
A Greedy Algorithm for the Two-Level Nested Logit Model

Guang Li, Paat Rusmevichientong∗

Marshall School of Business, University of Southern California

Abstract

We consider the assortment optimization problem under the classical two-level nested logit model. We establish a
necessary and sufficient condition for the optimal assortment and develop a simple and fast greedy algorithm that
iteratively removes at most one product from each nest to compute an optimal solution.

Keywords: revenue management, customer choice, assortment optimization, nested logit model, greedy algorithm,
optimality condition

1. Introduction

In an assortment optimization problem, a firm wishes to offer the most profitable set of products to satisfy customer
demand. As shown in an excellent survey in [1], this problem has many important applications in retail and revenue
management. Our paper focuses on assortment optimization in revenue management, where, unlike in the retail
setting, the focus is primarily on product selections, without any inventory replenishment.

The seminal work in [2] introduced the first assortment optimization problem under the multinomial logit (MNL)
model [3]. Although the MNL model admits a tractable solution, it suffers from the independence of irrelevant
alternatives (IIA) property, which may lead to a paradox when alternatives are closely related and result in biased
estimates [4]. The deficiency of the MNL model has led many researchers to consider assortment optimization under
more complex choice models; see, for example, [5–7]. The nested logit model extends the MNL model by grouping
similar alternatives into a nest and allowing differential substitution patterns within and across nests, thereby partially
relaxing the IIA restriction [8]. Under the nested logit model, a consumer first chooses a nest of products and then
chooses a product from the chosen nest. Existing literature on assortment optimization under the nested logit model
makes use of a linear programming framework; see, for example, [9–11].

In this paper, we present an alternative solution to assortment optimization under the two-level nested logit
model. We establish a necessary and sufficient condition for an optimal assortment (Theorem 2.3), which is, to
our knowledge, the first such optimality condition for this problem. In addition, we reveal a “lumpy” structure of the
optimal assortment: surprisingly, within each nest, a certain set of “consecutive” products always appears together
in the optimal solution. Moreover, as shown in Theorem 2.4, by looking at a certain index of each product, we can
determine in advance which products will appear together! Exploiting the optimality condition and the “lumpy”
structure, our greedy algorithm iteratively removes (at most) one product from each nest and terminates with an
optimal assortment in O(nm logm) time, for the problem with m nests, with each nest having n products. This is
the fastest known running time for this problem.

Moreover, our assortment optimization can be used as a subroutine for the network revenue management problem
under the nested logit model. A revenue model over a single-leg flight is first considered in [2]. For extensions of this
work to multiple resources, see, for example, [12–14]. The main approach in these papers is to formulate a variety
of deterministic linear programming approximations and solve the linear programs using column generation. The
column generation subproblem in this setting is precisely the assortment optimization considered in this paper, when
customers choose according to a two-level nested logit model.

∗Corresponding Author: Marshall School of Business, University of Southern California, Los Angeles, CA 90089, Email:
rusmevic@marshall.usc.edu

Preprint submitted to Elsevier May 21, 2014

We perform sensitivity analysis to study the effect of reducing product revenues on the optimal assortment. We
show that the entire profile of the optimal revenue and assortment when every product revenue is reduced by δ can be
computed simultaneously for all δ ∈ R+ in a single run of the greedy algorithm in O(nm logm) time. Moreover,
we show that the optimal solution to the multi-period capacity allocation problem with total allocation periods T and
total capacity C can be computed in O(TC + nm logm) operations, by applying the greedy algorithm just once.

Problem Description. We have m nests indexed by i ∈ {1, 2, . . . ,m}, and each nest i has n products indexed by
j ∈ {1, 2, . . . , n}. All of the analysis easily extends to the case in which some nests have fewer than n products. A
product j in nest i is denoted by ji, and in settings in which the nest index is clear from context, we refer to it simply
as product j. We denote the no-purchase option by product 0, which is the only product in nest 0. Each product ji
has a revenue rji ≥ 0, with r0 = 0. Without loss of generality, we assume that the products in each nest are sorted in
a descending order of revenues; that is, for each nest i ∈ {1, 2, . . . ,m}, r1i ≥ r2i ≥ · · · ≥ rni ≥ 0.

We assume that the customer is a utility maximizing agent, and the utility that she assigns to each product is:

U0 = λ0 + ε0 and Uji = λji + εi + εji, i = 1, . . . ,m, j = 1, . . . , n,

where λji and λ0 are the deterministic components and {ε0, εi, εji : i = 1, . . . ,m, j = 1, . . . , n} are independent
random errors. The random variable ε0 has a Gumbel distribution with a location parameter of zero and a scaling
parameter of one, which we write as ε0 ∼ Gumbel(0, 1). For each nest i, εji ∼ Gumbel(0, 1/τi) for all j, where
τi ∈ (0, 1] is a nest-specific parameter. Finally, for each i, εi is independent of {εji : j = 1, . . . , n}, and it is assumed
to have a distribution such that εi + εji ∼ Gumbel(0, 1) for all j; see [15] for the existence of such a distribution.

