industry group level, and one is at the company level. Two sectors are split into further
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Figure 6: The aggregation tree that results from applying HAT to aggregate n = 2538 companies
based on their volatilities, using the NAICS, a hierarchical categorization of companies based on
their sectors. Leaves of this tree represent aggregated clusters (the number of companies within
each cluster is given in parentheses after the name of the cluster).

clusters while other sectors remain undivided.

In looking at such a tree, one might be concerned that some of these 40 leaves actu-
ally should have been aggregated together, i.e. their companies appeared to have different
volatilities from each other but in truth they are the same. The fact that HAT controls FSR
tells us that we would only expect at most 39a = 2 false splits like this. By contrast, if
we had used a procedure that controlled the FDR (rather than the FSR), we could end up
with many more clusters that should not have been separated from each other. The reason,
as described in Section [2.3] is that the FDR does not take into account the effect that a
falsely rejected node has on the clustering result. This point is underscored by a numerical
experiment based on the NAICS tree given in Appendix [F]

6.2 Application to New York City (NYC) taxi data

We apply our method of aggregating features to the NYC Yellow Taxi Trip dataEL restricting
attention to taxi trips made in December 2013. After cleaning the data, we have 13.5 million
trips made by n = 32704 taxi drivers. We take the total fare each taxi driver earned as the
response variable and take the number of rides starting from each of p = 194 neighborhood
tabulation areas (NYC Planning 2020) as the features. We form a tree with NTAs as

Zavailable at [data.cityofnewyork.us)
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leaves, by connecting the root to five nodes, representing the boroughs of NYC. Within
each borough, we apply hierarchical clustering to the NTAs based on their geographical
coordinates. This results in a tree with depth 10. The availability of taxis is not uniformly
distributed across the city (see Figure [J] of Section [G] of the appendix) and X is a highly
sparse matrix.

To aggregate neighborhood features, we perform the following procedure: with data
X and y, as well as the given tree structure, we first fit the penalized regression to
construct an initial estimate of the coefficients 8. The estimation is achieved by using the
rare package with cross-validation across for choosing the regularization parameters v and
A across a grid of 5 x 50 values. Next, we carry out the debiasing step by solving the
optimization problem , with the R package quadprog. Note that the noise level o is
unknown, which we estimate by using the scaled lasso (Sun & Zhang| (2012); R package
scalreg). Moreover, the positive constant 7 in is set to one. After constructing the
p-values for each non-leaf node of the tree, we run HAT with a = 0.05.

6.2.1 Aggregation results

Our procedure results in 45 aggregated clusters, with the boroughs of Bronx and Staten
Island remaining undivided. Brooklyn, Queens, and Manhattan are divided into 7, 14, and
22 subgroups, respectively. The left panel of Figure [7] shows the coefficients from performing
least squares on these 45 aggregated features. Trips starting from Manhattan and parts of
Queens, especially the airports, have higher coefficient values. Within Manhattan, Hell’s
kitchen, Times Square, and Penn Station have higher coefficient values. In Section of
the appendix we show, by taking subsamples of different sizes, that reducing sample size
leads to fewer rejections and therefore fewer aggregated groups.

6.2.2 Comparing prediction performance

To assess prediction performance achieved by our aggregated features, we hold out a random
sample of 20% of the drivers as the test set, and train with the remaining 80%. We compare
to the following models (each tuned via 10-fold cross validation): (i) Lasso with the original
variables (L1); (ii) Lasso with only dense features (L1-dense): We drop features with < 0.5%
nonzeros then fit a lasso on the remaining 99 features; (iii) Least squares with clusters
aggregated to the five boroughs (1s-boro); (iv) Lasso with clusters aggregated at optimized
height (L1-agg-h), and we tune (over a grid of 5 values) an extra parameter h that determines
the aggregation height in the tree; (v) Rare regression proposed by [Yan & Bien| (2020)
(Rare). We compute the mean squared prediction error (MSPE) of each method on the
test set (see right panel of Figure [7). The L1 and L1-dense methods are not aggregation-
related and achieve similar performance. Both 1s-boro and Li1-agg-h achieve some level
of aggregation but the aggregations are determined at certain heights. Ll-agg-h has an
additional tuning parameter and is therefore advantageous. Lastly, both Rare and our
method achieve aggregation in a flexible way, and the prediction results are comparable.
Rare selects 43 aggregation clusters while our method achieves 45 groups in total. In Section
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Figure 7: Left: Map colored with log-transformed least square coefficients from regressing fare
on features from HAT’s aggregation of neighborhoods of New York City. There are 45 aggregated
clusters out of the 194 neighborhoods. Darker colors correspond to higher fitted coefficients. Right:
Prediction performance of the 6 methods with the test data set.

of the appendix, we perform an additional experiment with a synthetic response (but with
X and T from this data set) to measure the FSR and power.

7 Conclusion

In many application domains, ranging from business and e-commerce, to computer vision and
image processing, biology and ecology, the data measurements are naturally associated with
the leaves of a tree which represents the data structure. Motivated by these applications,
in this work we studied the problem of splitting the measurements into non-overlapping
subgroups which can be expressed as a combination of branches of the tree. The subgroups
ideally express the leaves that should be aggregated together, and perceived as single entities.
We formulate the task of tree-based aggregation/splitting as a multiple testing problem and
introduced a novel metric called false split rate which corresponds to the fraction of splits
made that were unnecessary. In addition, we proposed a procedure call HAT (and a few
variants of it) to return a splitting of leaves, which is guaranteed to control the false split
rate under the target level. In this paper we have thought of the tree as given. However,
in some cases one might be interested in learning the tree from the same data that would
be used in inference. In such a case, one would need to make use of post-selection inference
techniques to account for the data-driven nature of the hypotheses.

