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Web Appendix 
 

A. STEPS IN MARKOV CHAIN MONTE CARLO SIMULATION 
 

Our MCMC procedure is carried out by sequentially generating draws from the following 
distributions:  
1. Generate the loading matrixΛ  

The loading matrix is a patterned matrix with both fixed and free elements. Some of the 
fixed elements are zero and others are one, depending on the model setup and the identification 
requirement. Let jλ denote the thj column vector of the free elements in the loading matrix, isv~ be 

the vector of indicator variables that correspond to these factor loadings, and ijθ
~ be the 

corresponding sub-matrix of the measurement errors. The full conditional distribution of jλ is 
given by: 
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Where )~'),((~*~
ijjijjisijijjis xbMVNv θλλδλ +Δ+ and the prior distribution of jλ is given as 

follows. For each element kjλ  in jλ , we let 12 −×= kjkj ldλ  with ),(~ οιBetaldkj . The 
transformed Beta distribution has an [ ]1,1− interval for the factor loadings. We set 2=ι and 

2=ο to ensure diffuse but proper priors. 
2.  Generate the factor scores isz  
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The mean 
iszω and the variance-covariance matrix 

izΔ come from two data sources. The 
first data source is the measurement equation isisiis εzΛv += . The second data source is from the 
structural equation issiis μxBδz i ++= . Therefore, the full conditional distribution for isz can be 

written as )Δ,ω(
iis zzMVN , where ]vΘ'Λ)xBδ(Δ[Δω 11
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3. Generate the measurement errors isε  
( ) ( ) ( )isisis fff ε*v*ε ∝                    (W3) 

Where )'),xBδ(Λ(~*v iiisiiis MVN Θ+ΛΛΔ+  
            ),0(~ε iis MVN Θ   

4. Generate iδ   
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Where ),(~ Σκδ MVNi  
5. Generate { }''b,...,'b,'bB 21 iJiii =  
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Where )D,β(~b jjij MVN for Jj ,...,1=  
6. Generate isμ  
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Where )Δ,0(~μ iis MVN  
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Where )γΔγ,x)BγA(δγ(~* 2'
eiiiisiiiiiis MVNy σ+++  

 ),(~ Ωϕη MVNi  
8. Generate ise  
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Where ),0(~ 2
eis Ne σ  

9. Generate )( iik diag Θ=θ for Kk ,...,1=  

Let iskv denote the corresponding indicator variable, kλ
~ be the corresponding factor 

loading, and iskz represent the corresponding factor score. The full conditional distribution for 

ikθ ( Kk ,...,1= ) is: 
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10. Generate iΔ  
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Where 2=eϖ and 1=ψ are the priors of the Inverse Gamma distribution. 
12. Generate the hyper-parameter kς  for Kk ,...,1=  

)()*()*(
1

kik

N

i
k fff ςθς Π

=

∝       (W12) 

Where the prior distribution is defined as ),0(~)log( kk N τς . We use the log-
transformation to ensure a positive sign of kς . We set 100=kτ . 
13. Generate the hyper-parameter kψ  for Kk ,...,1=  
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Where the prior distribution is defined as ),(~ kkk hgIGψ . We set 5.0=kg and 1=kh to 
ensure diffuse but proper priors. 
14. Generate the hyper-parameter ρ  
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Where the prior distribution is defined as JN >ρτρ ρ ),0(~)log( . This prior distribution 
is selected based on two criteria: 1) ρ has to be a positive number; and 2) ρ needs to be greater 
than the dimension of the matrix J . We set 100=ρτ . 
15. Generate the hyper-parameter R  
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Where the prior distribution is defined as ))R(,(~R 1
000

1 −− ρρW  with 50 =ρ  and 
IR0 = ( I is a JJ × identity matrix). 

16. Generate the hyper-parameter κ  
)()*( κκϑκ Γ= ,MVNf             (W16) 
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as 0=κr and I1000 =Γκ  ( I is a JJ × identity matrix). 
17. Generate the hyper-parameter Σ  
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Where the priors are set as 50 =Σρ and I5R 0 =Σ ( I is a JJ × identity matrix). 
18. Generate the hyper-parameter jβ for Jj ,...,1=  
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jβ ( I is a MM × identity matrix). 

19. Generate the hyper-parameter jD  for Jj ,...,1=  
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Where 0jj DD N ρρ += and 0
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ββ . We set the diffuse but 

proper priors as 100 =jDρ and I10R 0 =jD ( I is a MM × identity matrix). 
20. Generate the hyper-parameter φ  
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21. Generate the hyper-parameter Ω  
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Where the priors are set at 150 =Ωρ and I15R 0 =Ω . 
 
 
 

B. SUPPLEMENTAL INFORMATION ON STUDY ONE: 
 THE DESIGN OF A HANDHELD POWER TOOL 

 
In this study, the objective attributes were selected based on: 1) their importance to the 

end users, and 2) their relevance to the subjective characteristics. For example, motor type was 
not included because its selection does not influence the emotional or physical appeal of the tool. 
However, the limitation of excluding motor power as an objective attribute is that the proposed 
model’s incremental goodness-of-fit and predictive power over the benchmark conjoint model 
may be inflated to some extent.  

