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In designing consumer durables such as appliances and power tools, it is important

to account for variations in product performance across different usage situations

and conditions. Since the specific usage of the product and the usage conditions can

vary, the resultant variations in product performance also can impact consumer

preferences for the product. Therefore, any new product that is designed should be

robust to these variations—both in product performances and consumer preferences.

This article refers to a robust product design as a design that has (1) the best

possible (engineering and market) performance under the worst-case variations and

(2) the least possible sensitivity in its performance under the variations. Achieving

these robustness criteria, however, implies consideration of a large number of design

factors across multiple functions. This article’s objectives are (1) to provide a tu-

torial on how variations in product performance and consumer preferences can be

incorporated in the generation and comparison of design alternatives and (2) to

apply a multi-objective genetic algorithm (MOGA) that incorporates multifunction

criteria in order to identify better designs while incorporating the robustness criteria

in the selection process. Since the robustness criteria is based on variations in en-

gineering performance as well as consumer preferences, the identified designs are

robust and optimal from different functional perspectives, a significant advantage

over extant approaches that do not consider robustness issues from multifunction

perspectives. This study’s approach is particularly useful for product managers and

product development teams, who are charged with developing prototypes. They may

find the approach helpful for obtaining customers’ buy-in as well as internal buy-in

early on in the product development cycle and thereby for reducing the cost and time

involved in developing prototypes. This study’s approach and its usefulness are il-

lustrated using a case-study application of prototype development for a handheld

power tool.

Introduction

I
t has been long recognized that successful new

product development (NPD) involves effective

integration of cross-functional processes. Extant

research has shown that effective integration can have

a positive impact on product development cycle time

(Griffin, 1997; Sherman, Souder, and Jenssen, 2000;

Urban et al., 1997), project performance (Griffin and

Hauser, 1992; Olson et al., 2001), and overall compa-

ny and market performance (Gemser and Leenders,

2001; Griffin and Hauser, 1996; Tatikonda and Mon-

toya-Weiss, 2001). Consequently, it is no surprise that

the specifics of the cross-functional approaches that

can lead to such successful impacts have been the fo-

cus of research in the last decade—quality function
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deployment (QFD) (‘‘house of quality’’) (Griffin,

1992; Griffin and Hauser, 1993; Hauser and Claus-

ing, 1988); lead-user analysis (Urban and Von Hippel,

1988); and integrating customer requirements into

product designs (Bailetti and Litva, 1995; Urban

et al., 1997). The approach described in the present

article belongs to the cross-functional genre of re-

search, focusing on the development of specific meth-

odologies to facilitate effective and efficient coordi-

nation among engineering design, ergonomics, and

marketing functions in developing good candidates

for prototypes.

The key characteristic of a cross-functional app-

roach is that it necessarily entails consideration

of a large number of factors that contribute to the

design. Among these factors, some are specific and

unique to individual functions, and some are common

across functions. Typically, many of these factors

are interrelated and affect the design decisions that

fall under the domain of the different functions. The

power of a cross-functional approach cannot be

harnessed unless all these factors and their interrela-

tionships are systematically considered and are ac-

counted for in the design development. Thus, an

effective and efficient method for considering and in-

tegrating these factors is critical for reducing the time

and cost of developing design prototypes. The current

study provides a tutorial on such a method in the

context of consumer-durable products. As compared

to extant coordinating schemes, this study’s approach

has two distinguishing characteristics: first, how var-

iations in product performance and consumer prefer-

ences due to variations in operating conditions can be

incorporated in the generation and comparison of de-

sign alternatives are examined in detail; second, a

multi-objective genetic algorithm is applied that in-

corporates multifunction criteria in order to identify

good design candidates. This approach thus leads

to the identification of ‘‘robust’’ design candidates

for prototype development. These distinguishing

characteristics are elaborated upon in the following

discussion.

Robustness of products is a critical element to con-

sider in the NPD process, especially in the case of

consumer durables such as appliances, power tools,

and utility vehicles. These products tend to be used in

different usage situations and usage conditions in

which their performance can vary depending on the

operating conditions. For example, a grinder power

tool could be used in different applications such as

concrete, wood, or metal under operating conditions

that could be very different depending on whether it is

used in cold or hot weather. In this study, the term

uncontrollable design parameters is used to indicate

such factors that can vary and are not under the con-

trol of the designer (e.g., different applications or op-

erating conditions in the power tool example, which

are all environmental conditions beyond designers’

control).
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From the engineering perspective, ignoring the var-

iation in the performance of the products under

various usage situations and conditions may lead to

malfunctions of the product and can possibly cause

serious failures (Kouvelis and Yu, 1997; Parkinson,

Sorensen, and Pourhassan, 1993; Sundaresan, Ishii,

and Houser, 1992). Therefore, engineering designers

often aim to select designs that meet the following

criteria: (1) maintain feasibility under various usage

situations and conditions (that is, the product still

functions under such variations); (2) show the least

possible variation in its performance; and (3) have the

best possible performance under the worst case vari-

ations in uncontrollable design parameters. This ren-

ders design robustness a critical factor to consider in

the NPD process.

From the marketing perspective, the variations in

performance of the product under different usage sit-

uations and conditions can have a significant impact

on customers’ preferences for the product and thus

market share. Assume that these variations in perform-

ance dimensions can be mapped on to the levels of

product attributes that customers typically consider in

a preference elicitation process such as conjoint study.

The marketing team then can estimate how changes in

usage situations and conditions affect the preferences

of customers (and thus market shares) for the alterna-

tive products and how robust the preferences and mar-

ket shares for the alternative products are under such

variations in performance. This is one component of

preference robustness—the one that measures robust-

ness under uncontrollable design parameters or envi-

ronmental factors. In addition, when customer

preferences and part-worths for attributes are estimat-

ed using choice models, there are sampling errors as-

sociated with the estimation procedure. In the

literature of choice-based conjoint models, this issue

of preference robustness has been virtually ignored.