It is worth noting some of the salient distinctions of the setup considered in this paper with
classical hierarchical clustering. Firstly, in hierarchical clustering the tree is cut at a fixed
level, while our framework allows for more flexible summarization of the tree, with different
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branches cut at different depths. That is, our framework yields multi-scale resolution of the
data. Secondly, clustering is often formulated as an unsupervised problem. In contrast, our
framework can be perceived as a supervised clustering problem where labeled data are used
to group the leaves by combining branches of the tree.
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A  Proof of main theorems

A.1 Proof of Theorem [3.1]
Recall the definition of the quantities V and R:

V= 3 (degr(u) — degr, (1) — |80 7.

ueF

R := max Z (degT(u) —degr,, (u)) -1,1

u€7;ej

Note that R > 0 because Tr; C T (recall that 7. does not include any leaves of T as
there is no hypothesis associated to those nodes.) As we showed in Lemma , the false
split rate can be written in terms of V and R:

v
FSR=E | ——]|.
B

For node a € B* let F, = F N 7T,, and define the quantity V, as follows:

V., — > uer, (degT(u) —degr, (u)) -1, it F, #0 (20)
0 otherwise
By definition V, > 0. Indeed, from the proof of Lemma 2.1 V; is the number of false splits
in the set £,. Also it is easy to verify that V =3 .. V..
We first show that

E <K) <ALl e (21)



Denote by S(7,) the set of all nonempty subtrees of T, rooted at node a. We also let V,,(77)
be the number of false splits in £, when the rejection subtree is 77, i.e.,

Va(T') = (degr(u) — degr(u)) — 1.
u€eT’

Here we used that a € B* and therefore any rejection in 7 is a false rejection and so F, = T".
Define R to be the total number of splits when we set p, = 0 for v € 77 and p, = 1 for
u € TN\T.

Note that RTG o = R since for u € T, ,e; the p-value p, is already below the threshold at
node v and for u € 7,\Tarej, Pu is already above the threshold at that node u. Therefore,
writing Py = {py : u ¢ Ta}, we have

E [%R(VG > 0)‘73%} = ) E {V“ST)JL(E@- =7 P%l]
T'eS(Ta) Ry
= Z V;}%(T) . ]P)(,]:z,rej = T/) ) (22>
Tes(Ty) T

where S(7,) denotes the set of all nonempty subtrees of 7, rooted at node a, and we have
used the fact that V,(77) is non-random and Ry is constant conditional on Py

Define R*(r) := > ,cra 1{pu < (1)} (degs(u)—1). Observe that R4(r}) is the additional
number of splits made by the rejected nodes in depth d, going from depth d — 1 to depth
d, because the hypotheses H? in depth d are tested at level o, (r%). Using our notation this
can be written as the identity R'¢ = R¥(=1) 4 Rd(r*).

We argue that r% = R(r};). To see why, note that by definition

% = max {O <r< Z degr(u) — [T : r< Rd(r)} .
ueTd

Hence, r5; < R4(r%) and 75 + 1 > R%(r; + 1). Since R%(r) is an integer valued function, the

fact that R (rj+ 1) < rj+ 1 implies R4(r +1) < r5. Thus, 7 < RY(ry) < RY(r5+1) <713,
which gives r% = R%(r3), and consequently

R" = RUD (23)

We next continue by upper bounding the right hand side of . Based on our testing
methodology, described in Algorithm [I] a typical node u at depth d is tested at level oy, (r7)
given by . We have

B 1 04|,C |(R1:(d—1)_|_r*)
W(r) =1 t(u) € T2} — * d
eulra) = Hparent() € 7o} X 0= T gy + alCal (B0 1 1)

1 ol LR
{parent(u) € Ty} A p(1 — 35)hay + | Ly | RV
1
= 1{parent(u) € T2} — - &4

rej Ap(l—ﬁ)—i—’yu’
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with

Yu = | Ly RY.

hdr

Note that o, (r}) is increasing in ~,,.

Lemma A.1. Suppose that uw € T, and the node a is at level d,. Then, on the event
{Tarei = T'} we have

W < 9
TS g (25)

The proof of Lemma [A.1 m 1| follows readily from the fact that on the event {7, ,e; = 7'}, we
have R < Ry, Also, since u € T, we have |£,| < |L,].

We next provide an upper bound for the thresholds o, () for all nodes u € T, sej, Which
will be useful in controlling FSR. For positive integer m, define

- (6%
Yam = ;{——‘LLATH. (26>
d,r

Using Lemma and the fact a,(r}) is increasing in +,, we obtain that on the event
{R7 = m}, the following holds:

1 Ya,m
" Ap(l_é)"*_'?a,m .

ay(ry) < a (27)

We are now ready to upper bound the right hand side of .

Proposition A.2. Let a € B* and assume that the null p-values are mutually indepen-
dent, and independent from the non-null p-values. For our testing procedure described in
Algorithm [1], the following holds true:

el Y T b= Tips)| <a

L,
Sy (28)
T'eS(Ta)

Ry p

The proof of Proposition uses the equality and the structural properties of the
tree T tree. Its proof is deferred to Section |C|of the appendix. The bound now follows
readily by applying iterative expectation to (28)).

