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Agglomerative hierarchical clustering is a popular class of methods for understanding the structure of a dataset. The nature of the clustering
depends on the choice of linkage—that is, on how one measures the distance between clusters. In this article we investigate minimax linkage,
a recently introduced but little-studied linkage. Minimax linkage is unique in naturally associating a prototype chosen from the original
dataset with every interior node of the dendrogram. These prototypes can be used to greatly enhance the interpretability of a hierarchical
clustering. Furthermore, we prove that minimax linkage has a number of desirable theoretical properties; for example, minimax-linkage
dendrograms cannot have inversions (unlike centroid linkage) and is robust against certain perturbations of a dataset. We provide an efficient
implementation and illustrate minimax linkage’s strengths as a data analysis and visualization tool on a study of words from encyclopedia
articles and on a dataset of images of human faces.
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1. INTRODUCTION

Suppose that we are given the pairwise dissimilarities be-
tween n objects x1, . . . ,xn. Our focus is on a clustering method
that can make the relationships among objects in the dataset
readily apparent, so that an individual with little statistical
knowledge can understand the structure of the data. In many
applications, these objects may be vectors in R

p, but for our
purposes we require only a matrix of dissimilarities d(xi,xj)

between objects, not the objects themselves.
Hierarchical clustering methods organize data in the form of

trees. Each leaf corresponds to one of the original data points,
xi, and each interior node represents a subset or cluster of
points. Agglomerative hierarchical clustering algorithms build
trees in a bottom-up approach, beginning with n singleton clus-
ters of the form {xi}, and then merging the two closest clusters
at each stage. This merging is repeated until only one cluster
remains. Because at each step two clusters are merged into one
cluster, the algorithm terminates after n − 1 steps. The resulting
binary tree formed by this process is commonly displayed as a
dendrogram by placing each leaf at height 0 and every interior
node (corresponding to a merge) at a height equal to the dis-
tance between the clusters merged, that is, h(G ∪ H) = d(G,H)

(see Figure 1).
An important choice required in agglomerative hierarchical

clustering is how to measure the distance between clusters.
Common, extensively studied distances between clusters (re-
ferred to as “linkages”) include complete, single, average, and
centroid (e.g. Everitt, Landau, and Leese 2001; Hastie, Tibshi-
rani, and Friedman 2009). Given two clusters G and H, these
are defined as follows:

• Complete: dC(G,H) = maxg∈G,h∈H d(g,h)

• Single: dS(G,H) = ming∈G,h∈H d(g,h)

• Average: dA(G,H) = 1
|G||H|

∑
g∈G,h∈H d(g,h)
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• Centroid: dcen(G,H) = d(x̄G, x̄H).

In words, complete linkage uses the largest intercluster dis-
tance, single linkage the minimum intercluster distance, aver-
age linkage the average intercluster distance, and, finally, cen-
troid linkage uses the distance between the centroids of the two
clusters.

From a tree, we can recover n possible clusterings, corre-
sponding to each step of the algorithm. To cut the tree at a given
height h means to return the last clustering before a merging oc-
curs of two clusters more than h apart. Given a complete linkage
tree, cutting at height h gives a clustering in which all points of
a cluster are within h of one another; given a single linkage tree,
it gives a clustering for which no two clusters have points closer
than h from each other.

In a two-page “applications note,” Ao et al. (2005) proposed
a new measure of cluster distance, called minimax linkage, for
the problem of selecting tag single nucleotide polymorphisms
(SNPs). However, beyond a brief empirical study in the con-
text of tag SNP selection, the authors offered little analysis of
the measure’s properties and performance. We believe that their
proposed linkage has great potential as a tool for data anal-
ysis and thus merits closer attention. In this article we show
that minimax linkage shares many of the desirable theoreti-
cal properties of the standard linkages while adding interpre-
tative value. In Section 2, we define minimax linkage and ex-
plain its connection to the set cover problem. We also show
how this method naturally produces “prototype-enhanced” den-
drograms, thereby increasing the ease of interpretation. In Sec-
tion 3, we present several theoretical properties of the linkage.
In Section 4 we review some related work, and in Section 5 we
use two real datasets to demonstrate the appeal of using min-
imax linkage compared with other linkages. In Section 6 we
present an empirical study on both real and simulated datasets.
Finally, in Section 7, we discuss algorithmics, presenting an ef-
ficient algorithm that we have implemented for this problem
and time comparisons to a standard implementation of com-
plete linkage.
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Figure 1. Agglomerative hierarchical clustering produces a se-
quence of clusterings that can be represented as a dendrogram. Each
interior node of the dendrogram corresponds to a merging of two clus-
ters (or points).

