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A Seemingly Intractable Problem

Sometimes it’s not clear how to prove outright that a statement is true.

For example:

Problem
Let 0 < a1 < a2 < . . . < an, and let ei = ±1. Prove that

∑n
i=1 eiai

assumes at least
(
n+1
2

)
distinct values as the ei range over all 2n possible

choices of sign. (from Larson’s Problem Solving Through Problems)

How can we possibly prove this? It looks really difficult! It’s hard to
imagine showing directly that there are at least

(
n+1
2

)
values.
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Making Life Easier

If we’re trying to prove the statement for n, let’s give ourselves more
information and say that the statement is already true for n − 1. In other
words, for 0 < a1 < a2 < . . . < an−1,

∑n−1
i=1 eiai assumes at least

(
n
2

)
distinct values.

Now suppose some additional element an is given, with an > an−1. We
already know that there are at least

(
n
2

)
values of

∑n−1
i=1 eiai . If we add

en = −1, we will hence obtain
(
n
2

)
distinct values of

∑n
i=1 eiai . These

values are all less than S =
∑n

i=1 ai . Now consider the values:

S + an,S + (an − an−1),S + (an − an−2), . . . ,S + (an − a1)

Since 0 < a1 < a2 < . . . , an, these n values are all distinct, and they are
all also greater than S . We have now found a total of

(
n
2

)
+ n =

(
n+1
2

)
distinct values, as desired.
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Turning This into a Proof

We showed that if the statement is true for n, it’s also true for n + 1. As
long as we can show that the statement is true for n = 1, we can use this
fact to prove it for any higher n: if it holds for n = 1, it holds for n = 2,
and then it holds for n = 3, and so on.

Indeed, it’s clearly true for n = 1: in that case there are two possible
values ±a1, which is consistent with

(
2
1

)
= 2. We conclude that it’s true

for all n.

We are really using the principle of mathematical induction.
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Principle of Mathematical Induction

The principle of mathematical induction states that if P(n) is a
proposition about natural numbers n ≥ a, and if:

1. P(a) is true, and

2. for each integer m ≥ a, P(m) true implies P(m + 1) true,

then P(n) is true for all n ≥ a.

Condition 1 is usually called the “base case.” Condition 2 is often called
the “induction step.”

This is actually a limited type of induction called “weak induction,”
although it’s usually called “induction” when there is no ambiguity. We’ll
talk about “strong” induction later.
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Another Example of Weak Induction
Problem
Let x0 = 1 and for n ≥ 0, let xn+1 = 3xn + bxn

√
5c. In particular,

x1 = 5, x2 = 26, x3 = 136, x4 = 712. Find a closed form expression for
x2007. (Putnam B3, 2007)

Proof.
Based on the first few values, we guess that xn = 2n−1F2n+3, where Fk is
the kth Fibonacci number. Using the formula for Fibonacci numbers, this

is equivalent to xn = 2n−1
√
5

(α2n+3 − α−(2n+3)), where α = 1+
√
5

2 .

We use induction. The base case x0 = 1 is true, and it suffices to show
that our formula for xn satisfies the recursion xn+1 = 3xn + bxn

√
5c.

Using α2 = α + 1 = 3+
√
5

2 , we find:

xn−1 − (3 +
√

5)xn =
2n−1
√

5
(2(α2n+5 − α−(2n+5))

− (3 +
√

5)(α2n+3 − α−(2n+3)))

= 2nα−(2n+3)
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Proof, continued

The recurrence we are trying to satisfy is xn+1 = 3xn + bxn
√

5c, and we
have shown:

xn−1 − (3 +
√

5)xn = 2nα−(2n+3)

We can rewrite this:

xn−1 − (3 +
√

5)xn =

(
1−
√

5

2

)3

(3−
√

5)n

which is strictly between -1 and 0 for all n. The recursion follows.

We conclude

x2007 =
22006

√
5

(α3997 − α−3997)
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What is Strong Induction?

Until now, we’ve declined to use some potentially valuable information.
We’ve assumed that a statement is true for n − 1 and proven that it’s
also true for n, but why not assume that the statement is true for all
values a, a + 1, . . . , n − 1?

The strong form of the principle of mathematical induction states that if
P(n) is a proposition about natural numbers n ≥ a, and:

1. P(a) is true, and

2. for each integer m ≥ a, P(a),P(a + 1), . . . ,P(m) true implies
P(m + 1) true,

then P(n) is true for all n ≥ a.

