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As technology advances, new products (e.g., digital cameras, computer tablets, etc.) have become increasingly
more complex. Researchers often face considerable challenges in understanding consumers’ preferences for

such products. This paper proposes an adaptive decompositional framework to elicit consumers’ preferences
for complex products. The proposed method starts with collaborative-filtered initial part-worths, followed by
an adaptive question selection process that uses a fuzzy support vector machine active learning algorithm to
adaptively refine the individual-specific preference estimate after each question. Our empirical and synthetic
studies suggest that the proposed method performs well for product categories equipped with as many as 70 to
100 attribute levels, which is typically considered prohibitive for decompositional preference elicitation methods.
In addition, we demonstrate that the proposed method provides a natural remedy for a long-standing challenge in
adaptive question design by gauging the possibility of response errors on the fly and incorporating the results into
the survey design. This research also explores in a live setting how responses from previous respondents may be
used to facilitate active learning of the focal respondent’s product preferences. Overall, the proposed approach
offers new capabilities that complement existing preference elicitation methods, particularly in the context of
complex products.
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1. Introduction
As technology advances, new products (e.g., digital
cameras, computer tablets, etc.) have become increas-
ingly more complex. Researchers often face considerable
challenges in understanding consumers’ preferences for
such products (e.g., Green and Srinivasan 1990, Hauser
and Rao 2004). Conventional preference elicitation
methods such as conjoint analysis often become infeasi-
ble in this context because the number of questions
required to obtain accurate estimates increases rapidly
with the number of attributes and/or attribute levels.
Historically, researchers have relied primarily on com-
positional approaches to handle preference elicitation of
such products (e.g., Srinivasan 1988, Scholz et al. 2010,
Netzer and Srinivasan 2011). Adaptive question selec-
tion algorithms have also been proposed for complex
product preference elicitation due to their ability to
rapidly reveal consumer’s product preferences with rel-
atively few questions (e.g., Netzer and Srinivasan 2011).
While significantly enhancing our ability to under-
stand consumers’ preferences for complex products,

the extant research has yet to address the following
challenges.

First, although widely used in the literature, compo-
sitional approaches may encounter obstacles such as
unrealistic settings, inaccurate attribute weighting, etc.
(e.g., Green and Srinivasan 1990, Sattler and Hensel-
Börner 2000) Second, despite their high efficiency in
uncovering consumers’ product preferences, adaptive
question selection methods are often subject to response
errors that could misguide the selection of each subse-
quent question. Last, with the exception of Dzyabura
and Hauser (2011) in the context of consideration
heuristics elicitation, this line of research has yet to
explore the possibility of using other respondents’ data
to facilitate active learning of the focal respondent’s
product preferences.

Our research proposes an adaptive decompositional
framework in response to these challenges. The pro-
posed method starts with a collaborative-filtered initial
part-worths, followed by an adaptive question selec-
tion process using a fuzzy support vector machine
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(SVM) active learning algorithm to adaptively refine the
individual-specific preference estimate after each ques-
tion. Compared to extant preference elicitation methods,
our research offers the following new capabilities:

• Our adaptive decompositional approach is compu-
tationally efficient for preference elicitation of complex
products on the fly, as the algorithm primarily scales
with the sample size of the training data, rather than
the dimensionality of the data vector.

• While extant research either neglects response
errors in adaptive question selection or sets possibility
of error instance as a priori, our algorithm gauges the
possibility of response errors on the fly and incorporates
it into adaptive survey design.

• Although most adaptive question selection meth-
ods only use information from the focal respondent,
we use responses from previous respondents in a live
setting via collaborative filtering to facilitate active
learning of the focal respondent’s product preferences.

We illustrate the proposed method in two computer-
based studies involving digital cameras (with 30+ at-
tribute levels) and computer tablets (with 70+ attribute
levels). Our empirical investigation demonstrates that
the proposed method outperforms the self-explicated
method, the adaptive Choice-Based Conjoint method,
the traditional Choice-Based Conjoint method, and
an upgrading method similar to Park et al. (2008)
in its ability to correctly predict validation choices.
Our synthetic data experiments further demonstrate
that the proposed method can rapidly and effectively
elicit individual-level preference estimates even when
the product category is equipped with more than 100
attribute levels. We also use synthetic data experiments
to compare the scalability, parameter recovery, and
predictive validity of the proposed algorithm with
that of Dzyabura and Hauser (2011) for consideration
questions and of Abernethy et al. (2008) for choice
questions. We show that the proposed question selec-
tion algorithm may be used in conjunction with or as
a substitute for algorithms by Dzyabura and Hauser
(2011) and Abernethy et al. (2008) to uncover con-
sumers’ preferences for complex products. Overall,
our empirical and synthetic studies suggest that the
proposed approach offers a promising new method to
complement existing preference elicitation methods.

The remainder of the paper is organized as follows.
In §2, we discuss the relationship of this research to
the extant literature. In §3, we present the proposed
adaptive question design algorithm. In §4, we describe
our two empirical applications. Details of our synthetic
studies are presented in §5. The final section summa-
rizes key results, discusses limitations of this research,
and offers directions for future research.

2. Relationship to Extant Literature
The algorithm used in our proposed framework is
closely related to the machine learning literature with

origins in computer science. An important applica-
tion of machine learning is classification, in which
machines “learn” to recognize complex patterns, to
distinguish between exemplars based on their different
patterns, and to make intelligent predictions on their
classes. Many marketing problems require accurately
classifying consumers and/or products (or both) (e.g.,
consumer segmentation; identification of desirable
versus undesirable products). Therefore, marketing
researchers have recently begun to embrace machine
learning methods in the estimation of classic marketing
problems (e.g., Cui and Curry 2005; Evgeniou et al.
2005, 2007; Hauser et al. 2010).

Built on this stream of literature, the current paper
introduces SVM-based active learning into adaptive
question design. Arguably the most popular statistical
machine learning method in the past decade (Toubia
et al. 2007a), SVM methods are well known for high-
dimensional classification problems (e.g., Vapnik 1998,
Tong and Koller 2001). In particular, we use a fuzzy
SVM method to adaptively select each subsequent
question for each respondent on the fly. As a weighted
variant of the soft margin SVM formulation (the soft
margin SVM was initially introduced by Cortes and
Vapnik 1995), the fuzzy SVM method assigns different
weights to different data points to enable greater flexi-
bility of error control. Since the early 2000s, the class
of fuzzy SVM methods has gained notable popularity
in the SVM literature, mainly due to its effectiveness in
reducing the effect of noises/errors in the data (e.g.,
Lin and Wang 2002, 2004; Wang et al. 2005; Shilton
and Lai 2007; Heo and Gader 2009).

When used for preference elicitation of complex
products, this algorithm exhibits a number of advan-
tages over extant methods. One desirable property
of the SVM-based active learning algorithm is that
the optimization used to facilitate adaptive selection
of each subsequent question can be transformed to a
dual convex optimization problem (Tong and Koller
2001). In our context, the primal problem (Equations (2)
and (4)) is also constructed to be convex. Therefore, the
proposed algorithm not only offers an explicitly defined
unique optimum but also is easily solvable by most
software for problems with dimensions that are likely
to be of interest to marketers. Indeed, the SVM-based
classification is primarily scaled by the size of the train-
ing data (i.e., the number of questions presented to each
consumer in our context), rather than the dimensional-
ity of the data vector (Dong et al. 2005). Consequently,
the SVM-based active learning method is particularly
suitable for the problem at hand. In contrast, several
alternative adaptive methods (such as the adaptive fast
polyhedral methods by Toubia et al. 2003, 2004, 2007b)
are scaled by the dimensionality of the product vector.
This may become more computationally cumbersome
as the dimension of product attributes/attribute levels
increases. Moreover, while the Hessian-based adaptive
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methods (e.g., Abernethy et al. 2008, Toubia et al. 2013)
require discrete transformations when used for discrete
attributes, the SVM-based active learning method is
flexible enough to directly accommodate discrete and
continuous product attributes.

Another unique advantage particularly related to the
fuzzy SVM active learning method is that it enables
researchers to gauge the possibility of response errors
on the fly and to incorporate it into adaptive question
selection. In the context of adaptive question design,
response errors may be conceptualized as the ran-
dom error component in consumer’s utility function
(e.g., Toubia et al. 2003). Empirical data suggest that
response errors are approximately 21% of total util-
ity (Hauser and Toubia 2005). Because each response
error might set the adaptive question selection to the
wrong path and negatively impact selection of all
subsequent questions, the presence of such errors poses
a long-standing challenge to the adaptive question
design literature (e.g., Hauser and Toubia 2005, Toubia
et al. 2007a). To date, response errors have either
been neglected (e.g., Toubia et al. 2004, Netzer and
Srinivasan 2011) or set as a priori possibility for all indi-
viduals and all questions (e.g., Toubia et al. 2003, 2007b,
2013; Abernethy et al. 2008; Dzyabura and Hauser
2011). We demonstrate that the proposed method can
be used not only to gauge possible response errors on
the fly but also to reduce the effects of such noise in
adaptive question selection.

Last, inspired by Dzyabura and Hauser (2011) who
suggest that previous-respondent data may be used
to improve elicitation of consideration heuristics, the
proposed method uses responses from previous respon-
dents via collaborative filtering to facilitate active

Figure 1 Overall Flow of the Proposed Adaptive Question Design Method

Previous respondents’
part-worths and self-
configured profiles

Configurator
(collaborative filtering)

Identify must-haves and/or unacceptable
features

Adaptive choice questions
(choice-based fuzzy SVM active learning)

Initial
part-worths

Candidate pool of
profiles

Adaptive consideration questions
(consideration-based fuzzy SVM active learning)

learning of the focal respondent’s product preferences.
The concept of collaborative filtering has been applied
in various contexts such as prediction of TV show pref-
erences and movie recommendation systems (Breese
et al. 1998). We illustrate that such a technique can be
incorporated in adaptive question design using actual
respondents in a live setting.