Proof of Theorem[3.1. By using the bound and noting that V =" V., we have

aeB*

B V. 1 V,1(V, > 0) |£|
FSRZE[R\/JG;E{—} Z = .

aEB* aEeB*

The result follows. O
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A.2 Proof of Theorem [3.2

Theorem can be proved by following similar lines of the proof of Theorem and so we
omit a detailed proof here. The main difference is that in this case, the quantity &, ,, should
be defined as

~ 1 i/am
Qgm = — . ~ — &0 (29)
Ap(l— 32) + Fam

Also, the bound is updated as
Qum = P( € T7%g) < (G + £9) 1 PH0-depb@) 1 (30)

a,rej

and therefore similar to we have

1 A(Gam + €0) 1 5
umg_ po - a,m » 31
Z q ’ A 1 _ A(aa7m+€0) Ap(l o é)ry7 ( )

which is the same bound as in , albeit via a slightly different derivation and choice of
threshold levels a,(r). The rest of the proof would be identical to the proof of Theorem [3.1]
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A.3 Proof of Theorem [3.3

Let a € B*, we have

Va Va(T") /
E[E.n{vam}]_xa > 7 T =T}
T'eS(Ta)

>

<a-5) Y E ['7};' LT = T’}]

T'eS(Ta)

Z Z P{Trej 7"}}

T'€S(Ta) ueT’

R

u€Ta T'€S(Ta)weT’

1 ﬂ{ue a,rej}
o

_ 1 (1 {pu < au(ry)}
_(A——)ZE_ i }

(A— %) Z]E -]l{pu < QU(TZ)}:|

Rl:(d—l) + r;kl

u€T,
i ol LulBa(RMO D grg) }
= A — Rl:(d—l) + le
- alLu|Ba(RHI—D 4r7) }:
A — RUE(d=1) 4 p* ’

where the first inequality follows from Lemma [D.T} the second inequality is because R >
RY = RY@=1) 4 % and, in the second-to-last line, we used the definition of threshold
function «,(r}) given by . Also by the theorem assumption p, + €¢ is super-uniform
because

P(pu+€0§t):P( t—z’:‘o) (t—80)+€0—t

Next, we will use the following proposition by Blanchard & Roquain about super-uniform
random variables.

Proposition A.3 (Blanchard & Roquain (2008)). A couple (U, V') of possibly dependent
nonnegative random variables such that U is superuniform, i.e., Vt € [0,1],P(U < t) < t,
satisfy the following inequalities

Ve > 0,E P{U Svcﬁm}} <c,
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if 5(+) is a shape function of the following form

8(o) = [ tavie),
0
where v is an arbitrary probability distribution on (0,00), and V' is arbitrary.

Letting U = p, + &0, V = R¥@D 4+ 1* ‘and ¢ = . olLul we have

(A=) (D-1)’

alLly 1:(d—1)+7.*)
I]_ {p +8 < |£ |Bd(R d
1 uTE0 = T AT ) (Do) 1 alLly|
A-—-)) E P a— <(A-—)
S >t
=
p u€Ta D-1
O‘lﬁal
< ;
p

where the last inequality follows from

Z |['u| < Z Z |£u| = Z |£a| = (D - 1>|£a|'

u€Ty d=2 weTINT,

It is reasonable to use a measure v that puts mass proportional to i only on the values
that its arguments could possibly take. By the design of the tree, we have

REED Ly > (d—1)0—1)+6—1=d(6—1),

since at least one node has to be rejected on each depth from 1 to d — 1 for the algorithm to
carry on to depth d, and

RMTD 4pn < Z degy(u) — 1.
ueT -1
Therefore,
Rl:(d—l) 4 T;kl

2yerd-1degr(u)=1 1
k=d(5—1) k

The rest of the proof is identical to the proof of Theorem [3.1]

Bd(Rl:(dfl) + 7”;) —
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B Proof of technical lemmas

B.1 Proof of Lemma [2.1]

We will prove the lemma by showing that

max Z (degy(u) — degy, (u)) — 1,15 =M — 1. (33)

ueﬁej

and

Z (degT(u) — degr, (u)) —|B*NF| = Z <Z 1{Cr N @» %+ @}) - K, (34)

ueF i=1 \j=1
The proof is based on induction on the depth of the tree D.
We first prove the induction basis when D = 2. In this case, T consists in one root node

up and its children as leaves. We therefore have only one hypothesis, 7-[20.

o If H) fails to berejected, then F = Tj = 0, M = 1. Both left hand side and right hand
side of equation are 0. For equation , the left hand side is clearly 0, and the

right hand side is also 0 since 31, (Zj\il 1{C; N éj # @}) ~K=CF 1H-K=0.

o If HY is rejected, we will have M = degy(ug) and Tr; = {uo}. Equation holds
because ZueTrej (degr(u) — degy,  (u)) — 1 = degr(ug) — degy,  (ug) —1 = M — 1 since
degTer (ug) = 0. For equation (34)), we consider two scenarios:

— If MY is true, then K = |[B*| = 1 and F = Ty = {uo}. So the left hand
side of becomes degs(up) —1 = M — 1, and the right hand side becomes
M — K = M — 1, hence the equality holds.

— Otherwise H) is false and K = |B*| = degy(ug) = M, and F = . So the left
hand side of becomes 0, and the right hand side becomes M — K = 0, hence
the equality holds.

Next we proceed by proving the induction step for equation . Let D > 2 be an
arbitrary integer. We assume for a tree with maximum depth < D — 1, identity holds.
We want to show that it holds for a tree with maximum depth D.