Marketing researchers generally have adopted the

point estimates provided by the conjoint model instead

of recognizing the degree of error around the point es-

timates of consumer preferences. In order to account

for the uncertainties in customer choices in the prefer-

ence elicitation process, the variances and co-variances

of part-worth estimates from the choice model can be

used to construct interval estimates of market shares

for each product alternative. When a set of competitive

products is defined, the upper and lower limits associ-

ated with these interval estimates for market shares can

provide a measure of preference robustness with re-

spect to the preference elicitation process. This is the

second component of preference robustness. Thus,

considering the two components of preference robust-

ness in selecting the design for the new product can

help in identifying designs that hopefully dominate

other alternatives on the preference dimension given

the variability in (1) usage situations and conditions

and (2) customers’ preferences estimates.

While this study’s approach considers both design

robustness and preference robustness in evolving new

designs, the evolution itself is accomplished using

MOGA. Genetic algorithm (GA) is based on the prin-

ciples of natural selection or ‘‘survival of the fittest’’ in

the evolution of species (Holland, 1975). It has been

used successfully in various applications including

product and structural design optimization (Goldb-

erg, 1989; Holsapple et al., 1993; Narayanan and Az-

arm, 1999). In marketing, Balakrishnan and Jacob

(1996) proposed the use of single-objective GA to

solve the problem of identifying an optimal (single)

product using conjoint data. More recently, Steiner

and Hruschka (2003) extended their approach by ap-

plying single-objective GA to solve for optimal prod-

uct line design. Extending the work of Balakrishnan

and Jacob (1996) and Steiner and Hruschka (2003),

this study’s approach applies GA to a multi-objective

optimization problem with multiple constraints to ac-

count for robustness in both design and marketing. It

also extends the single-objective robustness criteria

proposed by Kouvelis and Yu (1997) to the multi-ob-

jective robustness domain.

The preceding discussion highlights the contribu-

tion of this study’s approach from an academic per-

spective. This approach considers the variations in

customer preferences for products due to variations in

usage situations and conditions and due to estimation

errors in the preference elicitation process, which

generally have been ignored in extant research. This

variation along with variations in engineering per-

formance are used in multi-objective genetic algo-

rithm to identify robust prototype candidates, thus

developing designs that are desirable from different

functional perspectives, a significant advantage over

extant approaches that do not consider robustness is-

sues from multifunction perspectives.

From a practitioner viewpoint, this approach is

particularly useful for product managers and product

development teams who are charged with developing

prototypes. They may find the approach helpful for

obtaining customers’ buy-in as well as internal buy-in

early on in the product development cycle. This

study’s customers’ preference elicitation process using
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choice-based conjoint involves both marketing and

industrial ergonomics teams in an effort to better link

the trade-off between ergonomic features and other

product attributes in addition to the integration on

the design dimension. This article argues that having

such an integration occur early on in the design proc-

ess affords reduction in the cost and time for the se-

lection of design alternatives because all design factors

deemed important from the multiple functional per-

spectives are considered in a systematic and transpar-

ent manner in the prototype selection. This should

enable quick buy-in from all functions involved in the

design process.

Finally, from a firm’s perspective, designing such

robust new products will enable all customers to have

the same superior experience regardless of their usage

environments and situations, which is especially im-

portant in the consumer-durable categories. Such ro-

bustness will lead to higher quality, better match

between the design and customer needs, higher cus-

tomer satisfaction, and higher repurchase rates—and,

in the long run, greater customer loyalty and higher

profits for the firm.

The rest of the article is organized as follows. The

next section provides a brief description of the NPD

case study and an overview of this study’s approach.

Following that is a description of the study’s prefer-

ence elicitation module and the design module. Next is

a description of the integrated multi-objective robust-

ness criteria and the evolution of design alternative to

carry forward to the prototype stage. In discussing

each of these modules, specifics of the case application

are presented to illustrate the application of this ap-

proach. Finally, the article concludes with a discus-

sion of the positive aspects of the approach, along

with some limitations and directions for future work.

Conceptual Framework

This study’s approach has been developed on the basis

of an NPD project at a power tool manufacturer. A

description1 of the project is provided to better mo-

tivate the approach proposed here. The project in-

volves a handheld power tool (for the sake of

exposition, it is called here a widget) aimed at the in-

dustrial, professional, and do-it-yourself markets.

Three functional teams are closely involved in the de-

velopment project: (1) industrial design ergonomics

team, which designs the ‘‘shape’’ of the tool, which

is an important attribute given the handheld nature of

the product; (2) design team, which selects the design

inputs (such as motor type, gear ratio, and battery

type) that affect tool design attributes such as power

rating (performance), armature temperature (which

determines life of motor/product), motor casing tem-

perature, and so forth, and (3) marketing team, which

researches and models customer needs, preferences

and the competitive landscape to select the appropri-

ate targeting, pricing, and positioning strategies in

consultation with the other functional teams. Since

the widget being designed either will replace an exist-

ing product or will be added to the existing product

line, this study’s approach is tailored for existing mar-

kets and assumes that customers have experience with

similar products and will be able to evaluate product

features and trade-offs in reliable manner in a prefer-

ence elicitation process.

Figure 1 shows the overall cross-functional frame-

work for new product development. The framework

assumes that initial exploratory studies have been

conducted already by the product development teams

consisting of marketing, ergonomic, and design ex-

perts in understanding the general dimensions on

which the new product could perform better com-

pared to the competing products in the market. Such

exploratory studies are based on laboratory research,

field studies, and focus groups. These studies help the

team to identify the important dimensions for mar-

keting and engineering performance of the product.

These dimensions form the basis for the design ob-

jectives, design attributes, marketing attributes, and

ergonomic attributes and their levels to include in the

customer preference/part-worth elicitation process.