2. MINIMAX LINKAGE

We begin with a few definitions that are used throughout the
rest of the article. For any point x and cluster C, define

dmax(x,C) = max
x′∈C

d(x,x′)

as the distance to the farthest point in C from x. Define the
minimax radius of the cluster C as

r(C) = min
x∈C

dmax(x,C); (1)

that is, find the point x ∈ C from which all points in C are as
close as possible (i.e., the point whose farthest point is closest).
We call this minimizing point the prototype for C. Note that a
(closed) ball of radius r(C) centered at the prototype covers all
of C. Finally, define the minimax linkage between two clusters
G and H as

d(G,H) = r(G ∪ H); (2)

that is, we measure the distance between clusters G and H by
the minimax radius of the resulting merged cluster (see Fig-
ure 2). By (2), the height of the interior node corresponding to
cluster C is simply r(C). With each node of the tree, we have
an associated prototype, namely the most central (in the sense
of minimizing dmax) data point of the newly formed cluster.
We mentioned earlier that the cutting of complete and single
linkage trees admits a simple interpretation. The motivation for
minimax linkage is that it also has an appealing interpretation
for cuts.

Property 1. Cutting a minimax linkage tree at height h yields
a clustering, C1, . . . ,Ck, and a set of prototypes, p1, . . . ,pk, in
which for every cluster Ci there is a prototype pi ∈ Ci such that
all points in Ci are within h of pi.

Proof. Let C1, . . . ,Ck be the clustering when we cut at
height h. Then r(Ci) ≤ h. That is, minx∈Ci dmax(x,Ci) ≤
h or, equivalently, there exists a point pi ∈ Ci such that
dmax(pi,Ci) ≤ h. This implies that every x′ ∈ Ci is within h
of pi.

The foregoing property is the motivation for using this link-
age. When performing minimax hierarchical clustering, we can
easily retain the prototype index associated with each interior
node (n − 1 of them in total). Thus, for each merge we have a
single representative data point for the resulting cluster.

For microarray data, it is common to define d(gene1,

gene2) = 1 − correlation(gene1,gene2). Cutting a minimax
clustering of the genes at height 1 −ρ0 yields a dataset of “pro-
totypical” genes in which every gene has correlation of at least
ρ0 with one of the prototype genes. In this sense, every gene in
the dataset is guaranteed to be represented in the prototype set.
The prototypes of minimax linkage have a close relationship to
the set cover problem, which we review next. Consider a set of
n balls centered at each xi and of a fixed radius h. The set cover
problem asks for the smallest number of such balls required to
cover all of the data points x1, . . . ,xn. This is a well-studied
NP-hard problem that has been widely applied to clustering.
Tipping and Schölkopf (2001) emphasized the fact that the set
cover prototypes come with a desirable maximum distortion
guarantee (i.e., no point will be farther than h from its proto-
type). Based on the foregoing property, it is easy to see that for
each possible cut, we get a set of prototypes with a maximum
distortion guarantee.

Figure 3 shows how we can enhance the information con-
veyed by a dendrogram by indicating the prototypes associated
with each interior node. For example, we see that at the step
when there are only two clusters, the points “7” and “9” are
chosen as prototypes (a reasonable choice looking at the con-
figuration of points). Of course, for larger n, fitting all n − 1
prototypes onto the dendrogram becomes difficult. In such a
case, we propose displaying only the prototypes of a given cut.
Figure 4 displays an example that also visually demonstrates
the set cover connection of property 1 (the radius of the balls
equals the height of the cut).

Figure 2. Complete, centroid, and minimax linkages. The solid black line represents the distance between the two clusters according to each
linkage. The circle is of radius r(G ∪ H), where G and H denote the two clusters.
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Figure 3. A “prototype-enhanced” minimax linkage dendrogram
corresponding to the two-dimensional toy dataset shown in the right
panel. Every interior node of the dendrogram has an associated proto-
type that we display. The height of each interior node is the maximum
distance of any element in its branch to the prototype.

3. INVERSIONS AND ADMISSIBILITY PROPERTIES

Implicit in the above discussion of dendrograms and cuts is
the assumption that there are no inversions—that is, that parent
nodes are always higher than their children. A well-known diffi-
culty with centroid linkage is that it can in fact have such inver-
sions (e.g., Everitt, Landau, and Leese 2001). Inversions lead to
clumsy rules for visualization and a less obvious interpretation
of what it means to cut at a certain height. To be precise, sup-
pose that we are in the middle of forming an agglomerative tree
and are considering merging the clusters G and H. Then a link-
age does not allow inversions if d(G,H) ≥ max{h(G),h(H)}.

Property 2. Minimax linkage trees do not have inversions.

Proof. Without loss of generality, suppose that h(G) ≥ h(H).
We want to show d(G,H) ≥ h(G). This holds trivially if h(G) =

0 (i.e., G is a singleton cluster), so we assume that G = G1 ∪G2

was formed by merging the clusters G1 and G2. Let

x∗ = arg min
x∈G∪H

dmax(x,G ∪ H)

be the prototype of G ∪ H. Suppose that x∗ ∈ Gi ∪ H. Then we
have

h(G) = d(G1,G2) ≤ d(Gi,H)

= min
x∈Gi∪H

dmax(x,Gi ∪ H) ≤ dmax(x∗,Gi ∪ H)

≤ dmax(x∗,G1 ∪ G2 ∪ H) = r(G ∪ H) = d(G,H),

where the first inequality holds because the algorithm chose to
merge G1 with G2 rather than either Gi with H. That H was
a candidate when G1 and G2 were merged follows from our
initial assumption that h(G) ≥ h(H).