An aside: this is equivalent to the original principle of mathematical
induction. If we define a new proposition R(n) as true when
P(a),P(a + 1), . . . ,P(n) are all true, then the original principle of
mathematical induction on R(n) gives us the strong form on P(n).
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Strong Induction: An Example

Problem
Prove that any polygon (convex or not) can be dissected into triangles by
interior diagonals. (from Putnam and Beyond)

Proof.
We use strong induction on the number of vertices. Our base case is the
triangle, where there is nothing to prove. Assume that the property holds
for all polygons with fewer than n vertices. We want to prove it for a
polygon with n vertices. Any interior diagonal in this polygon will
complete the inductive step, because it will divide the polygon into two
polygons with fewer vertices.
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Proof, continued

Since the sum of all n angles is (n − 2)π, some angle must be less than
π. Let the polygon be A1A2 . . .An, where is ∠AnA1A2 is our chosen
interior angle. Rotate the ray A1An toward A1A2 inside the angle, and
consider the point in the intersection of the ray and the polygon that is
closest to A1. If this is ever a vertex, we have obtained an interior
diagonal. If not, A2An is an interior diagonal.
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An Alternative Approach

Say we want to prove the classic A.M.-G.M. inequality:

x1 + x2 + · · ·+ xn
n

≥ n
√
x1x2 · · · xn

What do we do? We can try standard induction, and if we’re clever
enough we can even get it to work. This isn’t easy, however, and there is
an alternative way.

We focus on a special case of the inequality, where n = 2k . Why not
attempt induction on k? Certainly the inequality holds for the base case
k = 0.
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Induction Step for the Special Case

Lemma
If the A.M.-G.M. inequality holds for n = 2k−1, it holds for n = 2k as
well.

Proof.

x1 + x2 + · · ·+ x2k

2k
=

x1+x2+···+x
2k−1

2k−1 +
x
2k−1+1

+x
2k−1+2

+···+x
2k

2k−1

2

≥
2k−1√x1x2 · · · x2k−1 + 2k−1√x2k−1+1x2k−1+2 · · · x2k

2

≥
√

2k−1√x1x2 · · · x2k−1 2k−1√x2k−1+1x2k−1+2 · · · x2k

= 2k
√
x1x2 · · · x2k
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Downward Induction Step

Lemma
If the A.M.-G.M. inequality holds for n, it holds for n − 1 as well.

Proof.
We know that x1+x2+···+xn

n ≥ n
√
x1x2 · · · xn. Now for any suitable

x1, . . . , xn−1, let xn = x1+x2+···+xn−1

n−1 . Then

x1 + x2 + · · ·+ xn
n

=
x1 + x2 + · · ·+ xn−1

n − 1

and

n
√
x1x2 · · · xn = n

√
x1x2 · · ·

x1 + x2 + · · ·+ xn−1
n − 1

≥ n

√
x1x2 · · · n−1

√
x1x2 · · · xn−1

= n−1
√
x1x2 · · · xn−1
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Finished Proof

We have shown by induction that the A.M.-G.M. inequality holds for all
n = 2k , and that if it holds for some n, it also holds for n− 1 and thus all
m ≤ n. Combining our results, we see that the A.M.-G.M. inequality
holds for any positive m such that m ≤ 2k for some k . We can pick k
high enough to satisfy this condition for any m, and thus the A.M.-G.M.
inequality is true in general.

That was a strange induction! Note that we can also use the same basic
results a little differently: if n→ 2n and n→ n − 1, then we can
immediately make a strong induction argument without talking about
powers of 2 at all. The lesson of the approach we used here, however, is
that we can induct over exponents, not just the numbers themselves.
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When To Use Induction

When should you think about induction?

• When different instances of a problem have some kind of positive
integer “size.”

• When a problem looks like it depends on a simpler version of itself.

• When you can break up the problem into similar but smaller
subproblems.

• When the problem is asking you to prove the existence of something
so unfathomably complicated that you can’t possibly construct it
directly.

• Whenever you’re stuck.

Remember, induction is free! If you need to prove some statement P for
all n ∈ N, and you can find a base case, when you’re trying to prove P(n)
it can’t hurt to think about the implications of P being true for all
1 . . . n − 1.
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