Figure 1 is a bottom-up flow chart of the overall

approach. There are two starting points in the frame-

work. In the preference elicitation module (or con-

joint analysis in the right-hand column in Figure 1),

the most important customer needs with respect to the

new product are first identified based on exploratory

studies. These customer needs can translate to levels

in marketing attributes such as retail prices, brand

name, life of product (in hours), power rating, or er-

gonomic features such as shape of the product and

actuator.2 Once these attributes and their possible

levels (values) are identified, a choice-based conjoint

1The specifics of the project and the attributes of the product are
modified in this description to maintain confidentiality of the organ-
ization involved.

2Actuator is similar to a power switch. This attribute is common
between ergonomic and marketing functions.
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analysis is used to estimate consumer preferences (or

utilities) for different levels of attributes, while ac-

counting for the uncertainty in customer choices. The

output of the preference elicitation module includes

estimates of part-worths and the variance and covar-

iance of the estimates, which are necessary to measure

the preference robustness. These estimates are also

useful to set up objectives and to construct constraints

for the multi-objective optimization problem.

In the design module (left-hand column in Figure

1), the engineering design team first identifies a set of

design inputs that define the functional design of the

new product. Examples of design inputs include mo-

tor type, battery type, gear ratios, and gearbox type.

For each element of design input, there generally exist

one or several design parameters. These design pa-

rameters are uncontrollable factors that can have a

significant impact on the performance of the tool. For

example, a design parameter associated with battery

type is battery current. While the designer can assume

a nominal (or most likely) value for the current for

each type of battery, the actual values of this param-

eter greatly depend on the usage conditions or situa-

tions. These design inputs are fed into a design

simulation software. Each combination of the design

inputs represents one design alternative. The design

simulation software uses these inputs to generate de-

sign attributes that describe the performance or other

features of the design corresponding to the set of in-

puts—for example, power rating, armature tempera-

ture (closely related to life of product), rotor speed,

and cost (related to retail price and profit). The actual

values of these design attributes depend on the selec-

tion of design inputs and the specific values of the

corresponding design parameters.

Some of the attributes considered in this study’s

framework not only are relevant for engineering of the

product but also are key attributes consumers con-

sider when they make the purchase decision (e.g.,

price, power, life of the product). Such product at-

tributes are considered common to both marketing

and design functions. However, there may be other

product attributes that are not common across both

functions in that the specification of the attributes

may rest solely with one function or the other. For

example, an attribute such as brand name is relevant

mainly for marketing, while the specification of shape

is very much under the purview of the ergonomic

team. These attributes may not affect the engineering

performance of the product per se, although an at-

tribute such as shape can limit what the design input

could be. For such uncommon attributes, the specifi-

cation of the attribute level is left to the function sole-

ly responsible for it. For example, the marketing team

has the option to choose the specific levels that pro-

vide the highest conjoint utilities for such attributes

when calculating the interval estimates of market

share for each design alternative.

More importantly, it is the common attributes that

play a critical role in the fitness assessment of inte-

grated marketing and engineering robustness (the

bold arrow linking the two columns at the middle in

Figure 1). The part-worth utility estimates and the

associated variance and covariance estimates for the

attributes common to marketing and design functions

are used in the design module in two ways. First, the

part-worth utilities help the designer to identify the

appropriate objective functions or constraints in opt-

imizing design performance while accounting for de-

sign robustness. Second, the part-worth estimates and

the associated variances and covariances are used to

construct market-share-based measures of preference

robustness considering both environmental variability

(usage situations) and errors in preference elicitation

process. These preference robustness measures, along

with design robustness measures, guide the evolution

of optimal designs in the multi-objective optimization

process. The output of the optimization process gen-

erates the set of ‘‘customer-based robust pareto’’ de-

sign alternatives. These design alternatives are chosen

for prototype development, field performance evalu-

ation, and market simulations.

Design Attributes: 
Max No-Load Speed  

Armature Temperature (Life
of Product)

Power Rating 
Cost (Price)

YesNo

Select Design Inputs (e.g., 
Motor Type, Gear Ratio) 

Design 
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Figure 1. The Overall Framework
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The following sections provide the specifics of each

module and illustrate them in the context of the case

study.

Preference Elicitation Module

Choice-based conjoint methodology was used for cus-

tomer preference elicitation. Conjoint analysis has

been a major tool in the process of product design

for the last two decades (Chen and Hausman, 2000;

Dobson and Kalish, 1993; Green and Srinivasan,

1990; Wittink and Cattin, 1989). In a typical con-

joint-based product design procedure, consumers’

preferences are estimated through an evaluation of a

set of hypothetical product profiles that are specified

in terms of levels of different attributes. Estimated

part-worth utilities are used to calculate the potential

market shares of the proposed product concepts

against existing competitors’ products.

In this study’s framework, instead of just using

cards containing verbal representations of the choice

options, a combination of verbal descriptions and

prototype models is suggested in order to allow both

the marketing team and the industrial design ergo-

nomic team to fully characterize the trade-offs be-

tween the product attributes for which they have

responsibilities. In a traditional conjoint application,

the choice options are typically functions of easily

specified product attributes, generally using verbal

representations. Several marketing researchers have

questioned this assumption. Srinivasan, Lovejoy, and

Beach’s work (1997) suggests that, even though typ-

ically not included in conjoint experiment, several im-

portant qualitative aspects of the product (such as

aesthetics, styling, ergonomics, and usability) have

significant impact on consumer preferences. Their

study provides empirical support for the need to

push beyond hypothetical (verbal) product concepts

to more complete customer-ready prototypes before

choosing a product to commercialize. Empirical stud-

ies involving pictorial representations (Vriens and

Loosschilder, 1998) and virtual reality representations

(Dahan and Srinivasan, 2000) suggest that these al-

ternate forms of representations improved respond-

ents’ understanding of the design attributes.

Following Srinivasan, Lovejoy, and Beach’s (1997)

suggestion, this research included customer-ready

prototypes in the choice-based conjoint experiment

so that the subjects could evaluate a product based on

its overall appeal (such as price, shape, actuator, and

power rating). As suggested by Srinivasan, Lovejoy,

and Beach (1997), such format of data collection is

similar to the situation involving consumers inspect-

ing products in a retail store environment and pro-

vides a good approximation to actual consumer

evaluation process.