Let S = (S1, . . . , Sm) denote an assortment of products, where Si is a subset of the n products {1i, 2i, . . . , ni} in
nest i, for all i ∈ {1, 2, . . . ,m}. As the nest index i is explicit, we simply write Si ⊆ {1, 2, . . . , n}. For each product
ji, let vji = eλji/τi denote its preference weight, and let v0 = eλ0 . As shown in [16], the probability Qji(S) that a
customer chooses a product j ∈ Si under assortment S is given by:

Qji(S) = Qj|i(Si)×Qi(S), where Qj|i(Si) =
vji∑
`∈Si v`i

and Qi(S) =

(∑
`∈Si v`i

)τi
v0 +

∑m
k=1

(∑
`∈Sk v`k

)τk .
Here, Qi(S) denotes the probability that a customer chooses a product in nest i, and Qj|i(Si) denotes the conditional
probability of the customer’s selecting product ji, given that nest i is chosen.

Thus, the total expected revenue Rev(S) for any assortment S = (S1, . . . , Sm) is given by:

Rev(S) =
m∑
i=1

∑
j∈Si

rjiQji(S) =

m∑
i=1

Qi(S)
∑
j∈Si

rjiQj|i(Si) =

m∑
i=1

Qi(S)Revi(Si),

where Revi(Si) =
∑
j∈Si rjiQj|i(Si) =

∑
`∈Si

r`iv`i∑
`∈Si

v`i
denotes the expected revenue from Si in nest i, and we set it to

be zero if Si is empty. The assortment optimization problem is thus given by:

Z∗ = max
S=(S1,...,Sm)

Rev(S),

and we denote an optimal assortment by S∗ = (S∗1 , . . . , S
∗
m) and let Z∗ = Rev(S∗) denote the optimal revenue. If

there are ties, we can choose the optimal assortment according to any predetermined tie-breaking rule.

2. Characterization of the Optimal Assortments

Let N+ = {{1}, {1, 2}, . . . , {1, 2, . . . , n}} denote the collection of revenue-ordered subsets. As shown in the
following lemma, at the optimal solution, any nonempty nest is revenue-ordered. The lemma is a restatement of
Theorem 4 in [9], and we refer the reader to the paper for the details of the proof.

Lemma 2.1 (Optimal Nest Structure). For i = 1, . . . ,m, if S∗i 6= ∅, then S∗i ∈ N+.

Although Lemma 2.1 shows that S∗i ∈ {∅} ∪ N+ for all i, exhaustive search is not feasible because there are
(n + 1)m possible configurations of revenue-ordered subsets among m nests. To develop an efficient algorithm, we

2

will establish a necessary and sufficient condition for an optimal assortment. For any integers k1 and k2, let

[k1, k2] =

{
{k1, k1 + 1, . . . , k2} if k1 ≤ k2,
∅ otherwise.

Also, for each nest i and 1 ≤ k1 ≤ k2 ≤ n, let Gi(k1, k2) be defined by:

Gi(k1, k2) = Revi([1, k2]) −
Revi ([1, k2])− Revi ([k1, k2])

fi

(
1 −

∑
`∈[k1,k2] v`i/

∑
`∈[1,k2] v`i

) ,
where fi : [0, 1]→ [0, 1] is a continuous, strictly increasing function defined by:

fi(x) =

{
(x1−τi − x)/(1− x) if x ∈ [0, 1)
τi if x = 1

.

Moreover, we define 0/0 = 0, thus Gi(1, k2) = Revi([1, k2]) for all k2.

Interpretation of Gi(·, ·). Suppose Si = [1, k2], and consider k1 ∈ {1, . . . , k2}. The function Gi([k1, k2]) can be
used to evaluate the net effect of removing [k1, k2] from nest i on the total revenue, without any computation on the
resultant assortment. This intuition is confirmed in the following lemma, which establishes a precise condition on
when we can use Gi(·, ·) to determine if a subset can be removed from Si to improve the total revenue.

Lemma 2.2 (When Is Removing Subsets Beneficial?). For any assortment S = (S1, . . . , Sm), a collection of subsets
{Ai ⊆ Si : i = 1, 2, . . . ,m} can be removed from S to achieve a greater revenue if and only if∑m

i=1 [V (Si)
τiRevi(Si)− V (Si \Ai)τiRevi(Si \Ai)]∑m
i=1 [V (Si)τi − V (Si \Ai)τi]

< Rev(S),

where for any set X , V (X) denotes the sum of the preference weights of the products in X .
Moreover, if Si = [1, pi] with pi ≥ 1, Ai = [ki, pi] with ki ≤ pi, and A` = ∅ for all ` 6= i, then removing Ai

from Si leads to a greater revenue if and only ifGi(ki, pi) < Rev(S); removingAi from Si leads to the same revenue
if and only if Gi(ki, pi) = Rev(S).