Fisher and Van Ness (1971) proposed a number of admis-
sibility conditions for hierarchical clustering procedures with
the goal of “eliminat[ing] obviously bad clustering algorithms.”
Minimax linkage holds up well against the well-known linkages
according to these admissibility standards, as we show in what
follows.

A linkage is said to be “well-structured k-group admissi-
ble,” if whenever there exists a clustering C1, . . . ,Ck, in which
all within-cluster distances are smaller than all between-cluster
distances, the hierarchical clustering will produce this cluster-
ing after n − k merges.

Property 3. Minimax linkage is “well-structured k-group ad-
missible.”

Proof. Suppose that there exists a partition of the data,
C1, . . . ,Ck, such that d(x,x′) ≤ a if x,x′ ∈ Ci and d(x,x′) > a

Figure 4. Successive cuts of a dendrogram with prototypes displayed: Cutting at height h yields a set of prototypes (shown in gray) such that
every element of the dataset is covered by the set of balls of radius h centered at the prototypes. As h decreases, more prototypes are required.
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if x ∈ Ci, x′ ∈ Cj with i �= j. It follows that for any x ∈ Ci,
dmax(x,Ci) ≤ a and dmax(x,Cj) > a. Now, if G,H ⊂ Ci, then

d(G,H) = min
x∈G∪H

dmax(x,G ∪ H) ≤ min
x∈G∪H

dmax(x,Ci) ≤ a.

Moreover, if G ⊂ Ci and H ⊂ {x1, . . . ,xn} \ Ci, then

d(G,H) = min
x∈G∪H

dmax(x,G ∪ H) > a

since dmax(x,G ∪ H) ≥ dmax(x,H) > a for all x ∈ G and
dmax(x,G ∪ H) ≥ dmax(x,G) > a for all x ∈ H. Thus minimax
linkage will always merge clusters within a group Ci before
merging a cluster G ⊂ Ci with a subset not contained in Ci. This
establishes that at some merge in the algorithm, Ci is formed.
Now d(Ci,Cj) > a and h(Ci) ≤ a, so cutting at height a gives
precisely the clustering C1, . . . ,Ck. Because this is a k cluster
solution, this state is reached after n − k merges.

We list the following two properties without proofs, because
they follow immediately from the properties of max and min.

Property 4. Minimax linkage is

• “Monotone admissible”: Monotone transformation of the
distances leaves the clustering unchanged.

• “Point proportion admissible”: Duplicating any of the xi’s
has no effect on the clusters formed.

Single and complete linkages are admissible in these senses
as well. The latter two properties, which are not shared by cen-
troid or average, imply that minimax linkage is robust to cer-
tain perturbations. In proposing point proportion admissibil-
ity, Fisher and Van Ness (1971) had in mind “applications [in
which] the geometrical aspects of the clusters are more impor-
tant than the density of points in the clusters.”

Another desirable theoretical property for a linkage is re-
ducibility (Gordon 1987), which states that for any clusters
G1,G2,H,

d(G1 ∪ G2,H) ≥ min{d(G1,H),d(G2,H)}. (3)

Reducibility implies that a newly formed cluster G1 ∪ G2 will
be at least as far from H than either G1 or G2 had been. This
knowledge is useful for algorithmic efficiency; for example, it
implies that if J and H are mutual nearest neighbors before the
merge of G1 and G2, then they will remain so (Murtagh 1983).
Indeed, in Section 7, we exploit this property to make great
gains in algorithmic efficiency.

Property 5. Minimax linkage satisfies the reducibility prop-
erty.

Proof. Let x∗ ∈ G1 ∪ G2 ∪ H be the point at which d(G1 ∪
G2,H) = dmax(x∗,G1 ∪ G2 ∪ H). Now suppose that x∗ ∈ Gi ∪
H. We then have

dmax(x∗,G1 ∪ G2 ∪ H) ≥ dmax(x∗,Gi ∪ H)

≥ min
x∈Gi∪H

dmax(x,Gi ∪ H) = d(Gi,H).

Thus, depending on whether x∗ ∈ G1 ∪ H or x∗ ∈ G2 ∪ H, we
have d(G1 ∪ G2,H) ≥ d(G1,H) or d(G1 ∪ G2,H) ≥ d(G2,H),
from which it follows that d(G1 ∪ G2,H) ≥ min{d(G1,H),

d(G2,H)}.

In this section we have shown that minimax linkage has many
desirable theoretical properties. In Section 5 we demonstrate its
practical appeal. Before doing so, however, we discuss several
related methods, with the goal of drawing connections to other
linkages and understanding alternatives to minimax clustering.

4. RELATED WORK

4.1 Centroid Linkage

Minimax linkage is similar to centroid linkage (Sokal and
Mitchener 1958) in that both methods associate a central point
with each cluster. However, it is important to note the differ-
ence between a centroid, which is the average of all the points
in a cluster, and a prototype, which is a single element from the
original dataset. This distinction has crucial practical implica-
tions. We have seen (in Figures 3 and 4) how each interior node
of a dendrogram can be “labeled” with its own prototype. In
many cases, it is not practical or even possible to use a centroid
as a label; for example, a linear combination of English words
does not provide any meaningful reduction of the cluster (see
Section 5.2).

