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We present an integrated design and marketing approach to facilitate the generation of
an optimal robust set of product design alternatives to carry forward to the prototyping
stage. The approach considers variability in both (i) engineering design domain, and (ii)
customer preferences in marketing domain. In the design domain, the approach evaluates
performance and robustness of a design alternative due to variations in its uncontrollable
parameters. In the marketing domain, in addition to considering competitive product
offerings, the approach considers designs that are robust in customer preferences with
respect to: (1) the variations in the design domain, and (2) the inherent variations in the
estimates of preferences given the fit of the preference model to the sampled data. Our
overall goal is to obtain design alternatives that are multi-objectively robust and optimal,
i.e., (1) are optimal for nominal values of parameters, and (2) are within a known
acceptable range in their multi-objective performance, and (3) maintain feasibility even
when they are subject to applications and environments that are different from nominal or
standard laboratory conditions. We illustrate the highlights of our approach with the
design of a corded power tool example. �DOI: 10.1115/1.2202889�
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1 Introduction
A successful product design requires, among others, an efficient

and effective integration of engineering design and marketing do-
mains �1�. In the engineering design domain, design alternatives
can be generated by a number of means—for example, by a com-
binatorial permutation of attribute levels or by a multi-objective
optimization method �e.g., Refs. �2,3��. A limitation of such re-
ported methods often is that they are developed solely based on
“design attributes” and entirely ignore “marketing attributes” that
impact customer preferences. The literature in engineering design
has looked into the integration of engineering design and market-
ing aspects for product design �e.g., Refs. �4–9��. These methods
either ignore robustness in the design and marketing �4–8�, or
might be too conservative: selecting designs that have the best
possible performance under a worst case condition �9�.

In product design, both design and marketing attributes are
likely to have variability. The source of this variability is param-
eters that the designer does not have control over. Such variations
can cause unwanted changes in product performance that in turn
may affect customers’ preferences for a product. For instance, in a
corded power tool product design attributes that might have vari-
ability include engineering specifications of the tool such as arma-
ture temperature and amp rating. The marketing performance of
the tool such as life of the product may also vary due to the
changes in the design domain. Also, additional variability can
arise due to the variances inherent in the marketing or conjoint
model parameter estimates when marketing researchers estimate
customer preferences �10�.

From an engineering design perspective, a design alternative
should maintain feasibility under variability, have variations in its
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performance that are within an acceptable range,2 and exhibit an
optimum performance under these constraints. The literature re-
ports on a variety of definitions for robustness and in this regard
many researchers have investigated the effect of variability and
the importance of “robustness” as a critical factor in engineering
design, e.g., Refs. �11–18�. Majority of the literature in robust
design optimization is focused on product attributes that are di-
rectly derived from an engineering design model while the mar-
keting implications of those attributes are not directly considered.
On the other hand, the extant literature on the integration of en-
gineering design optimization and marketing �e.g., Ref. �9�� has
not fully addressed the issue of design robustness and its impact
on the customers’ preference. In particular, the approach in Ref.
�9� can eliminate potentially optimum designs, with acceptable
variability, by designs that have unnecessarily lower variability
but with significantly more inferior nominal performance. Unlike
the approach in Ref. �9�, our robustness measures in this paper
eliminate only those designs whose performance variation is be-
yond an acceptable range. More specifically, our integrated design
and marketing robust optimization approach of this paper ac-
counts for: �1� acceptable performance variability and feasibility
of a design alternative and �2� the effects of variations in design
domain on the marketing domain and criteria �i.e., measures of
customer preferences and their variations�.

From a marketing perspective, we define “preference robust-
ness” as a criterion that accounts for: �1� the impact of variations
in the design domain on the values of marketing attributes; and �2�
the variations inherent in the conjoint model parameter estimates
due to imperfect model-data fit. Several marketing researchers
have suggested that consumer preferences can be influenced by
subtle changes in the experimental context �e.g. Refs. �19–22��. In
particular, Louviere et al. �23� pointed out that point estimates and

2In a perfect yet unachievable sense, the variation in performance is desired to be

zero.
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interval estimates of consumer preferences and context effects can
play an important role in the variances of the conjoint estimates.
Two different approaches have been proposed to account for this.
The approach suggested by Ref. �22� adds an extra error term to
the random component of consumer utility. The advantage of this
method is that context can be disentangled from preferences in the
determination of choice behavior. The drawback is that it requires
the collection of additional data on experimental contexts such as
attitudes and expectations. In contrast, the study in Ref. �9� spe-
cifically identifies and controls for variations in the systematic
component of the utility function. We favor the latter approach for
two reasons. First, the impact of variations in the design domain
can be directly mapped into the consumer utility. Second, this
approach allows us to identify robust products in the conventional
setting of conjoint surveys without requirement of additional data.
However, in Ref. �9�, heterogeneity of consumer preferences is
not considered. We relax this assumption here by categorizing
consumers into different market segments, which provides a better
estimate of consumer demand �24�. More important, we improve
upon a previously reported preference robustness assessment ap-
proach �9� by specifying additional objectives to better identify
promising alternatives from the marketing domain.