Proof. For i = 1, . . . ,m, let Ŝi = Si \ Ai. Assume that Ai 6= ∅ for some i; otherwise, the result is trivially true. As

vji > 0 for all ji,
∑m
i=1 V (Ŝi) <

∑m
i=1 V (Si). By definition, Rev(Ŝ) =

∑m
i=1 V (Ŝi)

τiRevi(Ŝi)
v0+

∑m
i=1 V (Ŝi)τi

. Then,

Rev(S) =
∑m
i=1 V (Si)

τiRevi(Si)
v0 +

∑m
i=1 V (Si)τi

=
v0 +

∑m
i=1 V (Ŝi)

τi

v0 +
∑m
i=1 V (Si)τi

× Rev(Ŝ)

+

∑m
i=1

[
V (Si)

τi − V (Ŝi)
τi
]

v0 +
∑m
i=1 V (Si)τi

×

∑m
i=1

[
V (Si)

τiRevi(Si)− V (Ŝi)
τiRevi(Ŝi)

]
∑m
i=1

[
V (Si)τi − V (Ŝi)τi

] .

Thus, Rev(S) is a convex combination of Rev(Ŝ) and
∑m
i=1[V (Si)

τiRevi(Si)−V (Ŝi)
τiRevi(Ŝi)]∑m

i=1[V (Si)τi−V (Ŝi)τi]
, which gives the

desired result.
Let Si = [1, pi], Ai = [ki, pi] 6= ∅, and A` = ∅ for all ` 6= i. As fi

(
1− V (Ai)

V (Si)

)
= V (Si)

τi−V (Ŝi)
τi

V (Ŝi)τi−1V (Si)−V (Ŝi)τi
and

Revi(Ŝi) =
V (Si)

V (Ŝi)
Revi(Si) +

(
1− V (Si)

V (Ŝi)

)
Revi(Ai), it is easy to verify that

V (Si)
τiRevi(Si)− V (Ŝi)

τiRevi(Ŝi) =
(
V (Si)

τi − V (Ŝi)
τi
)
Gi(ki, pi).

Therefore, V (Si)
τiRevi(Si)−V (Ŝi)

τiRevi(Ŝi)
V (Si)τi−V (Ŝi)τi

≤ Rev(S) if and only if Gi(ki, pi) ≤ Rev(S). The inequality is strict

if and only if Gi(ki, pi) < Rev(S).

3

Lemma 2.2 is consistent with our interpretation of Gi(·, ·): for pi ≥ 1, if Si = [1, pi] and Gi(ki, pi) < Rev(S),
then removing [k1, k2] from Si is beneficial. If S∗i = [1, pi] in an optimal assortment S∗, then Gi(ki, pi) ≥ Rev(S∗)
should hold for all ki ≤ pi. The intuition is confirmed by the main result of this section, which is stated in the
following theorem. The theorem establishes a necessary and sufficient condition for an optimal assortment, and it
forms the basis for our greedy algorithm in Section 3.

Theorem 2.3 (Optimality Condition). Consider any assortment S = ([1, p1], . . . , [1, pm]) such that S∗i ⊆ [1, pi] for
all i. Then, S is optimal if and only if for every nest i such that pi ≥ 1,

min
j=1,..., pi

Gi(j, pi) ≥ Rev(S).

Proof. Suppose that S = (S1, . . . , Sm) is an optimal solution, where Si = [1, pi] for all i. If pi ≥ 1, then Si 6= ∅.
As S is optimal, removing a subset [ki, pi] from Si cannot improve the revenue. Thus, it follows from Lemma 2.2
that Gi(ki, pi) ≥ Rev(S) for all ki ∈ {1, 2, . . . , pi}, which is the desired result.

To establish sufficiency, consider any assortment S = (S1, . . . , Sm) such that S∗i ⊆ Si = [1, pi] for all i, and S
satisfies the condition of the theorem. We will show that Rev(S) = Z∗. For each i, letEi = Si\S∗i = [ki, pi] for some
index ki. By our hypothesis, for every nest i such that Ei 6= ∅, Gi(ki, pi) ≥ Rev(S), thus removing Ei from Si does

not increase the revenue. It then follows from Lemma 2.2 that Rev(S) ≤ V (Si)
τiRevi(Si)−V (Si\Ei)τiRevi(Si\Ei)

V (Si)τi−V (Si\Ei)τi ,

where for any set X , V (X) is the sum of the preference weights of the products in X . Thus,

Rev(S) ≤ min
i:Ei 6=∅

V (Si)
τiRevi(Si)− V (Si \ Ei)τiRevi(Si \ Ei)

V (Si)τi − V (Si \ Ei)τi

≤
∑
i:Ei 6=∅ [V (Si)