3. Adaptive Question Selection for
Complex Product Preference
Elicitation

3.1. Overall Flow
Figure 1 depicts the overall flow of our adaptive ques-
tion design. We begin by prompting the consumer to con-
figure a product that he is most likely to purchase, taking
into account any corresponding feature-dependent
prices. Based on collaborative filtering between the
focal and previous respondents’ self-configured profiles,
we obtain an individual-specific initial part-worths
vector (§3.2). Next, we provide each consumer with
an option of selecting “must-have” and “unaccept-
able” product features. We use information obtained
from such features to construct the pool of candidate
profiles to be evaluated in the consideration stage,
as it is infeasible to evaluate all profiles using active
learning without excessive delays in between survey
questions within our context (§3.3). Conditional on the
initial part-worths and the candidate pool of profiles
obtained for each respondent, we use a two-stage
consider-then-choose process where the consideration
stage asks the respondent whether he would con-
sider a product profile (§3.4) and the choice stage asks
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the respondent to choose among competing product
profiles (§3.5). In both stages, we use fuzzy SVM active
learning for adaptive question design, so that each
subsequent question is individually customized to
refine the consumer-specific preference estimate while
accounting for possible response errors on the fly.

We explain the underlying rationale of our overall
framework below. The primary goal of the proposed
method is to estimate a part-worths vector for each
respondent j . Given that the scale of the part-worths
vector is arbitrary (Orme 2010), before the respondent
answers any question, we may visualize the feasible
region of the part-worths being all of the points on
the surface of a hypersphere with unit norm (i.e.,
wj ∈ W � �wj� = 1). Such a feasible region is referred
to as version space in Tong and Koller (2001) and
Herbrich et al. (2001) and a polyhedron in Toubia et al.
(2003, 2004, 2007a). Conceptually, each answer given
by the respondent provides constraint(s) that makes
this feasible region smaller.

Given the large number of attributes/attribute levels
associated with complex products and the limited
number of questions we can ask each respondent,
an informative first question would enable us to effi-
ciently construct the initial region of the feasible part-
worths (§3.2). Similarly, by constructing a candidate
pool with the majority of profiles satisfying the “must-
have” and “unacceptable” criteria, we can maximize
our learning about the focal respondent’s product
preferences by asking whether he would consider a
profile based on his favorability towards other prod-
uct features (§3.3). Essentially, the first two steps of
our overall framework aim to construct a suitable
foundation for the adaptive question selection later on.

We then use a consider-then-choice framework to elic-
it each respondent’s product preference (§§3.3 and 3.4).
Specifically, our algorithm aims to uncover a set of
part-worths estimates that are consistent with the
consumer’s answers to these questions. Historically,
researchers have often used conjunctive rules to cap-
ture consumer’s decision rules in the consideration
process (e.g., Hauser et al. 2010, Dzyabura and Hauser
2011). It has been less common to use part-worths to
characterize consumer’s responses to consideration
questions. Our synthetic data experiments reveal that,
even when the true consideration model is driven by
conjunctive decision rules, the part-worths estimate
from our algorithm exhibits good ability to predict
whether the respondent would consider a profile (§5.1).
Indeed, even if heuristic decision rules are adopted
by some respondents (particularly in the considera-
tion stage), such preferences will be partially captured
in our individual-specific part-worths estimates that
aim to optimally predict responses from these con-
sumers. Therefore, while not explicitly portraying these
respondents’ consideration heuristics, our part-worths

estimates serve as an approximation of the decision
heuristics used by such individuals.1

Within this setup, we present an algorithm wherein
we use a set of part-worths estimates to characterize
a respondent’s answers to consideration and choice
decisions. In this context, we aim to select each subse-
quent consideration/choice question such that we can
reduce the feasible region of the part-worths as rapidly
as possible. Intuitively, one good way to achieve this
goal is to choose a question that halves such a region
(Tong and Koller 2001; Toubia et al. 2003, 2004, 2007b).
To accomplish this goal, we adapt the active learning
approach proposed by Tong and Koller (2001) to select
each subsequent consideration/choice question on the
fly. Similar to Toubia et al. (2003, 2004, 2007a), this
algorithm relies on intermediate individual-level part-
worths estimates to adaptively select each subsequent
question. If the consumer makes no response errors,
such an approach would rapidly shrink the feasible
region of the part-worths. Nevertheless, response errors
are often inevitable in practice. To reduce the effects of
response errors, we adapt the fuzzy SVM estimation
algorithm (Lin and Wang 2002) in consideration and
choice stages to obtain the intermediate part-worths.
Under this algorithm, each part-worths estimate is
obtained as an interior point within the current feasible
region of part-worths, via a simultaneous optimization
that balances between data-imposed constraints and
weighted classification violation. Consequently, when
selecting each subsequent question based on such inter-
mediate part-worths estimates, the negative impact of
response errors in the process of adaptive question
selection would be alleviated.

We also conjecture that our current multistage frame-
work may help reduce the effect of response errors.
In adaptive question design, early response errors are
considerably more detrimental than errors that occur
toward the end of the adaptive survey (e.g., Hauser
and Toubia 2005, Toubia et al. 2007a). Therefore, when
presented with the less demanding self-configuration
and consideration questions before the more challeng-
ing choice questions, respondents may be less likely
to incur response errors early on. Pseudo code of our
algorithm is provided in Web Appendix A (available
as supplemental material at http://dx.doi.org/10.1287/
mksc.2015.0946). Screenshots of the survey interface

1 Note that, in practice, some consumers may not use the same
utility function for consideration and choice decisions. For example,
an individual might emphasize different sets of attributes in the
consideration phase versus in choice phase. In §5.1, we discuss how
our algorithm can be used in conjunction with the algorithm by
Dzyabura and Hauser (2011) to accommodate a consider-then-choice
framework wherein conjunctive rules are used to examine answers to
consideration questions and conjoint part-worths are used to capture
product preferences reflected in choice questions. In such cases,
different utility functions may also be used to model consideration
and choice decisions separately.
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from our computer tablet applications are presented in
Web Appendix B.

3.2. Collaborative-Filtered Initial Part-Worths Vector
Our framework begins by asking each respondent
to configure a product profile that he is most likely
to purchase, taking into account any corresponding
feature-dependent prices.2 Such a self-configured prod-
uct profile provides substantial information about a
consumer’s product preferences (Dzyabura and Hauser
2011, Johnson and Orme 2007). In our context, the
information from the self-configured profile is used as
follows.

First, we generate an initial individual-specific part-
worths vector based on collaborative filtering between
the focal and previous respondents’ self-configured
product profiles. The basic intuition is that we may
learn about the focal respondent’s product preferences
by examining the preferences of previous respondents
who have configured similar product profiles. For exam-
ple, if two respondents self-configured two identical
computer tablets, they are likely to share some com-
monality in their overall preferences towards computer
tablets. Analogous to the role of informative prior in
the Bayesian literature, consumer-specific initial part-
worths obtained through collaborative filtering may
enhance active learning of the focal respondent’s prod-
uct preference at the outset of our adaptive question
selection. Specifically, after the focal respondent j con-
figures a profile that he is most likely to purchase, the
following equation is used to obtain the respondent’s
initial part-worths vector w̃0

j on the fly:

w̃0
j =

1
j − 1

j−1
∑

j ′=1

s4j1 j ′5 · w̃j ′ with

s4j1 j ′5=
c′
j · cj ′

�cj��cj ′�
1 (1)

where w̃j ′ is the estimated part-worths of previous
respondent j ′ with j ′ = 11 0 0 0 1 j − 1. In Equation (1), cj
denotes the vector that represents product features of
the self-configured profile for the focal respondent j ,
cj ′ represents the corresponding vector from previous
respondent j ′, and s4j1 j ′5 measures the degree of cosine
similarity between vectors cj and cj ′ .

The cosine similarity measure is widely used to cap-
ture the similarity between two vectors in informational
retrieval and collaborative filtering literature (e.g.,

2 Following Johnson and Orme (2007), we include feature-dependent
prices in the self-configuration task to increase the realism of this
task (otherwise respondents may self-configure the most advanced
product profile with the lowest price). In the subsequent consideration
and choice questions, we follow Orme (2007) by adopting a summed
price approach with a plus/minus 30% random price variation in
both empirical studies.

Salton and McGill 1986, Breese et al. 1998). Given that
our method uses aspect type coding with attribute-level
dummies, this measure is bounded between 0 and 1. In
particular, s4j1 j ′5= 0 if there is no overlap between cj
and cj ′ ; 0 < s4j1 j ′5 < 1 if there is partial overlap between
cj and cj ′ ; and s4j1 j ′5= 1 if cj = cj ′ . The resulting initial
part-worths is then used to identify the next set of
profiles shown to the consumer.

Second, we use information from the configurator to
set the two initial anchoring points in our fuzzy SVM
active learning algorithm. As a classification method, a
well posed SVM problem entails training data from both
classes. In our context, we first give the self-configured
product profile (i.e., the respondent’s favorite) a label
of “1” (meaning that the consumer would consider it).
Next, we select a profile among those that are the most
different from the self-configured profile and give it
a label of “−1.” As such a profile is not unique, the
“opposite” profile is randomly chosen among those
that do not share any common feature with the self-
configured profile (our synthetic data experiments
suggest that, in over 99% of cases, consumers would
not consider such an opposite profile). After the next set
of profiles is queried based on the collaborative-filtered
initial part-worths, we combine the two anchoring
points with the newly labeled profiles in the training
data to ensure that the SVM problem is well posed.
When previous respondents are absent, only the two
anchoring points are used to obtain the initial part-
worths vector for the focal respondent.

3.3. Identify Must-Have and/or Unacceptable
Product Features

After the configuration task, we provide each respon-
dent with an option of selecting some “must-have”
and “unacceptable” product features. In the context
of complex products, it is often infeasible to evaluate
all profiles using active learning without excessive
delays between survey questions (Dzyabura and Hauser
2011). One major advantage of identifying the “must-
have” and “unacceptable” product features is that such
information can be leveraged to construct the pool of
candidate profiles to be evaluated in the consideration
stage.3

In particular, among all possible product profiles
to be queried, we develop an individual-specific pool
containing (e.g., 90%) profiles that satisfy the “unaccept-
able” and “must-have” criteria (denoted as N 1

j 5, with
remaining profiles randomly chosen from those that do

3 Note that one potential caveat of this approach is that the inclu-
sions of “must-have” and “unacceptable” features might prime the
respondent into conjunctive-style decision making. An alternative
would be to use the uncertainty sampling method used by Dzyabura
and Hauser (2011) to construct the candidate pool of product profiles,
with the trade-off that it might be challenging to accurately identify
the most uncertain profiles during the first few queries.
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not satisfy these criteria (denoted as N 2
j 5.