The rest of the paper is organized as follows. Section 2 gives a
general overview of our approach. Section 3 covers our design
robustness approach. Section 4 presents our marketing model. De-
tails of the overall integrated approach are presented in Sec. 5
followed by an example in Sec. 6. Finally, the paper is concluded
in Sec. 7.

2 The Overall Approach
Figure 1 gives a flowchart of our overall approach. The ap-

proach has two main components: engineering design domain �left
column of Fig. 1� and marketing domain �right column of Fig. 1�.
In the design domain, we first specify the range of variations for
uncontrollable design parameters as well as acceptable range of

Fig. 1 Overall approach
variations for design performance objectives. Next, design inputs
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are fed into simulation software that calculates an estimate of
design attributes �or performance� for each design alternative un-
der consideration. Some design attributes are expected to show
little or no variation in their attributes, as a result of variations in
uncontrollable design parameters, while others may exceed be-
yond their acceptable range for their attributes. Depending upon
how performance and/or feasibility of a design respond to such
variations, two measures are used to measure “engineering robust-
ness,” namely multi-objective robustness and feasibility
robustness.

In the marketing domain �right column of Fig. 1�, the most
important customer needs are first identified based on an initial
exploratory market study. It is likely that some product attributes
not only affect engineering design performance of the product
�e.g., maximum output power, in the case of a power tool� but also
are key attributes for a customer’s purchase decision �e.g., amp
rating of a power tool�. In our approach, this type of product
attribute is designated as “common attributes.” It is often neces-
sary to use a mapping �shaded arrow in Fig. 1� to calculate one or
more common attributes in the marketing domain from those in
the engineering design domain. In our approach, we take into
account the variability in customers’ preferences �or utilities� for
common attributes �such as life and amp rating� that come from
both design and marketing domains. On the other hand, there may
be product attributes that are not common to both marketing and
engineering domains. For example, in a corded power tool, at-
tributes like brand and switch type, which do not affect product’s
engineering design performance, are quite important to the market
performance of a product and hence appear purely as marketing
attributes. For these attributes, we only consider the inherent
variation in the conjoint estimates. Due to the fact that brand name
is generally fixed for a particular manufacturer, we fix the brand
name to “own brand” for all product alternatives in our optimiza-
tion. The output of the marketing model includes estimates of
market share and its variation which are used to measure prefer-
ence robustness.

The preference robustness measures with the engineering de-
sign robustness criteria are used in an optimizer, together with
other performance criteria, to generate a set of multi-objectively
robust product design alternatives. These alternatives not only per-
form well from both engineering design and marketing perfor-
mance points of view but also exhibit low variation with respect
to their performance due to uncontrollable parameter variations,
including the inherent variation in consumer preference elicitation
and estimation.

In the final stage of our product design development process,
we may need to make a selection among the generated robust
product design alternatives �see, e.g., Refs. �3,4,25��. The issue of
product design selection is beyond the scope of this paper, and
therefore we do not provide a detailed discussion here.

3 Design Model
In this paper, the design model is built based upon the assump-

tion that the simulation software is deterministic and that it re-
ceives a set of design variables �e.g., choice of motor, gear ratio�
and parameters �e.g., source voltage, ambient temperature� and
computes a corresponding set of design attributes �e.g., maximum
output power, weight�. The design performance attributes are used
as objective functions and/or constraints in our robust design op-
timization approach. The main definitions and terminologies to-
gether with our approach for robust design optimization are dis-
cussed in the next few sections.