Clearly, this equation holds when the root node is not rejected, i.e., Trej = 0 and M = 1.
We henceforth discuss the case that the root node is rejected. In this case, equation (33
can be simplified as

Z (degr(u) — degr. (u)) = M.

ueﬂcj

For a tree 7 with maximum depth D, if we remove the root node, we will be left with
a forest where each tree is of maximum depth less than D. Within each tree, we have that
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identity holds by the induction hypothesis. We refer to the set of trees in the forest as
Sroot- Furthermore, we use My, T' € S0t for the number of achieved groups in each such
tree. Obviously,

> My =M. (35)

Tlesroot
Therefore,
> (degy(u) — degy (u))
UETrej

= Z (degr(u) — degr, (u)) + degy(root) — degy.  (root)

uETrej\root

= Z Z (degr(u) — degr,  (u)) + degy(root) — degy. (root)
T'€Sroot UE?;cj N7’

= Z Z (degr(u) — degr,  (u)) + degr(root) — degy. (root)
T/esroot ueﬂejﬂTl

T’ﬁTreﬂé@
= Z M7+ + degy(root) — degy._ (root)
T’esroot

T’ﬂ'rrej;ﬁ@
o T

T/esroot Tlesroot

T’ﬂﬂeﬂﬁm T’ﬁ'Trej:@
:M’

where the fourth equality is by the induction hypothesis; the fifth equality holds because
there are degr(root) — degTrej (root) subtrees T’ € Sioor such that 7' N Trej = 0, and their
M7 = 1; the last equality follows from (35)). This proves the induction step and hence
completes the proof of identity .

We next proceed to prove . Suppose that the induction hypothesis holds for trees
with depth at most D — 1. We want to prove it for trees of depth D. Note that this identity
trivially holds when the root is not rejected, and therefore we focus on the case where the
root is rejected. There are two scenarios: (1) the root is a true rejection, or (2) the root is
a false rejection.

We first assume the root is a true rejection. Then we have

K= Y Kr, (36)

T"€Sroot

where K7 > 1 is defined as the number of true groups in each 7' € S;o0t-
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Then the left hand side of becomes

> (degr(u) - degy () — BN F

ueEF

= S [ Y degr(u) —degy (u) — 1B NF ﬂT’|>

T'ESroot \UEFNT'

=S Y | Y Hoend #0| - Kr

T'E€Sroot | 1<i<Kpr \1<j<Mypy

= > (Z ﬂ{CZ‘ﬂaj#@})—K,

1<i<K \1<j<M

where the first equality holds because T € S.oo are disjoint from each other and the root
is not in B* N F; the second equality follows from the induction hypothesis, and the last

equality follows from and ([36)).
For the case where the root is a false rejection, we have K = 1, B* = {root} and any
rejection is a false rejection (F = Tr). We write

3 (degT(u) - dengj(u)> —1BnF =Y (degT(u) — degy, (u)) 1=M-1,

ueF uE'Trej

where in the last step we used identity . On the other hand, in this case there is only

one true group (K = 1) which consists of all leaves. Therefore, any returned group @- will
intersect with it and we get

K [ M
> (ZIL{CQ‘HC]-#@}) —1=M-1.
i=1 \j=1

Comparing the previous two equations implies that identity holds for the tree 7. This
completes the induction step and hence proves identity .

B.2 Proof of Lemma 2.2

The proof of Lemma follows from Lemma and that deg,(u) = 2, for all non-leaf
nodes u € T. It suffices to show

> (degr(u) — degy (w) — BN F| = | F], (37)

ueF

and
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maxc {37 (degr(w) — degy (1) — 1,1 p = [T, (39)

’U,E'Trej

To prove equation , note that if a node is falsely rejected all of its rejected children
are also false rejections. Therefore, » - deg. . (u) counts the total number of edges where
both nodes of it are in F. Hence,

Z (degT(u) —degr,, (u)) —|B* N F]

ueF
=2|F| — [{u:u € F,parent(u) € F}|— |B* N F]
=2|F| — [{u:u € F,parent(u) € F}|—|{u:u € F,parent(u) ¢ F}|
= 2|F[ = |F]
= |7l.
Equation holds trivially when |7;e| = 0. When |7.| > 0, the root node is rejected,

and we write

Z (degr(u) — degy, (u)) — 1

ueﬁej
= 2|Teej| — Z degr (u) —1
UETrej

= 2|Tej| = (| Tl = 1) = 1

= |Teil.
This completes the proof.
B.3 Proof of Lemma [4.1]
We use the shorthand ¢, := |£,| for a node u. Define the random vector w € R2 with
elements w, = 2/ *7, and the fixed unit vector r € R with elements r, = (£,/€,)"/2. We
have )

rlw= > (L)) = G g =, (39)
u€&child(a) u€child(a)

from which it follows that

S G-il = Y PG = Y (e w)? = (T, —rr
u€child(a) u€child(a) u€child(a)

The random vector w is multivariate normal with E[w,] = 0420, , where 0, = ﬁ > icr, 0i

is the average of parameters on the leave nodes £,. In addition, Cov(w) = 0*I,. Taking
the expectation of establishes that

E[(rr " w),] = Elfr(r w)] = (6,/6)"*(Elg.] = £%8..
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Under H,, we have 6, = 6, and thus

(IAa - r’rT)w ~N (0702<1Aa - TTT)) )

where we use the fact that ||r||s = 1 and so ITa, —r7 "

that

is a projection matrix. This establishes
Z gu(gu - ga)2 ~ 02X2Aa—1
u€child(a)

under H,, meaning that p, is uniform. Now consider some node b # a. If £, N L, = (), then
pa and p, are clearly independent (because they depend only on y, and y.,, respectively).
Thus, it remains to consider the case that £, C L (i.e., a is a descendant of b). There must
exist v € child(b) with £, C £, C L. From , oo = f (Yo, yﬁb\ﬁv). Since (L,\L,)NL, = 0,
we know that p, is independent of y,,\, . It therefore remains to show that p, is also
independent of 7,. To do so, observe that

o= yit >, u=0" rTw+ >y (40)
i€Lq i€Ly\Lq 1€Ly\Laq
Thus,
Cov ([Ia, — rr’w,5,) = ¢, 'Cov ((Ia, — rr'|w,(,3,)
= (20 Cov ([Ia, — rrTw, 7 w)
= 0263/2&71[IAE —rr'r

=0,

where the first equality follows from observing that the second term in (40 is independent
of w (which depends only on y, ) and the second inequality uses that Cov(w) = 0?1I4,.
This establishes that p, is independent of py.