4 The rationale
for having the majority of profiles in the candidate pool
satisfying the “must-have” and “unacceptable” criteria
is that we can maximize our learning about the focal
respondent’s product preferences by asking whether
he would consider a profile based on his favorability
towards other product attributes. The remaining pro-
files are chosen to account for the possibility that some
individuals may identify “desirable”/“undesirable”
features as “must-haves”/“unacceptables” (Johnson
and Orme 2007). As long as the size of N 2

j is sufficiently
large, our adaptive algorithm will update the estimated
part-worths vector so that profiles not satisfying the
initial criteria may also be queried in subsequent survey
questions.

3.4. Consideration-Based Fuzzy SVM Active
Learning

We next present the consideration-based fuzzy SVM ac-
tive learning algorithm. We first describe the algorithm
used to estimate the individual-specific part-worths
vector on the fly. Then we elaborate the algorithm used
to adaptively select profiles queried in each subsequent
question.

3.4.1. Algorithm to Estimate Individual-Specific
Part-Worths on the Fly. Let xi

j 4i = 1121 0 0 0 1 I3 j =

1121 0 0 0 1 J 5 denote the aspect type coded product pro-
file i labeled by respondent j as yi

j = 1 to indicate
that he would consider the profile and yi

j = −1 if he
would not consider it. Following the tradition in the
conjoint literature, we use a main-effects only model
where wI

j · xi
j denotes the utility estimate of product

profile i 4i = 1121 0 0 0 1 I5 for respondent j and �I
j being

the utility estimate of his “no-choice” option after
I profiles are labeled. The utility of the “no-choice”
option represents the decision boundary where the
consumer would only consider a profile if its utility
is no less than the baseline utility associated with
the “no-choice” option (Haaijer et al. 2001). That is,
consumer i will only consider profile j , i.e., yi

j = 1, if
wI

j · xi
j −�I

j ≥ 0; yi
j = −1 otherwise.

In this context, the primary purpose of the SVM
estimation algorithm is to find an individual-specific
part-worths (i.e., w̃I

j = 4wI
j 1�

I
j 55 that can correctly clas-

sify labeled profiles into the two classes of “would
consider” and “would not consider.” Finding such a
part-worths vector can be challenging in practice as

4 Synthetic data experiments reveal that, as long as the total number
of candidate profiles (i.e., Nj =N 1

j +N 2
j 5 is sufficiently large, we can

recover a part-worths estimate that is close to the true part-worths
under our active learning method. In the empirical applications,
we set Nj to be 20,000. Our synthetic studies suggest that this is
sufficiently large to recover the true part-worths while keeping the
question selection at less than 0.25 second between questions at
the consideration stage. Similar approaches are used to determine
the number of profiles to be considered in the choice stage.

(1) there may be response errors in the data, and (2) the
true decision process may not be representable by a
linear utility function as specified above. Regarding
the first issue, we use a fuzzy SVM algorithm that
assigns a different weight to each labeled profile along
with a regularization parameter to enable classification
violation when we present the algorithm later in this
section. The second issue can be alleviated by using
aspect type coded product utility or by introducing a
nonlinear kernel to the SVM algorithm. Compared with
the alternative continuous/attribute level order coding,
the aspect type coded product utility functions enable
greater flexibility to accommodate nonlinear preference
within each attribute (e.g., the utility function does
not require monotone preferences for screen size, such
as smaller/bigger size is strictly better). Additionally,
nonlinear kernels could be used if there are nonlinear
preferences across attributes. For example, if prior
knowledge suggests that interaction effects exist among
two or more product attribute levels, the SVM estima-
tion algorithm can be readily adapted to accommodate
such a nonlinear utility function. Vapnik (1998) and
Evgeniou et al. (2005) provide detailed discussions on
the generalization of the SVM estimation algorithm
to such nonlinear models, which also maintains its
computational efficiency even with highly nonlinear
utility functions.

For simplicity, we demonstrate our estimation algo-
rithm below using the example of the main-effects
only model. Formally, upon labeling of I profiles (i =
1121 0 0 0 1 I ), the following algorithm is used to estimate
respondent j’s part-worths vector (Vapnik 1998, Tong
and Koller 2001, Lin and Wang 2002):

min
wI

j 1�
I
j 1 �

i
j

[

1
2
�wI

j� +C
I
∑

i=1

ui
j�

i
j

]

s.t. yi
j 4w

I
j · xi

j −�I
j 5≥ 1 − �i

j

�i
j ≥ 01

(2)

where C is an aggregate-level regularization parameter
that allows a certain degree of prior misclassification at
the aggregate level, �i

j is a slack variable that can be
thought of as a measure of the amount of misclassifica-
tion associated with profile i, and ui

j assigns a different
weight to each labeled profile. When ui

j = 1, Equation (2)
corresponds to the soft margin SVM algorithm.

The regularization parameter C in Equation (2) must
be determined outside the SVM optimization.5 While
this parameter may partially absorb the negative impact
of noises in the data by allowing a certain degree of

5 Following the approaches described in Evgeniou et al. (2005) and
Toubia et al. (2007b), we use a cross-validation method based on
pretest data from the same population as the main study to determine
the values of C in our two empirical applications.
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prior misclassification at the aggregate level, we discuss
below how the fuzzy membership method provides
additional flexibility to gauge potential response errors
on the fly.

Instead of assuming that all labeled data belong
to one of the two classes with 100% accuracy, the
fuzzy SVM method assigns a fuzzy membership to
each labeled profile so that data points with a high
probability of being corrupted by noises will be given
lower values of fuzzy memberships (Lin and Wang
2002). Therefore, rather than giving each labeled data
point equal weight in the optimization, profiles with
higher probabilities of being meaningless will be given
less weight in the estimation under the fuzzy SVM
method.

In practice, researchers often do not have complete
knowledge about the causes or nature of noises in
the data. Therefore, in the machine learning literature,
researchers have explored various approaches to dis-
cern noises/outliers in the data (e.g., Lin and Wang
2002, 2004; Wang et al. 2005; Shilton and Lai 2007; Heo
and Gader 2009). We adopt a method similar to Lin
and Wang (2002) to assign each labeled profile with a
fuzzy membership ui

j (0 <ui
j ≤ 1) as follows:

ui
j =



























1 −
�xi

j − x̄I
j+�

r Ij+ +�
if yi

j = 11

1 −
�xi

j − x̄I
j−�

r Ij− +�
if yi

j = −11

(3)

where r Ij± = maxi∈Nj±
4�xi

j − x̄I
j±�5 represents the radius

of each class (with the two classes being consider
versus not consider), x̄I

j± = 41/N I
j±5
∑

i∈Nj±
xi
j denotes

each class’s group center, N I
j+ = 8i � yi

j = 19 and N I
j− =

8i � yi
j = −19 indicates the number of profiles in each

class upon labeling of I profiles; � is a small positive
number to ensure that all ui

j > 0.
Because the respondent’s true part-worths are un-

known to researchers, given the two classes of labeled
profiles, we use the center of each class to approximate
our current best guess about a profile that is representa-
tive of its class. We then define the fuzzy membership
as a function of the Euclidean distance of each labeled
profile to its current class center. That is, given our
current knowledge about the respondent’s product
preferences, we assess the possibility of response errors
by examining to what extent the labeled profile differs
from other labeled profiles in its class.

Therefore, depending on its distance to the current
class center, the labeled profile may be assigned a 90%
probability belonging to one class and a 10% probability
of being meaningless, or a 20% probability belonging to
one class and an 80% probability of being meaning-
less. In Equation (2), profiles with higher probabilities
of being meaningless (i.e., profiles with smaller ui

j

estimates) are given less weight in the fuzzy SVM
estimation algorithm.

We repeat the process outlined in Equations (2) and (3)
iteratively upon the labeling of each additional profile.
Specifically, each time an additional profile is labeled,
we assign it a fuzzy membership given the class center
of prior labeled profiles in its class, and based on which
updated part-worths is estimated. Next, we update
our class center estimates and the ui

j 4i = 1121 0 0 0 1 I5
estimate for each labeled profile to date. As a result, as
we gain additional information about respondent j’s
product preferences, the algorithm can be used to
iteratively refine the part-worths estimate and the
fuzzy membership estimates. Because we use the
intermediate part-worths estimate to adaptively select
each subsequent question, the proposed fuzzy SVM
method can be used not only to gauge possible response
errors in the data but also to reduce the effects of such
noises in the adaptive question design.

We have also used synthetic data experiments to
explore several alternative approaches to defining a
profile’s class membership probability, such as defining
a profile’s class membership as a function of its dis-
tances to both its own class center and the center of
the opposite class, or imposing an underlying error
distribution assumption similar to the Logit, Probit or
the Gaussian Mixture models. To the extent that the
estimation is feasible, we do not observe improvement
in model performance by implementing such alterna-
tive weighing schemes (details are provided in Web
Appendix C).

It is worth noting that the class of fuzzy SVM meth-
ods discussed above faces potential gains and losses in
adaptive question selection. On the positive side, this
method alleviates the negative effect of response errors
if such errors exist (see more investigation on this
matter in §5.3). On the negative side, if the respondent
does not incur an error, our fuzzy membership esti-
mates may render the estimation less efficient. Given
that the slack variable �i

j in Equation (2) equals 0 for all
nonsupport vectors in the solution, the efficiency loss
only occurs when the solutions to the optimization in
Equation (2) are affected by the ui

j estimates associated
with correctly classified support vectors. Synthetic data
experiments reveal that, when used for data with no
response errors, the fuzzy SVM active learning incurs
a minor efficiency loss compared to the soft margin
SVM active learning (§5.3). Therefore, if researchers
are uncertain about the degree of response errors in
adaptive question design, the fuzzy SVM method de-
scribed above may be used to alleviate the negative
effect of possible response errors at the expense of a
potentially minor efficiency loss. On the other hand,
the soft margin SVM can be used to maximize the
efficiency in active learning if prior experiences indicate
that consumer’s responses are highly deterministic
(i.e., response errors play a negligible role).
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3.4.2. Algorithm to Adaptively Select Profiles to
Be Queried in Subsequent Question. In this section
we discuss how we adaptively select the next set of
profiles shown to the respondent based on the latest
estimate of his individual-specific part-worths. We use
an approach adapted from Tong and Koller (2001). Our
primary goal is to query each subsequent profile in
such a way that we can reduce the feasible region of
the part-worths as rapidly as possible. Intuitively, one
good way of achieving this goal is to choose a query
that halves such a region.