3.1 Definitions and Terminologies. The general formulation
of a multi-objective optimization problem is shown in the

following:
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minimize
x

f i�x,p� i = 1, . . . ,I

subject to: gj�x,p� � 0 j = 1, . . . ,J �1�

where f i is the ith objective function, gj is the jth constraint func-
tion, x= �x1 , . . . ,xN� is the vector of design variables, p
= �p1 , . . . , pV� is the vector of design parameters. We assume that
the designer has control over design variables x �i.e., can change
them using an optimizer and thus create different design alterna-
tives� but has no control over design parameters p �i.e., they have
uncontrollable variations within a known range�. Some research-
ers prefer to differentiate between variations in design variables
and variations in design parameters, the so-called type-1 and
type-2 variations �20,27�. For simplicity, we do not make that
distinction in this paper. Examples of design variables are motor
type, gear ratio, gearbox type, and examples of parameters are
ambient temperature, source voltage, and application type. The
design variables along with design parameters are fed into the
design simulation software. The design simulation software com-
putes the values of design attributes �or performance, e.g., arma-
ture temperature, motor speed for a power tool�. As highlighted
earlier, there are several attributes that are specific to marketing
domain and do not play a role in design performance �e.g., brand,
price�. However, the attributes that are common to both design
and marketing domain �such as product life� do have a role in the
design module. In this paper, the marketing attributes �excluding
the common attributes� are all discrete. Each design alternative
can be enumerated over the marketing attribute levels, and thus
generate several product alternatives.

3.2 Multi-Objective Robustness. We define a design to be
multi-objectively robust if the variation in each of its objective
function values is bounded within a specified range. In order to
formulate the multi-objective robustness, a measure for multi-
objective variability is introduced. Our idea is based on the maxi-
mum variation of the objective function values from the nominal
values, �f i

W:

�f i
W = max

p
�f i�x,p� − f i�x,p0�� i = 1, . . . ,I �2�

where p0 is the vector of nominal parameter values for design x,
and p is between pL and pU, the known lower and upper bounds
on design parameters, respectively. Any global optimization tech-
nique could be used to find �f i

W for each design alternative x.
To assess the multi-objective robustness of each design, first the

designer needs to specify the maximum acceptable variation range
from nominal for each objective function, �f i

D for ith objective

Fig. 2 Multi-objective robustness
function as shown in Fig. 2. The shaded region inside the rect-
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angles in Fig. 2 is the sensitivity region. The sensitivity region for
a design x can be obtained by calculating the objective function
values as p components are varied within their known lower and
upper bounds.

For a multi-objectively robust design, the maximum variations
of every objective function from its nominal value �e.g., �f i

W�
should be smaller than an acceptable range �e.g., �f i

D� specified
by the designer. As shown in Fig. 2, a design is multi-objectively
robust, if its sensitivity region or a corresponding maximum varia-
tion from the nominal �dotted inner box in Fig. 2� does not go
beyond the acceptable range �dashed outer box�.

3.3 Feasibility Robustness. The goal of feasibility robustness
is to ensure that a design will not violate constraints should the
worst case values of uncontrollable parameters occur. The feasi-
bility robustness of a design alternative x is verified by examining
the following inequality:

max
p ��

j

�max�0,gj�x,p���2�1/2
� 0

pL � p � pU �3�

3.4 Robust Design Optimization Approach. Our robust de-
sign optimization approach �ignoring the marketing information at
this stage for expositional purposes� is encapsulated in Fig. 3. A
multi-objective optimization is performed in the upper block of
the flowchart. To ensure multi-objective robustness, each feasibly
robust design point x is passed on to the lower block, as shown in
Fig. 3, where the maximum variation from the nominal value for
each objective function is calculated. This procedure continues
until all design alternatives that meet robustness requirements and
at the same time have the best possible performance in a multi-
objective sense are obtained.

Since we have not considered any marketing information at this
stage, the above—mentioned approach that includes multi-
objective and feasibility robustness may overlook design candi-
dates that are good alternatives from a marketing performance
viewpoint. In Sec. 4 we take the marketing aspects of the product
into consideration.

4 Marketing Model
A successful product design should not only satisfy engineering

design requirements �in terms of performance and reliability� but
it should also perform well commercially in the market based on
customer preferences. In Sec. 4.1, a finite mixture conjoint model
is used to capture the customers’ preferences. Section 4.2 covers
the sources of variability in customers’ preferences and our ap-
proach for modeling such variations.

4.1 Finite Mixture Conjoint Model. In a conjoint-based

Fig. 3 Robust optimization approach
method, customers’ utilities for different levels of marketing at-
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tributes are estimated through customers’ evaluations of a set of
hypothetical product profiles �30�. The simple premise in conjoint
models is that customers evaluate the overall utility of a product
by combining the separate utility value �i.e., part-worth� of spe-
cific levels of marketing attributes that define the product. Since
consumers generally have heterogeneous preferences toward the
products, a finite mixture conjoint model provides a way to seg-
ment the market based on consumers’ responses to the conjoint
experiment. The details of our model are given below.