Furthermore, centroid linkage dendrograms can have inver-
sions (Property 2), which greatly undermines the interpretative
potential of the tree and does not satisfy Properties 4 and 5
(Fisher and Van Ness 1971).

Despite its theoretical and practical shortcomings, centroid
linkage is still often used in certain fields, including biology
(Eisen et al. 1998). In Section 6.2 we consider the relative mer-
its of using a centroid rather than a prototype when the dimen-
sion of the space is high.

4.2 Hausdorff Linkage

Basalto et al. (2008) proposed a “maximin” linkage based on
the Hausdorff metric,

dH(G,H) = max
[
max
x∈G

dmin(x,H),max
x′∈H

dmin(x′,G)
]

(where dmin is analogous to dmax). Unlike the standard linkages
(and minimax linkage), which do not satisfy the property that
dH(G,H) = 0 if and only if G = H, Hausdorff linkage defines
a metric on clusters. Now dH(G,H) ≤ h if and only if every el-
ement of G is within h of some element of H (and vice versa).
Thus cutting a Hausdorff linkage dendrogram at height h results
in a clustering C1, . . . ,Ck such that for any i �= j, there exists an
element of Ci that is more than h from all elements of Cj (or vice
versa). We see that this “maximin” linkage, although similar in
appearance to minimax linkage, is quite different and does not
lead naturally to prototypes. Furthermore, Basalto et al. (2008)
observed that inversions can occur in Hausdorff linkage dendro-
grams, an unfavorable occurrence ruled out for minimax link-
age by Property 2.

4.3 Standard Linkages With Prototypes Added

A simple alternative to minimax clustering would be to pro-
ceed with a standard linkage, such as complete, and then com-
pute minimax points [i.e., the minimizer of eq. (1)] based on the
clusters formed. Because minimax linkage clustering specifi-
cally attempts to find clusters that have small minimax radius,
it might be supposed that minimax clustering will consistently
give clusters with smaller minimax radius than other hierarchi-
cal clustering algorithms. In Section 6, we show that this is in-
deed the case.
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4.4 Nonagglomerative Minimax Clustering

The K-center problem is a well-known combinatorial opti-
mization problem (Hochbaum and Shmoys 1985). It seeks a
clustering C1, . . . ,CK that, in our terminology, minimizes the
largest minimax radius of any cluster. Analogous to the famous
K-means algorithm, it is NP-hard even when the distances sat-
isfy the triangle inequality; however, polynomial algorithms ex-
ist with an approximation factor of 2 (Vazirani 2001).

Tree-structured vector quantization (TSVQ) is a divisive hi-
erarchical clustering algorithm (Gersho and Gray 1992) that re-
peatedly (recursively) applies two-means clustering to divide
the dataset, thus creating a tree in a top-down fashion. A sim-
ple proposal that to our knowledge has not yet been suggested
would be to use two-center rather than two-means clustering.
The result would be a top-down version of minimax clustering.

5. REAL DATA EXAMPLES

In this section we demonstrate how minimax linkage creates
a visual display of a dataset with much interpretative potential
for domain specialists.

5.1 Olivetti Faces Dataset

We perform minimax linkage hierarchical clustering on the
Olivetti Faces dataset, which consists of 400 gray-scale, 64×64
pixel images of human faces (made available by Sam Roweis at
http://cs.nyu.edu/~roweis/data.html). The dataset contains 10
images each of 40 distinct people. As a measure of dissimilar-
ity between images, we simply take the Euclidean distance be-
tween the images stretched out as vectors (in R

642
). Certainly,

a problem-specific dissimilarity would give better results; how-
ever, we find that even this crude measure reveals much of the
dataset’s structure.

The upper panel of Figure 5 shows a branch of the minimax
linkage dendrogram. We can see that the tree successfully clus-
ters images of the same person together. Because prototypes are
actual single images from the dataset, they are clearly “human-
readable,” whereas a centroid would be a blurry combination of
many images. We show a few of these prototypes correspond-
ing to the upper interior nodes of this branch. The lower panel
shows a subbranch consisting of the 10 images of a single per-
son. We see that the clustering has grouped photos according
to head tilt: In the leftmost branch, the images have the nose
pointing right, in the center images, the nose points forward,
and in the right-most branch, the nose points left. This feature
of the clustering is readily seen by looking at the prototypes
alone. The ordering of leaves in a dendrogram is a separate is-
sue, unrelated to the choice of linkage; here we have used the R
function reorder.hclust from the library gclus.