B.4 Proof of Proposition |4.2

Note that for any node u, we have ||G,||2 = 1 since G, is a projection matrix. Also, by
using (Guo et al[2019, Lemma 2) (which itself follows from (Cai et al. 2019, Lemma 1)), we
have

1G> < co(b £b)V2, (41)
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for some constant ¢y > 0. This inequality follows by analyzing the optimization which

is used to define the direction b. Therefore, for any node u, we obtain

~ AT o~
IG.B]2 + [Gull2 _ co(b Xb)'2 +1

Var (Qd)  \/Var(Q)

T ~~

co(b Tb)V2 41

IN

Define z := &~ (1 — %) and

2
Co n 1Y\ splogp
n — C - - s
" "\ 25 7] n

(42)

(43)

with ¢; given in . Under the null hypothesis ﬁoﬂ (or equivalently #Hg.,), we have for all

t €10,1],
t Ad
P(p, <t) =P [ &1 - 5) < %
VarT(Qu)
_p [, |9
Var.(Q.)
e
Var,(Q.)
<P 37—’7n§A|Z—"‘A P s —F————
Var,(Q,) Var,(Qu)

A

(44)

By using the bias bound , together with and definition of 7, given by , we have

A
Var, (Q,)

P < < 2pe= "

)

34

(45)



for all nodes u. In addition,

Zy
P o s o2l
Var,(Q.,)
Z, Zy

NE- T 5/ Var(Qd)

<P|(z—n)1-2) < |Z—|A +P(’§—1‘25>
Var(Qd) ’

:2<I>(€x—x+nn—877n)+ﬂ”(‘g—1‘28) (46)
o
Combining , and we obtain
P(p, <t)<2®(ex —x+mn, —en,) +P ()z — 1‘ > 5) + 2pe~ 2",
o

Note that the right-hand side of the above equation does not depend on the node u. In other
words, it is a uniform bound for all nodes. Under the condition sy(logp)//n — 0, we have
N, — 0 as n — oco. Therefore, for any fixed €y > 0, by choosing € > 0 small enough and
no = no(e) large enough we can ensure that for all n > ng

P(p, <t) <20(—x)+e9=2(1 —P(x)) +e9=t+¢p,

for all nodes wu.
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C Proof of Proposition

For depth d we define the quantities Lq := R*V4r% and Uy := p—1— (3, 7o degr(w) — [T —73).

For node a € B* with depth(a) = d, we write

s %) e = Tes)

T'eS(Ta) T

mgl

DD ~1 P(To = T'|P5.)

ue7;7”657; awer T

(@) 1 T .
SIS I D ‘Pm,rej = TP5)
Tes(Ta) T
1 (&
-3) Tows = T'P5)
Tesiryuer It
1
A

)3 S Y Ly TP - m)

u€Ta m=Lg T'€S(Ta)ueT’ T

A—— )y Z > P(Tawi =T'Pr)L(Ry = mueT)

uETq m=Lyg T/GS(%

1 Lo A
=(A-3) 2 Z PR g =mu € Tou|Pr) - )

UETq m=Lg

Here (a) follows from Lemma [D.2} and (b) holds since for 77 € S(7,), the number of total
rejections R satisfies )
Lo < Ry <Uq.

The lower bound holds trivially since 7' € S(7,) and depth(a) = d. The number of splits
made by algorithm up to level d is R¥ = R“(D 4 1% by using Equation (23). For the
upper bound, note that one can split the p leaves at most p — 1 times. Now focusing on
nodes in depth d, rejecting a node u results in deg,(u) — 1 additional splits. So the nodes in
depth d can make up to Y., . degy(u) — [T additional splits, while the algorithm makes
ry additional splits as we discussed in Equation . So the difference between these two
quantities, Y, ra degy(u) — |T% — 1%, is the number of potential splits that the testing rule
has missed while testing nodes at depth d. This argument implies that the total number of
splits can go up to Ug =p — 1 — (3 ca degp(u) — | T4 — 15).
Now by using bound (27)), on the event { R+ = m} we have ay, (1) < @a,nm. Define Tahve; a8

the rejection subtree as if the test levels o, (1) are replaced by &, . Therefore 7 e; € 7;’%,
which implies

]P)<R7:1,rej = m7 u e 7:1,er|7)'§;) S ]P)(Rn,rej = m7 u e 7::,?63’7)%)
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Combining this inequality with and taking the expectation gives