A conjoint choice experiment starts with J individuals �consum-
ers�, each evaluating K choice sets. Each of the K choice sets
contains M product alternatives. Each product alternative is de-
fined by the combination of different levels of marketing at-
tributes. If we assume the existence of s=1, . . . ,S segments with
segment sizes SSs, the utility u of consumer c for product m in
choice set k, given that this individual belongs to segment s, is
defined as follows3 �10�:

ucs�ymk,Pmk� = �ymk�sy + Pmk�sp� + �csmk �4�

where ymk is a vector representing product attributes of product
alternative m in choice set k, Pmk is the vector of product price in
choice set k, �sy is a ��1 vector of parameter coefficients
weighting each product attribute levels, �sp is a vector of param-
eter coefficients for prices, and �csmk is a random component of
the utility. Following the tradition in conjoint studies, we use
effect-type coding for all the marketing attributes �28�. We assume
that the random component �csmk follows an independent identical
double exponential distribution. Therefore, the probability Prcmks
that product m is chosen from choice set k, subject to consumer c
being a member of segment s, can be expressed as

Prcmk =
exp�ymk�sy + Pmk�sp�

�
mm=1

M

exp�ymmk�s + Pmmk�s� + exp�conss�

�5�

where conss represents the constant term representing the utility of
the “no-choice” option for consumers in segment s. We denote �s
as the likelihood that a consumer is a member of market segment
s. The unconditional probability of consumer c choosing product
m from choice set k can be computed as �29�:

Prcmk = �
s=1

S

�s Prcmks �6�

The log-likelihood of observing all the choices in all the choice
sets for all the customers can be written as �29�:

LL = �
c=1

C

�
m=1

M

�
k=1

K

ln�Prcmk� �7�

Using the maximum likelihood estimation method on Eq. �7�,
we can calculate a set of segment-level conjoint part-worths and
the corresponding segment sizes for the scenarios of one segment,
two segments, ¼, through Smax market segments �a pre-specified
maximum number of market segments�. Akaike’s information cri-
terion �AIC� �defined in Eq. �8�� is used to determine the optimal
number of segments in the market. The model �scenario� with the
smallest AIC value is the one that best explains the observed
choices without overfitting the data �see Refs. �24,30��.

AIC = −
2�LL − q�

SS
�8�

where q is the number of part-worth utilities estimated and SS is
the sample size �number of customers times the number of choice

3We also considered alternative models with interaction effects between attributes.
We did not find any additional improvement in our model fits. Therefore, only main

effects are included in our model.
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sets�.
The estimation procedure provides us with estimates of the

number of segments along with segment sizes, segment-level part-
worth utilities, and the asymptotic variance-covariance matrix of
part-worth utilities �9,31�. These estimates can be used to calcu-
late the point and interval estimates of market share for each prod-
uct alternative, given a set of competing products �24,28�.

4.2 Preference Robustness. Our model integrates the follow-
ing types of variations in consumer preference. First, we consider
variation from the engineering domain in attributes that are com-
mon between the engineering design module and the marketing
module. Second, variations inherent in the conjoint part-worth es-
timation because of the imperfect model-data fit. According to
Ben-Akiva and Lerman �32�, choice-based conjoint part-worth
utility estimates can be considered as asymptotically normal when
the sample size is sufficiently large. Therefore, we are able to use
the method described in the following paragraphs to construct the
interval estimates of the part-worths utilities for various design
alternatives.

First, we explain how we obtain the interval conjoint estimates
at the segment level. For discrete product attributes �such as brand
and switch type�, the interval estimate can be obtained by calcu-
lating the 95% confidence interval using the point conjoint esti-
mate and the standard error of the estimate.4 For continuous and
non-common product attributes �such as price�, we first use pair-
wise linear interpolation �33� to calculate the point estimate in
between specified conjoint levels. For example, for a price �P�
that is in between two specified price levels �P1 and P2� in the
conjoint study, the point estimate of the conjoint part-worth utility
can be estimated as follows, where u�P1� represents the point
conjoint estimate at price level P1 and u�P2� represents the point
conjoint estimate at price level P2:

u�P� =
�P2 − P�
�P2 − P1�

u�P1� +
�P − P1�
�P2 − P1�

u�P2� �9�

Next, we calculate the variance of the part-worth var �u� using
Eq. �12� �34�:

var�u� = 	 P2 − P

P2 − P1

2

z1
2 + 	 P − P1

P2 − P1

2

z2
2 + 2z12

�P2 − P��P − P1�
�P2 − P1�2

�10�

where z1 and z2 represent the standard errors of the point conjoint
estimates at price levels P1 and P2, and z12 represents the covari-
ance of the two conjoint part-worth utility estimates. Finally, we
construct the interval conjoint estimate as the lower and upper
bounds of the 95% simultaneous confidence levels.