In this case study, based on exploratory research

and internal discussions the marketing, design, and

ergonomics team chose the following product at-

tributes to obtain customer preference on brand,

price, power rating, life of product, actuator type,

and shape. The shape attribute consisted of four lev-

els—three shapes that already existed in the market

and one new shape the ergonomic team had designed.

There are two types of power actuators (A and B).

This is a feature that generally is integrated with a

specific shape in a prototype. The representation of

the combination of shape and power actuator varia-

bles was accomplished by using eight prototypes.

Some of these prototypes were specifically developed

by the industrial design team (nonworking prototypes

but models that look, weigh, and feel like a real wid-

get), and some were existing products in the market.

All prototypes were colored gray to make them uni-

form in all dimensions other than shape and actuator.

Four different brands were considered, along with

three levels of price, three levels of power rating and

three levels of life of product. Brand, price, and power

rating are attributes customers see on the label when

they buy the tool at a retail store, so they were directly

specified in the verbal description that accompanied

each prototype. The average life of the tools is around

1,000 hours of operation. Respondents, who were

mainly users of widgets, were generally aware of

this, but this information was specified in the verbal

description to indicate the differences among average

life, below-average life, and above-average life.

Respondents for the study included metal workers

and construction workers (who make up 80% of the

user base for the tool) recruited from job and con-

struction sites. The interviews were conducted with

210 respondents from different markets, each inter-

view lasting around 25 minutes. Each respondent was

given 18 choice scenarios (16 were used for conjoint

estimations and 2 for validation). Sawtooth Software

(2001) was used to create a fractional factorial design

with over 80% efficiency. The choice scenarios were

generated using the procedure described in Huber and

Zwerina (1996). Each choice occasion included two

alternative designs and a no-choice option—each de-

sign was represented by its prototype (with shape and
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actuator attributes) and was accompanying verbal de-

scriptions indicating the levels of other attributes

(brand, price, power rating, and life of product). Re-

spondents could touch, feel, pick up, and test each

prototype’s grip and comfort of handling and so on

and could read the verbal descriptions before making

their choices. Respondents were asked to consider

different usage situations when making their choices.

The data were collected, coded, and analyzed using

Sawtooth Software and LIMDEP.

The choice-based conjoint model was used to

estimate part-worths of the different attribute levels.

Table 1 provides these estimates, along with the re-

sults of validation on the holdout choice tasks. The fit

statistics of the calibration sample and the results of

the validation indicate that the model fit is reasonable.

The estimation also provides the standard errors for

the part-worth utility estimates of each attribute level

and the variances and co-variances of the utility esti-

mates. These estimates provide the ability to calculate

the 95% simultaneous confidence interval associated

with each attribute level. In particular, for continuous

attributes such as life of product and power rating, the

standard procedure of pair-wise linear interpolation

was used (Sawtooth User Manual, 2001) to calculate

the point estimate and the lower and upper bounds of

95% simultaneous confidence level for attribute val-

ues that are in-between levels.

The use of a choice-based model not only better

mirrors the selection process in the market but also

allows direct prediction of market shares, avoiding the

need for translating predicted ratings or rankings into

choices. More importantly, in the context of this

study’s focus on robust selection, the estimation meth-

odology takes into account the uncertainty in cus-

tomers’ choice that could arise due to different

factors. Using the estimates of variances and covari-

ances of the part-worths, interval estimates were con-

structed for market shares for various alternatives

considered in the design process on the basis of a pre-

defined set of competitive products for the new prod-

uct. The standard errors for the market shares are

determined using a simulation procedure where part-

worths were drawn from their respective distributions

(with associated variances and covariances) and esti-

mate market shares a number of times to obtain the

market share distribution. This is useful for determin-

ing the preference robustness component due to errors

in the preference elicitation process. Market share

point estimates also were obtained under environmen-

tal variability corresponding to usage situations—

best-case situation of the uncontrollable design pa-

rameters and worst-case situation of uncontrollable

design parameters. Combining both components of

market-share variability, overall interval estimates

were obtained for market shares for all alternatives

under consideration.

The interval estimates of market shares for the al-

ternatives were used to determine whether or not an

alternative dominates another alternative. If the inter-

val estimates of two alternatives do not overlap, then

there is a basis for dominance. In other words, alter-

native A dominates alternative B on the preference ro-

bustness dimension if and only if the lower limit of

Table 1. 95% Simultaneous Confidence Interval (SCI) for
Each Utility Estimatea

Attribute/Level Point Estimate 95% SCI

Brand
Brand A � 24.81 [� 29.36, � 20.26]
Brand B 34.02 [30.34, 37.70]
Brand C 25.62 [20.98, 30.26]
Brand D � 34.84 [� 40.17,� 29.51]

Price
$179 62.75 [58.52, 66.98]
$199 11.43 [8.62, 14.24]
$229 � 74.18 [� 80.76, � 67.6]

Power
100 Watts � 46.90 [� 51.52, � 42.28]
150 Watts 35.86 [32.7, 39.01]
200 Watts 11.04 [5.76, 16.32]
Life of Product

800 hours � 47.71 [� 53.65, � 41.77]
1000 hours 1.88 [� 1.57, 5.33]
1200 hours 45.83 [40.80, 50.86]

Shape
Shape A 10.57 [7.41, 13.73]
Shape B � 26.38 [� 31.12, � 21.64]
Shape C � 40.11 [� 42.86, � 37.36]
Shape D 55.92 [51.82, 60.02]

Actuator
Actuator A 60.94 [55.75, 66.13]
Actuator B � 60.94 [� 66.13, � 55.75]

Consumer Choice
Validation

Predicted Share
by Conjoint
Utilities (%)

Actual Share
Indicated by
Subjects (%)

Holdout 1 Product1 39.35 45.24
Product2 33.52 27.62
No-Choice 27.13 27.14

Holdout 2 Product3 15.27 11.43
Product4 36.12 45.24
No-Choice 48.61 43.33

a Log-likelihood: � 2641.71; chi-square: 2105.98; pseudo R2: 0.285
(statistics for calibration sample).
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alternative A’s market share interval estimate is greater

than the upper limit of alternative B’s market share

interval estimate. These preference robustness meas-

ures then were combined with the design robustness

measures to collectively determine the final robust de-

sign set. More details about this study’s integrated ro-

bust approach are provided later in the article.