5.2 Grolier Encyclopedia Dataset

Consider a data matrix X with Xij recording the number of
times word i appears in article j of the Grolier Encyclopedia.
This dataset, created by Sam Roweis and available at http://
cs.nyu.edu/~roweis/data.html, comprises the n ≈ 15,000 most
common English words and p ≈ 31,000 articles. Our goal is to
understand the underlying organization of English words based
on the information in X. We calculate the pairwise dissimilarity
between words xi and xj as d(xi,xj) = 1 − xT

i xj/(‖xi‖ · ‖xj‖),

Figure 5. Top: A branch of the minimax linkage tree for the Olivetti
Faces dataset. The leaf images have been staggered vertically to pre-
vent overlapping; the heights of the leaves do not have meaning. Pro-
totype images are shown for the five highest nodes, summarizing the
images below. Bottom: A subbranch of the above shows that the clus-
tering has uncovered three angles of head position. This can be seen
from the prototypes and is confirmed by looking at the leaves.

so that words that tend to co-occur in articles are considered
similar.

The upper panel of Figure 6 shows the full tree from the
hierarchical clustering. It is immediately clear that with n so
large, the dendrogram becomes too large to be of much use as
a visualization aid. Traditional approaches to interpreting the
tree involve looking at individual branches of the tree that are
small enough to allow us to easily read the leaf labels. After
examining all leaves of a branch, we might be able to label this

http://cs.nyu.edu/~roweis/data.html
http://cs.nyu.edu/~roweis/data.html
http://cs.nyu.edu/~roweis/data.html
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Figure 6. Top: The entire dendrogram of the Grolier’s Encyclopedia dataset offers little help as a visual tool because it is too dense and
leaf labels do not fit. Lower: (Left) An “upper cut” view of the dendrogram above. A leaf with an asterisk indicates that it is the prototype
representing a branch that has been cut away. (Note that what appear to be three-way splits are actually two consecutive splits that happen to be
at the same height.) (Right) An exploded view of the music∗ node on Left. This node represents a branch of 155 words; the upper cut of this
branch is shown. The prototypes of each interior node are shown in italic type.

branch with some compact characterization of what it contains
(e.g. “animal words”). Because minimax linkage trees associate
each interior node with a corresponding prototype, each branch
comes automatically labeled. Having each branch labeled al-
lows us to examine the tree in a top-down manner as follows.
We begin by cutting the dendrogram to give a clustering of size
20 (an arbitrary choice). Consider the portion of the dendro-
gram that lies above this cut height. It now has 20 leaves, cor-
responding to the 20 branches that have been cut. Because each
branch has an associated prototype, we have a label for each
leaf of this “upper cut” dendrogram. The lower left panel of
Figure 6 shows the result. It is gratifying to see that several
of the words chosen refer to general categories (e.g., “shape,”
“food,” “species,” “art”). With this visual summary of the hier-
archical clustering, we may choose a branch of the tree to ex-
plore further. The branch labeled “music” contains 155 words.
We can continue this process of drilling down the tree by look-
ing at the portion of the music branch that is above a certain
cut. The lower right panel of Figure 6 displays the result. This
image also shows the prototypes associated with each node of
the dendrogram.

6. EMPIRICAL EVALUATIONS

A natural question is whether anything is actually gained by
using a linkage that is specifically tailored to finding proto-
types. Would it not be simpler to use a standard linkage and

then simply select a prototype for each cluster after the fact?
We investigate this question empirically in the next section. In
Section 6.2, we study the effect of the curse of dimensionality
on the ability of a single point to represent a cluster. Finally,
in Section 6.3, we compare minimax linkage and the standard
linkages in terms of ability to recover the correct clusters under
various settings.

6.1 Measuring the Minimax Radius of Other Methods

Given a particular clustering, C1, . . . ,Ck (from any method),
we can calculate the largest minimax radius, maxCi r(Ci). That
is, we identify the minimax prototype of each cluster and then
report the greatest distance of any point to its cluster’s proto-
type.

Figure 7 compares minimax hierarchical clustering with var-
ious standard linkages on the Olivetti Faces and Grolier En-
cyclopedia datasets described above. Each method yields a se-
quence of clusterings (of size 1, . . . ,n − 1), so we plot the max-
imum minimax radius as a function of number of clusters. We
see that minimax linkage indeed does consistently better than
the other methods in producing clusterings in which every point
is close to a prototype.

6.2 Distance to Prototype versus Distance
to Centroid in High Dimensions

It is well known that in high dimensions, all points of a
dataset tend to lie far from all others, with none in the “center”
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Figure 7. The maximum minimax radius is the farthest that any point lies from its cluster’s prototype. We see that minimax linkage hierar-
chical clustering does indeed do a better job of making this quantity small compared with the standard linkages. (Left) Olivetti Faces dataset.
(Right) Grolier Encyclopedia dataset. The online version of this figure is in color.

(Bellman 1961; Hastie, Tibshirani, and Friedman 2009). In con-
trast, the centroid of the cluster should lie closer to most of the
points. With this in mind, one would suspect that a cluster can-
not be as “tightly” represented around a single element of the
dataset when p � n. That is, requiring each point to be within
a certain distance of its cluster’s prototype likely will require a
large number of clusters in this setting. We examine this phe-
nomenon empirically using two microarray datasets, the Colon
Cancer dataset, with n = 62 samples and p = 2000 genes (Alon
et al. 1999), and the Prostate Cancer dataset, with n = 102 sam-
ples and p = 6033 genes (Singh et al. 2002). Because biologists
in this domain use correlation as a measure of similarity be-
tween samples, we present our results in terms of correlation
rather than dissimilarity as in the rest of the article.