 
Our experimental design among the calibration profiles provides a D-efficiency of 74.34. 

The D-efficiency index is calculated using the formula M
XXS

/11)'(

100
−

 with S representing the 

number of calibration profiles, X being the design matrix using effects-type dummy variable 
coding, and M being the dimension of the design matrix X (Kuhfeld, Tobias, and Garratt 1994).  

 
The average rating of each prototype on perceived power ranged from 3.491 (prototype 

#5) to 5.292 (prototype #2) and, on perceived comfort, it varied from 2.768 (prototype #3) to 
5.289 (prototype #9) on a 7-point scale. This indicates that there was a considerable amount of 
variation in perceived power and perceived comfort across these prototypes. 

 
The factor loadings from the proposed model are presented in the third column of Table 

W1. In order to evaluate how well the values of the objective attributes and the posterior 
distribution of the relevant model parameters can predict the actual subjective ratings, we 
calculated the Pseudo R2 measures (last column of Table W1). In general, our findings suggest 
that the indicator variables were reliable measures of the underlying latent constructs and our 
model was able to explain a reasonable amount of variance in the subjective ratings. 
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TABLE W1: INDICATOR VARIABLE ESTIMATES: POWER TOOL STUDY 
Latent Construct Indicator Factor Loading Pseudo R2 
Perceived Power pwr1 1 0.638 

 pwr2 0.728 (0.052) 0.478 
 pwr3 0.745 (0.051) 0.512 

Perceived Comfort cft1 1 0.548 
 cft2 0.657 (0.051) 0.402 
 cft3 0.656 (0.053) 0.332 
 cft4 0.677 (0.050) 0.430 

           Posterior standard deviations are in parentheses.  
           Pseudo R2 is for regression of indicator on objective attributes (i.e. )xBδ(Λv̂ siiis += ). 
 
In Table W2, we provide a summary of the comparison between our structural equation 

model (SEM) and the path model. We only report the impact of the subjective characteristics on 
purchase likelihood in this table because the other parameter estimates from the SEM model and 
the path model are highly similar. 

 
TABLE W2: COMPARISON BETWEEN SEM MODEL AND PATH MODEL:  

POWER TOOL STUDY 
 SEM Path 

Perceived Power* 0.207 0.183 
Perceived Comfort 0.726 0.568 
In-Sample Fit   
      - Pseudo R2 0.615 0.587 
      - RMSD 0.330 0.348 
Predictive Power   
      -MAE 10.79% 11.01% 
      -RMSE 12.13% 12.82% 

 
 
 

C. SUPPLEMENTAL INFORMATION ON STUDY TWO:  
THE DESIGN OF A TOOTHBRUSH 

 
We chose the toothbrush category in our study 2 for the following reasons. First, our pilot 

study suggested that the vast majority of college students are at least somewhat concerned about 
both dental hygiene and the perceived comfort of their toothbrushes. Second, we believed that 
the large variety of toothbrush designs on the market is an indication of consumers’ 
heterogeneous preferences.  

 
The D-Efficiency for our experimental design is 65.63 among the calibration profiles. 

Based on the data collected in Condition 1, the average ratings of each toothbrush on perceived 
effectiveness varied from a minimum of 2.507 (toothbrush #5) to a maximum of 5.633 
(prototype #12) and on perceived comfort ranging from 3.389 (toothbrush #3) to 5.286 
(toothbrush #4). 
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Table W3 gives the factor loadings estimated from the proposed model. The indicator 
variables appear to be good measures of the latent constructs. The Pseudo R2 measures also 
indicated that a reasonable amount of variance in the subjective ratings is explained by our 
model. 

 
TABLE W3: INDICATOR VARIABLE ESTIMATES: TOOTHBRUSH STUDY 

Latent Construct Indicator Factor Loading Pseudo R2 
Perceived Effectiveness eff1 1 0.849 

 eff2 0.881(0.021) 0.791 
 eff3 0.895(0.021) 0.819 
 eff4 0.851(0.023) 0.737 

Perceived Comfort cft1 1 0.620 
 cft2 0.705(0.034) 0.585 
 cft3 0.573(0.039) 0.433 

                  Posterior standard deviations are in parentheses.  
                  Pseudo R2 is for regression of indicator on objective attributes (i.e. )xBδ(Λv̂ siiis +=  

 
In Table W4, we provide a summary of the comparison between our structural equation 

model (SEM) and the path model. We only report the impact of the subjective characteristics on 
purchase likelihood in this table because the other parameter estimates from the SEM model and 
the path model are highly similar. 
 

TABLE W4: COMPARISON BETWEEN SEM MODEL AND PATH MODEL: 
TOOTHBRUSH STUDY 

 SEM Path 
Perceived Effectiveness 0.309 0.246 
Perceived Comfort 0.250 0.184 
In-Sample Fit   
      - Pseudo R2 0.658 0.590 
      - RMSD 0.329 0.364 
Predictive Power   
      -MAE 9.26% 10.25% 
      -RMSE 11.74% 12.28% 

 
Reference: 
Kuhfeld, Warren F., Randall D. Tobias, and Mark Garratt (1994), “Efficient Experimental 

Design with Marketing Research Applications”, Journal of Marketing Research, Vol. 31, 
No. 4, 545-557. 

 
 

 