Design Module

The design module focuses on the uncertainties in

material and usage situations, application type, and

conditions (defined here as design parameters) that

affect design attributes such as power rating (per-

formance), armature temperature (life of motor/prod-

uct), motor casing temperature, and cost. While the

goal of a deterministic optimization study is to design

a product that reaches its optimum performance or a

desired level of compromise among its design at-

tributes (i.e., multi-objective optimization) under

nominal values of the design parameters, in practical

applications of the product the design parameters of-

ten deviate from their nominal values. As a result of

such deviations, the deterministic optimum design

may show a significant degradation in its perform-

ance in the field, which also can affect customers’

preferences for the product. Therefore, the uncertain-

ties in the design parameters are taken into consider-

ation along with uncertainties in preference estimates

in the robust optimization process.

Several researchers in engineering design have

investigated the effect of variability in parameters

for single-objective design optimization problems

(Badhrinath and Rao, 1994; Chen and Yuan, 1999;

Gunawan and Azarm, 2004; Parkinson, Sorensen,

and Pourhassan, 1993; Sundaresan, Ishii, and Hous-

er, 1992; Taguchi, Elsayed, and Hsiang, 1989) and for

multi-objective cases (Besharati et al., 2004). Taguchi,

Chowdhury, and Taguchi (2000) define robustness as

‘‘the state where the technology, product, or process

performance is minimally sensitive to factors causing

variability (either in manufacturing or in the user’s

environment) and aging’’ (p. 4) Parkinson, Sorensen,

and Pourhassan (1993) categorized the robustness

into two categories: feasibility robustness, which re-

fers to satisfaction of the design constraints despite

parameter variations, and sensitivity robustness, which

refers to the degree to which design attributes vary

under variations in design parameters.

In this study’s approach, the robustness definitions

introduced by Kouvelis and Yu (1997) for single-ob-

jective problems are extended by considering the case

of multiple objectives. In the present study’s design

robustness assessment, the goal is to identify superior

design alternatives based on the following three selec-

tion criteria. First, the design should maintain feasi-

bility with regard to design constraints under

variations in uncontrollable design parameters. Sec-

ond, the design should show the least possible varia-

tion in its design attributes. Third, the design should

have the best possible performance in terms of the

design attributes under the worst-case values of un-

controllable design parameters. The following para-

graphs provide detailed descriptions of each

robustness criterion—that is, feasibility robustness and

multi-objective robustness (the Appendix provides ad-

ditional details and references wherein a technical ex-

position can be found).

Feasibility Robustness

The goal of feasibility robustness is to ensure that the

design will not violate design constraints for the worst

case of uncontrollable parameters. Typically, a de-

signer specifies a threshold value (called the ‘‘infeasi-

bility threshold’’) on each important design attribute

dimension. If, for a particular design alternative, the

value of the design attribute exceeds this threshold

level under the worst-case scenario, then the design

candidate will be deemed ‘‘not feasibly robust.’’ For

example, the designer can specify that the armature

temperature of the motor in a power tool should not

exceed 150oF when the application type (uncontrol-

lable parameter) is varying. This is because armature

temperature plays a critical role in determining motor

life and the life of the product, and exceeding this

temperature may result in product failure. In this case,

150oF is the infeasibility threshold on the armature

temperature attribute, and if a design alternative gen-

erates an attribute value exceeding the threshold un-

der variations in uncontrollable parameters, it will be

eliminated. This criterion is used in the multi-objective

optimization problem to eliminate some of the inferi-

or design candidates.

Multiobjective Robustness

This criterion will be explained using an illustration.

Consider a motor type (a design input) that impacts

design attributes such as armature temperature and
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power rating of a power tool. The values of these de-

sign attributes for a given motor type are affected by

uncontrollable variations in design parameters such as

motor current, type of applications, and ambient tem-

perature. Even though for each type of motor the de-

signer can assume a nominal value for motor current

and ambient temperature, the actual values of these

design parameters depend greatly on the usage con-

ditions or situations. Once a motor type is chosen by

the designer, the variations in the design parameter

space (motor current and ambient temperature) can

be mapped onto the corresponding sensitivity region

in the design attribute space (armature temperature

and power rating) using a design simulation method

(see Figure 2, where the nominal point and sensitivity

region are shown).

Given a design attribute space, the designer typi-

cally can specify a target point in terms of design at-

tribute values he or she should aim for. This target

becomes the basis for determining the worst-case at-

tribute values and the best-case attribute values under

the variations in uncontrollable design parameters. In

Figure 2, the point representing the worst-case at-

tribute values is the one (worst-case point) that is far-

thest from the target point in the sensitivity region,

while the point representing the best-case attribute

values is the one (best-case point) closest to the target

point in the sensitivity region. Multi-objective varia-

bility in design attributes is defined here as the dis-

tance between the worst-case point and best-case

point, as shown in Figure 2.

This study’s criterion of multi-objective robustness

implies the following in comparing two design alter-

natives: (1) the closer the worst-case point is to the

target, the better the design; and (2) the smaller the

multi-objective variability, the better the design. Fig-

ure 3 displays two design alternatives, A and B, with

their sensitivity regions, nominal points, worst-case

points, and best-case points. While in the nominal

case design A outperforms design B in the attribute

space, in the worst case, design B is better than design

A. In addition, design B exhibits a lower variability

than design A. Accordingly, design B is multi-objec-

tively more robust than design A. If a design alterna-

tive does not perform better compared to another on

both (1) and (2), then the designs are referred to as

nondominated with respect to each other.