V(T , 1 Ve
E Z R . P(%,rej =T "P%) < (A - Z) Z Z EP<R7:L,@J‘ =m,u € at?ej)’
Tes(Ta) T we€T, m=Lg
(48)
Focusing on the innermost summation, we have
Uy 1 ~
Z _]P)(R,]; rej = m’ u e mej)
m=Lg m o 7
Us 4 i N i
= Z E [P(Rn,rej Z m,u S a,rcj) - ]P)(R'E,rej Z m+ 17U S mcj)]
m:Ld
Uyg 1 _ Ug+1 1 _ ,
= Z _P(Rn,rej Z m7u € 7;,1‘6‘1) - Z / ]P)(Rn,rej Z ml’ (AS 7;7;6_]_1)
m m —1
m=Lg m’:Ld+1
S L, = moue Ty - — B, > mou e T
W m 771,reJ — ? a,rej m — 1 771,reJ — ? a,rej
1 ~ 1 -
+ _]P)(R,]:l,rej Z Ld’ u E 7;%2]) - _]P)(Rn,rej Z Ud + 17 u E 7;(]I‘Céj)
Ly ’ Uy ’
T 1 B
< Z EP(RWMW’ > m,u € a,rej) - mP(Rfmej > m,u € a,rej )
m:Ld—f—l
1 L
—P(ue T, %
+ Ly (u 7:1,rej)
Jd 1 N m—1 1 Lq
< Z E]P) <R7:z,rcj > m,u € mej\n,rej > + L_dP(u S 7:1,rej)
m:Ld—i-l
L 1 L
S Z EP (u € mej\mej ) + L_dP<u S 7:1,rej) ’ (49)
m:Ld+l

. . . m—1 m . .. . .
where in the last equality we used the observation 7. ;" C 7T, since qu,,, is increasing in
m.

For exposition purposes, we define the shorthand ¢,., = P(u € T%,;) for u € 7, and

a,rej
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m > 1. Then, from the chain of inequalities in (49) we get

d
1 » m
Z EP(R%,I‘QJ m u E 7; I‘e_])

m:Ld
Uy 1 1
m—1 L
< Z EP (u € mej\n rej ) + L P(“ S 7:”%)
m=Lg+1
Ug
1 1
< - - — - Yu
>~ Z m(QU,m Qu,m 1) + qu ,La
m:Ld+1
Uy Ug—1
1 1
oy o m+1
Ug—1
1 1 1
w — — = u,m 50
vt 2 (i) 2

By deploying in the bound , we get

Va 7’/ .
E E ﬁg ) . P(,];,rej = T/|P7'a>
Tes(Ta) T

S(A—%)Z ( undJrUi:l (__m—ﬂ) qu,m>

u€ET,
. Ug—1
u€7} m=Lg m + u€7}

Our next step is to upper bound Zuen qu,m Which is the subject of the following lemma.

Lemma C.1. For any integer m > 1 we have

ZQUm_’Ya—m_v

u€T, A)
where Y, m s given by .

The proof of Lemma is deferred to Section [C.1]
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By virtue of Lemma and , we have

E V‘}é:) P(Tawej = T'|PE) | < % (@% va t Uil m)
TEeS(Ta) m=Ls"

Ug—1

- (;Lii' (1 + m;j ﬁ)
U,
-sel (i 3 4
L

_ a|p | (52)

C.1 Proof of Lemma

Since a € B*, any node u € 7T, is a true null and hence it has a super uniform p-value, i.e.
for any = € [0, 1] we have P(p, < z) < z. In addition, by our assumption the null p-values
are independent and if a node w is rejected so are the nodes on the path from node a to it.
Therefore,

o = Pl € Tih) < G- (53

Here we used the fact that the rejection thresholds in 7.7 are set to g m-
Also, since the node degrees in T are at most A, the number of nodes in subtree 7, that
are depth d of the tree T is at most A¢-4ePth(@) We therefore have

D

Z Gu,m S Z Ad—depth(a)dg;septh(a)-&-l

u€Ta d—depth( )

ZAdld

B 1 Adgm
Al Adym

=Ty (54

which completes the proof.

D Some useful lemmas

Lemma D.1. Consider a tree T with maximum degree . Denote by L the set of leaf nodes
in T. We then have A— DT 41
o) < BT
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where |T| denotes the number of nodes in T .

Proof. Recall that the degree of a node u is the number of its children in the tree. The leaves
are of zero degree and the other nodes are of maximum degree A. Therefore,

(1T =)A= 3 degr(u) = [T] - 1.

u€eT

By rearranging the terms we get

p<(A—1)-|T|+1
- A '
O

Lemma D.2. Consider a tree T with mazimum degree A. For T', a subtree of T, define

V(T') = ) (degy(u) — degr(u)) — 1.

ueT’

We then have the following bound on V(T"):

2 _ . !
vy < 8 ”Am“—ls (A—%) T

where |T'| denotes the number of nodes in T'.
Proof. If node u € T" is not a leaf of T, we have degs (u) > 1 and so
degy(u) — degr(u) < degr(u) —1 <A —-1.
If u e 7" is aleaf of 77, we have
degr(u) — degr (u) = degr(u) < A.
We therefore have

VIT) = 37 (degg(u) — degr(u) — 1
ueT’
<[Lrl- A+ (T = Lr)(A-1) -1
=[T'l-(A=1)+[Lr| -1

2 _ X !
< (A=D1 [T'[+1 )
- A
<(a-L)m (1)
— A )
where the second inequality follows from Lemma [D.1] O
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E Data generating process for regression simulation

We first form a balanced 3-regular tree with p = 243 leaves. We express the tree by a binary
matrix A € {0, 1}?*!7] with rows corresponding to features and columns corresponding to
nodes. Each entry A;, = 1 if node u is an ancestor of leaf j or if v = j, and A;, = 0
otherwise. For a given K, we cut the tree into K subtrees. The roots of the subtrees form
B*. We want to set the coefficients corresponding to the leaves within each subtree to the
same value. To achieve this, we generate a vector of length K, denoted as 0 , with the first
(1 — B)K elements set to 0; the other BK elements of of 0 are 1ndependently drawn from