So far we have only addressed the uncertainties in customer
choices in the conjoint experiment. The second component of the
preference robustness in our marketing model comes from the
variation in the performance of the product in the engineering
domain. For example, when the tool is used in different usage
situations and under different conditions, the actual amp rating of
the power tool may vary, say ±0.5 A from the nominal value. We
also consider the impact of such variation on the consumer’s pref-
erence for the product. This applies to all the common attributes in
our study �e.g., power amps and product life�. We first calculate
the ranges of utility variation for the lower and the upper bounds
of the amp rating variation using the method described in Eqs. �9�
and �10�. Next, we construct the interval estimate of the conjoint
utility by identifying the lower and the upper bounds of the con-
joint utility variation when amp rating changes.

Once the interval estimates of the conjoint part-worths for each
level of the marketing attributes are obtained, we are able to cal-

4We use 95% confidence level because this is the most commonly used criterion
in statistics literature �34�. This percentage can be adjusted based on the product

manager’s preference.
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culate the upper and lower bounds of the conjoint utility for each
product alternative �at the segment level� by summing up the
lower and upper bounds of conjoint part-worth utility estimates
for each marketing attribute. When calculating the market shares,
we consider the impact of variation not only on the product being
developed �hereafter called the “own” product� but also on the
competing products. The calculation procedure is similar to the
one used for “own” product. With regard to the common at-
tributes, we obtain the variation information of the competing
products from the engineering lab.

Now we explain how to calculate the upper and lower bounds
Fig. 4 Integrated design-marketing approach

888 / Vol. 128, JULY 2006
of market shares for each product alternative. We denote the lower
bound of conjoint utility for our own product in sth segment as
Ulower�bound,s and the upper bound as Uupper�bound,s. For competing
products �cp1, ¼, cpR�, we denote the lower bound of conjoint
utility for rth product in sth segment as Ucp,lower�bound,s and the
upper bound as Ucp,upper�bound,s. Our measure of market share
variation �MSV� is defined as the difference between MSupper�bound

�upper bound of market share estimate� and MSlower�bound �lower
bound of market share estimate�. Equation �11� provides the for-
mula for MS and MS :
upper�bound lower�bound
MSlower�bound = �
s=1

S

�s

exp�Ulower�bound,s�

exp�Ulower�bound,s� + �
r=1

R

exp�Ucpr,upper�bound,s� + exp�conss�

MSupper�bound = �
s=1

S

�s

exp�Uupper�bound,s�

exp�Uupper�bound,s� + �
r=1

R

exp�Ucpr,lower�bound,s� + exp�conss�

�11�
5 Integrated Design-Marketing Approach
The integrated design-marketing approach is shown in Fig. 4.

The approach shown has two starting points, one for the design
model and the other for the marketing model. In the design model,
the approach starts �from the top of the figure� with a design
alternative x, and with a known range of parameters and accept-
able variation range for each objective function. In the marketing
model, the approach starts �from the lower left of the figure� with
a marketing survey, including a field and focus group study to
identify key marketing attributes and capture customer prefer-
ences. In the design model �upper left of the figure� the design x is
passed on to the design simulation to calculate attributes for the
design �i.e., engineering performance objectives and constraints�.
Next, the design is evaluated for feasibility and multi-objective
robustness. If it does not meet the acceptable range for multi-
objective robustness �recall Fig. 2�, its objective function values
are penalized �e.g., a positive penalty is added to the correspond-
ing objective function for the case of minimization�. Similarly,
any design that does not satisfy the feasibility robustness criterion
�recall Eq. �3�� will be penalized. Each design that passes the
requirement for feasibility and multi-objective robustness is then
enumerated over the marketing attributes �excluding brand� to
produce corresponding product alternatives that can be evaluated
from the marketing point of view �see the block on the lower right
of Fig. 4�. In the marketing model, the point estimate of market
share and its variation for each design are computed and passed
on to the optimizer. The marketing objectives are to maximize the
market share and to minimize its variability. Even though past
research mainly focuses on market share maximization, we argue
that it is also important for product designers to consider both
market share and its variability. When two product alternatives
have comparable market shares, the product with smaller market
share variability should be favored because there is a less amount
of uncertainty associated with how this product will perform in
the marketplace. The details of our ranking algorithm are given in
Sec. 5.1. The procedure embedded in the algorithm continues until
a stopping criterion, such as a maximum number of iterations, is
reached. The approach ends with the identification of a set of
�multi-objectively and feasibly� robust optimum product design
alternatives.

5.1 Design-Marketing Evaluation of Product Alternatives.
The optimizer used in our approach �see Fig. 4� evaluates and
compares products based on their predicted engineering design as
well as market performance. The performance measures in both
domains were defined in previous sections. Here the product
evaluation is performed at the domain level �i.e., marketing or
engineering design domain�.