Integrated Robustness Assessment

Using MOGA

In search for the final set of robust design alternatives

for the prototypes, the design robustness and the pref-

erence robustness criteria were integrated using an

adaptive search technique called MOGA, which is a

multi-objective optimization method able to handle

both discrete and continuous design inputs and pa-

rameters, as is the case in the problem under consid-

eration (for instance, gear ratio is a continuous

variable while motor type is a discrete variable).

This technique required the representation of each

design alternative in a binary string format. In the

context of the present study, each design alternative or

‘‘chromosome’’ was composed of several concatenat-

ed strings (design inputs and product features that

define the design alternative). Each string was made

up of binary substring positions, with each substring

indicating the specific level of each design input or

product feature. The length of a substring, denoted by

k, was dependent on the number of levels of an at-

tribute that needs to be represented. For a substring

length of k, GA can represent up to (2k � 1) different

levels (exclude level zero) in the substring. In this case

study, for example, if a design has any one of the four

possible shapes and one of the two possible types of

actuators, its chromosome representation could be

‘‘100 01’’, which corresponds to the fourth shape (i.e.,

Motor Current

Ambient Temperature

A 

Nominal

Design
Simulation 

Power Rating

 Armature Temperature

Nominal

Parameter
Variation Target

Worst Case

Variability

Min

Max

Best Case

Figure 2. Mapping from Design Parameter Space to the
Attribute Space

Figure 3. Multi-Objective Robustness Comparison of Two

Design Candidates
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0 � 20 þ 0 � 21 þ 1 � 22 5 4) and the first type of ac-

tuator (i.e.,1 � 20 þ 0 � 21 ). For continuous design

inputs such as gear ratio, the string presentation is il-

lustrated by the following example: a gear ratio of 5.3

is represented as ‘‘0101 0011’’, since 1 � 20 þ 0 � 21

þ 1 � 22 þ 0 � 23 5 5 and 1 � 20 þ 1 � 21 þ 0 � 22

þ 0 � 23 5 3.

The multi-objective robust optimization process

with the present case study is explained using only

two objectives so that it can be illustrated graphically.

(Note that this problem has been significantly simpli-

fied for expositional purposes.) The set of design in-

puts included were motor type (160 levels), battery

type (100 levels), gearbox type (80 levels), and gear

ratio (continuous within a given range). The set of

(uncontrollable) design parameters considered include

motor current (ranging � 0.5 amps from the nominal

value), ambient temperature (ranging � 10 to þ 301F

from the nominal value), battery current (rang-

ing � 0.2 amps from nominal value), and battery volt-

age (ranging � 0.5 volts from nominal value). The two

objectives were minimize (armature temperature) and

maximize (power rating). These attributes dimensions

are common between the design module and the pref-

erence elicitation module (see Figure 1). Power rating

appears as is in both modules. Armature temperature

affects the life of motor, which is the most critical

component of the power tool and determines the life

of product.3

The schematic in Figure 4 provides an overview of

how multi-objective robustness, feasibility robustness,

and preference robustness were considered in the ap-

plication of MOGA (Deb, 2001; Coello, Van Veldhui-

zen, and Lamont, 2002). The process began with the

design team specifying the constraints for the prob-

lem. There were many constraints for the case study

optimization problem, but a few are highlighted here

that are relevant for the objectives considered. Based

on the conjoint-analysis results, both the ergonomic

team and the marketing team wanted to eliminate
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Attribute Space
For Each Alternative

Check for
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(2) Variability

Design Robustness

Mapping of 
Design 

Attributes to
Marketing
Attributes

Evaluate and
Assign
Fitness

Stopping
Rule Met?

Create Next
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Figure 4. Integrated Robust Optimization Approach

3 In fact, if the motor fails, widget is generally not repaired but
thrown away as repair costs tend to be much more than the price of a
new widget.
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shape C (the one with a larger girth) as an alternative,

as it has the lowest utility (see dotted line from ‘‘con-

joint estimates’’ to ‘‘constraints’’ at the bottom left of

Figure 4). This implied that large size motor and gear

box combinations had to be restricted. In addition,

the price of the new product was restricted to under

US$200, which in turn implied a cost constraint in the

design module and impacted the various combina-

tions of design inputs that had to be restricted (for

example, the more expensive component combina-

tions were restricted—see dotted lines from ‘‘con-

straints’’ box to ‘‘initial population of alternatives’’).

The armature temperature also was constrained not

to exceed 150oF, the threshold beyond which the coils

of the motor can burn up and lead to catastrophic

failure. There is also a constraint on motor-casing

temperature not to exceed 1961F to prevent burns

while using the tool.

Next, the design team specified infeasibility thresh-

olds on different dimensions and the target points in

the attribute space. The target points were used to

normalize the objective and constraint function values

so that they were of the same order of magnitude.

These specifications, along with design parameters,

were sufficient to start the multi-objective optimiza-

tion process (see bottom of Figure 4). The multi-ob-

jective optimization using genetic algorithm works as

follows.

Step 1: Initial Population of Alternatives

Fifty design alternatives were picked at random to be

evaluated by specifying motor type, battery type,

gearbox type, and gear ratio. For each alternative

all combinations of the uncontrollable design param-

eter space (motor current, ambient temperature, bat-

tery current and battery voltage, in this case) were

defined. Using design simulation, the performance of

these designs (in this case, the two objectives of ar-

mature temperature and power rating) was evaluated

under varying conditions of design parameter values

for each design alternative (based on the attribute

space for each alternative).

Step 2: Mapping Design Attribute Space to
Marketing Attribute Space

Once the attribute space was developed for each al-

ternative, it had to be mapped to marketing attributes

(that are common to both design and marketing func-

tions) to understand the impact of design variability

on customers’ preferences (the first component of

preference robustness). For example, the design at-

tribute of armature temperature affects life of the

product (a marketing attribute). Based on product

testing in laboratory studies, the relationship between

armature temperature and life of product was deter-

mined by the design team and was incorporated in the

mapping. Thus, when armature temperature varies,

the life of product varies and, consequently, can im-

pact consumers’ preference for the product. Similarly,

cost of the design and price of the product (which are

common between the two modules) are related using

manufacturer margin goals.4 This mapping function

provided the important link between design module

and preference robustness module and allowed for an

estimation of the changes in customers’ preferences

(and thus market shares) under design variability.