N(0,0.5%). Then we set 8" = = A0 , where Ap- is matrix A restricted to columns that
correspond to the nodes in B*. Note that the columns of Ag- have disjoint supports as no
two nodes in B* can share a same descendant. Parameter § controls the sparsity of 5*, and
therefore sparsity of 6*. -

To simulate a setting with rare feature, we consider a design matrix X := X ©W € R™*?
from a Bernoulli-Gaussian distribution. The entries X;; are generated i.i.d from standard
normal distribution. The entries W;; are drawn ii.d from Bernoulli(p). The Bernoulli
parameter p determines the level of rareness in the design matrix. Also ® represents the

entry-wise product of two matrices. Finally, the high-dimensional linear model is generated
by

y=X0"4+¢e, e~N(0,0I,), (55)
||X9*||2

where 0 = ¢ We fix the parameters as n = 100,p = 243,58 = 0.6,p = 0.2,0 = 0.6,
and vary K from 21 to 93.

F More information about the stocks example

In this appendix, we provide further information about the NAICS stocks example.

F.1 Determination of a stock’s average daily volatility

We use daily stock price data from January 1, 2015 to December 31, 2019E] (CRSP Stocks
2015-2019)). Specifically, we wish to aggregate stocks in a similar sector unless their volatility
levels are significantly different. We use several criteria for screening stocks of interest: We
only keep common stocks that are publicly traded throughout this entire period; we also
avoid penny stocks that have prices under $0.01 per share. After pre-screening, we have
n = 2538 stocks in total. Following Parkinson| (1980) and Martens & van Dijk (2007), we
use the high-low range estimator for the daily variance v, = 410g( 7 (log(Hy) — log(L;))?, where
H, and L; are day t’s highest and lowest prices, respectively. Finally, for each stock we take
the average of v; throughout the 5-year period and log-transform to reduce skewness.

3derived from the US Stock Database (©2021 Center for Research in Security Prices (CRSP), The Uni-
versity of Chicago Booth School of Business
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F.2 More displays of HAT aggregation results

42



651" 6 UOTJRIPIULIDIU] JIPAI)) 0} POJR[AN] SATIATIOY

191~ ¢ UOTJRIPIULINIU] JIPAI)) A103150dopPUON | SOIYIAIDOY PIje[eY PUR UOTIRIPAUWLIAU] JIPAI))

e 90¢ uorjeIpauLI)U] y1pa1) A1oysoda(]

792~ | ONI TV.LIAVD DA NV.LLVHNYIN SOPIUPA [PDURUL] Y3 PUe SIS, ‘spurg | L P O
cg- 18 SOITAIOY POJR[OY PUR SIOLLIR)) 0OURINSU]

G6°L- 79 SOTTATIOY POJR[OY PUR SIUOUIISOAU] [RIDURUL I}() PUR ‘S)ORIIUO.) AJTPOUITO)) ‘SATIIINIAG

Ge'8- G Sunmjoenuey uornyeredaI pue 1oNPOIJ [eIWLY)) 10

818" s Surmyoenue]y uorjeredar jofio], pue ‘punoduo)) Surues) ‘deog

90°S- 9 SunmjornuUeR SAISOUPY pur ‘3uryeo)) ‘qured

2£°9- 662 SurmjornNUR]\ OUIIPAJN PUR [RITNOORTLIRY ] SurmyornURN (LI

FIL- 9 SuLmORMURN [RITWAT) eIy

16°L- 9 | SuumjornURI SHUSUIR[L] PUR SIO(L] JMOYIUAS PUR [RDYILIY PUR ‘I0(qny] dTOIUAS ‘UISOY]

ST'L- 8¢ SuumornURI\ [RIIWLY) dlseg 11 Sunmyornuey

¥ L- 11 Surmyor ULy 19NPOIJ [RISUIIN JT[[RIDUIUON

G9'L- L1 Suumgornuey $1ONPOLJ IOQqNY PuUR SO1ISR[J

€6°L- 91 SurmyornuRy $1oNpPoIJ [0 PUR WNS[0I10]

162~ ¥ g oy 110ddng poje[oy pue Surjurl g

P18 6T Surmgoenuey roded

GqG'L- 9 SuumgornuR\ 1oNPOIJ POOA

8C'L- 6 SYUAUIYSI[(RISF S[(RIISSR[OUON

80°8- 9 (uonyenystutupy orqnJ 1dedxa) Se0IAIDG 1Y)

98°'L- ¢S SOOIAIOG POO] PUe UOI)RPOWTIOIDY

GL'L- 91T UOTYROIDIY PUR ‘JUOUIUTRIIONUY ‘SITY

9€°L- 154 QOURISISSY [RIDOG PUR dIe)) IR

8€L- [4) SOOIATOG TRUOTIRONPH

[ 16 SOOTAIOG TOTJRIPAWAY PUR JUSMIITRUR] 9)seA\ PU® j10ddng pue dAIjRI)STUITUPY

GG'L- L SOOIAIDG [ROIUYDA], PUR ‘OYNUSIDG ‘[RUOISSIJOI]

Vel 0g Sursear] pue [RIUNY] puR 91RISH [BAN]
G'L- 19¢ UOIRULIOJU]
1€'8- € Sursnotprey
18°2- 4 uorjejrodsuedy,
g'L- ¥e II opeI], Trejn

99°L- GL 1 opedy, [rejoy]