Let w̃I
j = 4wI

j 1�
I
j 5 denote the part-worths vector

obtained from the optimization in Equation (2) after
I profiles are labeled (w̃0

j in Equation (1) is used if
no profiles have been labeled). In its simplest form,
Tong and Koller (2001) suggest that the next profile to
be queried can be the one with the smallest distance
(margin) to the current hyperplane estimate represented
by w̃I

j . In our context, the margin of an unlabeled
profile is computed as m

g
j = �wI

j · xg
j −�I

j �, with g being
the index of unlabeled profiles. Tong and Koller (2001)
show that, when the training data are symmetrically
distributed and the feasible region of part-worths is
nearly sphere shaped, active learning via this simple
margin approach reduces the current version space
by half.

In the context of adaptive question design, the train-
ing data are likely to be asymmetrically distributed
and/or the feasible region of the current part-worths can
be elongated. To overcome such restrictions in the sim-
ple margin approach, Tong and Koller (2001) propose
the ratio margin approach as an augmentation. While
conceptually appealing, the ratio margin approach is
considerably more computationally burdensome than
the simple margin approach. Here, we use the following
hybrid method to combine the two approaches.

Assume that, with the simple margin approach, we
have narrowed down to S trial profiles that are closest
to the current hyperplane estimate represented by w̃I

j .
We then take each trial profile s (s = 1121 0 0 0 1 S) from
this set, give it a hypothetical label of 1, calculate a
new part-worths by combining this new trial profile
with the labeled profiles, and obtain a hypothetical
margin m′s+

j . Next, we perform a similar calculation
by relabeling this profile as −1, calculating the result-
ing part-worths vector, and obtaining a hypothetical
margin m′s−

j . The ratio margin of this profile is defined
as max4m′s+

j /m′s−
j 1m′s−

j /m′s+
j 5. After repeating these for

all of the S trial profiles, we pick the profile with the
smallest ratio margin as the next profile shown to the
consumer (i.e., mins=110001S6max4m′s+

j /m′s−
j 1m′s−

j /m′s+
j 575.

By asking the consumer to reveal his preference for
such a profile iteratively, we can rapidly reduce the
current feasible region of the part-worths (Tong and
Koller 2001).

In our empirical application, because more than
one profile is shown to the respondent at one time
(Figure B3 in Web Appendix B), the set of profiles (e.g.,
five) with the smallest ratio margins under the most
recent part-worths estimate is selected to query the
respondent. Additionally, upon satisfying the smallest
ratio margin criterion, if two or more profiles have
the same ratio margins, the profiles with the shortest
overall distances to both class centers will be chosen.
We impose this modification to the original approach
by Tong and Koller (2001) so that, in the context of our
fuzzy SVM estimation, if such profiles turn out to be
correctly labeled support vectors, the efficiency loss
will be minimized.

This process is repeated iteratively until Q1 questions
are asked. As discussed in Dzyabura and Hauser (2011),
the number of questions to be included may be chosen
based on prior experience or managerial judgment. In
our context, we conducted synthetic data experiments
with identical product dimensions as the two studies in
our empirical investigation to determine the number of
questions to be asked. We discovered that the proposed
method could correctly classify the majority of profiles
in various contexts after eight screens of profiles are
queried, with each screen composed of five profiles.
Consequently, we adopted this stopping rule for the
data collection in our empirical application. Similar
approaches were used to determine the number of
questions to be asked in the choice stage.

3.5. Choice-Based Fuzzy SVM Active Learning
Upon completion of the consideration stage, we use
the latest part-worths estimate to compute the utilities
of all candidate profiles for respondent j , from which
a set of Mj profiles is selected to be considered in
the choice stage. Similar in spirit to the “uncertainty
sampling” rule adopted in Dzyabura and Hauser (2011),
the profiles are selected such that their utility estimates
are the closest to the decision boundary determined by
the most recent part-worths estimate.

In choice tasks, when an individual frequently opts
for the no-choice option, we cannot efficiently learn
about his favorability towards various product features.
In contrast, we obtain substantially more information
about how an individual makes trade-offs among
different product features when he chooses one profile
over the competing profile(s) in a choice set. Therefore,
in addition to selecting profiles whose utility estimates
are closest to the baseline utility estimate (i.e., the
no-choice option), we use a selection rule in which
the majority (e.g., 90%) of profiles in Mj have utility
estimates above the threshold defined by the “no-
choice” option. The remaining profiles in Mj have
utility estimates less than the threshold to allow for
potential estimation error from our consideration stage.
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3.5.1. Algorithm to Estimate Individual-Specific
Part-Worths on the Fly. For simplicity, we illustrate our
approach using the example of a choice question with
two product profiles and a “no-choice” option. The
general principles are applicable to choice questions
consisting of more than two profiles. Let us denote the
two profiles in the kth choice question as xkA

j and xkB
j .

After a total of T responses from the respondent (includ-
ing both at the consideration and the choice stages),
depending on respondent j’s choice among profile A,
profile B, none of the two, we obtain the following
information correspondingly:

Chose A: wT
j ·4xkA

j −xkB
j 5≥0 and wT

j ·xkA
j ≥�T

j 1

Chose B: wT
j ·4xkA

j −xkB
j 5<0 and wT

j ·xkB
j ≥�T

j 1

Chose None: wT
j ·xkA

j <�T
j and wT

j ·xkB
j <�T

j 0

(4)

As shown in Equation (4), we obtain two data points
each time the respondent makes a choice. For all in-
equalities containing �T

j , the fuzzy membership of
the labeled response can be obtained directly using
Equation (3), with class center and radius estimates
calculated from pooled responses from both the consid-
eration and the choice stages. When the inequalities in
Equation (4) entail utility comparison between the two
profiles, we denote xkAB

j = xkA
j − xkB

j and rewrite such
inequalities as wT

j · xkAB
j ≥ or < 0. Next, we assign a

fuzzy class membership to each data point obtained,
with xkAB

j replacing xi
j in Equation (3). Under such

scenarios, the class center of each class captures the
mean differences between the two profiles when one
profile is favored over the other. Conceptually, if the
position of xkAB

j considerably deviates from its class
center, it implies that the labeled response does not
align with our current knowledge about the respon-
dent’s product preferences. Therefore, we assign a low
class membership to such a response. Formally, the
optimization we solve at this stage of the adaptive
question design can be expressed as

min
wT

j 1�
T
j 1 �

i
j 1 �

kAB
j

[

1
2
�wT

j � +C

( I ′
∑

i=1

ui
j�

i
j +

K′

∑

k=1

uk
j �

kAB
j

)]

s.t. yi
j 4w

T
j · xi

j −�T
j 5≥ 1 − �i

j 1

ykAB
j 4wT

j · xkAB
j 5≥ 1 − �kAB

j 1

�i
j 1 �

kAB
j ≥ 01

(5)

with the first constraint denoting all labeled responses
related to �T

j (hence including responses from both con-
sideration and choice stages) and the second constraint
containing all responses related to utility compari-
son between the two profiles. It is evident that this
optimization remains convex.

Similar to §3.4.1, we update our fuzzy membership
estimates for all prior labeled responses (including
those obtained in the consideration stage) each time
after the respondent makes a choice among the two
product profiles and the no-choice option. Consequently,
our fuzzy membership estimates are refined over time
as we accumulate additional knowledge about the focal
respondent’s product preferences.

3.5.2. Algorithm to Adaptively Select Profiles in
the Next Choice Question. Below we discuss how
we identify the next set of profile pair (i.e., profile g1
and profile g25 to be shown to the respondent. In the
choice stage,mg11g2

j =�wT
j ·4xg1 −xg25�,m

g1
j =�wT

j ·xg1 −�T
j �,

and m
g2
j =�wT

j ·xg2 −�T
j � capture our most recent esti-

mates of respondent j’s relative preferences across
the two profiles and the no-choice option. Based
on these utility estimates, we first use the crite-
rion min8max4mg11g2

j 1m
g1
j 1m

g2
j 59 for all 84g11g25 ∈Mj9

to select a trial set of choice sets that we would con-
sider for the next choice question. The utilities of all
options in this choice set are a priori near equal. This
corresponds to the utility balance criterion commonly
adopted in the conjoint literature. As suggested by
various prior studies (e.g., Huber and Hansen 1986,
Haaijer et al. 2001, Toubia et al. 2004), utility balanced
questions are the most informative in further refining
the part-worths estimates. This criterion is also consis-
tent with the simple margin approach proposed by
Tong and Koller (2001), which aims to cut the feasible
region of part-worths approximately in half.

Given that labeled responses are likely to be asym-
metrically distributed and/or the feasible region of
part-worths may be elongated, we use a hybrid of
simple margin and ratio margin approaches similar to
that described in §3.4.2. After using a simple margin
approach to obtain a trial set of choice sets, we first
give this choice set a hypothetical response of choosing
profile g1, calculating a new part-worths by combining
this response with the prior obtained responses, and
obtaining hypothetical margins m′g11g2+

j and m′g1+

j . We
then give this choice set of a hypothetical response of
choosing profile g2 and obtain hypothetical margins
of m′g11g2−

j and m′g2+

j . A similar approach is used to
obtain m′g1−

j and m′g2−

j when the choice set is given a
hypothetical response of no-choice. Then the pair of
profiles with the smallest ratio margin

(

i.e., min
s=110001S

[

max
(

max
(

m′g11g2+

j

m′g11g2−

j

1
m′g11g2−

j

m′g11g2+

j

)

1

max
(

m′g1+

j

m′g1−

j

1
m′g1−

j

m′g1+

j

)

1max
(

m′g2+

j

m′g2−

j

1
m′g2−

j

m′g2+

j

))])

(6)

is selected as the next choice set shown to the consumer.
Similar to §3.4.2, conditional on satisfying the smallest
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ratio margin criterion, if two or more choice sets have
the same ratio margins, the choice set with the shortest
overall distance to the corresponding class centers
will be chosen to minimize efficiency loss. We repeat
this process iteratively to shrink the feasible region of
part-worths as rapidly as possible, until Q2 questions
are asked.