Step 3: Feasibility Robustness

The feasibility robustness of each design alternative

was evaluated taking the infeasibility thresholds into

account. For example, one of the constraints shown in

the study’s illustration—motor casing temperature

not to exceed 1961—eliminated eight designs from

the initial population, as illustrated in Figure 5. Those

designs exceeding the infeasibility threshold were

eliminated from further consideration.

Step 4: Integrated Robustness Assessment

Preference robustness was combined with design ro-

bustness to identify nondominated designs. For the

successful candidates that remain (i.e., those that pass

the feasibility requirements), the sensitivity region for

each design alternative was formed (e.g., Figure 5

shows the regions for two designs). Using the ap-

proach described in the design module, the worst-case

point distance from the target point and multi-objec-

tive variability were calculated for every design alter-

native. Using the approach described in the preference

elicitation module, the interval estimate of market

share for each design alternative was calculated as the

measure for preference robustness. The trade-off

4 Price has been computed as cost plus manufacturer margin plus
retailer margin. In actual practice, the price is determined by the mar-
ketplace. In such as a case, the manufacturer can determine the impact
on her or his margins based on their costs and prices commanded in
market.
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among these three measures is shown in Figure 6. The

multi-objective optimization technique guides the

search based on the multi-objective ranking (a fitness

measure) of design robustness and preference robust-

ness (Zenios, 1995). The integrated design and pref-

erence robustness assessment was based on the

criterion that given two design alternatives A and B,

alternative A is preferred to B if and only if A is su-

perior in both design and preference robustness as-

sessments. Eleven designs were determined to be

robust after the first iteration of the integrated ro-

bustness assessment.

Step 5: Check-Stopping Criteria

A moving average rule was employed as the stopping

criterion (Balakrishnan and Jacob, 1996; Steiner and

Hruschka, 2003). Namely, if the average fitness of the

best chromosomes (or designs) of the current genera-

tion increased by less than a small percentage as com-

pared to the average fitness of the best designs from a

few previous generations, then the identified best de-

signs were stopped. If the stopping criteria for the

optimization were not met, the 11 best designs were

retained for the next step of the genetic algorithm.

When the stopping criteria were not satisfied, three

operators were used to create the next generation of de-

sign alternatives: (1) reproduction, wherein a subset of

the alternatives were chosen based on their fitness and

copies of their profiles were generated; (2) crossover,

wherein pairs of design alternatives were chosen and,

along specific positions on the strings, genetic material

between the two strings were exchanged leading to off-

spring (i.e. two new design alternatives); and (3) muta-

tion, wherein a design alternative was randomly chosen

from the population and the binary value at a specific

location (design input and product feature) in the string

was modified. At the end of each iteration the stopping

criteria were checked, and the iteration continued until

the optimizer’s stopping criteria were met.

The result of the application of MOGA was a set of

robust Pareto solutions that were nondominated by

any other alternative considering both the design ob-

jectives and the market share objective. In this study’s

application to the organization’s problem, the inte-

grated robustness assessment process using MOGA

led to the identification of three design alternatives as

the best robust designs from marketing, ergonomic,

and design perspectives. The organization picked

these three designs for prototype development, per-

formance evaluation in field tests, retailer consulta-

tions, and further market simulations.

It should be noted that if MOGA is applied with-

out considering the customer preferences, it would

still provide solutions in the Pareto frontier, albeit in

the context of only the design objective functions con-

sidered. When customer preference and preference

robustness are considered in MOGA, then solutions

in the Pareto frontier are obtained that have higher

market share as well as contain solutions that a

MOGA without customer preference considerations

may not have generated. However, in a practical ap-

plication, by considering customer preferences and

preference robustness in this study’s approach,

designs should be identifiable in the Pareto frontier

that have potentially higher market share as com-

pared to the case of MOGA without considering

customer preferences.
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Conclusions

This article has proposed an approach that focuses on

the issue of robustness from design and marketing

perspectives. In product categories such as consumer

durables, which are used under different conditions

and for different applications, it is very essential to

consider the impact of such variations on perform-

ance and customer preference (and market share or

profit). This area of research has not received much

attention in the NPD literature, and hopefully this

study will stimulate some interest.

In an environment where most of NPD work is car-

ried out in cross-functional teams, it is very necessary

to have coordination processes that are efficient and

effective to harness the power of such teams. The

number of design inputs, attributes, and parameters

considered are typically large, and they tend to be in-

terrelated and common across many functions. This

study’s approach provides a clear, systematic method

to consider these factors and to integrate them in iden-

tifying good design alternatives. The approach is trans-

parent. Thus, every functional team knows exactly how

the factors it deems important relates with other fac-

tors that other functions consider important and how

each factor contributes to in identifying the designs for

prototypes. This transparency enables quick internal

buy-in within the teams for the chosen alternatives.

Overall, this approach has a significant potential to

reduce the cost and time of developing prototypes. It

also enables the process to be market focused early on

in the product development cycle, as customer prefer-

ences are already accounted for at the prototype stage.

It is imperative that a successful implementation of

this proposed approach requires close coordination

among marketing, design, and ergonomics functions.

Being closer to the customer and the competition, the

onus of leading this coordination effort falls naturally

upon the marketing function. As Figure 1 indicates,

the marketing team identifies customer needs and the

important attributes based on which customers make

their purchase decision and the unique attributes of-

fered by competitive products. The marketing team

also consults with the design and ergonomic teams on

innovations that are distinct possibilities (based on

their respective work) and unique features that could

provide competitive advantage in the market. These

become the starting points for specifying the market-

ing, ergonomic, and design attributes as shown in

Figure 1. The basis for such coordination and an in-

centive structure may not exist in all organizations.