¢9'L- ) OpeI], 9TeSI[OYA\

8L~ 9.8 111 Sunmjoenue]y

€0'8- €L [ Surmjyorjnuey

gL~ 44 UOTIONIPSUO))
7’8 8¢ SOV
1¢9- €9 UOTORIIXG Ser) pue [I() pue ‘Surdireng) ‘Sururpy

69°L- g Sununy pue Surysy] ‘A13s0I10] ‘0I)Moudy

wea\ sotredwo)) jo rdqump /Aueduio)) [euoneN Ausupuy | Anysupuy [ dnowy fnsnpuf | 103098Ng 109299

"Pa702]as 24D DY) SADISTD Y] JO U0WDIYLSSDID YY) MOYS [DUOYDN fUISNPU] 0 401995 WoLf Suwn)od vy, *(ouo fijuo s
2427 uaym fiundwiod Yy fo WDU Y} 40) 4IPS YD UL 24D §UUDAW0D fiuvw, moy smoys sarundwoy) fo saqunps/fiunduioy) uwnjod
oY figyvoa-boy uvaws Y3 S UWNJ0D 1SOWIYDLL YT, 24NPI0Ld UN0 fiq PIIVLILLED 24D JDY) S4PSNID (O SMOYS 219D YL, T O[(R],

43



In the main paper, the aggregation tree from applying HATis shown. Here, we include
Table[I], which shows this same aggregation together with the value of the estimated volatility
for each aggregated cluster.

To get a further sense of the results, Figure[§|focuses on the 347 companies in the subsector
“Credit Intermediation and Related Activities”. Each point represents the log-volatility of
a company. The three facets correspond to three industry groups within the subsector and
eight levels on the y-axis correspond to the eight industries nested in the industry groups.
As can be observed in the plot, the industry group “Depository Credit Intermediation” has
significantly lower mean (around -8.27) compared to the other two industry groups in the
subsector (around -7.67 and -7.59 respectively). Therefore, the null hypothesis that the
three industry groups have similar mean volatility is rejected. On the contrary, within each
industry group, there are no noticeable differences among different industries, leading none
of the null hypotheses at the industry group level to be rejected.

F.3 The difference between FSR and FDR control with this tree

We noted in the main paper that had we instead used a procedure that controlled the FDR
(rather than the FSR), we could end up with many more clusters that should not have been
separated from each other.

We emphasize the practical impact that this distinction between FDR and FSR can have
by considering what would happen if we falsely reject a high degree node. In particular,
“Commercial Banking” is the highest degree node in the NAICS tree. It is at the “industry”
level and has 254 companies (banks) as its children. Suppose the volatility within this
industry were effectively constant. A false rejection of this node would wrongly increase the
number of clusters by 253. As an example, suppose B* consists of five randomly chosen nodes
along with the commercial banking node. That is, the true aggregation would be into these
six clusters (in which one of the true clusters consists of all the commercial banks). Imagine
a rejection procedure that gets all the proper rejections to create these six clusters except
that it accidentally rejects the “commercial banking” node. We carried out this scenario
in a simulation (choosing the five other nodes uniformly at random). The FDP is about
4.5% while the FSP is about 80%. Given how different these two values are, we see that
an FSR controlling aggregation policy like HAT will be extremely careful before splitting a
high degree node compared to an FDR controlling aggregation policy.

G NYC taxi data

The availability of taxis is not uniformly distributed across the city (see Figure @, and X
is a highly sparse matrix: Most areas had fewer than 10% of the drivers starting their trips
there during that month, and in fact 109 out of the 194 neighborhoods have seen less than
1% of the drivers.

We study how the aggregation results vary with sample size. To do so, we randomly
subset the original dataset to different sizes, and perform the above-mentioned procedure
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Figure 8: The subsector “Credit Intermediation and Related Activities” consists of 347 companies,
represented as points. These fall into 3 industry groups and 8 industries. Applying HAT rejects the
null hypothesis that the 3 industry groups have the same mean log-volatility, but does not reject this
within each industry group.
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Figure 9: Map of neighborhoods colored with percentage of drivers who have started a trip from
there. Most neighborhoods have fewer than 10% of the drivers starting their trips there in the month
of December 2013.

on each sample. The number of achieved groups for each sample size is shown in Table 2]
As expected, reduced sample sizes leads to fewer rejections and therefore fewer aggregated
groups.

G.1 FSR with synthetic data

To directly evaluate the aggregation recovery performance of HAT, we create a synthetic
response based on the tree structure 7 constructed by the neighborhoods, as well as the
observed trip counts data X. In addition, we take the aggregation result and fitted co-
efficients from Section [6.2.1] as the true aggregation and true vector 8*. We simulate the

Table 2: Achieved number of groups with decaying sample size.
Sample Size ‘ p ‘ Number of Groups

n=32704 | 194 45
n/2 = 16352 | 194 42
n/4 = 8176 | 194 34
n/8 = 4088 | 194 29
n/16 = 2044 | 194 21
n/32 = 1022 | 194 17
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Table 3: Achieved FSR and average power by our algorithm with synthetic data where noise level
18 0 = 15.
Target Level ‘ FSR ‘ Average Power

0.01 0.000 0.546
0.02 0.000 0.539
0.05 0.002 0.580
0.10 0.003 0.598
0.20 0.004 0.615
0.30 0.007 0.624
0.40 0.009 0.633
0.50 0.011 0.643

response 100 times independently according to (55)) with o = 15. We use the same debiased
method to calculate the node-wise p-values and perform our testing procedure with target
FSR levels varying from a = 0.01 to a = 0.3. We compare the aggregation results with the
true aggregation and compute FSR and average power over the 100 runs. The results are
shown in Table [3]
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