τiRevi(Si)− V (Si \ Ei)τiRevi(Si \ Ei)]∑
i:Ei 6=∅ [V (Si)τi − V (Si \ Ei)τi]

,

where the second inequality follows because for any x ∈ Rk and y ∈ Rk+,
∑k
i=1 xi∑k
i=1 yi

≥ mini=1,...,k
xi
yi

, and for

all i, V (Si)
τi − V (Si \ Ei)τi ≥ 0. Note that if Ei = ∅, then Si = S∗i . It then follows from Lemma 2.2 that

Rev(S) ≥ Rev(S1 \ E1, S2 \ E2, . . . , Sm \ Em) = Rev(S∗1 , . . . , S∗m) = Z∗, which is the desired result.

Surprisingly, as shown in the following theorem, the optimal assortment in each nest is “lumpy,” with certain
consecutive products always appearing together. Moreover, for each nest i, by looking at the index Gi(j, j) of each
product j, we can determine in advance which products will appear together!

Theorem 2.4 (Lumpiness of the Optimal Assortments). For every nest i, if there exist products j and k, such that
j < k and

Gi(j, j) < Gi(j + 1, j + 1) < · · · < Gi(k, k),

then either {j, j + 1, . . . , k} ⊆ S∗i or {j, j + 1, . . . , k} ∩ S∗i = ∅.

Proof. It suffices to prove the result when k = j + 1; that is, we need to show that if Gi(j, j) < Gi(j + 1, j + 1),
then either {j, j + 1} ⊆ S∗i or {j, j + 1} ∩ S∗i = ∅. There are two cases to consider.
Case 1: j + 1 ∈ S∗i . In this case, {j, j + 1} ⊆ S∗i because S∗i ∈ N+ by Lemma 2.1.
Case 2: j + 1 /∈ S∗i . Suppose that j ∈ S∗i . Then, S∗i = [1, j]. Let Ŝ = (S∗1 , . . . , [1, j + 1], . . . , S∗m). By definition,
Rev(Ŝ) ≤ Rev(S∗), and as S∗ is obtained from Ŝ by removing product j+1 from nest i, it follows from Lemma 2.2
that Gi(j+1, j+1) ≤ Rev(Ŝ). So, we have that Gi(j, j) < Gi(j+1, j+1) ≤ Rev(Ŝ) ≤ Rev(S∗), which implies
that Rev (S∗1 , . . . , S∗i \ {j}, . . . , S∗m) > Rev(S∗). This contradicts the optimality of S∗. Thus, j /∈ S∗i .

Note that the “lumpiness” property is nest-specific and is independent of v0. We can view the occurrence of
“lumpiness” as the consequence of the property ofGi(·, ·) and the revenue-ordered property of the optimal assortment.
Suppose Si ⊇ S∗i , and Gi(j, j) < Gi(j + 1, j + 1) for products j and j + 1 in Si. If Gi(j + 1, j + 1) < Rev(S),
then it is beneficial to remove both products j and j +1 from nest i. Otherwise, the revenue-ordered property implies
that if j + 1 ∈ S∗i , then j ∈ S∗i . Thus, products j and j + 1 always appear together in the optimal solution; that is,
they can be merged into a single product when computing the optimal assortment, as illustrated in the next section.

4

3. A Greedy Algorithm

Our proposed GREEDY ALGORITHM generates a sequence of assortments {St : t = 0, 1, . . .}, terminating with
an assortment that satisfies the optimality condition in Theorem 2.3. In Stage 1 of the algorithm, we exploit the lumpy
structure of the optimal assortments shown in Theorem 2.4, by combining products that will always appear together
into a single group. In Stage 2, we make use of the optimality condition and iteratively remove at most one product
from each nest until an optimal assortment is obtained. A formal description of the algorithm is given as follows.

Stage 1 (Lumping): Compute the indexGi(j, j) for every product ji. For i = 1, . . . ,m, ifGi(j, j) < Gi(j+1, j+1),
then it follows from Theorem 2.4 that either {j, j + 1} ⊆ S∗i or {j, j + 1} ∩ S∗i = ∅. Thus, we can combine the
two products, and replace products j and j + 1 with a single “new” product with a revenue Revi([j, j + 1]) and
a preference weight vji + vj+1,i. Assign the new product the index j, and calculate the new Gi(j, j). Repeat this
process until we obtain a list of indices Gi(j, j) that is non-increasing in j. Without loss of generality, assume that at
the end of Stage 1, each nest i has n products such that Gi(1, 1) ≥ Gi(2, 2) ≥ · · · ≥ Gi(n, n).
Stage 2 (Removal): Let S1 = ([1, n], . . . , [1, n]). For iteration t ≥ 1, given St = ([1, J t1], [1, J

t
2], . . . , [1, J

t
m]), let

Mint = min
i : Jti ≥ 1

Gi(J
t
i , J

t
i) and Indext = arg min

i : Jti ≥ 1
Gi(J

t
i , J

t
i).