Figure 8 compares the smallest correlation of a sample to its
cluster’s prototype (using minimax linkage hierarchical cluster-
ing) to the smallest correlation of a sample to its cluster’s cen-
troid (using complete linkage hierarchical clustering). The most
relevant factor in this comparison is the prototype/centroid dis-
tinction rather than the choice of method. We find that points are
less closely correlated with their prototypes than with their cen-
troids. This can be viewed as the price to pay for the benefits in

interpretability gained by using prototypes rather than centroids
to describe a dataset. Surprisingly, by using prototypes instead
of centroids, we do not lose very much in terms of this measure.
In this situation, the curse of dimensionality is manifested as the
fact that for a given minimum correlation threshold, a relatively
large number of prototypes are required.

6.3 Simulations

In this section we simulate data in which we know the un-
derlying group structure and evaluate minimax linkage’s ability
to correctly recover clusters. Given the true clustering, T , of a
dataset [where T (x) denotes the cluster label assigned to point
x], we measure the misclassification rate of a clustering C by
the fraction of pairs of points for which C and T disagree about
whether they should be in the same cluster,

M = 1(n
2

) ∑
i<j

∣∣1{C(xi) = C(xj)} − 1{T (xi) = T (xj)}
∣∣.

[This measure was used in, for example, Chipman and Tibshi-
rani (2005), Witten and Tibshirani (2010).] In our simulations,
we take T to consist of three clusters, each with 100 points (i.e.,

Figure 8. Comparison of the smallest correlation of a sample to its cluster’s prototype (using minimax linkage hierarchical clustering) to the
smallest correlation of a sample to its cluster’s centroid (using complete linkage hierarchical clustering). The online version of this figure is in
color.
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n = 300) in R
10, sampling from N10(μ1,�), N10(μ2,�), and

N10(μ3,�) distributions, respectively. We consider three situa-
tions:

• Spherical: μ1 = 0,μ2 = 2e1 + 2e2,μ3 = 2e2 + 2e3, and
� = I10 (where ei is the ith standard basis vector).

• Elliptical: μ1 = 0,μ2 = 2e1 + 2e2,μ3 = 2e2 + 2e3, and
� = diag(1,1,1,2,2,1,1,1,1,1). (Note that these clus-
ters are elongated in noise directions.)

• Outliers: Same as Spherical, but two points in cluster 2 are
sampled with μ2 = 5e1 + 5e2, and two points in cluster 3
are sampled with μ3 = 5e2 + 5e3. By design, the outliers
differ in such a way that there is little ambiguity about their
proper class.

For each situation, we apply minimax, complete, average, sin-
gle, and centroid linkages, with dissimilarities between the
points given by both �2 and �1 distances. We let Mk denote the
misclassification rate for a hierarchical clustering that has been
cut to have k clusters. Thus each linkage has a corresponding
sequence of values M1, . . . ,Mn. Table 1 reports M3 (the mis-
classification rate if we were told the correct number of clus-
ters) and Mk̂, where k̂ = arg mink Mk. This is the best misclas-
sification rate (over all possible cuts) that a given hierarchical
clustering can possibly attain. Estimating the correct number of
clusters is a difficult problem for any clustering method; thus
Mk̂ is informative in that it provides a lower bound on the mis-
classification rate independent of the choice of where to cut. For
each method and scenario, we average over 50 simulations and
report standard errors in parentheses.

The first section of the table shows that complete and min-
imax linkages perform much better than the other methods in
all of the simulated scenarios when the true number of clusters
is known (with complete linkage performing somewhat better
than minimax linkage). In most cases, average, single, and cen-
troid linkages have M3 ≈ 0.66. Given our setting of three equal-
sized clusters, it is straightforward to verify that this poor mis-
classification rate arises when a method has two singleton clus-
ters and one cluster with the remaining n − 2 points. Indeed,

this occurs consistently for single linkage, which is known to
be prone to chaining (in which many successive merges involve
the addition of singletons to a large cluster). We find that in
terms of Mk̂, the disparity among methods is less great (which
may be expected, noting that Mk̂ ≤ Mn ≈ 0.33). In particular,
we observe that average linkage attains the lowest Mk̂ values

without requiring that k̂ be too large. In contrast, single linkage
attains the lowest Mk̂ of any method for the elliptical-�2 case but
requires more than twice the number of clusters. In summary,
we find that minimax linkage performs similarly to complete
linkage, which appears to be the best-performing method in our
simulations.

7. ALGORITHMICS

The definition of agglomerative hierachical clustering (as de-
scribed in words in Section 1) is based on the following algo-
rithm:

• Start with C0 = {{x1}, . . . , {xn}} and
d({xi}, {xj}) = d(xi,xj) for all i �= j.