In the engineering design domain, we consider robust products
�from both feasibility and multi-objective robustness points of
view� and evaluate their performance and feasibility using the
design objective and constraint functions. In the marketing do-
main, we consider both market share and market share variations
�MSV� to assess the predicted marketing performance and robust-

ness of the products �maximize market share and minimize varia-
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tion, given a set of competitive products�. Our rank ordering rule,
which is used in the optimizer, is as follows: product X dominates
product Y if X dominates Y �i.e., has a better performance� in at
least one of the domains �i.e., design or marketing� while not
dominated in the other. Alternatively, product X is dominated by
Y if it does not dominate Y in any domain while being dominated
by Y in at least one domain. If neither of these conditions holds,
then products X and Y are nondominated.

Figure 5 shows an example in which three product designs A,
B, and C are rank ordered. Figure 5�a� depicts the engineering
design domain in which output speed is minimized while mass
removed is maximized. Figure 5�b� shows the marketing domain
in which the market share of the product is maximized while the
variation in market share estimates is minimized. In order to rank
order the designs shown, we need to compare each pair separately.
B dominates A in both design and marketing domains, and there-
fore, overall B dominates A. However, A dominates C in the
design domain, but C dominates A in the marketing domain. Such
a conflict leads to A and C to be nondominated. Furthermore,
between B and C, B dominates C in the design domain. However
in the marketing domain, B and C are nondominated. Therefore,
based on the above-mentioned ranking rule, B dominates C. In
short, considering both design and marketing domains, B gets the
highest �i.e., first� rank �no product dominates it�, while both A
and C are nondominated with respect to each other, and are
ranked second.

6 Example
In the following, we demonstrate our approach with an example

in the design of a corded small angle grinder.

6.1 Preliminaries. To begin with, it is necessary to survey the
market for such corded power tools to identify key attributes of
the product that are important to customers and then establish a
set of common attributes between engineering design and market-
ing domains. Working as a team with our industrial partner, we
conducted several focus group studies to first identify a set of
attributes that are considered as the most critical by the end users.
Six marketing attributes have been identified for this product:
brand, price, amp rating, switch type, life, and girth size. The
engineering design attributes �i.e., output from the design simula-
tion� are maximum output power, output speed, armature tempera-
ture, and brush temperature. Among these attributes, amp rating
and life of the product are attributes common between the design
and marketing domains. Amp rating is obtained using maximum
motor output power, and an estimate of product life can be ob-
tained by a heuristic that takes motor output speed and armature
temperature. The application �i.e., type of material and the dura-
tion of use of the tool on that material� is assumed to be the same
for all design alternatives. The set of design variables are: choice
of motor �xm� which is a discrete variable between 1 and 10,
choice of speed reduction unit or gearbox �xg� which is a discrete
variable between 1 and 6, the gear ratio �xr� which is a continuous

Fig. 5 Rank ordering of design alternatives in „a… design do-
main, and „b… marketing domain
variable between 3.5 and 5. There are five design parameters that
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affect the performance of each design alternative. The design pa-
rameters with their uncontrollable variability information are
given at Table 1.

The variability in the marketing is discussed in Sec. 6.3. We
assume that in the market for this power tool, there are three
competitive products. Their specifications in terms of marketing
attributes �including the common attributes� are given in Table 2.

The set of robust design alternatives considering only engineer-
ing design robustness aspects are discussed in the next section.

6.2 Robust Designs using Engineering Design Robustness.
The product’s output motor speed is minimized, to reduce the
effects of vibration to the user, while the amount �i.e., mass� of
material removed is maximized, to ensure performance and effi-
ciency of the product. To guarantee that the product does not fail
�due to burn out� under demanding application conditions, a de-
sign constraint is imposed to keep the motor temperature �which is
the larger of armature temperature and field temperature� less than
220°C. Given these two objectives and constraint, without con-
sidering the effects of parameter variations on them, a multi-
objective genetic algorithm �MOGA� �35� with Kurapati et al.’s
constraint handling technique �36� was used as an optimizer to
obtain the set of �nominal� Pareto designs. The reason for choos-
ing an optimizer based on genetic algorithm is that our case study
involves both discrete and continuous variables. Figure 6 shows
the results. Nominal Pareto design points are highlighted by dia-
monds in Fig. 6. There are gaps among the clusters of design
alternatives as depicted in Fig. 6. The primary reason for these
gaps is due to dramatic changes in performance based on the
choice of available components in the database. At this point, for
expositional purposes, the marketing module is not considered.