If Mint ≥ Rev(St), the algorithm terminates and outputs St. Otherwise, if Mint < Rev(St), then the algorithm
generates a new assortment St+1 = (St+1

1 , . . . , St+1
m) as follows:

St+1
i =

{
Sti if i 6= Indext

Sti \ {J ti } = [1, J ti − 1] if i = Indext .

Thus, in each iteration, we remove J ti from Sti if Gi(J ti , J
t
i) = Mint and the product J ti violates the optimality

condition given in Theorem 2.3; that is, Gi(J ti , J
t
i) < Rev(St).

The following lemma shows that St always contains the optimal assortment.

Lemma 3.1 (Containment). For all t, S∗ ⊆ St.

Proof. We will prove the result by induction. It is true for t = 1 by our construction. Suppose that the lemma is true
for t > 1; that is, S∗ ⊆ St. We will show that S∗i ⊆ St+1

i for all i. Consider an arbitrary nest i. There are two cases
to consider: S∗i = Sti and S∗i ⊂ Sti .
Case 1: Suppose that S∗i = Sti = [1, J ti]. If J ti = 0, then i 6= Indext and St+1

i = Sti by our construction. So, suppose
that J ti ≥ 1. As Rev (S∗) ≥ Rev(S∗1 , . . . , S∗i \ {J ti }, . . . , S∗m), Gi(J ti , J

t
i) ≥ Rev(S∗) ≥ Rev(St) follows from

Lemma 2.2 and the optimality of S∗. As Gi(J ti , J
t
i) ≥ Rev(St), St+1

i = Sti , which is the desired result.
Case 2: Suppose that S∗i ⊂ Sti = [1, J ti]. Then, J ti /∈ S∗i and J ti ≥ 1. As S∗i ∈ N+, S∗i ⊆ [1, J ti − 1]. By our
construction, we will either remove J ti from Sti or do nothing, and in both cases, we have S∗i ⊆ S

t+1
i .

The main result of this section is stated in the following theorem.

Theorem 3.2 (Correctness). The GREEDY ALGORITHM terminates with an optimal assortment inO(nm logm) time.

Proof. We will first establish the running time of the algorithm. Note that Revi([1, j]) is a convex combination of

Revi([1, j − 1]) and rji, and by definition, Gi(j, j) = Revi([1, j]) − Revi([1,j])−rji
fi(1 − vji/

∑j
`=1 v`i)

. For simplicity, assume

that we can compute the function fi(x) for each x and the index Gi(j, j) for every product ji in O(1) time. For
each nest i, we will show that the “lumping” process takes O(n) operations. The lumping process requires two
types of operations: 1) comparison between two indices and 2) merging of two products. Whenever we merge two
products to create a new one, the total number of products is reduced by one. As we start with n products, the number
of mergings is at most n − 1. We perform two types of comparisons. Starting from product 1, if the ordering of
indices is correct up to product j, we compare Gi(j, j) forward with Gi(j + 1, j + 1). If no violation occurs, then
Gi(j, j) ≥ Gi(j + 1, j + 1), and we proceed to product j + 1. If a violation occurs, then we must merge products
j and j + 1 to create a new product j. To ensure the correct ordering of indices, we need to compare the new index
Gi(j, j) backward with Gi(j − 1, j − 1). Given n products, there are O(n) forward comparisons. As a backward

5

comparison only occurs after each merging, and there are O(n) mergings, the number of backward comparisons is
also O(n). Thus, the total number of operations is O(n). With m nests, the total running time for Stage 1 is O(nm).

In Stage 2, the algorithm will continue to run as long as a single product is removed from any nest. Given nm
products, the algorithm will terminate in O(nm) iterations. We will show that each iteration takes O(logm) time.

At the beginning of Stage 2, we create a self-balancing binary search tree (SB-BST) with m nodes, where for
i = 1, 2, . . . ,m, node i in the tree corresponds to the indexGi(n, n). This takesO(m logm) operations; see Chapter 6
in [17] for more details. We use the SB-BST as our data structure because such a tree always maintains a height of
O(logm), allowing for efficient search operations. In each iteration t ≥ 1, we perform the following three operations:

SEARCH: The algorithm searches for the nest with the minimum indexGi(J ti , J
t
i) inO(logm) time under SB-BST.

DELETE: If the minimum index Gi(J ti , J
t
i) is greater than or equal to the revenue of the current assortment, the

algorithm terminates. Otherwise, the algorithm removes the product J ti from Sti in nest i and also removes node i
from the tree. The removal is done in O(logm) operations because the tree may need to re-balance its heights.

INSERT: If the product J ti in nest i is removed and J ti > 1, the algorithm adds a new node with a corresponding
index Gi(J ti − 1, J ti − 1) into the tree. Again, the insertion of a new node in SB-BST takes O(logm) operations.