This might entail the creation of product development

teams on a project-by-project basis. Such a team

draws in experts from marketing, ergonomic, and de-

sign functions—all working on a specific product de-

velopment project with funds/resources earmarked

specifically for the project with important milestones

and deadlines specified in consultation with top man-

agement. Such teams create the necessary incentives

for successful coordination as evidenced in many mar-

ket-focused organizations including the one discussed

in this case study.

From an academic viewpoint, this study’s method-

ology integrates issues of design robustness with those

of customer preference robustness in evolving new

design alternatives using multi-objective genetic algo-

rithms. While the ultimate validation of this approach

may be difficult to assess at this stage (and is a topic

worthy of future work), it is quite evident that con-

sideration of part-worth of attribute levels and cus-

tomer utilities for product alternatives in the design

stage can lead to a market-focused design evolution

process. In the case study, the application of this ap-

proach resulted in the generation of a design with

higher customer utility (and market share) that was

discarded when the MOGA was repeated without

considering customer utilities. While this is just anec-

dotal evidence, this approach confirms some of the

common adage in new product development—the de-

sign that has the best engineering performance may

not be the one most preferred by the customer.

A significant advantage of this approach is that it is

flexible enough to accommodate alternative measures

in assessing customer preference robustness. This

study has used market share variations in Figure 6

as the measure of preference robustness, but this

could easily be converted to manufacturer profits.

Since each set of design inputs can be associated with

a cost attribute, manufacturer margin on each unit

sold (retail price minus retail margin minus cost)

can be determined for each design alternative. Thus,

interval estimates for market shares can be converted

to interval estimates for manufacturer profits for

each alternative,5 and this measure can be used for

robustness assessment of market profitability. In

some instances, manufacturers may specify a retail

price point that they target for a new product (this is

quite common in the case study as retailers generally

specify the price point they are looking for). In such a

5Manufacturer Profit5Market Share � Total Market in Number
of Units � Manufacturer Margin per Unit.
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situation, one could fix the retail price targeted and

could use manufacturer profit as a robustness criteri-

on and as an objective in the multi-objective optimi-

zation for evaluating alternatives rather than using

market share estimates.

This study’s framework and methodology do have

some limitations. First, given that a customer evalu-

ation of alternatives is the starting point for the co-

ordinated design, if new innovations and attributes

evolve during the design process it will be necessary to

go back to customers for additional evaluation. Sec-

ond, while the study has considered the robustness

issue in customer preferences using alternate meas-

ures, this approach makes a strong assumption that

the customers are homogeneous and that the utilities

estimated are the same for all customers. The issue of

preference heterogeneity can have a more significant

impact than the issue of preference robustness, espe-

cially with regard to estimated market shares of design

alternatives. This is a focus of future research, where

robustness issue could be examined in the context of

hierarchical Bayes and/or latent segment models.

Finally, with regard to practical uses of this study’s

framework, it could be argued with some justification

that this approach cannot be extended easily to cases

where prototypes are expensive to manufacture or

where design variables involved are too many or

building the simulation models are quite complicated

or not possible. However, in such situations, virtual

reality representations (Dahan and Srinivasan, 2000)

and applying the approach to a smaller component of

the design can be attempted before making a large-

scale implementation.
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Appendix

In this Appendix, more details are provided into the black boxes used in Figures 1 and 4, given their key role in

the framework.

Design Simulation

This software is a collection of special computer programs that perform specific computational analyses to

simulate and to predict the performance of a design under varying usage situations and conditions. In this case

study, the simulation software consists of a thermal, cost, and finite element analysis assessment programs. The

input to the simulation consists of design inputs (motor type, motor number, gear type, gear ratio, and battery

number) and design parameters (the nominal and ranges of ambient temperature encountered in using the

product, motor current variations for different types of motors, and so forth). The output of the simulation

includes values of design attributes such as power rating achieved by the design alternative, overall cost based on

the components specified in the design input, weight, and armature temperature attained.

The design simulation software is developed on the basis of extensive laboratory studies where different types

of motors, batteries are tested under different environmental conditions using thermal and finite element studies.

It also incorporates cost analysis where the standard costs of different components are incorporated to arrive at

the overall cost of a design alternative. Such software are developed specifically for each product categories—

drills, planers, grinders and such—based on in-house research and studies. Thus, the specific aspects of the

simulation used in this case study are useful only for the product lines of the firm, and for new product lines’

analysis the firm will require new simulations to be developed. Additional details on building such simulations

are available in the text by Doebelin (1998).

Mapping of Design Attributes to Marketing Attributes

The mapping function plays an important role in linking the attributes that are common to the design and

marketing function and thus in transmitting the variation that occurs in the design attributes as result of un-

controllable environmental factors (design parameters) to the corresponding marketing attributes. This is nec-

essary for determining the design variability component of preference robustness. With respect to Figure 1, the

attribute ‘‘power rating’’ is the just the same across the two functions and so mapping the variability from design

to marketing is just a one-to-one linear mapping. However, the design attribute armature temperature affects the
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attribute ‘‘life of product’’ in a nonlinear fashion. While changes in armature temperature at lower values do not

affect the life of the product significantly, changes in armature temperature at higher values do impact the life of

product adversely. This nonlinear relationship is determined through laboratory tests and field studies by the

design function and is used for mapping the two related attributes. Similarly, the ‘‘cost’’ attribute in the design

module is mapped to ‘‘price’’ attribute in the preference module using the relationship: price5 costþmanu-

facturer margin þ retail margin, where the margins are constant values and are specified as percentage of costs.

As with design simulation, the mapping relationships are specific to the specific product lines analyzed, and

analysis of new categories will entail development of such relationships in-house.

Additional details on the black boxes and general and specific technical specifications of the robustness

elements discussed in the article can be found in extant references (Kouvelis and Yu, 1999; Besharati et al., 2004;

Li and Azarm, 2000).
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