4. Empirical Investigation
In this section we describe two empirical studies involv-
ing digital cameras and computer tablets. Our pretest
indicates that both product categories are of interest to
the respondents’ population (undergraduate students).
The overall complexity of the digital camera category
(with 30+ attribute levels) is parallel to product cate-
gories studied in prior research that elicits consumers’
preferences for complex products (e.g., Park et al. 2008,
Netzer and Srinivasan 2011, Scholz et al. 2010). The
computer tablet category (with 70+ attribute levels) is
considerably more complex than those used in extant
methods, particularly in the context of decompositional
preference elicitation methods. To keep our empirical
applications meaningful and realistic, we conducted
pretests to choose a set of attributes that the respon-
dents typically consider. We then used retail websites
such as BestBuy.com and Amazon.com to identify the
ranges and values of attribute levels used in both
empirical applications.

4.1. Digital Camera Study

4.1.1. Research Design. A total of 425 participants
are randomly assigned to one of the six preference
measurement conditions. We included two conditions
of the fuzzy SVM method: Condition 1: fuzzy SVM
with collaborative filtering; Condition 2: fuzzy SVM
without collaborative filtering. The overall flow of the
two fuzzy SVM conditions follows Figure 1, with the
exception that in Condition 2 the initial part-worths is
attained solely based on the focal respondent’s self-
configured product profile. We further compare the
predictive validity of the proposed method with the
following four benchmark methods: Condition 3: the
self-explicated method; Condition 4: an upgrading
method similar to Park et al. (2008) with no incentive
alignment; Condition 5: the adaptive Choice-Based
Conjoint (ACBC); and Condition 6: the traditional
Choice-Based Conjoint (CBC). The list of attributes and
attribute levels included in our digital camera study is
provided in Table A1 in Web Appendix D.

Similar to prior studies in the literature (e.g., Scholz
et al. 2010, Netzer and Srinivasan 2011), participants in
all conditions first complete the preference measure-
ment task, followed by an external validation task and
a post-survey feedback task. Identical across the six
experimental conditions, the external validation task

comprises two choice questions, each including two
camera profiles. Generated using fractional factorial
design, the profiles are carefully chosen so that one
profile does not clearly dominate the other in each
choice set.

4.1.2. Results. We obtain the individual-specific
part-worths estimates from the two fuzzy SVM condi-
tions using the fuzzy SVM estimation algorithm. The
self-explicated estimates are obtained by multiplying
the attribute importance weights with the correspond-
ing desirability ratings (Srinivasan 1988). We use the
hierarchical Bayesian estimation to obtain individual-
level part-worths estimates from the upgrading method,
the ACBC method, and the CBC method.

Following the tradition in this literature (e.g.,
Evgeniou et al. 2005, Netzer and Srinivasan 2011, Park
et al. 2008), we use the hit rate of the external validity
tasks to gauge the predictive validity of the six prefer-
ence measurement methods (Table 1).6 We find that the
two fuzzy SVM conditions perform significantly better
than all benchmark methods in correctly predicting
respondents’ choices in hold-out tasks (p < 0005).

Comparing hit rates across the two fuzzy SVM
conditions, we find that collaborative filtering improved
predictions but not significantly (0.801 versus 0.779,
p > 0005). This finding is consistent with empirical
results from Dzyabura and Hauser (2011). It is possible
that, after all of the consideration and choice questions
are queried in our adaptive survey, incremental benefits
from the collaborative filtered initial part-worths have
diminished. This matter is explored further in synthetic
data experiments in §5.4.

We also compared participants’ responses to the post
survey feedback questions across the six experimental
conditions. Overall, participants provided more favor-
able feedback to the format and questions generated
under the fuzzy SVM conditions than those from the
benchmark methods (Table A2 in Web Appendix D).7

6 We also tried to incorporate the Kullback-Leibler (KL) measure
used by Dzyabura and Hauser (2011), Ding et al. (2011), and Hauser
et al. (2014) in our digital camera application. We discovered that
this measure is only applicable with three or more validation tasks.
Our digital camera application includes two choice validation tasks.
In such cases, when the consumer chooses the profile on the left
in one task and the profile on the right in the other task, the KL
measure equals zero regardless of whether both predictions are
correct, wrong or one is correct and one is wrong. Essentially, the KL
measure does not discriminate whether observed and predicted
choices are aligned when the total number of validation tasks is two.
In our computer tablet study, we included six choice validation tasks
and used the KL measure to gauge predictive validity.
7 In both empirical applications, we also recorded the amount of time
it takes for each participant to complete the survey. This information
is provided in Tables A3 and A4 in Web Appendix D.
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Table 1 Comparison of Predictive Validity: Digital Camera Study

Hit rate

Method (sample size) Avg. SE

Condition 1: Proposed method (N = 73) 00801a 0.030
Condition 2: Fuzzy SVM without collaborative 00779a 0.032

filtering (N = 69)
Condition 3: Self-explicated (N = 66) 00689 0.041
Condition 4: Upgrading (N = 80) 00563 0.038
Condition 5: ACBC (N = 75) 00660 0.038
Condition 6: CBC (N = 62) 00605 0.045

aBest in column or not significantly different from best in column at the
0.05 level.

4.2. Computer Tablet Study

4.2.1. Research Design. In a second empirical study,
we examine the performance of the proposed method
for the more complex product category of computer
tablets (with 70+ attribute levels). The complete list of
attributes and attribute levels included in this study
is provided in Figure A1 in Web Appendix B. In
addition to the different product category and the
increased number of attribute levels, we made the
following modifications in this empirical application.
First, given the high complexity of the product category,
we included a warm-up task so that the participants
could get familiar with the different attribute levels
before the preference measurement task. This task has
been shown to improve the accuracy of preference elici-
tation (Huber et al. 1993). Specifically, we provided the
list of 14 attributes used to describe computer tablets,
followed by a brief verbal and graphic description
for each attribute level, displayed for one attribute at
a time.

Second, because a number of prior studies (e.g., Ding
2007; Ding et al. 2005, 2009, 2011; Dong et al. 2010;
Hauser et al. 2014) suggest that incentive alignment
offers benefits such as greater respondent involvement,
less boredom, and higher data quality, we incorporated
incentive alignment in this application. At the begin-
ning of the experiment, we told the participants that we
would award a computer tablet device to one randomly
selected participant from this study, plus cash repre-
senting the difference between the price of the tablet
device and $900. We set $900 as the maximum prize
value because the majority of computer tablets cost less
than $900 at the time of our study. The participants
were told that the total number of participants for this
study would be approximately 150 (i.e., the chance of
winning is about 1 in 150). Because we wanted the
preference elicitation tasks and the validation tasks to
be incentive aligned, participants were told that we
would randomly decide which of the two tasks to use
when determining the final prize. We also told each
participant that, if chosen as a winner, he would receive
a computer tablet based on: (1) his choice from one of

the validation questions or (2) his most preferred tablet
among a list of 25 tablets, inferred from his answers to
the preference elicitation questions. Following Ding
et al. (2011) and Hauser et al. (2014), participants were
told that this list was pre-determined by the researchers
and that it would be made public after the study.
Therefore, the respondents have incentives to answer
the questions carefully and truthfully.

Last, we modified our validation procedure relative
to the digital camera study. We included initial and
delayed validation tasks as in Ding et al. (2011) and
Hauser et al. (2014). Following Hauser et al. (2014),
the delayed validation questions were sent to the re-
spondents by email one week after the preference
measurement task. Additionally, we included both pre-
and post-preference measurement validation questions
as suggested by Netzer and Srinivasan (2011). Each
respondent answered six validation choice questions,
with three before the preference measurement task and
three in the delayed validation task. As pointed out by
Netzer and Srinivasan (2011), the standard validation
task procedure used in our digital camera study might
be susceptible to idiosyncrasies of the chosen validation
questions. In the computer tablet study, we followed
Netzer and Srinivasan (2011) by including a broader
set of validation choice questions in the validation
task. First, we used a fractional factorial design to
generate a set of orthogonal balanced choice questions.
Next, we scanned through the generated questions and
retained only those comprising profiles available in the
marketplace (as any one of the computer tablets in the
validation questions could be awarded to a participant).
To allow for appropriate comparison across conditions,
we also followed Netzer and Srinivasan (2011) by using
the same sets of randomly drawn validation questions
in all conditions.

In this study, 151 participants are randomly assigned
to one of the four preference measurement conditions.
To better understand the incremental benefit from
including consideration questions in our adaptive
question design, we compared the proposed method
(Condition 1) to an alternative fuzzy SVM method in
which the choice questions are presented immediately
after the self-configuration task and the unacceptable
and must-have questions (Condition 2). Furthermore,
we included the self-explicated method (Condition 3)
and the ACBC method (Condition 4) to replicate results
from the first empirical application.

The flow of each experimental condition is described
below. First, the participant was introduced to the
study along with a basic description of the incentive
alignment mechanism. Second, the participant was
presented with the warm-up task. Third, three valida-
tion questions, each consisting of two tablet profiles,
are shown to the participant. Fourth, the participant
was presented with the preference measurement task
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Table 2 Comparison of Predictive Validity: Computer Tablet Study

KL divergence

Initial validation Delayed validation Pooled Hit rate (pooled)

Method N Avg. SE N Ave. SE Ave. SE Ave. SE

Condition 1: Proposed method 35 00288a1b 0.062 26 00260a1b 0.073 00471a1b 0.054 00671a 0.041
Condition 2: Fuzzy SVM without 36 00426 0.066 26 00407 0.077 00577 0.052 00565 0.049

consideration questions
Condition 3: Self-explicated 39 00443 0.058 27 00479 0.080 00662 0.043 00585 0.031
Condition 4: ACBC 41 00472 0.059 30 00531 0.062 00652 0.048 00520 0.033

aBest in column or not significantly different from best in column at the 0.05 level.
bMarginally better than the fuzzy SVM without consideration questions condition (p < 001).

(which varies by experimental condition). Last, a week
later, each participant received a follow-up email with a
survey link to a second set of three validation questions.

4.2.2. Results. Table 2 reports the predictive valid-
ity of the four experimental conditions. In addition
to the traditional hit rate measure, we used the KL
divergence measure to gauge the degree of divergence
from predicted choices to those that are observed in
the validation data. The KL divergence measure is
an information-theory-based measure of divergence
(Kullback and Leibler 1951, Chaloner and Verdinelli
1995). Dzyabura and Hauser (2011), Ding et al. (2011),
and Hauser et al. (2014) demonstrate that, for consider-
ation data, the KL divergence measure provides an
evaluation of predictive ability that is rigorous and
which discriminates well. We followed the formulae
provided in Dzyabura and Hauser (2011) to calculate
the KL divergence measures. In our context, we concep-
tualize a false-positive prediction as the case wherein
the respondent is predicted to choose a profile but
did not actually choose it in a validation question;
and a false-negative prediction as the case wherein
the respondent is predicted not to choose a profile but
actually chose it in a validation question. Because this
measure evaluates divergence from perfect prediction,
a smaller KL divergence measure indicates a better
model prediction.