Thus, each iteration takes O(logm) time. As we have O(nm) iterations, the total running time is O(nm logm).
Let S = ([1, p1], . . . , [1, pm]) denote the assortment at the termination of the algorithm. For every nest i such that

pi ≥ 1, by our construction,Gi(pi, pi) ≥ Rev(S). To complete the proof, we will show that S satisfies the optimality
condition in Theorem 2.3; that is, minj=1,2,...,pi Gi(j, pi) ≥ Rev(S) for each i such that pi ≥ 1. Suppose on the
contrary that minj=1,2,...,pi Gi(j, pi) < Rev(S). Let ki ∈ {1, 2, . . . , pi − 1} denote the largest index at which the
optimality condition is violated; that is, Gi(ki, pi) < Rev(S) ≤ Gi(ki+1, pi). Then it follows from Lemma 2.2 that
Rev(S1, . . . , Si \ [ki, pi], . . . , Sm) > Rev(S) ≥ Rev(S1, . . . , Si \ [ki+1, pi], . . . , Sm). As Si \ [ki, pi] = [1, ki− 1]
and Si \ [ki + 1, pi] = [1, ki], by Lemma 2.2, Gi(ki, ki) < Rev(S1, . . . , Si \ [ki + 1, pi], . . . , Sm) ≤ Rev(S). As
we lump the products in Stage 1 and ki < pi, we have Gi(pi, pi) ≤ Gi(ki, ki) < Rev(S), which contradicts our
hypothesis on pi ! Therefore, minj=1,2,...,pi Gi(j, pi) ≥ Rev(S).

4. Sensitivity Analysis

In this section, we investigate how the optimal assortment changes with product revenues. Our goal is to tractably
compute the optimal assortment that maximizes the total revenue when the revenue of every product is reduced by δ,
for all δ ∈ R+ simultaneously. That is, we want to solve the following optimization problem:

Z(δ) = max
S=(S1,...,Sm)

{ m∑
i=1

∑
j∈Si

Qji(S)(rji − δ)
}

= max
S=(S1,...,Sm)

{
Rev(S)− [1−Q0(S)]δ

}
,

for all δ ∈ R+, where Q0(S) is the probability that a customer chooses the no-purchase option.
Before we present the main result of this section, we first describe the structural properties of Z(δ) in the following

lemma. The result is standard because {Z(δ) : δ ∈ R+} is the maximum of linear functions, each of which is
decreasing in δ, and we omit the detail of the proof.

Lemma 4.1. For all δ ∈ R+, the function δ 7→ Z(δ) is convex, decreasing and piecewise linear.

Let X(δ) represent the corresponding optimal assortment associated with the optimization problem for Z(δ).
Throughout this section, we assume that X(δ) corresponds to the optimal assortment obtained by running the GREEDY
ALGORITHM with reduced revenue rji − δ for every product ji. Clearly, a naive application of the GREEDY
ALGORITHM to compute Z(δ) for every single δ ∈ R+ is infeasible. We will make use of the structural properties
of Z(δ) to develop an efficient algorithm that computes the entire profile of Z(δ) and X(δ), simultaneously for all
δ ∈ R+, with a running time of O(nm logm). The main result of this section is stated in the following proposition.

Proposition 4.2 (Computing Z(δ)). For all δ ∈ R+, the function δ 7→ Z(δ) has at most nm breakpoints. Moreover,
the entire profile of Z(δ), X(δ) and the breakpoints can be computed simultaneously for all δ ∈ R+ in a single run
of the GREEDY ALGORITHM with a running time of O(nm logm).

6

Before we prove Proposition 4.2, it is easy to verify that if we reduce the revenue of every product by δ, the index
of each product ji is given by Gi(j, j)− δ, which is simply the difference between the original index Gi(j, j) defined
in Section 2 and δ. Moreover, both the sequence of lumping and the ordering of the index of each product after
lumping remain the same as we apply the GREEDY ALGORITHM with reduced revenue rji − δ for every product ji.

The following lemma shows the relationship between X(δ) and S∗, where S∗ is the optimal assortment associated
with the assortment optimization problem for Z∗ as defined in Section 1.

Lemma 4.3 (Optimal Assortment for Z(δ)). For all δ ≥ 0, X(δ) ⊆X(0) = S∗.

Proof. The optimization problem for Z(0) is identical to the one for Z∗; therefore, X(0) = S∗. Suppose the GREEDY
ALGORITHM that computes S∗ terminates in T iterations. For each t = 1, . . . , T , let St = ([1, J ti], [1, J

t
2], . . . , [1, J

t
m])

denote the assortment in iteration t. Then, the optimality condition implies that mini:Jti≥1Gi(J
t
i , J

t
i) < Rev(St),

for t < T . Now compare this algorithm with the GREEDY ALGORITHM that computes X(δ) with reduced revenue
rji − δ for every product ji. As the ordering of the index of each product is constant for all δ ≥ 0, the sequence of
products removed remains the same before the termination of either algorithm. Moreover, in each iteration t < T ,

min
i:Jti≥1

(Gi(J
t
i , J

t
i)− δ) < Rev(St)− δ < Rev(St)− [1−Q0(S

t)]δ,

implying that the GREEDY ALGORITHM that computes X(δ) terminates in iteration T or later. Thus, X(δ) ⊆ S∗.

