Home            Overview             Schedule                Archives                Glossary                Contacts            Links

 

 

 

Spring 2004 Semester Class Schedule:

 

Lecture Readings
DM1 :  Personalization and Customization (I) : Introduction Punting on personalization, Tweney, Business 2.0, 2000.

Web Personalization, Quellette, ComputerWorld, 1999.

Collaborative Filtering, Heylighen, 1999.

DM 2 :  Personalization and Customization (II) : Underlying Methods Case-Based Reasoning, Watson, 1997, pg. 23-28
DM 3 :  Personalization and Customization (III): Integration Beyond Personalization, Brobst & Rarey,
Teradata Review, 2000.
DM 4:  Personalization and Customization (IV) : CRM The Customer rules, Bergent & Kazimer-Schockley, Intelligent Enterprise, 2001.

Personalization tools dig deep, Colkin, Information Week, 2001.

DM 5: Decision Tree (I): Overview Data Mining Techniques. Berry / Linoff. Chapter 12: Decision Trees. pg. 243-265
DM 6:  Decision Tree (II): Methods and Applications Case Study: Mail Order/Retail. Techguide, 1997.
DM 7:  Decision Tree (III): Examples Same as Lectures DM5 & DM6
DM 8 : Neural Network (I): Overview Data Mining Techniques. Berry / Linoff. Chapter 13: Artifical Neural Networks. pg. 286-305

"A Gentle Introduction to Neural Networks". Hank Simon. DM Review.

Decision Support Systems and Intelligent Systems (5th edition). Turban / Aronson. pg. 687 - 693
 

DM 9 : Neural Network (II): Methods and Applications Same as DM 8
DM 10 : Neural Network (III): Examples Same as DM 8
Lecture - DW1 :  Introduction

1.      Data Warehousing, Data Mining & OLAP. Berson / Smith Chapter 1:      Introduction to Data Warehousing. pg. 3-21

2.      “Along the Infoban--Data warehouses" L. Fisher, Strategy & Business

3.      "A Data Warehouse Comes of Age". T. Marshall, Teradata Review, Fall 1998

 

 

Lecture -  DW2 :  Its Components

1.      Data Warehousing, Data Mining & OLAP. Berson / Smith Chapter 1: Introduction to Data Warehousing. pg. 3-21

2.      "A Data Warehouse Comes of Age". T. Marshall, Teradata Review, Fall 1998

 

 

Lecture -  DW3 : The Walmart Example

 

- Data Warehousing Using the Walmart Model.Westerman, Chapter1

 

Lecture -  DW4 :   The Star Schema

 

- Data Warehousing Design Solutions. Adams / Venerable.  Chapter 1:  The Business Driven Data Warehouse.  Pg 1-28

 

Lecture -  DW5 :  Applying the star schema

      Notes

Lecture -  DW6 :  Examples of the Star Schema

 

      Same as Lecture – DW5

Lecture -  DW7 : Technical Construction

Westerman, chapter 8.

DW8 : The Multidimensional Model and OLAP (I): Introduction Seven Methods for Transforming Corporate Data into Business Intelligence.  Dhar/Stein. Chapter 4  Data-Driven Decision Support.  pg. 30-50.

BI pays dividends, Baron, Information Week, 2000.
 

Fresh data, Rice, eWeek, 2001.

DW9 :  The Multidimensional Model and OLAP (II): Examples Same as Lecture 9

 

DW10 :  The Multidimensional Model and OLAP (III): MOLAP and ROLAP Data Warehousing, Data Mining & OLAP. Berson / Smith  Chapter 13  Online Analytical Processing. pg 247-266
DW11 : The Multidimensional Model and OLAP (IV) : Web-Based Reporting OLAP Goes Online, Baron, Information Week, 1999.

 

 

 

 

Schedule in printable format:

1. Document  .doc

2. Postscript File  .pdf

 

 

 

 

 

 

 

 

 

 

[Home] [Overview] [Schedule] [Archive] [Glossary] [Contacts] [links]

This page was last updated on : Tuesday, 30. March 2004