Using the model provided in Sec. 3.2, with a genetic algorithm
as the optimizer, the maximum variation from nominal values of
motor speed and the mass of removed material are calculated for
every design alternative. In this example, the variation from nomi-
nal value for motor speed must be less than 8000 rpm. In addition,
the variation in the mass of removed material in one application
�of the tool on a steel plate� is set to be less than 5 g. The robust
designs are those that satisfy these requirements as well as the
feasibility robustness requirement. Likewise, the model of Sec.
3.3 is used to identify feasibly robust design alternatives. For a
power tool design, to operate for long and intensive applications,
the motor temperature should not exceed a certain level. There are
several parameters that can influence motor temperature in a
power tool. Among these, the ambient temperature, user load bias,
and power supply voltage and current can have considerable ef-
fects on the motor temperature. The design alternatives that are
not feasibly robust are eliminated during the optimization.

The robust Pareto design alternatives are obtained following the
framework given in Fig. 3, with MOGA used for the optimizer.
The robust Pareto points for this example are also shown in Fig. 6
along with the nominal Pareto points. It can be observed that in

Table 1 Design parameters; information
this example almost all of the robust Pareto points are inferior �in
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terms of performance� to the nominal Pareto points.
In the next section, we study the effect of customer preferences

�without using engineering design objectives and constraints men-
tioned above� in the generation of product design alternatives.

6.3 Preference Robustness Model. Respondents for this
study include metal workers and construction workers �who make
up 80% of the user base for the tool� recruited from job sites and
construction sites. The interviews were conducted with 249 re-
spondents. Each respondent was given 18 choice scenarios �16
were used for conjoint estimations and 2 for verification�. Each
choice scenario included two product design alternatives and a
no-choice option with verbal descriptions indicating the levels of
marketing attributes. The data were collected, coded, and analyzed
using the finite mixture module of Sawtooth �33�. We examined
the scenarios of one through five market segments. The number of
market segments is determined by the minimal AIC value, which
turned out to be four segments. Therefore, we have four segments
in the market. Table 3 provides the part-worth utility estimates
associated with each attribute level and the utility estimate for
“no-choice” in each market segment. In this table, we also pro-
vided the values of segment sizes. In addition, we obtain a 14
�14 variance and covariance matrix of the conjoint estimates for
each market segment. The diagonal elements of the matrices are
all positive numbers and they represent the variances of the con-
joint estimates. The off-diagonal elements describe the covari-
ances of the conjoint estimates. �Due to page limitation, the vari-
ance and covariance matrices are not shown.�

We now use the information provided in Table 3 to illustrate
how the utility of a product is calculated. For a product with own
brand, $79 retail price, amp rating of 9, 110 h of product life, top
slider switch, and small girth, its utility for consumer segment 1 is
1.3 �i.e., �−0.54�+ �−0.11�+0.13+1.33+ �−1.01�+1.5=1.3�. In a
similar fashion, we can calculate this product’s utility for con-
sumer segment 2 as −1.47, segment 3 as −5.79, and segment 4 as
−0.99. A similar approach can be used to obtain the conjoint util-
ity of each competitor product, and based on these values the
market share of each product alternative can be predicted. Next,
the formulas in Eqs. �9�–�11� are used to construct the market

Table 2 Competitive product specifications
Fig. 6 Set of nominal and robust Pareto design alternatives
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share variation of each alternative.
To verify our estimates, we compared the estimated market

shares for the existing products with actual market share data
obtained from Power Tool Institute �PTI�. PTI is an organization
that provides its member companies with market level data such
as the market shares of different power tool products. We found
that the discrepancies between the estimated and the actual shares
are within 5 to 7 percent. As a result, we believe that our model
estimates are reasonably in line with the actual market share val-
ues.

6.4 Robust Design Using Integrated Design and Market-
ing Approach. The integrated robust design and marketing ap-
proach discussed in Sec. 5 is now applied to the example. Using
the approach described in Sec. 3, design alternatives are generated
through feeding numerous combinations of design variables using
the optimizer to the corded power tool simulation. The output
generated by the design simulation is used to obtain �directly or
via mappings� the common attributes. As mentioned before, two
common attributes are mapped from design simulation output,
namely, amp rating and life of the product. Next, there are three
non-common marketing attributes that contribute toward the gen-
eration of the set of product alternatives with brand being fixed at
“own brand.” These attributes are price, switch type, and girth
size. After obtaining the product alternatives, the market share and
its variation are calculated for each product alternative. The evalu-
ation is performed at the domain level according to the rules given
in Sec. 5. For each generated product alternative, using the infor-
mation provided in Table 3 and Eqs. �9�–�11� the market share and
its variation can be estimated. The final set of robust products
based on our integrated approach is shown in Fig. 7.