We denote the breakpoints of the function δ 7→ Z(δ) by {δt : t = 0, 1, . . .}, 0 = δ0 ≤ δ1 ≤ . . . and denote
the optimal assortment for δ ∈ [δt, δt+1] by Xt = X(δ). Recall that the optimal assortment Xt for δ ∈ [δt, δt+1]
corresponds to the optimal assortment obtained by running the GREEDY ALGORITHM with reduced revenue rji − δ
for every product ji. Thus, every product in Xt has undergone the lumping process, and the index Gi(j, j) − δ in
every nest i is non-increasing in j. Exploiting this fact, the next lemma shows that given Xt−1, we can compute Xt

simply by removing a product with the lowest index.

Lemma 4.4 (Computing an Optimal Assortment). Suppose Xt−1 is optimal for δ ∈ [δt−1, δt]; an optimal assortment
Xt for δ ∈ [δt, δt+1] can be obtained by removing a product with the minimum index from Xt−1.

Proof. As δt is a breakpoint, Xt 6= Xt−1. Thus by Lemma 4.3, Xt ⊂ Xt−1. Suppose the last product k in nest `
has the minimum index value in Xt−1. By continuity, Z(δt) = Rev(Xt−1)− [1−Q0(X

t−1)]δt = G`(k, k)− δt,
where the second equality follows from the optimality condition. As G`(k, k) − δt is equal to Z(δt), which is the
total revenue of Xt−1 with reduced revenue rji− δt for every product ji, it follows from Lemma 2.2 that the removal
of product k` leaves the total revenue unchanged. That is, Z(δt) = Rev(Xt−1 \ {k`})− [1−Q0(X

t−1 \ {k`})]δt.
Thus, Xt−1 \ {k`} is also optimal at δt. Letting Xt = Xt−1 \ {k`} gives the desired result.

Lemma 4.4 implies that starting with an optimal assortment X0 = S∗, we can compute Xt, for t = 1, 2, . . .
sequentially without any knowledge on the breakpoints δt. The following lemma shows that given two consecutive
optimal assortments Xt−1 and Xt, we can compute the breakpoint δt.

Lemma 4.5 (Computing Breakpoints). Suppose Xt−1 is an optimal assortment for δ ∈ [δt−1, δt], and Xt is an
optimal assortment for δ ∈ [δt, δt+1]. Then,

δt =
Rev(Xt−1)− Rev(Xt)

Q0(Xt)−Q0(Xt−1)
.

Proof. By continuity, we have that Z(δt) = Rev(Xt−1) − [1 − Q0(X
t−1)]δt = Rev(Xt) − [1 − Q0(X

t)]δt, as
both Xt−1 and Xt give the same revenue Z(δt) at the breakpoint δt. Solving for δt gives us the desired result.

Here is the proof of Proposition 4.2.

Proof. Starting with the full assortment, we first apply the GREEDY ALGORITHM to compute X0 = X(0) = S∗.
Given X0, we obtain Xt for each t ∈ {1, 2, . . .} by applying Lemma 4.4. Then, given Xt−1 and Xt, we apply
Lemma 4.5 to calculate the breakpoint δt. Finally, given Xt−1 for δ ∈ [δt−1, δt], the optimal revenue is computed as
Z(δ) = Rev(Xt−1)− [1−Q0(X

t−1)]δ. There are at most nm products in X0. As we remove a single product with
the minimum index in each iteration, there are at most nm removals, corresponding to at most nm breakpoints of the
function δ 7→ Zδ . The running time of the algorithm is O(nm logm) by Theorem 3.2.

7

Application to the Multi-Period Capacity Allocation Problem. We apply our GREEDY ALGORITHM to solve the
multi-period capacity allocation problem described in [2] under the two-level nested logit model. We denote the
total capacity of seats on a flight leg by C and the total number of allocation periods by T . There are m groups of fare
classes, with each group containing n fare classes. Each fare class j in group i has revenue rji, where j = 1, 2, . . . , n
and i = 1, 2, . . . ,m. Let S = (S1, S2, . . . , Sm) denote the assortment of fare classes. In each period, a single
customer chooses a fare class according to a two-level nested logit model. Let Jt(x) denote the maximum expected
revenue when we have x seats and t periods left. Then, Jt(x) satisfies the following dynamic programming equation:

Jt(x) = max
S=(S1,...,Sm)

{ m∑
i=1

∑
j∈Si

Qji(S)(rji −4Jt−1(x))
}
+ Jt−1(x),

where4Jt−1(x) = Jt−1(x)−Jt−1(x− 1), and J0 ≡ 0. It is a standard result that4Jt(x) ≥ 0 for all x and t. Then,
the first term on the right-hand side is exactly the optimization problem for Z(δ) with δ = 4Jt−1(x).