Consistent with findings from our digital camera
application, the proposed method exhibits superior
predictive ability when compared to the self-explicated
and ACBC methods in both the initial and delayed
validation tasks. We also find that the proposed method
has smaller KL divergence than the fuzzy SVM con-
dition without consideration questions (marginally
significant at p < 001). It is evident that the inclusion
of consideration questions is helpful in improving
preference elicitation in our context. It is possible that,
when consideration questions are absent, respondents
may encounter greater cognitive difficulty in making
accurate trade-offs of choice questions. Respondents
may also be less likely to incur early response errors

(which are known to be detrimental in adaptive ques-
tion design), when they are presented with the less
demanding consideration questions before the more
cognitively challenging choice tasks.

We also compared the KL divergence measure from
the initial validation task with that from the delayed
validation task within each experimental condition. No
significant differences are observed. Therefore, when
pooling results across the initial and delayed validation
tasks for each respondent, the KL divergence measures
follow the same pattern as the one discussed above.8 The
hit rate comparisons are also provided in Table 2. The
proposed method also outperforms the three benchmark
methods in terms of hit rate.

One of the main advantages of adaptive question
design is the opportunity to reduce respondents’ cog-
nitive burden by asking fewer questions. We further
examine the out-of-sample performance of the pro-
posed method when only the first q questions are used
for each respondent (Table 3). We find that both the
KL divergence and the hit rate measures gradually
improve with the inclusion of self-configurator (q = 1),
consideration questions (q = 2 to 9 with 8 screens of
consideration questions with 5 profiles on each screen),
and choice questions (q = 10 to 34), indicating that all of
these questions positively contribute to our preference
elicitation task. Table 3 also reveals that the proposed
method performs well with much fewer choice ques-
tions. In particular, the predictive validity after only 6–8
choice questions (i.e., q = 15 or 17) is already similar to
the predictive validity with all 25 choice questions (i.e.,
q = 34). Indeed, after only the first 8 choice questions
(i.e., q = 17), the proposed method already exhibits
significantly better predictive validity than the self-
explicated and ACBC methods. This finding suggests
that respondent burden in this application may be sub-
stantially reduced with a much shorter survey. This is
consistent with Netzer and Srinivasan (2011) who also

8 Note that the values of the KL measure depend on the number of
the validation tasks (Hauser et al. 2014). Therefore, the pooled KL
measures differ in magnitude from those based on initial or delayed
validation tasks only.
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Table 3 Predictive Validity by Number of Questions Asked: Computer Tablet Study

No. of questions (q) KL-divergence (smaller is better) Hit rate (larger is better)

1 0.557 0.538 ← Self-configurator

3 0.600 0.586
5 0.602 0.619
7 0.611 0.648
9 0.522 0.614

11 0.529 0.638
13 0.504 0.648
15 0.484 0.638
17 0.494 0.671
19 0.552 0.657
21 0.498 0.667
23 0.496 0.676
25 0.500 0.667
27 0.502 0.662
29 0.502 0.676
31 0.480 0.681
33 0.480 0.652
34 0.471 0.671


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Choice questions

report negligible improvement in predictive validity
after 5–7 adaptive paired comparison questions.

Overall, in comparing the predictive ability of the
proposed method with that of the ACBC and self-
explicated methods, our computer tablet application
replicated results from the digital camera application.
The comparison between the two fuzzy SVM conditions
also shows that inclusion of consideration questions
is useful in facilitating preference elicitation in our
context. In addition, this application illustrates that the
proposed method scales well when the focal product
category is considerably more complex than those used
in prior studies.

5. Synthetic Data Experiments
In this section we describe a series of synthetic data
experiments conducted to complement our empirical
investigation. In §5.1, we compare the performance
of the proposed question selection algorithm with
that of Dzyabura and Hauser (2011) for consideration
questions when the true consideration decisions are
conjunctive. In §5.2, we examine the performance of
the proposed method with that of benchmark methods
when the true consideration and choice decisions are
based on a part-worths model. Under this comparison,
we use the question selection algorithm in Dzyabura
and Hauser (2011) as the benchmark question selec-
tion method for consideration questions and that in
Abernethy et al. (2008) as the benchmark method for
choice questions. To investigate the applicability of
these question selection methods to high-dimensional
problems, in §§5.1 and 5.2, we examine the scalability
of each algorithm when the focal product category is
equipped with up to 100+ attribute levels. To ensure

fair comparisons across methods, only the focal respon-
dent’s responses are used in the adaptive question
selection in all comparisons described above. We also
test the upper bound of parameter recovery and pre-
dictive validity by assuming no response errors in such
comparisons. In §5.3, we compare the performances of
the fuzzy SVM versus soft margin SVM active learning
with and without response errors. In §5.4, we exam-
ine the improvements of collaborative-filtered initial
part-worths over noninformative initial part-worths on
parameter recovery and predictive validity. We report
our main findings below. Additional implementation
details can be found in Web Appendix E.

5.1. Using Proposed vs. Conjunctive Question
Selection When the True Consideration
Decisions Are Conjunctive

In §3 we describe a framework wherein a set of part-
worths is used to characterize consumer’s responses to
consideration and choice questions. In the literature,
conjunctive-like criteria are often used to examine
answers to consideration questions (e.g., Bettman 1970,
Hauser et al. 2010). Therefore, we conduct synthetic
data experiments to examine the performance of the
proposed question selection algorithm for considera-
tion questions when the true consideration model is
conjunctive. Specifically, the adaptive question selection
algorithm in Dzyabura and Hauser (2011) is used as
the benchmark method in this comparison.

Given our emphasis on complex products, we exam-
ine three scenarios in which the focal product category
comprises 15, 25, and 35 attributes with three levels
each. Under each scenario, we simulate 300 synthetic
respondents (i.e., 300 conjunctive decision rules) as
described in Dzyabura and Hauser (2011). We then
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Table 4 Using Proposed vs. Conjunctive Question Selection When the True Consideration Decisions Are Conjunctive: Synthetic Data Experiments

(a) Parameter recovery and predictive validity comparisons

Question selection method Question selection method

Proposed method Dzyabura and Hauser (2011) Proposed method Dzyabura and Hauser (2011)

Product dimension Performance measure Conjunctive estimation Fuzzy SVM estimation

3 × 15 Hit rate 0.986 10000a 00966a 0.919
KL divergence 0.072 00000a 00091a 0.264

U2 0.928 10000a 00728a 0.515
3 × 25 Hit rate 0.948 00992a 00948a 0.910

KL divergence 0.252 00013a 00117a 0.246
U2 0.818 00850 00693a 0.588

3 × 35 Hit rate 0.945 00994a 00936a 0.892
KL divergence 0.232 00018a 00131a 0.267

U2 0.685 00743a 00614a 0.577

(b) Average time to generate next question comparisons (in seconds)

Question selection method

Product dimension Proposed method Dzyabura and Hauser (2011)

3 × 15 00218a 20856
3 × 25 00214a 60920
3 × 35 00215a 110861

aSignificantly better than the alternative method at the 0.05 level.

perform active learning for each participant where
40 consideration questions are adaptively selected,
with each synthetic respondent labeling the profile
as “would consider” or “would not consider” based
on the underlying true conjunctive decision rule. To
compare the relative performance of the two question
selection methods, we generate 3,000 validation profiles
for each synthetic respondent, with the respondent
considering 1,500 profiles and not considering the
remaining profiles under the respondent’s true under-
lying conjunctive decision rule. Because each synthetic
respondent considers 50% of the validation profiles, the
null model that predicts “randomly considers profiles”
would achieve a hit rate of 50%. Therefore, while the hit
rate measure can be misleading for consideration data
empirically, it provides a valid measure of predictive
validity in our synthetic setting.

Table 4 provides comparison results. To compare
the question selection methods, we keep the estima-
tion method constant. Specifically, we present the
comparison results using both the conjunctive estima-
tion method as in Dzyabura and Hauser (2011) and
the fuzzy SVM estimation method proposed in this
paper. In terms of performance metrics, we use hit
rate, KL divergence, and U 2 to measure predictive
validity and parameter recovery (Table 4(a)). The metric
U 2 is an information-theoretic measure of parameter
recovery (Hauser 1978). It measures the percentage of
uncertainties explained by the model; with U 2 = 100%

indicating perfect parameter recovery.9 To examine
scalability of these two question selection methods,
we also report the average time it takes to generate
the next question in seconds (Table 4(b)). The reported
computing times are all based on Matlab code run on
an Intel 3.2 GHz personal computer with a Windows 7
Operating System.

When the estimation method in Dzyabura and
Hauser (2011) is used (i.e., for each attribute level, the
model estimates a probability for which the respondent
finds it acceptable), the question selection algorithm
by Dzyabura and Hauser (2011) exhibits a superior
hit rate, KL divergence, and U 2 to the focal question
selection algorithm in almost all problem instances.

9 While the original U 2 measure in Hauser (1978) is based on choice
probabilities, the fuzzy SVM estimation gives rise to dichotomous
(e.g., consider versus not consider; choose product A versus prod-
uct B) rather than probabilistic predictions. Therefore, when the
fuzzy SVM algorithm is used for model estimation, we calculated the
U 2 measure based on a logit transformation, with the deterministic
component of the product utility calculated from the estimated
part-worths given by the fuzzy SVM algorithm. Because the scale of
utility estimates matters in the magnitude of U 2 (if we multiply the
part-worths estimates by a constant, larger part-worths result in
more extreme choice probabilities, hence more extreme U 2 estimate),
we normalize the estimated part-worths to the scale of the true
part-worths and use the relative U 2 (the U 2 calculated from the
fuzzy SVM part-worths estimates divided by the U 2 calculated from
the true part-worths) to remove the effect of scaling. This measure
was not used in our empirical studies because the true part-worths
are unknown empirically and it is ambiguous as to how to determine
the baseline scale in our empirical comparisons.
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Indeed, when the product dimension is relatively mod-
erate (15 attributes and 3 levels), Dzyabura and Hauser
(2011)’s method yields perfect parameter recovery and
holdout prediction after 40 questions. Such results
reveal that, when the true consideration model is con-
junctive, the algorithm proposed by Dzyabura and
Hauser (2011) works exceptionally well in estimating
the probability that the respondent finds each attribute
level acceptable.