There are 18 design alternatives in the design objective space
that are identified as robust in design objective space �Figure
7�a��. As mentioned before, every design alternative is enumer-

Table 3 Conjoint part-worth estimates
ated over non-common or marketing attributes to produce several
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product alternatives. In this example, there are three non-common
attributes, namely, switch type, price, and girth size that overall
create 24 possible product alternatives for each design. It should
be noted that not all of the possible generated combinations for
each design have optimum performance in both design and mar-
keting domain. In this example, corresponding to the 18 designs in
the design domain �Fig. 7�a��, there exist 62 product alternatives
in the marketing domain �Fig. 7�b��. For example, design alterna-
tive A in Fig. 7�a� corresponds to the five optimum products in
Fig. 7�b�. Table 4 tabulates the specifications of these products.

In the marketing domain �Fig. 7�b��, the robust Pareto products
have market shares ranging from virtually zero to approximately
28%, all of which have less than 7% of market share variations.
We consider the product alternatives in the bottom left corner of
Fig. 7�b� as infeasible. Even though the market performance of
these product alternatives does not vary much, the market shares
of these products are all less than 5%. Such low market shares are

Fig. 7 Final set of robust design and product alternatives: „a…
engineering design domain, and „b… marketing domain

Table 4 Product alternativ
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considered as infeasible because these product alternatives cannot
generate requisite revenue to recover the fixed costs needed for
the development of these products. This reduces the number of
robust products to 48.

Overall, our integrated approach obtains solutions �as shown in
Fig. 7� that are superior in terms of design performance, market-
ing performance or both. The next step in the product develop-
ment process is to make a selection among the products and then
the selected products can be carried forward for the prototyping
stage. Using Fig. 7 and locating products in both domains, it
would allow a product design manager to evaluate each product
from both design performance �and robustness� as well as it mar-
ket performance. Since it may not be feasible to carry forward 48
products to the prototyping stage, the design and marketing teams
may decide to reduce the number of the final products. First, we
can eliminate some of these alternatives through a more stringent
criteria for robustness �for example, by reducing the acceptable
range of variability in the design and/or marketing dimensions�,
which can reduce the number in the Pareto set. Second, as men-
tioned before, the marketing team may decide to eliminate solu-
tions that have a low level of predicted market share �e.g., below
10%�. Third, the marketing team may prefer to target at a particu-
lar price point for the new product after accounting for retailers’
existing assortments and their preferences. Finally, a similar pro-
cedure can be carried out in design domain and the design team
can eliminate the designs that have higher production costs �when
offered at the same price� to increase the projected profit. While
there are many techniques to aid in making a selection among the
final product alternatives, the discussion of such techniques is
beyond the scope of this paper.

7 Concluding Remarks
The overall contribution of our approach lies in specifying both

design robustness and preference robustness and tying them to-
gether in one framework so that an integrated approach for gen-
eration of design alternatives, from both design and marketing
perspectives, is facilitated. In our approach, we use a bi-
disciplinary �i.e., marketing-design� optimization criterion in gen-
erating and rank ordering a set of design alternatives, which can
then be taken to the prototype development stage. This assures
that the prototypes being tested are robust not only from a design
perspective but also from a customer preference perspective. In
this regard, it is important to note that our integrated approach is
not a sequential elimination scheme. Instead every product is
evaluated in both design and marketing domains. Only those prod-
ucts that may become infeasible or have inferior performance in at
least one domain are eliminated in the process.

From the design perspective, the proposed approach provides
the designers a means to assess the performance and feasibility
robustness of a design when several uncontrollable parameters
exist. Unlike the previous methods in robust design, in particular
those in Refs. �9,17,18�, our new approach is less conservative
and more flexible in that �i� it does not eliminate any design
whose performance variation is within an acceptable range, and

corresponding to design A
es
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�ii� it provides a means to guarantee that a robust design satisfies
the acceptable range variation for individual design objectives.

From the marketing perspective, very limited amount of extant
research has considered the impact of performance variations in
different usage situations and conditions on customer utilities. The
uncertainty in estimating customer utilities due to the imperfect
data-model fit is also an important factor to consider when speci-
fying preference robustness �20–25�. Building upon the existing
research by Ref. �9�, we have relaxed the assumption of homoge-
neous consumer preferences and introduced a multi-objective op-
timization procedure for the robust marketing criterion.

Our approach despite its strengths in both design and marketing
domains has some limitations. Like most robust optimization
methods in the literature, our outer-inner optimization approach
can be computationally intensive. However, the contribution of
this work is mainly in providing a means to integrate design and
marketing robustness together. One other potential shortcoming of
our approach is when it results in a relatively large set of final
product alternatives. A possible remedy to this is to perform de-
sign robustness prior to the integration with the marketing model,
i.e., in a sequential process. However, such a sequential approach
may eliminate potentially good design alternatives.
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