• For l = 1, . . . ,n − 1:

1. Let (G1,G2) = arg minH,K∈Cl−1
d(H,K).

2. Update Cl = Cl−1 ∪ {G1 ∪ G2} \ {G1,G2}.
3. Calculate d(G1 ∪ G2,H) for all H ∈ Cl.

Here Cl denotes the clustering after l steps. A straightforward
implementation of the foregoing algorithm has a computational
complexity of O(n3). Step 1 on iteration l requires taking the
minimum over

(|Cl|
2

)
elements. Step 3 requires |Cl| − 1 = n −

l − 1 distance updates, so in total we do

n−1∑
l=1

[(
n − l

2

)
+ (n − l − 1)T

]
∼ n3 + n2T

operations, where T denotes the time for one distance update.
The classical linkages have T = O(1), because they can all

Table 1. Misclassification rate (averaged over 50 simulations with standard errors given in parentheses)

Spherical, �2 Spherical, �1 Elliptical, �2 Elliptical, �1 Outliers, �2 Outliers, �1

Minimax M3 0.36 (0.01) 0.38 (0.01) 0.49 (0.00) 0.50 (0.00) 0.40 (0.01) 0.38 (0.01)
Complete M3 0.32 (0.01) 0.37 (0.01) 0.49 (0.00) 0.50 (0.00) 0.38 (0.01) 0.38 (0.01)
Average M3 0.64 (0.01) 0.66 (0.00) 0.54 (0.01) 0.55 (0.01) 0.65 (0.01) 0.66 (0.00)
Single M3 0.66 (0.00) 0.66 (0.00) 0.66 (0.00) 0.66 (0.00) 0.66 (0.00) 0.66 (0.00)
Centroid M3 0.66 (0.00) 0.66 (0.00) 0.60 (0.01) 0.60 (0.01) 0.66 (0.00) 0.66 (0.00)

Minimax Mk̂ 0.29 (0.00) 0.30 (0.00) 0.28 (0.00) 0.31 (0.00) 0.29 (0.00) 0.30 (0.00)

k̂ 11.0 (1.5) 13.2 (1.3) 25.1 (0.5) 38.8 (1.0) 10.7 (1.5) 13.2 (1.5)
Complete Mk̂ 0.28 (0.00) 0.30 (0.00) 0.29 (0.00) 0.31 (0.00) 0.28 (0.00) 0.30 (0.00)

k̂ 7.2 (0.7) 9.6 (0.8) 27.8 (0.4) 40.4 (1.0) 7.7 (0.7) 11.2 (0.9)
Average Mk̂ 0.26 (0.00) 0.27 (0.00) 0.28 (0.00) 0.30 (0.00) 0.26 (0.00) 0.28 (0.00)

k̂ 15.4 (1.1) 18.7 (1.0) 25.6 (0.4) 42.1 (0.9) 17.6 (1.2) 20.4 (1.3)
Single Mk̂ 0.33 (0.00) 0.33 (0.00) 0.25 (0.01) 0.31 (0.00) 0.33 (0.00) 0.33 (0.00)

k̂ 224.9 (3.9) 231.7 (3.3) 61.9 (2.4) 88.7 (2.0) 225.5 (4.0) 232.1 (3.3)
Centroid Mk̂ 0.33 (0.00) 0.33 (0.00) 0.28 (0.00) 0.31 (0.00) 0.33 (0.00) 0.33 (0.00)

k̂ 270.7 (2.1) 272.6 (1.7) 42.1 (1.0) 71.7 (1.3) 271.0 (2.1) 272.8 (1.7)

NOTE: Mk denotes the misclassification rate for a size-k clustering and k̂ = arg mink Mk .
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Figure 9. One-dimensional counterexample showing that minimax
linkage cannot be written in terms of the Lance–Williams update for-
mula.

be written in terms of a Lance–Williams update (Lance and
Williams 1967) as

d(G1 ∪ G2,H)

= α(G1)d(G1,H) + α(G2)d(G2,H)

+ βd(G1,G2) + γ |d(G1,H) − d(G2,H)|, (4)

for some choice of α(·), β, γ . Minimax linkage does not fall
into this class of linkages, however.

Property 6. Minimax linkage cannot be written using Lance–
Williams updates.

Proof. Figure 9 shows a simple one-dimensional exam-
ple that could not arise if minimax linkage followed Lance–
Williams updates. The upper and lower panels show two con-
figurations of points for which the right side of (4) is identical
but the left side differs; in particular, d(G1 ∪ G2,H) = 9 for the
upper panel, whereas d(G1 ∪ G2,H) = 8 for the lower panel.

Indeed, computing d(G1 ∪ G2,H) requires minimizing
dmax(·,G1 ∪ G2 ∪ H) over |G1 ∪ G2| + |H| points. Thus, for
iteration l, the required work for step 3 is

∑
H∈Cl

(|G1 ∪ G2| +
|H|) = |G1 ∪ G2| · |Cl|+ (n −|G1 ∪ G2|). If chaining occurs, we
have |G1 ∪ G2| = l + 1, which means that in total, O(n3) work
is done on step 3 as well.