Because our approach aims to obtain a set of part-
worths estimates for each respondent, we also compare
the performance of the two question selection methods
when the fuzzy SVM method is used for estimation. In
such cases, an individual-specific part-worths vector
is estimated after all 40 questions are queried under
each question selection algorithm. The estimated part-
worths are then used to predict the validation profiles.
Interestingly, we discover that, when the fuzzy SVM
estimation is used, the proposed method outperforms
the method used by Dzyabura and Hauser (2011) in
terms of hit rate, KL divergence, and U 2 measures.
Such results are likely to be driven by the fact that the
Dzyabura and Hauser (2011) algorithm is specifically
developed to uncover the probability for which the
respondent considers each attribute level, rather than
a utility estimate associated with the attribute level.
Therefore, when the primary focus is to estimate part-
worths, this method does not perform as well, even
when the true consideration model is conjunctive.

We further study scalability of the two methods by
examining the average time it takes to generate the next
question under each question selection algorithm. When
the proposed question selection algorithm is used, on
average it takes less than 0.25 seconds to generate the
next question in all scenarios. By contrast, under the
question selection algorithm by Dzyabura and Hauser
(2011), the average time it takes to generate the next
question is considerably longer (ranging from 2.856
seconds to 11.861 seconds in the three scenarios). Note
that such discrepancies may diminish considerably if
we were to optimize or code both algorithms in a more
computationally efficient language such as C or C++.

Overall, our synthetic data experiments reveal the
following. First, even when the true consideration
model is conjunctive, the part-worths estimate from
the proposed method exhibit a reasonably good ability
to predict whether the respondent would consider a
profile. Given that the part-worths model of consider-
ation and the conjunctive model of consideration as
in Dzyabura and Hauser (2011) aim to capture a set
of linear decision rules in the consideration process,
we believe that such findings are quite reasonable.
Second, the proposed framework is not restricted to the
question selection algorithm discussed in §3.4. Indeed,
the algorithm by Dzyabura and Hauser (2011) could be
used in conjunction with the proposed algorithm in

a consider-then-choice framework to uncover consid-
eration heuristics and conjoint part-worths. In such
cases, different utility functions may also be used to
separately model consumer’s consideration and choice
decisions.

5.2. Performance Comparisons When True
Consideration and Choice Decisions Are
Based on a Part-Worths Model

We now compare the performance of the proposed
method with that of benchmark methods when the
true consideration and choice decisions are based on
a part-worths model. For simplicity, we examine the
case wherein the same utility function is used for
consideration and choice decisions. If different part-
worths models were specified for consideration and
choice questions, we expect that our key findings would
not change qualitatively.

In each scenario under study, we perform active
learning wherein 40 consideration questions are adap-
tively designed for each respondent, followed by 25
adaptive choice questions with 2 alternatives each.
In the first benchmark condition, the question selection
algorithm by Dzyabura and Hauser (2011) is used for
the adaptive design of consideration questions. In the
second benchmark condition, the question selection
algorithm by Abernethy et al. (2008) is used for the
adaptive design of choice questions. Because the algo-
rithm by Dzyabura and Hauser (2011) is designed
for consideration questions only and that by Aber-
nethy et al. (2008) is for choice questions only, fuzzy
SVM active learning is used as the question selection
method for choice questions in the first benchmark
condition and for consideration questions in the second
benchmark condition to ensure fair comparison. For
similar reasons, the fuzzy SVM method is used as the
estimation method after all questions are queried in all
three conditions.

As before, we examine three scenarios in which
the focal product category comprises 15, 25, and 35
attributes with three levels each. Three-hundred syn-
thetic respondents are simulated in each scenario. The
part-worths for each respondent are randomly gener-
ated with (−�, 0, �) for each attribute, with �∼N41135.
To compare performances across conditions, 3,000
validation questions consisting of two profiles are gener-
ated for each respondent, with the respondent choosing
the profile on the left 50% of the time and choosing the
profile on the right in the remaining questions. Under
this setup, the null model for the hit rate and U 2 is the
one that predicts “randomly choose among the two
profiles.” In addition to the hit rate, KL divergence,
and U 2 measures, we use mean absolute error (MAE)
and root mean square error (RMSE) to measure the
ability of each question selection method to recover the
true part-worths. For comparability across methods,
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Table 5 Performance Comparisons When True Consideration and Choice Decisions Are Both Based on a Part-Worths Model: Synthetic Data Experiments

(a) Parameter recovery and predictive validity comparisons

Product dimension Performance measure Proposed method Dzyabura and Hauser (2011) Abernethy et al. (2008)

3 × 15 Hit rate 00948a 00929 00937
KL divergence 00279a 00365 00327

U2 00736a 00701 00701
MAE 00745a 00858 00834

RMSE 00920a 10057 10037

3 × 25 Hit rate 00933a 00925 00870
KL divergence 00343a 00373 00553

U2 00679a 00623 00596
MAE 00839a 00877 10109

RMSE 10040a 10086 10374

3 × 35 Hit rate 00901a 00893 00812
KL divergence 00460a 00480 00694

U2 00625a 00583 00487
MAE 10015a 10042 10347

RMSE 10254a 10291 10668

(b) Average time to generate next question comparisons (in seconds)

Product dimension Question type Proposed method Dzyabura and Hauser (2011) Abernethy et al. (2008)

3 × 15 Consideration 00269a 5.779 —
Choice 00612 — 00002a

3 × 25 Consideration 00206a 3.075 —
Choice 00609 — 00002a

3 × 35 Consideration 00217a 4.702 —
Choice 00690 — 00004a

aSignificantly better than the alternative method at the 0.05 level.

we normalize the estimated part-worths to the scale of
the true part-worths in each problem instance.

Our comparison results are shown in Table 5. When
the true consideration and choice decisions are based on
a part-worths model, the proposed question selection
method outperforms the two benchmark methods in
parameter recovery and predictive validity (Table 5(a)).
Not surprisingly, the question selection algorithm by
Dzyabura and Hauser (2011) does not work as well in
this setting, as the algorithm is specifically developed
to uncover consideration heuristics when the true
consideration decisions follow a set of conjunctive
rules, rather than a part-worths model. Meanwhile,
the lack of performance from the question selection
algorithm by Abernethy et al. (2008), particularly in
high dimensional problems, is likely related to the
discrete transformation required by its gradient-based
algorithm when used for a large number of discrete
attributes in our setting.10

10 While we obtain significantly better performance from the proposed
method, the hit rate differences between the proposed method and
Dzyabura and Hauser (2011) are rather small in the case of 35
attributes with three levels each (0.901 versus 0.893 as in Table 5(a)).
We further examine the percentages of times that the estimated
part-worths from the two methods could correctly predict the
most preferred attribute level in each attribute. We do not find

We also report the average time it takes to generate
the next question under each question selection method
in Table 5(b). Because the algorithm by Dzyabura
and Hauser (2011) is used for consideration questions
only and that by Abernethy et al. (2008) is used for
choice questions only, the corresponding average time
is reported in this table. For consideration questions,
the algorithm by Dzyabura and Hauser (2011) takes
approximately three or more seconds on average to
generate the next question (again, the computing speed
may improve considerably if the code were optimized
or written in a more computationally efficient lan-
guage). Regarding choice questions, the algorithm by
Abernethy et al. (2008) is very fast computationally
because the solution used to generate the next question

significant differences between the two methods in this case (both can
correctly predict the most preferred attribute levels about 86% of the
time). We also compare the mean absolute percentage error (MAPE)
between the predicted and actual part-worths from the two methods.
Consistent with findings from the MAE and RMSE measures in
Table 5, the proposed method provides more accurate part-worths
estimates than Dzyabura and Hauser (2011) in all cases. Managerially,
if the primary focus of the firm is to identify the most preferred
attribute level in each attribute, we think that such differences in hit
rates do not produce additional insights. Nevertheless, if the firm’s
central goal is to obtain a precise forecast of market share or product
profit, we believe that the improved accuracy in our part-worths
estimates would be beneficial.
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Table 6 Performance Comparisons Between Fuzzy SVM and Soft Margin
SVM Active Learning: Synthetic Data Experiments

(a) Parameter recovery and predictive validity comparisons
with response errors

Error Performance Fuzzy Soft
positions measure SVM margin SVM

Early Hit rate 00760a 0.720
KL divergence 00769a 0.827

U2 00280a 0.201
MAE 10694a 1.834

RMSE 20103a 2.275
Middle Hit rate 00834a 0.819

KL divergence 00634a 0.669
U2 00417a 0.394

MAE 10519a 1.596
RMSE 10889a 1.978

Late Hit rate 00893 0.890
KL divergence 00483 0.492

U2 00511 0.507
MAE 10319 1.338

RMSE 10636 1.649

(b) Parameter recovery and predictive validity comparisons
with no response error

Performance measure Fuzzy SVM Soft margin SVM

Hit rate 0.901 00904b

KL divergence 0.460 00448
U2 0.625 00648a

MAE 1.015 00992a

RMSE 1.254 10226a

aSignificantly better than the alternative method at the 0.05 level.
bMarginally better than the alternative method at the 0.1 level.

can be derived in closed form. Therefore, when the
focal product consists of a large number of continu-
ous attributes, this method is a good alternative for
adaptive design of choice questions.

5.3. Performance Comparisons Between Fuzzy SVM
and Soft Margin SVM Active Learning With
and Without Response Errors

A key advantage of our proposed method is its ability
to gauge response errors on the fly. In this section,
we investigate use of the fuzzy SVM active learning
versus that of the soft margin SVM active learning
without fuzzy membership probabilities. Because both
methods scale well in high dimensional problems, we
examine the case wherein the focal product category
consists of 35 attributes with three levels each. We use
methods similar to those used in §5.2 to simulate the
true part-worths and the holdout profiles for the 300
synthetic respondents used in each problem instance.

We first investigate performance comparisons of the
two methods when there are response errors. Given
that the positions of response errors play an integral
role in the performance of adaptive question design, we
examine the two question selection methods’ abilities to

recover true part-worths and to predict holdout profiles
under the scenarios of (1) early versus (2) middle versus
(3) late response errors. To ensure fair comparisons,
we set the instances of response errors at 15% across
the three scenarios. In the early/middle/late response
errors scenario, all response errors occur during the
first/middle/late 1/3 of adaptive questions. For each
synthetic respondent, we use random draws from a
uniform distribution to determine the positions of the
errors. Within each scenario, we hold error positions
constant across the two question selection methods so
that our results are comparable.