The traditional approach to solve the multi-period capacity allocation problem is by dynamic programming, in
which Jt(x) is computed for every single x and t, requiring a total running time of O(TC nm logm) if we apply the
GREEDY ALGORITHM in each subproblem. As shown in the following proposition, we can do much better.

Proposition 4.6 (Solving Multi-Period Capacity Allocation). Under the two-level nested logit model, the multi-period
capacity allocation problem with total allocation periods T and total capacity C can be solved using a single run of
the GREEDY ALGORITHM with a total running time of O(TC + nm logm).

Proof. Computing {X(δ) : δ ∈ R+} and breakpoints {δt : t = 1, 2, . . .} takesO(nm logm) time by Proposition 4.2.
We can then build a hash table to store the intervals of breakpoints and the corresponding optimal assortments in
O(nm) time. Suppose that for every δ ∈ R+, we can look up in the hash table for X(δ) in O(1) time. As x can
take C +1 values, for each t, the value function Jt(·) can be computed in O(C) operations, simply by looking up the
stored values in the hash table. There are T such value functions; thus it takes O(TC) time to determine Jt(·) for all
t ∈ {1, . . . , T}. Therefore, the total running time is bounded by O(TC + nm logm).

Acknowledgments
We would like to thank Huseyin Topaloglu for introducing us to the surprising connection between the assortment

optimization problem under the two-level nested logit model and its equivalent linear programming formulation. We
would like to thank the area editor, Sridhar Seshadri, the associate editor and the referee for their insightful and
detailed comments. Their suggestions greatly improve the presentation and quality of our paper.

References
[1] A. G. Kök, M. L. Fisher, R. Vaidyanathan, Assortment planning: Review of literature and industry practice, in: Retail Supply Chain

Management, Springer US, 2009, pp. 99–153.
[2] K. Talluri, G. van Ryzin, Revenue management under a general discrete choice model of consumer behavior, Mgmt. Sci. 50 (1) (2004) 15–33.
[3] D. McFadden, Conditional logit analysis of qualitative choice behavior, in: P. Zarembka (Ed.), Frontiers in Econometrics, Academic Press,

1974, pp. 105–142.
[4] K. Train, Discrete Choice Methods with Simulation, Cambridge University Press, 2009.
[5] V. Gaur, D. Honhon, Assortment planning and inventory decisions under a locational choice model, Mgmt. Sci. 52 (10) (2006) 1528–1543.
[6] D. Honhon, V. Gaur, S. Seshadri, Assortment planning and inventory decisions under stockout-based substitution, Oper. Res. 58 (5) (2010)

1364–1379.
[7] V. F. Farias, S. Jagabathula, D. Shah, Assortment optimization under general choice, Working Paper, MIT, Cambridge, MA (2011).
[8] D. McFadden, Modelling the choice of residential location, in: A. Karlqvist, L. Lundqvist, F. Snickars, J. Weibull (Eds.), Spatial Interaction

Theory and Planning Models, North-Holland, Amsterdam, 1978, pp. 75–96.
[9] J. M. Davis, G. Gallego, H. Topaloglu, Assortment optimization under variants of the nested logit model, to appear in Oper. Res. (2014).

[10] P. Rusmevichientong, Z.-J. M. Shen, D. B. Shmoys, A PTAS for capacitated sum-of-ratios optimization, OR Letters 37 (4) (2009) 230–238.
[11] G. Gallego, H. Topaloglu, Constrained assortment optimization for the nested logit model, to appear in Mgmt. Sci. (2014).
[12] G. Gallego, G. Iyengar, R. Phillips, A. Dubey, Managing flexible products on a network, Computational Optimization Research Center

Technical Report TR-2004-01, Columbia University, New York, NY (2004).
[13] Q. Liu, G. van Ryzin, On the choice-based linear programming model for network revenue management, M&SOM 10 (2) (2008) 288–310.
[14] S. Kunnumkal, Randomization approaches for network revenue management with customer choice behavior, to appear in POM (2013).
[15] N. S. Cardell, Variance components structures for the extreme-value and logistic distributions with application to models of heterogeneity,

Econometric Theory 13 (02) (1997) 185–213.
[16] M. Ben-Akiva, S. Lerman, Discrete Choice Analysis: Theory and Application to Travel Demand, MIT Press, Cambridge, MA, 1985.
[17] D. E. Knuth, The Art of Computer Programming, 2nd Edition, Vol. 3, Addison-Wesley Professional, 1998.

8