Substantial improvements over this naive implementation
have been made to reduce the computational complexity of the
algorithms for the classical linkages (Murtagh 1983, 1984). In
particular, when a linkage satisfies the reducibility property (3)
and has T = O(1), the computational complexity is reduced to
O(n2). We apply this technique to minimax linkage with great
gains in time performance. We describe the approach in brief
here; it has been presented in greater depth by Murtagh (1983).

Two points are referred to as a reciprocal nearest-neighbor
(RNN) pair if each is the other’s nearest neighbor. The method
exploits the property of reducible linkages in that RNN pairs
are preserved when merges occur. In particular, suppose that H
and K are RNNs and that G1 and G2 are any two other clusters.
Then, by (3), if we create the merged cluster G1 ∪ G2, then
H and K still must be RNNs. Starting with a particular point
(or cluster), we may form an NN chain by repeatedly finding
the next nearest neighbor. The chain cannot loop back on itself
(assuming that ties do not occur); rather, a chain always ends
with an RNN pair. The algorithm grows such a nearest-neighbor
chain from an arbitrary point until an RNN pair is encountered,
which is then removed from the chain and merged into a new
cluster. We then continue extending the chain from where we
left off until the next RNN pair is found. The chain continues to
grow and contract in this fashion until either n − 1 merges have
occurred or the chain contracts to zero length (in which case a

new chain is started, again from an arbitrary object). Thus, the
algorithm is as follows:

• Start with C0 = {{x1}, . . . , {xn}} and
d({xi}, {xj}) = d(xi,xj) for all i �= j.

• The chain is empty.
• For l = 1, . . . ,n − 1:

1. If chain is empty, choose an arbitrary G ∈ Cl−1; oth-
erwise, let G be the current end of the chain.

2. Grow a nearest-neighbor chain from G until an RNN
pair (G1,G2) is found.

3. Update Cl = Cl−1 ∪ {G1 ∪ G2} \ {G1,G2}.
4. Calculate d(G1 ∪ G2,H) for all H ∈ Cl.
5. Remove G1 and G2 from the chain.

Murtagh (1984) showed that this requires O(n) nearest-neigh-
bor searches, each of which is O(nT). Thus, in our case the
algorithm is still worst case, O(n3), considering the chaining
case in which T = O(n). However, we find empirically that
chaining does not occur, and thus this approach is generally
dramatically faster than a straightforward implementation. Fig-
ure 10 compares the time performance of our implementation
of minimax hierarchical clustering with the standard R function
hclust. [Surprisingly, hclust does not appear to make use
of the O(n2) nearest-neighbor chain method.] Our algorithm
takes just a little more than 45 seconds to cluster n = 10,000
objects (on an Intel Xeon processor @ 3 GHz using less than
2.5 GB of RAM).

8. DISCUSSION

We have shown that minimax linkage is an appealing alter-
native to the standard linkages. It has much in common with
complete linkage in theoretical properties and does not have the
shortcomings of centroid linkage. We have provided an efficient
implementation for minimax linkage and have demonstrated in
Section 5 how the minimax prototypes might be used to facili-
tate the interpretation of hierarchical clustering.

A common application would be to cluster genes based on a
microarray dataset, in which case each label would be a gene

Figure 10. Time comparison of the R function hclust (complete
linkage) with our implementation of minimax linkage. We find that
hclust scales like n3, whereas our implementation of minimax link-
age scales like n2.4. The online version of this figure is in color.
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name. A geneticist could find such a tool very useful. Although
centroid linkage does associate a centroid with each node, this
point is a linear combination of all objects below it, which adds
little interpretative value that is not already present in the leaves.
Furthermore, in situations where the data are inherently discrete
(e.g., single nucleotide polymorphism data), the fractional val-
ues of the centroids would not be appropriate to the applica-
tion. In Section 6.2, we investigated clustering samples (arrays),
which corresponds to the task of choosing a set of prototypical
samples from a set of arrays in the dataset. We found that be-
cause p � n in this context, a larger number of prototypes is
required here than in lower-dimensional settings. This reflects
the fact that describing a dataset with only a few prototypical
points from the original dataset becomes more difficult when p
is large.

Inspired by minimax linkage, we can consider a more general
class of prototype linkages of the form d(G,H) = r̃(G ∪ H),
where r̃ is some measure of prototype-centered radius. In place
of the minimax radius given in (1), we could consider replacing
dmax with other measures of spread, for example, the average
distance,

r̃(C) = min
x∈C

1

|C| − 1

∑
x′∈C

d(x,x′).

In this case, we would take the minimizing x to be the proto-
type for the cluster C. Unfortunately, it can be shown that the
foregoing linkage has undesirable properties, such as allowing
inversions.

We have implemented the nearest-neighbor chain method for
minimax linkage hierarchical clustering in C, and will be re-
leasing an R package protoclust that produces an object
of class hclust compatible with standard R hierarchical clus-
tering functions. In addition to the usual merge and height
objects, the output contains an n−1 vector of prototype indices.

[Received March 2010. Revised January 2011.]
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