Our performance comparisons are reported in
Table 6(a).11 When response errors take place during
early or middle portions of the adaptive study, the
fuzzy SVM active learning method exhibits a superior
ability to recover the true part-worths and to predict
holdout questions than the soft-margin SVM active
learning. Nevertheless, if response errors occur towards
the end of the adaptive survey, both question selection
methods perform similarly. This pattern is quite reason-
able because early response errors are in general more
detrimental than errors taking place later in adaptive
question design. Given its primary goal of alleviating
the negative effect from response errors on the fly,
the fuzzy SVM active learning method provides the
most improvement over the soft-margin SVM method
when the impact of response errors is salient. In con-
trast, because the negative effect from response errors
is limited when errors take place towards the end
of the adaptive question selection, the advantage of
using fuzzy SVM over soft margin SVM diminishes
correspondingly.

We also examine performances of the two methods
when respondents do not make any response error. As
expected, use of the fuzzy SVM active learning incurred
an efficiency loss, which originated from the less than
perfect fuzzy membership probabilities assigned to the
correctly labeled support vectors (Table 6(b)). Neverthe-
less, such an efficiency loss is relatively minor, possibly
due to the fact that active learning is inherently less
challenging in the absence of response errors.

11 For simplicity, we report the performance metrics with 40 adaptive
questions where each synthetic respondent labels the profile as
“would consider” or “would not consider.” Similar patterns are found
when choice questions are added after the consideration questions.
In line with Table 6(a), the advantage of fuzzy SVM active learning
is the most salient when errors take place towards the beginning
and middle portions of the consideration/choice questions. We
also conducted similar comparisons under varying levels of error
instances and product dimensions. We find that the general results
hold qualitatively as long as the error instance is not excessive (if the
respondents incur too many errors, neither method can effectively
recover the true part-worths).
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5.4. Tests of Improvements Over Noninformative
Initial Part-Worths

In the synthetic experiments above, we use only the
focal respondent’s information in the design of adap-
tive questions. In this section, we examine the use of
collaborative-filtered initial part-worths versus that
of noninformative initial part-worths in parameter
recovery and predictive validity. Because the initial
individual-specific part-worths in our proposed frame-
work is obtained via collaborative filtering between the
focal and previous respondents’ self-configured product
profiles, we also investigate whether the degree of
heterogeneity in synthetic respondents’ configurators
plays a role in the usefulness of incorporating data
from other respondents. Intuitively, if all respondents
have the same product preferences and self-configure
the same profile, past respondents’ data should be
quite informative in determining the focal respondent’s
initial part-worths. By contrast, when respondents
differ greatly in their most favorite product profiles,
collaborative filtering may not be very helpful.

We consider the following two scenarios of homoge-
nous versus heterogeneous configurators accordingly.
In the homogenous case, we simulate 300 synthetic
respondents with identical part-worths (hence identical
self-configured profile). In the heterogeneous case, we
consider 300 synthetic respondents with different self-
configurators. By excluding perfect overlap in the focal
and previous respondents’ self-configured profiles, the
average cosine similarity (s4j1 j ′5 in Equation (1)) in the
heterogeneous case is 0.331.

In each case described above, we consider a baseline
model where noninformative initial part-worths are
used at the outset of the adaptive question design.
Instead of using information from the focal and previous
respondents’ configurators as in the two collaborative fil-
tering conditions, the noninformative initial part-worths

Table 7 Performance Improvements (in Percentage) Over Noninformative Initial Part-Worths

Heterogeneous configurators (%) Homogenous configurators (%)

No. of questions Hit rate KL U2 MAE RMSE Hit rate KL U2 MAE RMSE

1 40089 27061 443033 21023 22028 54033 45078 652014 30064 32020
5 21012 14003 186049 12026 12024 23093 16047 209010 15007 15021

10 13081 10021 104038 9000 8070 13079 9097 99054 9057 9059
15 9053 8022 60092 6095 6043 8037 6093 51038 6095 6070
20 6057 6085 36056 5051 5003 4097 4087 26021 4085 4053
25 5003 6003 25050 4075 4022 3047 4001 16047 4019 3055
30 4025 5085 20036 3045 3054 2042 3040 10032 3013 2063
35 3026 5025 13087 2093 2091 2017 3064 8026 2043 2039
40 2061 4079 10028 2073 2060 1045 2087 5040 2003 2005
45 0090 2004 3024 1020 1025 −0042 −1005 −1058 −0055 −0051
50 1018 3019 4046 1053 1064 −0021 −0065 −00086 −0085 −0051
55 0088 2080 2097 1032 1049 −0016 −0066 −0057 −0041 −0039
60 0065 2032 2022 1021 1028 0004 0027 0004 0023 −0017
65 0044 1076 1054 1006 1009 −0010 −0081 −0036 −0035 −0042

are obtained by randomly querying one profile that the
synthetic respondent would consider and one profile
the respondent would not consider from the training
data. We then compare improvements obtained from
collaborative-filtered initial part-worths over nonin-
formative initial part-worths in the respective cases of
homogenous versus heterogeneous configurators. In
both comparisons, we examine the scenario wherein
the focal product category consists of 35 attributes with
three levels each. The adaptive question design is based
on 40 consideration questions and 25 choice questions
as in §5.2. We follow the same procedure described
in §5.2 to construct the 3,000 validation questions for
each synthetic respondent.

Table 7 provides comparison results from these two
cases as a function of the number of questions queried.
Consistent with our conjecture, at the outset of the
adaptive question design, incremental benefits from
the collaborative-filtered versus the noninformative
initial part-worths are considerably more salient in the
homogenous configurator case. This finding is rather
intuitive because previous respondents’ estimated part-
worths are information rich if all respondents have
the same product preferences. Interestingly, Table 7
also reveals that, in both cases, the advantages from
collaborative-filtered initial part-worths diminish dur-
ing the course of the adaptive question survey. Indeed,
after the respondents answer about 40 consideration
questions, the benefits from the collaborative-filtered
initial part-worths become more or less negligible. This
finding implies that, analogous to the role of priors
in the Bayesian literature, benefits from informative
initial part-worths can lessen considerably as more data
becomes available. Similar results hold when we use
an alternative baseline model wherein the initial part-
worths vector is calculated based on the focal respon-
dent’s configurator alone. These synthetic experiments
suggest that collaborative-filtered initial part-worths
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in the proposed method may only be beneficial when
consumers exhibit similar product preferences and
practical concerns preclude longer surveys.

6. Conclusions
In this paper, we propose an adaptive decompositional
framework to elicit consumers’ preferences for complex
products. Our research suggests that the proposed
method could provide the following new capabilities
to complement existing preference elicitation meth-
ods. First, compared to extant methods, the proposed
algorithm is particularly suitable for high dimensional
problems. Our empirical and synthetic studies demon-
strate that the proposed framework can rapidly and
effectively elicit individual-level preference estimates
for product categories equipped with 70–100 attribute
levels. This is typically considered prohibitive for
decompositional preference elicitation methods. Second,
we demonstrate that the fuzzy SVM active learning
method provides a natural remedy for a long-standing
challenge in adaptive question design by gauging the
possibility of response errors on the fly and incorporat-
ing it into the survey design. Through synthetic data
experiments we show that the proposed algorithm
is particularly effective when response errors take
place towards the beginning or middle portions of
adaptive questions. Last, while most adaptive question
selection methods only use information from the focal
respondent, our research explores in a live setting
how previous respondent data may be used to assist
active learning of the focal respondent’s product prefer-
ences. Overall, our research suggests that the proposed
approach is a promising new method that can be used
to complement extant preference elicitation methods,
particularly in the context of complex products.

Our research is also subject to limitations and sug-
gests promising avenues for future research. First, while
we use part-worths models to characterize consumers’
responses to consideration and choice questions, our
algorithm does not explicitly uncover decision heuris-
tics used by consumers. Future research may adapt the
proposed algorithm to directly capture such heuristics.
In such cases, the SVM classification would be per-
formed at the product feature level, rather than at the
product level as in the proposed method. Separate
utility functions may also be used in the consideration
and choice stages if the underlying decision rules for
the consideration phase versus the choice phase are
known to be different.

Second, while the current research is among the
first efforts to explore the use of previous respondents’
data in complex product preference elicitation in a
live setting, we only observe incremental benefits of
collaborative filtering at the outset of the adaptive ques-
tion survey. Future research may consider alternative

approaches to take better advantage of this technique.
For example, richer covariates such as demographic,
socioeconomic, and product use information may be
incorporated into collaborative filtering. Furthermore,
advantages from using other respondents’ data might
become more salient if researchers were to incorporate
collaborative filtering into the entire course of adaptive
question design rather than only in the selection of
initial questions.

Last, while the proposed algorithm is flexible enough
to accommodate nonlinear utility functions, the specifi-
cations of such nonlinear utility functions are ad hoc
by nature. Managerial insights or pretests (or both)
are needed to determine the exact form of the kernel
function. If an inappropriate kernel is used, response
errors may be indistinguishable from the incorrectly
specified utility form. Therefore, before the adaptive
question design, managerial consultation or pretests
(or both) should be used to carefully specify the exact
utility model to be estimated.

With regard to extensions, future research may fur-
ther explore the use of semi-supervised active learning
in marketing context, particularly in the area of adap-
tive question design. For example, a common challenge
faced by adaptive question design is the lack of labeled
data points, particularly at the beginning of the survey.
The basic idea of semi-supervised active learning is
to iteratively identify unlabeled data points that are
similar to labeled data, and to assign pseudo labels
to such points so that the training data set can be
enlarged. Recent research has shown that such efforts
can effectively alleviate the problem of small-sized
training data (e.g., Wu and Yap 2006, Hoi et al. 2009,
Leng et al. 2013). Future research may further explore
how to use such methods to improve extant adaptive
question design, or in any marketing context where
individual-level consumer data are relatively sparse.
Additionally, if consumer responses are classified in
multiple categories (e.g., not preferred, neutral, pre-
ferred, etc.), researchers can leverage recent methods
that use support vector machine classifiers for active
learning of multiclass classification (e.g., Patra and
Bruzzone 2012). Such endeavors are fruitful areas for
future research.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/mksc.2015.0946.
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